Mitochondrial translation (Homo sapiens)

From WikiPathways

Revision as of 10:32, 18 November 2015 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
1, 2, 4-8, 14...124, 10, 254313244, 10, 252, 9, 17, 19, 289, 11, 16, 17, 29...mitochondrial matrixTUFM PTCD3 MRPL1 MRPS25 MRPL12 MRPL9 tRNA(Phe) MRPL3 tRNA(Met) MRPS18A MRPL42 55Sribosome:MRRF:GFM2:GTPGFM2:GDPtRNA(Ile) Pro-tRNA(Pro) MRPL12 MRPL14 MRPL14 MRPL44 MRPS34 MRPL28 MRPS30 MRPS15 MRPS28 MRPL28 MRPL30 MRPL42 fMet-tRNA(fMet) GFM1 mRNA MRPL11 MRPL50 MRPL43 MRPS36 MRPL41 MRPS28 Mitochondrial 16S rRNA MRPS25 MRPL9 MRPS11 MRPL36 MRPL52 Met-tRNA(Met) tRNA(Pro) MTRF1L MRPS5 MRPL16 MRPS18A MRPL47 MRPL14 MTIF2:GTPMRPS14 Arg-tRNA(Arg) MRPS33 MRPL1 MRPS34 MRPL47 MRPS24 MRPL35 MRPL40 MRPL50 MRPL43 MRPS11 MRPL19 MRPL53 MRPL24 MRPL33 MRPL50 MRPS35 CHCHD1 MRPL52 Mitochondrial 12S rRNA MRPS6 MRPL55 MRPS18C MRPL21 MRPL22 MRPS5 MRPS26 tRNA(Ser) MRPS18A MRPS9 MTRF1L, ICT1MRPL39 MRPL35 fMet-tRNA(fMet)MRPS21 MRPL41 MRPL19 GADD45GIP1 MRPL32 MRPS23 MRPS15 MRPS23 MRPL51 MRPS33 MRPL38 MRPL43 MRPL3 MRPL52 AURKAIP1 mRNA tRNA(Cys) MRPL40 MRPS36 MRPS27 MRPS35 MRPS26 MRPS5 MRPS10 MRPS9 MRPS23 MRPS12 MRPL49 MRPL22 MRPL50 MRPS5 MRPS33 MRPL47 MRPS27 tRNA(Asn) tRNA(Gln) MRPL33 MRPL24 MRPL18 MRPS9 Phe-tRNA(Phe) MRPL36 TUFM MRPL16 MRPL53 MRPL13 MRPL13 MRPL46 MRPL54 MRPS22 MRPS33 GDPMRPL42 MRPS18C MRPL34 MRPL36 MRPL30 CHCHD1 MRPL22 MRPS31 MRPL3 peptidyl-tRNA with elongated peptide AURKAIP1 MRPS27 MRPS34 MRPL53 MRPL48 MRPL20 Met-tRNA(Met) Arg-tRNA(Arg) MRPL20 MRPL19 MRPL36 Gly-tRNA(Gly) MRPS31 CHCHD1 ICT1 tRNA(Asn) MRPL28 MRPL34 MRPL15 GADD45GIP1 Mitochondrial 16S rRNA AURKAIP1 MRPL21 MRPS26 MRPL13 MRPL41 MRPS7 MRPS35 MRPL21 GTP MRPS10 MRPL35 MRPL48 Mitochondrial 12S rRNA MRPS35 MRPS18B DAP3 MRPS26 Ala-tRNA(Ala) MRPS22 MRPS25 MRPL38 MRPL19 GFM1 MRPL46 MRPL33 MTFMTMRPL39 tRNA(Glu) MRPL40 MRPL16 MRPL42 MRPS14 MRPL23 MRPL42 MRPL38 39S ribosomalsubunitMRPL24 Lys-tRNA(Lys) MRPL14 MRPL41 MRPS7 PTCD3 Mitochondrial 12S rRNA MRPL43 MRPL2 TSFM MRPL39 MRPS18B MRPS16 MRPS31 MRPS9 28S ribosomalsubunitMRPL30 MRPL46 MRPS11 MRPL2 MRPS11 fMet-tRNA(fMet) MRPL47 MRPS9 MRPS28 MRPS12 MRPL27 MRPL20 tRNA(His) MRPS17 GDP mRNA CHCHD1 MRPL23 MRPS5 MRPL14 MRPS11 MRPL22 MRPS28 MRPS10 MRPL54 fMet-tRNA(fMet) MRPL33 MRPS18C MRPL19 MRPS33 MRPS21 MRPS27 MRRFMRPL10 MRPS33 MRPL10 MRPL2 MRPS18B Val-tRNA(Val) AURKAIP1 MRPL2 MRPS10 MRPL17 MRPL46 MRPL55 MRPS7 MRPS34 MRPL24 Ile-tRNA(Ile) MRPS28 MRPL34 MRPL23 MRPS35 Cys-tRNA(Cys) DAP3 Val-tRNA(Val) CHCHD1 MRPL38 CHCHD1 MRPL37 MRPL33 Gln-tRNA(Gln) MRPL38 MRPL46 MRPS36 MRPL28 mRNA MRPL28 MRPS18C MRPL9 MRPL14 MRPL9 MRPS15 Trp-tRNA(Trp) MRPL53 MRPL34 MRPS15 MRPS10 Mitochondrial 16S rRNA MRPS24 MRPL49 MRPS33 MRPL47 Leu-tRNA(Leu) MRPL24 MRPS27 MRPS14 MRRF DAP3 55Sribosome:mRNA:tRNAMRPL33 MRPS31 MRPL9 mRNA MRPL52 Mitochondrial 12S rRNA MRPS9 MRPL4 MRPL27 MRPL21 MRPL9 MRPL10 MRPL9 MRPS26 MRPL49 MRPL34 ICT1 MRPS27 Mitochondrial 16S rRNA MRPL28 PTCD3 MRPL11 MRPL52 MRPL48 MRPS34 MRPS5 MRPL24 Mitochondrial 12S rRNA MRPL10 PTCD3 MRPL50 MRPL49 MRPS21 MRPL21 MRPS10 Leu-tRNA(Leu) MRPS31 MRPS21 MRPS17 MRPS33 AURKAIP1 MRPL2 MRPS18A MRPL4 Glu-tRNA(Glu) MRPL39 MRPL1 Gln-tRNA(Gln) Asn-tRNA(Asn) GADD45GIP1 MRPS22 MRPS18C MRPL32 Pro-tRNA(Pro) MRPS30 MRPL16 mRNA tRNA(His) MRPL17 MRPS22 MRPL11 MRPS18A MRPS34 MRPL41 MRPS34 MRPL30 MRPL1 MRPL15 MRPL4 tRNA(Thr) MRPL18 MRPS6 MRPL36 His-tRNA(His) Gln-tRNA(Gln) MRPS25 MRPL43 MRPL54 MRPS31 mRNA MRPS18C AURKAIP1 MRPS16 MRPL1 MRPL10 MRPL41 MRPL46 MRPS36 MRPL15 tRNA(Ser) MRPL55 GTP MRPS7 Mitochondrial 12S rRNA GFM2 tRNA(Ala) MRPL33 MRPS16 MRPS11 tRNA(Asp) MRPL52 MRPL4 AURKAIP1 Asp-tRNA(Asp) MRPS7 MRPL10 MRPS9 GTP MRPS27 MRPS15 MRPS10 MRPS7 MRPS26 mRNA MRPL39 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPMRPS16 MRPS12 PiMRPL21 Lys-tRNA(Lys) MRPL43 MRPL27 MRPL3 MRPL46 MRPS6 MRPS12 MRPS25 MRPS14 DAP3 TUFM:TSFMMRPL40 AURKAIP1 MRPL40 Arg-tRNA(Arg) MRPL16 MRPS14 MRPL47 MRPS12 MRPS23 MRPL14 tRNA(Pro) MTRF1L PiMRPS25 MRPL4 MRPS12 Thr-tRNA(Thr) MRPS17 MRPL2 MRPS34 tRNA(Gly) MRPS30 MRPL4 MRPL9 MRPL35 MRPL33 MRPL37 MRPS30 MRPL11 MRPS5 MTIF3tRNA(Cys) MRPS17 tRNA(Tyr) MRPS21 Lys-tRNA(Lys) MRPL15 MRPS28 MRPL19 MRPL20 Thr-tRNA(Thr) MRPL22 MRPL55 MRPL4 MRPS33 mRNA MRPL2 10-formyl-THFMRPS24 MRPL51 MRPS18B MRPL55 MRPS24 MRPS5 MRPL9 tRNA(Glu) MRPL34 MRPL44 CHCHD1 MTIF3 MRPL2 MRPS30 MRPL54 MRPL23 MRPL35 MRPL35 MRPL45 PTCD3 MRPL54 MRPS21 MRPS21 MRPL18 MRPL49 MRPL45 Mitochondrial 12S rRNA MRPS34 MRPL18 Tyr-tRNA(Tyr) MRPS15 PiGADD45GIP1 MRPL37 MRPS6 MRPL30 MRPL15 MRPL23 MRPL20 MRPL14 tRNA(Ala) MRPL34 tRNA(Val) MRPL24 ICT1 MRPL41 MRPS18B MRPS22 MRPS14 tRNA(Asp) GTP MRPS7 MRPL42 MRPL32 MRPL14 MRPS33 His-tRNA(His) CHCHD1 Phe-tRNA(Phe) Gly-tRNA(Gly) peptidyl-tRNA with elongated peptide MRPL30 MRPS18A MRPL30 MRPL53 Ala-tRNA(Ala) MRPL55 MRPL16 tRNA(Ala) GADD45GIP1 MRPL54 tRNA(Lys) MRPS23 tRNA(Arg) tRNA(Lys) MRPS15 MRPL13 GADD45GIP1 tRNA(Leu) MRPS5 MRPS7 tRNA(Tyr) MRPS27 MRPL13 MRPS22 MRPL45 MRPL20 Ala-tRNA(Ala) MRPS26 MRPL39 MRPS9 MRPL23 MRPS16 MRPS18A MRPS6 tRNA(Ser) DAP3 MRPL12 MRPL15 DAP3 MRPS5 MRPL53 MRPL50 Ser-tRNA(Ser) MRPS36 MRPS36 MRPS26 MRPS35 GFM1:GDPMRPS12 MTIF2 GFM1 tRNA(Tyr) MRPS16 tRNA(Ile) Lys-tRNA(Lys) MRPS35 GTPMitochondrial 16S rRNA MRPS33 GADD45GIP1 PTCD3 ICT1 MRPL14 MRPS7 MRPS25 MRPS23 PTCD3 MRPL37 MRPL11 AURKAIP1 MRPL21 ICT1 MRPS26 ICT1 tRNA(Trp) MRPL16 MRPL51 MRPL45 Cys-tRNA(Cys) MRPS14 tRNA(Gly) Mitochondrial 12S rRNA MRPL18 MRPS17 MRPL20 PTCD3 Mitochondrial 12S rRNA GADD45GIP1 MRPL42 MRPL42 MRPL19 MRPL12 MRPS18B MRPL53 ICT1 MRPL13 MRPS16 MRPS22 MRPL23 MRPL39 Asp-tRNA(Asp) MRPL51 55Sribosome:mRNA:tRNA:peptidyl-tRNA at A-siteMRPS16 Mitochondrial 12S rRNA MRPL32 MRPS11 MRPL36 MRPL34 MRPS23 MRPL2 MRPS22 MRPL45 tRNA(Trp) MRPL35 mRNA Leu-tRNA(Leu) MRPS36 MRPS18B MRPL44 MRPS30 MRPS24 AURKAIP1 tRNA(Trp) MRPS30 MRPL16 MRPS12 MRPS17 MRPS5 GFM2 MRPL55 Met-tRNA(Met)MRPL45 GADD45GIP1 MRPL10 MRPS14 MRPL11 tRNA(Gln) MRPL41 MRPL15 MRPS10 MRPL43 MRPS21 Tyr-tRNA(Tyr) MRPL55 MRPS23 ICT1 MRPS18A MRPS26 Phe-tRNA(Phe) MRPS5 Mitochondrial 16S rRNA MRPS35 MRPS17 fMet-tRNA(fMet) MRPS23 tRNA(Val) MRPS11 MRPL23 MRPL40 MRPL17 MRPS30 tRNA(Lys) MRPS17 MRPL12 MRPL38 MRPS17 MRPS23 MRPS16 tRNA(Gln) tRNA(Phe) MRPL48 MRPL40 Ser-tRNA(Ser) GFM2:GTPArg-tRNA(Arg) MRPS7 MRPL45 MRPL40 TUFM MRPL54 MRPS26 MRPL43 MRPS11 MRPL34 MRPL42 GADD45GIP1 MRPL15 ICT1 MRPL53 MRPS7 MRPL52 MRPL37 MRPS18B Asp-tRNA(Asp) TUFM MRPS11 MRPL38 MRPL12 MRPL15 MRPL4 DAP3 MRPL17 MRPL30 MRPS17 GTP MRPS18B MRPL10 MRPS31 55Sribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPMRPS15 MRPL50 MRPL15 MRPL47 MRPL37 MRPS35 MRPL12 MRPL32 tRNA(Pro) MRPL55 MRPL28 MRPL32 tRNA(Leu) PTCD3 ICT1 MRPL28 MRPS27 MRPS25 MRPS15 MRPL48 fMet-tRNA(fMet) MRPL3 MRPL54 MRPL17 MRPL22 MRPS22 MRPS16 MRPL41 MTIF3 MRPL47 Gln-tRNA(Gln) MRPL1 MRPS11 MRPS28 MRPL11 MRPL39 MRPS36 MTIF2 MRPS31 MRPL47 MRPS6 MRPL13 AURKAIP1 MRPL4 Thr-tRNA(Thr) MRPL40 MRPS9 MRPS6 GDP tRNA(Met) tRNA(Arg) MRPL48 MRPL52 MRPL40 MRPL51 MRPS10 Trp-tRNA(Trp) MRPS21 MRPL43 MRPS15 MRPL39 MRPL48 GTPMRPL4 MRPS23 MRPS7 MRPL13 tRNA(Asp) MRPL30 MRPS6 MRPL18 MRPL12 MRPS12 PiMRPL37 MRPS28 Ser-tRNA(Ser) MRPL3 55Sribosome:mRNA:tRNA:MRRFMRPS22 MRPS34 MRPL37 MRPL24 MRPL18 MRPS18A MRPL41 MRPL23 MRPS31 MRPL30 MRPL1 Ala-tRNA(Ala) MRPS6 MRPS12 MRPS14 MRPS27 MRPL44 MRPL44 Thr-tRNA(Thr) MRPS30 MRPS18A MRPL42 MRPS15 MRPL30 tRNA(Met) MRPS36 MRPL46 MRPL51 MRPL3 MRPS26 MRPL50 MRPS34 DAP3 MRPL48 MRPS14 MRPL34 Cys-tRNA(Cys) MRPS22 MRPS27 MRPS24 MRPS30 tRNA(Leu) MRPL50 GTP MRPL34 DAP3 MRPS27 MRPS12 ICT1 MRPL22 MRPL28 MRPL44 MRPS16 MRPL38 MRPS18C MRPL20 MRPL4 MRPS18C MRPL38 MRPS22 MRPS28 MRPS36 THFMRPS18C MRPL17 tRNA(Ile) MRPL11 MRPS14 MRPS35 MRPL37 GDP MRPL54 Glu-tRNA(Glu) MRPL44 MRPL16 Pro-tRNA(Pro) MRPS18A Ile-tRNA(Ile) MRPS9 MRPL32 MRPS31 MRPL54 peptidyl-tRNA with elongated peptide MRPL45 GTP tRNA(Gly) MRPL27 MRPL51 MRPS31 MRPL27 MRPL27 MRPL54 MRPS6 MRPL1 GTP tRNA(Met)Ile-tRNA(Ile) MRPL32 MRPL11 MRPL11 MRPL3 MRPL49 MRPS36 MRPL12 Met-tRNA(Met) MRPS25 MRPS17 tRNA(Glu) PTCD3 tRNA(Val) MRPL32 DAP3 MRPS15 MRPL55 MRPL17 MRPL16 MRPL42 PiMRPL28 MRPL24 MRPL39 His-tRNA(His) Mitochondrial 16S rRNA CHCHD1 ICT1 MRPL19 MRPS18B PTCD3 MRPL37 MRPL36 MRPL36 Trp-tRNA(Trp) MRPL27 MRPL46 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNAtRNA(Phe) MRPL44 MRPL33 MRPS30 Mitochondrial 12S rRNA MRPS21 MRPS9 MRPS10 MRPS18C ICT1 MRPL51 GADD45GIP1 CHCHD1 28S ribosomalsubunit:MTIF3MRPL18 MRPL49 MRPS11 Mitochondrial 16S rRNA MRPL43 Asn-tRNA(Asn) 55Sribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPMRPL49 MRPS24 MRPL22 MRPS18B MRPL19 MRPL36 MRPL38 MRPL2 MRPL44 MRPL46 MRPL45 MRPS15 MRPL22 MRPS26 tRNA(Thr) CHCHD1 MRPS10 MRPS36 Mitochondrial 16S rRNA MRPL52 MRPL13 Glu-tRNA(Glu) MRPL12 MRPS14 MRPL45 MRPL11 MRPS18A His-tRNA(His) MRPL49 MRPL46 MRPL44 MRPS33 Gly-tRNA(Gly) MTIF2MRPL53 MRPL23 MRPL17 MRPS6 mRNApolypeptideTUFM:GDP28Sribosomalsubunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNAMRPL15 MRPS5 MRPL35 MRPS30 MRPL28 MRPL9 Cys-tRNA(Cys) MRPL39 MRPS25 MRPS31 MRPS36 tRNAMRPL53 MRPL13 MRPL36 MRPL40 tRNA(Cys) MRPS18B MRPL21 MRPL24 MRPL49 GTP MRPL10 tRNA(Thr) MRPL1 MRPL27 Trp-tRNA(Trp) MRPL10 55Sribosome:mRNA:peptidyl-tRNA at P-siteMRPL27 MRPL52 MRPS33 MRPL32 MRPL50 MRPL3 CHCHD1 MRPS30 MRPL21 MRPL27 MRPS6 MRPL18 MRPL32 Met-tRNA(Met) Leu-tRNA(Leu) MRPS31 MRPL55 MRPS17 MRPS22 Gly-tRNA(Gly) MRPS35 TUFM:GTP:aminoacyl-tRNAMRPL48 GDPMRPS34 GDPMRPS24 AURKAIP1 Mitochondrial 12S rRNA MRPS28 MRPL52 Pro-tRNA(Pro) MRPL45 MRPL24 MRPS12 Asn-tRNA(Asn) MRPL9 Ser-tRNA(Ser) MRPS18C MRPS25 MRPL20 MRPS9 MRPS21 Mitochondrial 16S rRNA Asn-tRNA(Asn) MRPL3 MRPL17 Glu-tRNA(Glu) MRPL36 MRPS35 MRPL19 MRPL22 Mitochondrial 16S rRNA MRPL3 MRPL1 MRPS24 Val-tRNA(Val) MRPS9 MRPS18B MRPL50 PTCD3 MRPL27 tRNA(His) MRPS21 MRPL41 MRPS12 MRPL53 MRPS24 MRPL16 MRPL19 MRPS28 MRPS24 MRPL38 MRPL35 aminoacyl-tRNAMitochondrial 12S rRNA MRPS6 MRPL1 TUFM MRPS7 TUFM:GTPMRPL35 AURKAIP1 MRPL20 MRPL17 MRPL35 MRPS34 Ile-tRNA(Ile) MRPL10 MRRF MRPS17 MRPL17 MRPS28 MRPL48 MRPS23 MRPL43 MRPL33 MRPL13 MRPS24 MRPL21 MRPL51 CHCHD1 Val-tRNA(Val) MRPL18 MRPL47 MRPS16 MRPS16 MRPL44 55Sribosome:mRNA:fMet-tRNAMRPL21 MRPL48 MRPL14 MRPS25 MRPS14 MRPL51 MRPL22 DAP3 MRPL23 MRPS10 tRNA(Asn) MRPS23 GFM1:GTPtRNA(Arg) MRPL47 Tyr-tRNA(Tyr) DAP3 MRPL49 fMet-tRNA(fMet) MRPL2 peptidyl-tRNA with elongated peptide MRPS18A MRPS18C MRPL33 MRPS28 Asp-tRNA(Asp) MRPL51 Phe-tRNA(Phe) PTCD3 GTP MRPS11 MRPS35 MRPS27 MRPS18C MRPL12 DAP3 MRPS25 MRPS10 MRPS21 MRPL20 MRPL37 TSFMMRPS24 MRPL18 Tyr-tRNA(Tyr) GFM2 26, 2718, 2711, 16, 19


Description

Of the roughly 1000 human mitochondrial proteins only 13 proteins, all of them hydrophobic inner membrane proteins that are components of the oxidative phosphorylation apparatus, are encoded in the mitochondrial genome and translated by mitoribosomes at the matrix face of the inner membrane (reviewed in Herrmann et al. 2012, Hallberg and Larsson 2014, Lightowlers et al. 2014). The remainder, including all proteins of the mitochondrial translation system, are encoded in the nucleus and imported from the cytosol into the mitochondrion. Translation in the mitochondrion reflects both the bacterial origin of the organelle and subsequent divergent evolution during symbiosis (reviewed in Huot et al. 2014, Richman et al. 2014). Human mitochondrial ribosomes have a low sedimentation coefficient of only 55S, but at 2.71 MDa they retain a similar mass to E. coli 70S particles. The 55S particles are protein-rich compared to both cytosolic ribosomes and eubacterial ribosomes. This is due to shorter mt-rRNAs, mitochondria-specific proteins, and numerous rearrangements in individual protein positions within the two ribosome subunits (inferred from bovine ribosomes in Sharma et al. 2003, Greber et al. 2014, Kaushal et al. 2014, reviewed in Agrawal and Sharma 2012).
Mitochondrial mRNAs have either no untranslated leader or short leaders of 1-3 nucleotides, with the exception of the 2 bicistronic transcripts, RNA7 and RNA14, which have overlapping orfs that encode ND4L/ND4 and ATP8/ATP6 respectively. Translation is believed to initiate with the mRNA binding the 28S subunit:MTIF3 (28S subunit:IF-3Mt, 28S subunit:IF2mt) complex together with MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP) at the matrix face of the inner membrane (reviewed in Christian and Spremulli 2012). MTIF3 can dissociate 55S particles in preparation for initiation, enhances formation of initiation complexes, and inhibits N-formylmethionine-tRNA (fMet-tRNA) binding to 28S subunits in the absence of mRNA. Binding of fMet-tRNA to the start codon of the mRNA results in a stable complex while absence of a start codon at the 5' end of the mRNA causes eventual dissociation of the mRNA from the 28S subunit. After recognition of a start codon, the 39S subunit then binds the stable complex, GTP is hydrolyzed, and the initiation factors MTIF3 and MTIF2:GDP dissociate.
Translation elongation then proceeds by cycles of aminoacyl-tRNAs binding, peptide bond formation, and displacement of deacylated tRNAs. In each cycle an aminoacyl-tRNA in a complex with TUFM:GTP (EF-Tu:GTP) binds at the A-site of the ribosome, GTP is hydrolyzed, and TUFM:GDP dissociates. The elongating polypeptide bonded to the tRNA at the P-site is transferred to the aminoacyl group at the A-site by peptide bond formation at the peptidyl transferase center, leaving a deacylated tRNA at the P-site and the elongating polypeptide attached to the tRNA at the A-site. The polypeptide is co-translationally inserted into the inner mitochondrial membrane via an interaction with OXA1L (Haque et al. 2010, reviewed in Ott and Hermann 2010). After peptide bond formation, GFM1:GTP (EF-Gmt:GTP) then binds the ribosome complex, GTP is hydrolyzed, GFM1:GDP dissociates, and the ribosome translocates 3 nucleotides in the 3' direction along the mRNA, relocating the polypeptide-tRNA to the P-site and allowing another cycle to begin. TUFM:GDP is regenerated to TUFM:GTP by the guanine nucleotide exchange factor TSFM (EF-Ts, EF-TsMt).
Translation is terminated when MTRF1L:GTP (MTRF1a:GTP) recognizes an UAA or UAG termination codon at the A-site of the ribosome (Tsuboi et al. 2009). GTP hydrolysis does not appear to be required. The tRNA-aminoacyl bond between the translated polypeptide and the final tRNA at the P-site is hydrolyzed by the 39S subunit, facilitating release of the polypeptide. MRRF (RRF) and GFM2:GTP (EF-G2mt:GTP) then act to release the remaining tRNA and mRNA from the ribosome and dissociate the 55S ribosome into 28S and 39S subunits.
Mutations have been identified in genes encoding mitochondrial ribosomal proteins and translation factors. These have been shown to be pathogenic, causing neurological and other diseases (reviewed in Koopman et al. 2013, Pearce et al. 2013). View original pathway at:Reactome.

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Soleimanpour-Lichaei HR, Kühl I, Gaisne M, Passos JF, Wydro M, Rorbach J, Temperley R, Bonnefoy N, Tate W, Lightowlers R, Chrzanowska-Lightowlers Z.; ''mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  2. Richter R, Rorbach J, Pajak A, Smith PM, Wessels HJ, Huynen MA, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome.''; PubMed Europe PMC Scholia
  3. Lightowlers RN, Rozanska A, Chrzanowska-Lightowlers ZM.; ''Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation.''; PubMed Europe PMC Scholia
  4. Zhang Y, Spremulli LL.; ''Identification and cloning of human mitochondrial translational release factor 1 and the ribosome recycling factor.''; PubMed Europe PMC Scholia
  5. Valente L, Shigi N, Suzuki T, Zeviani M.; ''The R336Q mutation in human mitochondrial EFTu prevents the formation of an active mt-EFTu.GTP.aa-tRNA ternary complex.''; PubMed Europe PMC Scholia
  6. Hällberg BM, Larsson NG.; ''Making proteins in the powerhouse.''; PubMed Europe PMC Scholia
  7. Herrmann JM, Longen S, Weckbecker D, Depuydt M.; ''Biogenesis of mitochondrial proteins.''; PubMed Europe PMC Scholia
  8. Rackham O, Filipovska A.; ''Supernumerary proteins of mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  9. Dennerlein S, Rozanska A, Wydro M, Chrzanowska-Lightowlers ZM, Lightowlers RN.; ''Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit.''; PubMed Europe PMC Scholia
  10. Koopman WJ, Distelmaier F, Smeitink JA, Willems PH.; ''OXPHOS mutations and neurodegeneration.''; PubMed Europe PMC Scholia
  11. Koc EC, Cimen H, Kumcuoglu B, Abu N, Akpinar G, Haque ME, Spremulli LL, Koc H.; ''Identification and characterization of CHCHD1, AURKAIP1, and CRIF1 as new members of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  12. Rorbach J, Richter R, Wessels HJ, Wydro M, Pekalski M, Farhoud M, Kühl I, Gaisne M, Bonnefoy N, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''The human mitochondrial ribosome recycling factor is essential for cell viability.''; PubMed Europe PMC Scholia
  13. Christian BE, Spremulli LL.; ''Mechanism of protein biosynthesis in mammalian mitochondria.''; PubMed Europe PMC Scholia
  14. Tucker EJ, Hershman SG, Köhrer C, Belcher-Timme CA, Patel J, Goldberger OA, Christodoulou J, Silberstein JM, McKenzie M, Ryan MT, Compton AG, Jaffe JD, Carr SA, Calvo SE, RajBhandary UL, Thorburn DR, Mootha VK.; ''Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation.''; PubMed Europe PMC Scholia
  15. Huynen MA, Duarte I, Chrzanowska-Lightowlers ZM, Nabuurs SB.; ''Structure based hypothesis of a mitochondrial ribosome rescue mechanism.''; PubMed Europe PMC Scholia
  16. Agrawal RK, Sharma MR.; ''Structural aspects of mitochondrial translational apparatus.''; PubMed Europe PMC Scholia
  17. Nozaki Y, Matsunaga N, Ishizawa T, Ueda T, Takeuchi N.; ''HMRF1L is a human mitochondrial translation release factor involved in the decoding of the termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  18. Cavdar Koc E, Burkhart W, Blackburn K, Moseley A, Spremulli LL.; ''The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  19. Akabane S, Ueda T, Nierhaus KH, Takeuchi N.; ''Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria.''; PubMed Europe PMC Scholia
  20. Temperley R, Richter R, Dennerlein S, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''Hungry codons promote frameshifting in human mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  21. Lind C, Sund J, Aqvist J.; ''Codon-reading specificities of mitochondrial release factors and translation termination at non-standard stop codons.''; PubMed Europe PMC Scholia
  22. Uchiumi T, Ohgaki K, Yagi M, Aoki Y, Sakai A, Matsumoto S, Kang D.; ''ERAL1 is associated with mitochondrial ribosome and elimination of ERAL1 leads to mitochondrial dysfunction and growth retardation.''; PubMed Europe PMC Scholia
  23. Bhargava K, Templeton P, Spremulli LL.; ''Expression and characterization of isoform 1 of human mitochondrial elongation factor G.''; PubMed Europe PMC Scholia
  24. Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM, Moseley A, Spremulli LL.; ''The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  25. Huot JL, Enkler L, Megel C, Karim L, Laporte D, Becker HD, Duchêne AM, Sissler M, Maréchal-Drouard L.; ''Idiosyncrasies in decoding mitochondrial genomes.''; PubMed Europe PMC Scholia
  26. Richman TR, Rackham O, Filipovska A.; ''Mitochondria: Unusual features of the mammalian mitoribosome.''; PubMed Europe PMC Scholia
  27. Chung HK, Spremulli LL.; ''Purification and characterization of elongation factor G from bovine liver mitochondria.''; PubMed Europe PMC Scholia
  28. Ott M, Herrmann JM.; ''Co-translational membrane insertion of mitochondrially encoded proteins.''; PubMed Europe PMC Scholia
  29. Young DJ, Edgar CD, Murphy J, Fredebohm J, Poole ES, Tate WP.; ''Bioinformatic, structural, and functional analyses support release factor-like MTRF1 as a protein able to decode nonstandard stop codons beginning with adenine in vertebrate mitochondria.''; PubMed Europe PMC Scholia
  30. Haque ME, Elmore KB, Tripathy A, Koc H, Koc EC, Spremulli LL.; ''Properties of the C-terminal tail of human mitochondrial inner membrane protein Oxa1L and its interactions with mammalian mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  31. Kaushal PS, Sharma MR, Booth TM, Haque EM, Tung CS, Sanbonmatsu KY, Spremulli LL, Agrawal RK.; ''Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  32. Pearce S, Nezich CL, Spinazzola A.; ''Mitochondrial diseases: translation matters.''; PubMed Europe PMC Scholia
  33. Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V.; ''Structure of the large ribosomal subunit from human mitochondria.''; PubMed Europe PMC Scholia
  34. Tsuboi M, Morita H, Nozaki Y, Akama K, Ueda T, Ito K, Nierhaus KH, Takeuchi N.; ''EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis.''; PubMed Europe PMC Scholia
  35. Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F, Erzberger JP, Leibundgut M, Aebersold R, Ban N.; ''Architecture of the large subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114740view16:22, 25 January 2021ReactomeTeamReactome version 75
113184view11:25, 2 November 2020ReactomeTeamReactome version 74
112412view15:35, 9 October 2020ReactomeTeamReactome version 73
101316view11:20, 1 November 2018ReactomeTeamreactome version 66
100853view20:52, 31 October 2018ReactomeTeamreactome version 65
100394view19:26, 31 October 2018ReactomeTeamreactome version 64
99942view16:11, 31 October 2018ReactomeTeamreactome version 63
99498view14:44, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99147view12:41, 31 October 2018ReactomeTeamreactome version 62
93746view13:33, 16 August 2017ReactomeTeamreactome version 61
93261view11:18, 9 August 2017ReactomeTeamreactome version 61
87964view13:13, 25 July 2016RyanmillerOntology Term : 'translation pathway' added !
87963view13:13, 25 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86341view09:15, 11 July 2016ReactomeTeamreactome version 56
83252view10:32, 18 November 2015ReactomeTeamVersion54
81361view12:53, 21 August 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
10-formyl-THFMetaboliteCHEBI:15637 (ChEBI)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ComplexR-HSA-5368280 (Reactome)
28S ribosomal subunit:MTIF3ComplexR-HSA-5368269 (Reactome)
28S ribosomal subunitComplexR-HSA-5368239 (Reactome)
39S ribosomal subunitComplexR-HSA-5368233 (Reactome)
55S ribosome:MRRF:GFM2:GTPComplexR-HSA-5419282 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPComplexR-HSA-5389851 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAComplexR-HSA-5389838 (Reactome)
55S ribosome:mRNA:fMet-tRNAComplexR-HSA-5368273 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteComplexR-HSA-5419272 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPComplexR-HSA-5419280 (Reactome)
55S ribosome:mRNA:tRNA:MRRFComplexR-HSA-5419275 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteComplexR-HSA-5389843 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPComplexR-HSA-5419267 (Reactome)
55S ribosome:mRNA:tRNAComplexR-HSA-5419262 (Reactome)
AURKAIP1 ProteinQ9NWT8 (Uniprot-TrEMBL)
Ala-tRNA(Ala) R-HSA-379730 (Reactome)
Arg-tRNA(Arg) R-HSA-379708 (Reactome)
Asn-tRNA(Asn) R-HSA-379718 (Reactome)
Asp-tRNA(Asp) R-HSA-379698 (Reactome)
CHCHD1 ProteinQ96BP2 (Uniprot-TrEMBL)
Cys-tRNA(Cys) R-HSA-379713 (Reactome)
DAP3 ProteinP51398 (Uniprot-TrEMBL)
GADD45GIP1 ProteinQ8TAE8 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GFM1 ProteinQ96RP9 (Uniprot-TrEMBL)
GFM1:GDPComplexR-HSA-5419260 (Reactome)
GFM1:GTPComplexR-HSA-5419274 (Reactome)
GFM2 ProteinQ969S9 (Uniprot-TrEMBL)
GFM2:GDPComplexR-HSA-5419266 (Reactome)
GFM2:GTPComplexR-HSA-5419270 (Reactome)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Gln-tRNA(Gln) R-HSA-379753 (Reactome)
Glu-tRNA(Glu) R-HSA-379744 (Reactome)
Gly-tRNA(Gly) R-HSA-379781 (Reactome)
His-tRNA(His) R-HSA-379764 (Reactome)
ICT1 ProteinQ14197 (Uniprot-TrEMBL)
Ile-tRNA(Ile) R-HSA-379769 (Reactome)
Leu-tRNA(Leu) R-HSA-379773 (Reactome)
Lys-tRNA(Lys) R-HSA-379795 (Reactome)
MRPL1 ProteinQ9BYD6 (Uniprot-TrEMBL)
MRPL10 ProteinQ7Z7H8 (Uniprot-TrEMBL)
MRPL11 ProteinQ9Y3B7 (Uniprot-TrEMBL)
MRPL12 ProteinP52815 (Uniprot-TrEMBL)
MRPL13 ProteinQ9BYD1 (Uniprot-TrEMBL)
MRPL14 ProteinQ6P1L8 (Uniprot-TrEMBL)
MRPL15 ProteinQ9P015 (Uniprot-TrEMBL)
MRPL16 ProteinQ9NX20 (Uniprot-TrEMBL)
MRPL17 ProteinQ9NRX2 (Uniprot-TrEMBL)
MRPL18 ProteinQ9H0U6 (Uniprot-TrEMBL)
MRPL19 ProteinP49406 (Uniprot-TrEMBL)
MRPL2 ProteinQ5T653 (Uniprot-TrEMBL)
MRPL20 ProteinQ9BYC9 (Uniprot-TrEMBL)
MRPL21 ProteinQ7Z2W9 (Uniprot-TrEMBL)
MRPL22 ProteinQ9NWU5 (Uniprot-TrEMBL)
MRPL23 ProteinQ16540 (Uniprot-TrEMBL)
MRPL24 ProteinQ96A35 (Uniprot-TrEMBL)
MRPL27 ProteinQ9P0M9 (Uniprot-TrEMBL)
MRPL28 ProteinQ13084 (Uniprot-TrEMBL)
MRPL3 ProteinP09001 (Uniprot-TrEMBL)
MRPL30 ProteinQ8TCC3 (Uniprot-TrEMBL)
MRPL32 ProteinQ9BYC8 (Uniprot-TrEMBL)
MRPL33 ProteinO75394 (Uniprot-TrEMBL)
MRPL34 ProteinQ9BQ48 (Uniprot-TrEMBL)
MRPL35 ProteinQ9NZE8 (Uniprot-TrEMBL)
MRPL36 ProteinQ9P0J6 (Uniprot-TrEMBL)
MRPL37 ProteinQ9BZE1 (Uniprot-TrEMBL)
MRPL38 ProteinQ96DV4 (Uniprot-TrEMBL)
MRPL39 ProteinQ9NYK5 (Uniprot-TrEMBL)
MRPL4 ProteinQ9BYD3 (Uniprot-TrEMBL)
MRPL40 ProteinQ9NQ50 (Uniprot-TrEMBL)
MRPL41 ProteinQ8IXM3 (Uniprot-TrEMBL)
MRPL42 ProteinQ9Y6G3 (Uniprot-TrEMBL)
MRPL43 ProteinQ8N983 (Uniprot-TrEMBL)
MRPL44 ProteinQ9H9J2 (Uniprot-TrEMBL)
MRPL45 ProteinQ9BRJ2 (Uniprot-TrEMBL)
MRPL46 ProteinQ9H2W6 (Uniprot-TrEMBL)
MRPL47 ProteinQ9HD33 (Uniprot-TrEMBL)
MRPL48 ProteinQ96GC5 (Uniprot-TrEMBL)
MRPL49 ProteinQ13405 (Uniprot-TrEMBL)
MRPL50 ProteinQ8N5N7 (Uniprot-TrEMBL)
MRPL51 ProteinQ4U2R6 (Uniprot-TrEMBL)
MRPL52 ProteinQ86TS9 (Uniprot-TrEMBL)
MRPL53 ProteinQ96EL3 (Uniprot-TrEMBL)
MRPL54 ProteinQ6P161 (Uniprot-TrEMBL)
MRPL55 ProteinQ7Z7F7 (Uniprot-TrEMBL)
MRPL9 ProteinQ9BYD2 (Uniprot-TrEMBL)
MRPS10 ProteinP82664 (Uniprot-TrEMBL)
MRPS11 ProteinP82912 (Uniprot-TrEMBL)
MRPS12 ProteinO15235 (Uniprot-TrEMBL)
MRPS14 ProteinO60783 (Uniprot-TrEMBL)
MRPS15 ProteinP82914 (Uniprot-TrEMBL)
MRPS16 ProteinQ9Y3D3 (Uniprot-TrEMBL)
MRPS17 ProteinQ9Y2R5 (Uniprot-TrEMBL)
MRPS18A ProteinQ9NVS2 (Uniprot-TrEMBL)
MRPS18B ProteinQ9Y676 (Uniprot-TrEMBL)
MRPS18C ProteinQ9Y3D5 (Uniprot-TrEMBL)
MRPS21 ProteinP82921 (Uniprot-TrEMBL)
MRPS22 ProteinP82650 (Uniprot-TrEMBL)
MRPS23 ProteinQ9Y3D9 (Uniprot-TrEMBL)
MRPS24 ProteinQ96EL2 (Uniprot-TrEMBL)
MRPS25 ProteinP82663 (Uniprot-TrEMBL)
MRPS26 ProteinQ9BYN8 (Uniprot-TrEMBL)
MRPS27 ProteinQ92552 (Uniprot-TrEMBL)
MRPS28 ProteinQ9Y2Q9 (Uniprot-TrEMBL)
MRPS30 ProteinQ9NP92 (Uniprot-TrEMBL)
MRPS31 ProteinQ92665 (Uniprot-TrEMBL)
MRPS33 ProteinQ9Y291 (Uniprot-TrEMBL)
MRPS34 ProteinP82930 (Uniprot-TrEMBL)
MRPS35 ProteinP82673 (Uniprot-TrEMBL)
MRPS36 ProteinP82909 (Uniprot-TrEMBL)
MRPS5 ProteinP82675 (Uniprot-TrEMBL)
MRPS6 ProteinP82932 (Uniprot-TrEMBL)
MRPS7 ProteinQ9Y2R9 (Uniprot-TrEMBL)
MRPS9 ProteinP82933 (Uniprot-TrEMBL)
MRRF ProteinQ96E11 (Uniprot-TrEMBL)
MRRFProteinQ96E11 (Uniprot-TrEMBL)
MTFMTProteinQ96DP5 (Uniprot-TrEMBL)
MTIF2 ProteinP46199 (Uniprot-TrEMBL)
MTIF2:GTPComplexR-HSA-5368285 (Reactome)
MTIF2ProteinP46199 (Uniprot-TrEMBL)
MTIF3 ProteinQ9H2K0 (Uniprot-TrEMBL)
MTIF3ProteinQ9H2K0 (Uniprot-TrEMBL)
MTRF1L ProteinQ9UGC7 (Uniprot-TrEMBL)
MTRF1L, ICT1ComplexR-HSA-5432633 (Reactome) Both MTRF1L and ICT1 can bind a standard stop codon in the A-site of the ribosome and cause release of the polypeptide. ICT1 can also cause release of ribosomes stalled in non-standard conformations (e.g. non-standard stop codons, mRNA lacking a stop codon) (inferred from pig mitoribosomes in Akabane et al. 2014).
Met-tRNA(Met) R-HSA-379780 (Reactome)
Met-tRNA(Met)MetaboliteR-HSA-379780 (Reactome)
Mitochondrial 12S rRNA ProteinENST00000389680 (Ensembl)
Mitochondrial 16S rRNA ProteinENST00000387347 (Ensembl)
PTCD3 ProteinQ96EY7 (Uniprot-TrEMBL)
Phe-tRNA(Phe) R-HSA-379789 (Reactome)
PiMetaboliteCHEBI:18367 (ChEBI)
Pro-tRNA(Pro) R-HSA-379745 (Reactome)
Ser-tRNA(Ser) R-HSA-379777 (Reactome)
THFMetaboliteCHEBI:15635 (ChEBI)
TSFM ProteinP43897 (Uniprot-TrEMBL)
TSFMProteinP43897 (Uniprot-TrEMBL)
TUFM ProteinP49411 (Uniprot-TrEMBL)
TUFM:GDPComplexR-HSA-5389856 (Reactome)
TUFM:GTP:aminoacyl-tRNAComplexR-HSA-5389855 (Reactome)
TUFM:GTPComplexR-HSA-5389853 (Reactome)
TUFM:TSFMComplexR-HSA-5419263 (Reactome)
Thr-tRNA(Thr) R-HSA-379779 (Reactome)
Trp-tRNA(Trp) R-HSA-379759 (Reactome)
Tyr-tRNA(Tyr) R-HSA-379755 (Reactome)
Val-tRNA(Val) R-HSA-379782 (Reactome)
aminoacyl-tRNAComplexR-HSA-5389847 (Reactome)
fMet-tRNA(fMet) R-HSA-5368270 (Reactome)
fMet-tRNA(fMet)R-HSA-5368270 (Reactome)
mRNA R-NUL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
mRNAR-NUL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
peptidyl-tRNA with elongated peptide R-NUL-5389836 (Reactome)
polypeptideR-NUL-5419287 (Reactome)
tRNA(Ala) R-HSA-379729 (Reactome)
tRNA(Arg) R-HSA-379727 (Reactome)
tRNA(Asn) R-HSA-379699 (Reactome)
tRNA(Asp) R-HSA-379715 (Reactome)
tRNA(Cys) R-HSA-379714 (Reactome)
tRNA(Gln) R-HSA-379740 (Reactome)
tRNA(Glu) R-HSA-379754 (Reactome)
tRNA(Gly) R-HSA-379770 (Reactome)
tRNA(His) R-HSA-379752 (Reactome)
tRNA(Ile) R-HSA-379750 (Reactome)
tRNA(Leu) R-HSA-379788 (Reactome)
tRNA(Lys) R-HSA-379747 (Reactome)
tRNA(Met) R-HSA-379741 (Reactome)
tRNA(Met)MetaboliteR-HSA-379741 (Reactome)
tRNA(Phe) R-HSA-379760 (Reactome)
tRNA(Pro) R-HSA-379775 (Reactome)
tRNA(Ser) R-HSA-379761 (Reactome)
tRNA(Thr) R-HSA-379791 (Reactome)
tRNA(Trp) R-HSA-379774 (Reactome)
tRNA(Tyr) R-HSA-379756 (Reactome)
tRNA(Val) R-HSA-379735 (Reactome)
tRNAComplexR-HSA-5389844 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
10-formyl-THFR-HSA-5389841 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ArrowR-HSA-5389849 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
R-HSA-5389839 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
mim-catalysisR-HSA-5389839 (Reactome)
28S ribosomal subunit:MTIF3ArrowR-HSA-5368279 (Reactome)
28S ribosomal subunit:MTIF3R-HSA-5389849 (Reactome)
28S ribosomal subunitArrowR-HSA-5419273 (Reactome)
28S ribosomal subunitR-HSA-5368279 (Reactome)
39S ribosomal subunitArrowR-HSA-5419273 (Reactome)
39S ribosomal subunitR-HSA-5389839 (Reactome)
55S ribosome:MRRF:GFM2:GTPArrowR-HSA-5419277 (Reactome)
55S ribosome:MRRF:GFM2:GTPR-HSA-5419273 (Reactome)
55S ribosome:MRRF:GFM2:GTPmim-catalysisR-HSA-5419273 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPArrowR-HSA-5389848 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPmim-catalysisR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAArrowR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAR-HSA-5389857 (Reactome)
55S ribosome:mRNA:fMet-tRNAArrowR-HSA-5389839 (Reactome)
55S ribosome:mRNA:fMet-tRNAR-HSA-5389848 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteArrowR-HSA-5419279 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPArrowR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNA:MRRFArrowR-HSA-5419281 (Reactome)
55S ribosome:mRNA:tRNA:MRRFR-HSA-5419277 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteArrowR-HSA-5389857 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPArrowR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPmim-catalysisR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNAArrowR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNAR-HSA-5419281 (Reactome)
GDPArrowR-HSA-5389839 (Reactome)
GDPArrowR-HSA-5419269 (Reactome)
GDPArrowR-HSA-5419271 (Reactome)
GFM1:GDPArrowR-HSA-5419279 (Reactome)
GFM1:GTPR-HSA-5419261 (Reactome)
GFM2:GDPArrowR-HSA-5419273 (Reactome)
GFM2:GTPR-HSA-5419277 (Reactome)
GTPR-HSA-5419264 (Reactome)
GTPR-HSA-5419268 (Reactome)
MRRFArrowR-HSA-5419273 (Reactome)
MRRFR-HSA-5419281 (Reactome)
MTFMTmim-catalysisR-HSA-5389841 (Reactome)
MTIF2:GTPR-HSA-5389849 (Reactome)
MTIF2ArrowR-HSA-5389839 (Reactome)
MTIF3ArrowR-HSA-5389839 (Reactome)
MTIF3R-HSA-5368279 (Reactome)
MTRF1L, ICT1ArrowR-HSA-5419271 (Reactome)
MTRF1L, ICT1R-HSA-5419264 (Reactome)
Met-tRNA(Met)R-HSA-5389841 (Reactome)
PiArrowR-HSA-5389839 (Reactome)
PiArrowR-HSA-5389842 (Reactome)
PiArrowR-HSA-5419271 (Reactome)
PiArrowR-HSA-5419273 (Reactome)
PiArrowR-HSA-5419279 (Reactome)
R-HSA-5368279 (Reactome) As inferred from bovine mitochondrial homologs, MTIF3 (IF-3Mt, IF3mt) binds the 28S ribosomal subunit in preparation for binding mRNA and initiating translation. MTIF3 also dissociates 55S particles that have not already been dissociated by GFM2 plus MRRF and displaces N-formylmethionyl-tRNA from the 28S subunit in the absence of mRNA but cannot displace mRNA from the 28S subunit. The activity of MTIF3 is necessary for translation initiation.. The 28S subunit associates with the matrix-side face of the inner mitochondrial membrane and translation products are inserted directly into the membrane.
R-HSA-5389839 (Reactome) As inferred from bovine homologs, the 39S ribosomal subunit binds the 28S subunit:mRNA:N-formylmethionyl-tRNA complex, MTIF2 hydrolyzes GTP, then MTIF2, GDP, and MTIF3 dissociate. (MTIF2 has a very low affinity for GDP so it is unclear whether MTIF2 and GDP remain associated after hydrolysis of GTP.) The 28S subunit, 39S subunit, and 55S holoribosome associate with the inner mitochondrial membrane during translation and in the absence of translation.
R-HSA-5389841 (Reactome) Like bacteria, mitochondria initiate translation with N-formylmethionine. Unlike bacteria, mammalian mitochondria do not have a tRNA dedicated to N-formylmethionine. Instead, the mitochondrial enzyme MTFMT (methionyl-tRNA formyltransferase, FMT, FMT1) transfers a formyl group from 10-formyltetrahydrofolate (10-formyl-THF) to the amino group of methionyl-tRNA in a portion of the methionyl-tRNAs in the matrix.
R-HSA-5389842 (Reactome) As inferred from bovine homologs, interaction of the cognate aminoacyl-tRNA in the A-site with the codon in the mRNA causes TUFM (EF-Tu) to hydrolyze GTP. TUFM:GDP then dissociates from the ribosome.
R-HSA-5389845 (Reactome) As inferred from bovine homologs, TUFM:GTP (EF-Tu:GTP) binds an aminoacyl-tRNA to form the ternary complex.
R-HSA-5389848 (Reactome) As inferred from bovine homologs, the ternary complex containing TUFM:GTP (EF-Tu:GTP) and aminoacyl-tRNA enters the A-site of the 55S ribosome (reviewed in Christian and Spremulli 2012).
R-HSA-5389849 (Reactome) As inferred from bovine homologs, the 28S ribosomal subunit in a complex with MTIF3 (IF-3Mt, IF3mt) binds mRNA and, at some point, MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP). If an initiation codon is present at the 5' end of the mRNA then MTIF2:GTP assists the binding of N-formylmethionyl-tRNA and a stable, productive initiation complex results. If no initiation codon is present, the mRNA slides through the 28S subunit and then dissociates.
R-HSA-5389857 (Reactome) As inferred from bovine homologs, the ribosome catalyzes formation of a peptide bond between the aminoacyl group of the aminoacyl-tRNA at the A-site and the peptidyl-tRNA at the P-site. The result is a polypeptide, longer by one amino acid, attached to the tRNA at the A-site by an ester bond. A deacylated tRNA remains at the P-site. 55S ribosomes associate with the inner mitochondrial membrane and the translation products are cotranslationally inserted into the inner membrane.
R-HSA-5419261 (Reactome) GFMT1:GTP (EF-G1mt:GTP) binds ribosomes possessing a peptidyl-tRNA at the A site and an empty P site (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419264 (Reactome) MTRF1L (mtRF1a) binds the stop codons UAA and UAG of the mRNA when they are in the A site of the ribosome (Soleimanpour-Lichaei 2007, Nozaki et al. 2008). (The UGA codon is recognized by the tryptophan tRNA in mitochondrial translation.) ICT1 can also bind standard stop codons in the A-site (inferred from pig mitochondrial ribosomes in Akabane et al. 2014). MTRF1 was also thought to play a role in translation termination by recognizing the unconventional termination codons AGA and AGG (Zhang and Spremulli 1998, Young et al. 2010) but frameshifting is now confirmed in the termination mechanism of these codons (Temperley et al. 2010). Structural features of MTRF1 have been reported suggesting it could recognize an empty A-site (Huynen et al. 2012) or UAA and UAG codons (Lind et al. 2013) however there is no direct experimental data to confirm these last two postulates.
R-HSA-5419268 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor for TUFM (EF-Tu). In the second step of the process TUFM in the TUFM:TSFM complex binds GTP and TSFM is released, yielding TUFM:GTP and TSFM.
R-HSA-5419269 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor to regenerate TUFM:GTP (EF-Tu:GTP) from TUFM:GDP. In the first step of the process TSFM binds TUFM:GDP and displaces GDP, yielding a TSFM:TUFM complex and GDP.
R-HSA-5419271 (Reactome) Binding of the MTRF1L (MTRF1a) termination factor triggers hydrolysis of the peptidyl-tRNA bond by the 39S subunit of the ribosome and release of the translated polypeptide (Soleimanpour-Lichaei et al. 2007, Nozaki et al. 2008, reviewed in Christian and Spremulli 2012). MTRF1L hydrolyzes GTP during the reaction. Stalled ribosomes are rescued by binding of an ICT1 protein in addition to the ICT1 subunit integrated in the 39S subunit (Richter et al. 2010, Akabane et al. 2014).
R-HSA-5419273 (Reactome) When complexed with ribosomes GFM2 (EF-G2mt) hydrolyzes GTP and, together with MRRF, acts as a ribosome releasing factor by splitting 55S ribosomes into 28S and 39S subunits (Tsuboi et al. 2009). Though GTP is hydrolyzed during the reaction, hydrolysis is not necessary for splitting the 55S ribosome into 39S and 28S subunits, but is necessary for dissociation of GFM2 (as GFM2:GDP) and MRRF from the large ribosomal subunit after splitting (Tsuboi et al. 2009).
R-HSA-5419277 (Reactome) GFM2:GTP (EF-G2mt:GTP) joins MRRF at the A site of the ribosome after translation has been terminated by MTRF1L (MTRF1a) at a stop codon.
R-HSA-5419279 (Reactome) GFM1 (EF-Gmt, EF-G1mt) of the GFM1:GTP complex hydrolyzes GTP, yielding GFM1:GDP (Tsuboi et al. 2009). The hydrolysis of GTP drives translocation of the peptidyl-tRNA from the A-site to the P-site with consequent ejection of the deacylated tRNA from the P-site and translocation of the ribosome in the 3' direction along the mRNA (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419281 (Reactome) The mitochondrial ribosome releasing factor MRRF (RRF) binds the 55S ribosome at the A-site after translation has been terminated by MTRF1L (MTRF1a) at a stop codon and the translated polypeptide has been hydrolyzed from the last tRNA, which remains in the P-site (Rorbach et al. 2008).
THFArrowR-HSA-5389841 (Reactome)
TSFMArrowR-HSA-5419268 (Reactome)
TSFMR-HSA-5419269 (Reactome)
TUFM:GDPArrowR-HSA-5389842 (Reactome)
TUFM:GDPR-HSA-5419269 (Reactome)
TUFM:GTP:aminoacyl-tRNAArrowR-HSA-5389845 (Reactome)
TUFM:GTP:aminoacyl-tRNAR-HSA-5389848 (Reactome)
TUFM:GTPArrowR-HSA-5419268 (Reactome)
TUFM:GTPR-HSA-5389845 (Reactome)
TUFM:TSFMArrowR-HSA-5419269 (Reactome)
TUFM:TSFMR-HSA-5419268 (Reactome)
aminoacyl-tRNAR-HSA-5389845 (Reactome)
fMet-tRNA(fMet)ArrowR-HSA-5389841 (Reactome)
fMet-tRNA(fMet)R-HSA-5389849 (Reactome)
mRNAArrowR-HSA-5419277 (Reactome)
mRNAR-HSA-5389849 (Reactome)
polypeptideArrowR-HSA-5419271 (Reactome)
tRNA(Met)ArrowR-HSA-5419279 (Reactome)
tRNAArrowR-HSA-5419277 (Reactome)
Personal tools