Mitochondrial protein import (Homo sapiens)

From WikiPathways

Revision as of 09:21, 11 July 2016 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
1, 4, 6, 11, 13...11, 13, 1511, 131, 8, 11, 1310, 11, 1310, 11, 1311, 1311, 1311, 135, 7, 9, 11, 13...11, 13, 2211, 138, 11, 13, 3011, 13cytosolmitochondrial matrixmitochondrial intermembrane space4xHC-COX19 TIMM50 Proteins Chaperonedby TIMM9:TIMM10ATP5B(1-529) TIMM21 Proteins Chaperonedby TIMM8:TIMM134xHC-TIMM10 COQ2(1-371) DNAJC19 TIMM17B BCS1L TIMM8B TIMM23 PAM16 TIMM23SORT:PrecursorCargoCYC1(1-325) GRPEL2 4xHC-TIMM10 SAMM50 TOMM20 4xHC-TIMM9 SLC25A6 4xHC-TIMM13 GRPEL1 TIMM17A ATPSLC25A4 TIMM23 DNAJC19 Cargo of TIMM22TAZ TIMM23 BCS1L TOMM5 TIMM22 IDH3G(1-393) HSPA9 TIMM8:TIMM13GRPEL2 TIMM23 PAM:PrecursorCargoGRPEL2 TOMM40 ATP5G1(1-136) TOMM40 Cargo of TOMM40TIMM23 CYC1(1-325) MIA40:ERV1PiSLC25A12 COX19 ATP5A1(1-553) TOMM40 TIMM23 SORT:CargoMTX2 TIMM23 TOMM70A SLC25A12 CS(1-466) HSCB(1-235) TIMM22 GRPEL1 CS(1-466) TIMM9:TIMM10:ProteinHSPA9 4xHC-TIMM8A MTX1 Cargo of SAM50TIMM22 TIMM17A TIMM21 TIMM17B HSPA9 FXN(1-210) TIMM17A HSPA9(1-679) GRPEL1 HSPD1 TIMM50 TOMM40 TIMM17A GRPEL1 PAM16 TOMM40 ComplexATP5A1(1-553) TIMM23 TIMM17A TAZ TIMM17B SLC25A4 SAM50 ComplexATP5B(1-529) GRPEL1 HSPA9 GFER TIMM22 IDH3G(1-393) SLC25A6 SLC25A4 SLC25A13 ATP5B(1-529) Cargo of TIMM23 SORTTIMM21 ATP5B(1-529) PMPCB TIMM44(?-452) TIMM22 4xHC-TIMM13 GRPEL2 ATP5B TIMM17B HSPD1(1-573) TIMM17A VDAC1 HSPD1(1-573) TIMM23 MitochondrialprocessingpeptidasePAM16 SLC25A13 ATP5G1 4xHC-TIMM9 Substrates ofMIA40:ERV1TIMM44(?-452) TIMM17B TIMM23 TOMM40 TIMM10 Products ofMIA40:ERV1TIMM23 PAM:CargoCHCHD2 HSPD1(1-573) TIMM23 TIMM44(?-452) TIMM50 SLC25A4 TIMM50 TIMM22 HSCB TOMM6 PAM16 COQ2(1-371) TOMM22 TIMM9:TIMM10TIMM44(?-452) ATP5G1(1-136) TIMM8:TIMM13:ProteinTIMM17B GRPEL2 TIMM22 FXN(42-210) 2xHC-CHCHD2 LDHD(18-507) ATP5G1 TIMM23 SLC25A4 4xHC-TIMM10 4xHC-TIMM8B CHCHD4 PAM16 DNAJC19 TIMM8A Cargo of TIMM23 PAM4xHC-COX17 SLC25A6 HSPA9(1-679) 4xHC-TIMM10B TIMM17B 4xHC-TIMM10BPrecursor Cargo ofTIMM23 PAMTIMM50 TIMM50 TIMM23 ComplexHSPD1(1-573) Cargo of TIMM22HSCB HSCB(1-235) ATP5G1(1-136) Cargo of SAM50TIMM17A HSPD1 GRPEL1 4xHC-TIMM8A TIMM23 FXN(42-210) DNAJC19 GRPEL2 Cargo of TOMM40COQ2 HSPA9 ACO2(1-780) COQ2 4xHC-TIMM8B TIMM22TIMM23 SLC25A4 4xHC-TIMM13 TOMM7 ADPDNAJC19 TIMM17A TIMM44(?-452) TIMM21 TIMM17B TAZ TOMM40 TIMM23 TIMM44(?-452) Precursor Cargo ofTIMM23 SORTHSPA9 TIMM21 COX17 ATP5B DNAJC19 ATP5G1(1-136) TIMM13 PAM16 LDHD(18-507) PMPCA TIMM17B 4xHC-TIMM8A TIMM17A TIMM9:TIMM10:FXC1:TIM22:ProteinFXN(1-210) TIMM9 4xHC-TIMM10 TOMM40 4xHC-TIMM9 VDAC1 LDHD(1-507) SLC25A4 ACO2(1-780) TIMM21 4xHC-TIMM9 TIMM23 Complex4xHC-TIMM8B LDHD(1-507) 3, 52627, 285, 2621121912, 291012121912, 2912, 2912, 2910213, 52, 3021212112, 2927, 28102612, 29142121211512, 29


Description

A human mitochondrion contains about 1500 proteins, more than 99% of which are encoded in the nucleus, synthesized in the cytosol and imported into the mitochondrion. Proteins are targeted to four locations (outer membrane, intermembrane space, inner membrane, and matrix) and must be sorted accordingly (reviewed in Kutik et al. 2007, Milenkovic et al. 2007, Bolender et al. 2008, Endo and Yamano 2009). Newly synthesized proteins are transported from the cytosol across the outer membrane by the TOMM40:TOMM70 complex. Proteins that contain presequences first interact with the TOMM20 subunit of the complex while proteins that contain internal targeting elements first interact with the TOMM70 subunit. After initial interaction the protein is conducted across the outer membrane by TOMM40 subunits. In yeast some proteins such as Aco1, Atp1, Cit1, Idh1, and Atp2 have both presequences that interact with TOM20 and mature regions that interact with TOM70 (Yamamoto et al. 2009).
After passage across the outer membrane, proteins may be targeted to the outer membrane via the SAMM50 complex, to the inner membrane via the TIMM22 or TIMM23 complexes (reviewed in van der Laan et al. 2010), to the matrix via the TIMM23 complex (reviewed in van der Laan et al. 2010), or proteins may fold and remain in the intermembrane space (reviewed in Stojanovski et al. 2008, Deponte and Hell 2009, Sideris and Tokatlidis 2010). Presequences on matrix and inner membrane proteins cause interaction with TIMM23 complexes; internal targeting sequences cause outer membrane proteins to interact with the SAMM50 complex and inner membrane proteins to interact with the TIMM22 complex. While in the intermembrane space hydrophobic proteins are chaperoned by the TIMM8:TIMM13 complex and/or the TIMM9:TIMM10:FXC1 complex. View original pathway at:Reactome.

Comments

Reactome Converter 
Pathway is converted from Reactome id:

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. van der Laan M, Hutu DP, Rehling P.; ''On the mechanism of preprotein import by the mitochondrial presequence translocase.''; PubMed Europe PMC Scholia
  2. Roesch K, Hynds PJ, Varga R, Tranebjaerg L, Koehler CM.; ''The calcium-binding aspartate/glutamate carriers, citrin and aralar1, are new substrates for the DDP1/TIMM8a-TIMM13 complex.''; PubMed Europe PMC Scholia
  3. Sakowska P, Jans DC, Mohanraj K, Riedel D, Jakobs S, Chacinska A.; ''The Oxidation Status of Mic19 Regulates MICOS Assembly.''; PubMed Europe PMC Scholia
  4. Banci L, Bertini I, Ciofi-Baffoni S, Janicka A, Martinelli M, Kozlowski H, Palumaa P.; ''A structural-dynamical characterization of human Cox17.''; PubMed Europe PMC Scholia
  5. Endo T, Yamano K.; ''Multiple pathways for mitochondrial protein traffic.''; PubMed Europe PMC Scholia
  6. Teixeira PF, Pinho CM, Branca RM, Lehtiö J, Levine RL, Glaser E.; ''In vitro oxidative inactivation of human presequence protease (hPreP).''; PubMed Europe PMC Scholia
  7. De Marcos Lousa C, Trézéguet V, Dianoux AC, Brandolin G, Lauquin GJ.; ''The human mitochondrial ADP/ATP carriers: kinetic properties and biogenesis of wild-type and mutant proteins in the yeast S. cerevisiae.''; PubMed Europe PMC Scholia
  8. Deponte M, Hell K.; ''Disulphide bond formation in the intermembrane space of mitochondria.''; PubMed Europe PMC Scholia
  9. Milenkovic D, Müller J, Stojanovski D, Pfanner N, Chacinska A.; ''Diverse mechanisms and machineries for import of mitochondrial proteins.''; PubMed Europe PMC Scholia
  10. Sideris DP, Tokatlidis K.; ''Oxidative protein folding in the mitochondrial intermembrane space.''; PubMed Europe PMC Scholia
  11. Flick MJ, Konieczny SF.; ''Identification of putative mammalian D-lactate dehydrogenase enzymes.''; PubMed Europe PMC Scholia
  12. Humphries AD, Streimann IC, Stojanovski D, Johnston AJ, Yano M, Hoogenraad NJ, Ryan MT.; ''Dissection of the mitochondrial import and assembly pathway for human Tom40.''; PubMed Europe PMC Scholia
  13. Di Fonzo A, Ronchi D, Lodi T, Fassone E, Tigano M, Lamperti C, Corti S, Bordoni A, Fortunato F, Nizzardo M, Napoli L, Donadoni C, Salani S, Saladino F, Moggio M, Bresolin N, Ferrero I, Comi GP.; ''The mitochondrial disulfide relay system protein GFER is mutated in autosomal-recessive myopathy with cataract and combined respiratory-chain deficiency.''; PubMed Europe PMC Scholia
  14. Baertling F, A M van den Brand M, Hertecant JL, Al-Shamsi A, P van den Heuvel L, Distelmaier F, Mayatepek E, Smeitink JA, Nijtmans LG, Rodenburg RJ.; ''Mutations in COA6 cause cytochrome c oxidase deficiency and neonatal hypertrophic cardiomyopathy.''; PubMed Europe PMC Scholia
  15. Zhang Y, Deng H, Zhao Q, Li SJ.; ''Interaction of presequence peptides with human translocase of inner membrane of mitochondria Tim23.''; PubMed Europe PMC Scholia
  16. Fischer M, Horn S, Belkacemi A, Kojer K, Petrungaro C, Habich M, Ali M, Küttner V, Bien M, Kauff F, Dengjel J, Herrmann JM, Riemer J.; ''Protein import and oxidative folding in the mitochondrial intermembrane space of intact mammalian cells.''; PubMed Europe PMC Scholia
  17. Xie J, Marusich MF, Souda P, Whitelegge J, Capaldi RA.; ''The mitochondrial inner membrane protein mitofilin exists as a complex with SAM50, metaxins 1 and 2, coiled-coil-helix coiled-coil-helix domain-containing protein 3 and 6 and DnaJC11.''; PubMed Europe PMC Scholia
  18. Bauer MF, Gempel K, Reichert AS, Rappold GA, Lichtner P, Gerbitz KD, Neupert W, Brunner M, Hofmann S.; ''Genetic and structural characterization of the human mitochondrial inner membrane translocase.''; PubMed Europe PMC Scholia
  19. Yamano K, Kuroyanagi-Hasegawa M, Esaki M, Yokota M, Endo T.; ''Step-size analyses of the mitochondrial Hsp70 import motor reveal the Brownian ratchet in operation.''; PubMed Europe PMC Scholia
  20. Yamamoto H, Fukui K, Takahashi H, Kitamura S, Shiota T, Terao K, Uchida M, Esaki M, Nishikawa S, Yoshihisa T, Yamano K, Endo T.; ''Roles of Tom70 in import of presequence-containing mitochondrial proteins.''; PubMed Europe PMC Scholia
  21. Brunetti D, Torsvik J, Dallabona C, Teixeira P, Sztromwasser P, Fernandez-Vizarra E, Cerutti R, Reyes A, Preziuso C, D'Amati G, Baruffini E, Goffrini P, Viscomi C, Ferrero I, Boman H, Telstad W, Johansson S, Glaser E, Knappskog PM, Zeviani M, Bindoff LA.; ''Defective PITRM1 mitochondrial peptidase is associated with Aβ amyloidotic neurodegeneration.''; PubMed Europe PMC Scholia
  22. Bannwarth S, Ait-El-Mkadem S, Chaussenot A, Genin EC, Lacas-Gervais S, Fragaki K, Berg-Alonso L, Kageyama Y, Serre V, Moore DG, Verschueren A, Rouzier C, Le Ber I, Augé G, Cochaud C, Lespinasse F, N'Guyen K, de Septenville A, Brice A, Yu-Wai-Man P, Sesaki H, Pouget J, Paquis-Flucklinger V.; ''A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement.''; PubMed Europe PMC Scholia
  23. Farrell SR, Thorpe C.; ''Augmenter of liver regeneration: a flavin-dependent sulfhydryl oxidase with cytochrome c reductase activity.''; PubMed Europe PMC Scholia
  24. Dabir DV, Hasson SA, Setoguchi K, Johnson ME, Wongkongkathep P, Douglas CJ, Zimmerman J, Damoiseaux R, Teitell MA, Koehler CM.; ''A small molecule inhibitor of redox-regulated protein translocation into mitochondria.''; PubMed Europe PMC Scholia
  25. Kang Y, Fielden LF, Stojanovski D.; ''Mitochondrial protein transport in health and disease.''; PubMed Europe PMC Scholia
  26. Webb CT, Gorman MA, Lazarou M, Ryan MT, Gulbis JM.; ''Crystal structure of the mitochondrial chaperone TIM9.10 reveals a six-bladed alpha-propeller.''; PubMed Europe PMC Scholia
  27. Kutik S, Guiard B, Meyer HE, Wiedemann N, Pfanner N.; ''Cooperation of translocase complexes in mitochondrial protein import.''; PubMed Europe PMC Scholia
  28. Banci L, Bertini I, Ciofi-Baffoni S, Jaiswal D, Neri S, Peruzzini R, Winkelmann J.; ''Structural characterization of CHCHD5 and CHCHD7: two atypical human twin CX9C proteins.''; PubMed Europe PMC Scholia
  29. Kozjak-Pavlovic V, Ross K, Benlasfer N, Kimmig S, Karlas A, Rudel T.; ''Conserved roles of Sam50 and metaxins in VDAC biogenesis.''; PubMed Europe PMC Scholia
  30. Li K, Warner CK, Hodge JA, Minoshima S, Kudoh J, Fukuyama R, Maekawa M, Shimizu Y, Shimizu N, Wallace DC.; ''A human muscle adenine nucleotide translocator gene has four exons, is located on chromosome 4, and is differentially expressed.''; PubMed Europe PMC Scholia
  31. Mühlenbein N, Hofmann S, Rothbauer U, Bauer MF.; ''Organization and function of the small Tim complexes acting along the import pathway of metabolite carriers into mammalian mitochondria.''; PubMed Europe PMC Scholia
  32. Alikhani N, Guo L, Yan S, Du H, Pinho CM, Chen JX, Glaser E, Yan SS.; ''Decreased proteolytic activity of the mitochondrial amyloid-β degrading enzyme, PreP peptidasome, in Alzheimer's disease brain mitochondria.''; PubMed Europe PMC Scholia
  33. Wiedemann N, Pfanner N.; ''Mitochondrial Machineries for Protein Import and Assembly.''; PubMed Europe PMC Scholia
  34. Liu Y, Clegg HV, Leslie PL, Di J, Tollini LA, He Y, Kim TH, Jin A, Graves LM, Zheng J, Zhang Y.; ''CHCHD2 inhibits apoptosis by interacting with Bcl-x L to regulate Bax activation.''; PubMed Europe PMC Scholia
  35. Pacheu-Grau D, Bareth B, Dudek J, Juris L, Vögtle FN, Wissel M, Leary SC, Dennerlein S, Rehling P, Deckers M.; ''Cooperation between COA6 and SCO2 in COX2 maturation during cytochrome c oxidase assembly links two mitochondrial cardiomyopathies.''; PubMed Europe PMC Scholia
  36. Mick DU, Dennerlein S, Wiese H, Reinhold R, Pacheu-Grau D, Lorenzi I, Sasarman F, Weraarpachai W, Shoubridge EA, Warscheid B, Rehling P.; ''MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation.''; PubMed Europe PMC Scholia
  37. Hofmann S, Rothbauer U, Mühlenbein N, Baiker K, Hell K, Bauer MF.; ''Functional and mutational characterization of human MIA40 acting during import into the mitochondrial intermembrane space.''; PubMed Europe PMC Scholia
  38. Falkevall A, Alikhani N, Bhushan S, Pavlov PF, Busch K, Johnson KA, Eneqvist T, Tjernberg L, Ankarcrona M, Glaser E.; ''Degradation of the amyloid beta-protein by the novel mitochondrial peptidasome, PreP.''; PubMed Europe PMC Scholia
  39. Stojanovski D, Müller JM, Milenkovic D, Guiard B, Pfanner N, Chacinska A.; ''The MIA system for protein import into the mitochondrial intermembrane space.''; PubMed Europe PMC Scholia
  40. Pinho CM, Björk BF, Alikhani N, Bäckman HG, Eneqvist T, Fratiglioni L, Glaser E, Graff C.; ''Genetic and biochemical studies of SNPs of the mitochondrial A beta-degrading protease, hPreP.''; PubMed Europe PMC Scholia
  41. Aras S, Bai M, Lee I, Springett R, Hüttemann M, Grossman LI.; ''MNRR1 (formerly CHCHD2) is a bi-organellar regulator of mitochondrial metabolism.''; PubMed Europe PMC Scholia
  42. Sinha D, Srivastava S, Krishna L, D'Silva P.; ''Unraveling the intricate organization of mammalian mitochondrial presequence translocases: existence of multiple translocases for maintenance of mitochondrial function.''; PubMed Europe PMC Scholia
  43. Sinha D, Joshi N, Chittoor B, Samji P, D'Silva P.; ''Role of Magmas in protein transport and human mitochondria biogenesis.''; PubMed Europe PMC Scholia
  44. Daithankar VN, Schaefer SA, Dong M, Bahnson BJ, Thorpe C.; ''Structure of the human sulfhydryl oxidase augmenter of liver regeneration and characterization of a human mutation causing an autosomal recessive myopathy .''; PubMed Europe PMC Scholia
  45. Bolender N, Sickmann A, Wagner R, Meisinger C, Pfanner N.; ''Multiple pathways for sorting mitochondrial precursor proteins.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114933view16:45, 25 January 2021ReactomeTeamReactome version 75
113378view11:45, 2 November 2020ReactomeTeamReactome version 74
112583view15:55, 9 October 2020ReactomeTeamReactome version 73
101498view11:36, 1 November 2018ReactomeTeamreactome version 66
101035view21:17, 31 October 2018ReactomeTeamreactome version 65
100568view19:51, 31 October 2018ReactomeTeamreactome version 64
100117view16:36, 31 October 2018ReactomeTeamreactome version 63
99667view15:06, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99265view12:45, 31 October 2018ReactomeTeamreactome version 62
93923view13:45, 16 August 2017ReactomeTeamreactome version 61
93502view11:25, 9 August 2017ReactomeTeamreactome version 61
87961view13:12, 25 July 2016RyanmillerOntology Term : 'peptide and protein metabolic process' added !
87957view13:11, 25 July 2016RyanmillerOntology Term : 'classic metabolic pathway' added !
86597view09:21, 11 July 2016ReactomeTeamreactome version 56
83322view10:46, 18 November 2015ReactomeTeamVersion54
81760view10:04, 26 August 2015ReactomeTeamVersion53
76934view08:20, 17 July 2014ReactomeTeamFixed remaining interactions
76639view12:01, 16 July 2014ReactomeTeamFixed remaining interactions
75969view10:02, 11 June 2014ReactomeTeamRe-fixing comment source
75672view10:58, 10 June 2014ReactomeTeamReactome 48 Update
75027view13:54, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74671view08:44, 30 April 2014ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
2xHC-CHCHD2 ProteinQ9Y6H1 (Uniprot-TrEMBL)
4xHC-COX17 ProteinQ14061 (Uniprot-TrEMBL)
4xHC-COX19 ProteinQ49B96 (Uniprot-TrEMBL)
4xHC-TIMM10 ProteinP62072 (Uniprot-TrEMBL)
4xHC-TIMM10B ProteinQ9Y5J6 (Uniprot-TrEMBL)
4xHC-TIMM10BProteinQ9Y5J6 (Uniprot-TrEMBL)
4xHC-TIMM13 ProteinQ9Y5L4 (Uniprot-TrEMBL)
4xHC-TIMM8A ProteinO60220 (Uniprot-TrEMBL)
4xHC-TIMM8B ProteinQ9Y5J9 (Uniprot-TrEMBL)
4xHC-TIMM9 ProteinQ9Y5J7 (Uniprot-TrEMBL)
ACO2(1-780) ProteinQ99798 (Uniprot-TrEMBL)
ADPMetaboliteCHEBI:16761 (ChEBI)
ATP5A1(1-553) ProteinP25705 (Uniprot-TrEMBL)
ATP5B ProteinP06576 (Uniprot-TrEMBL)
ATP5B(1-529) ProteinP06576 (Uniprot-TrEMBL)
ATP5G1 ProteinP05496 (Uniprot-TrEMBL)
ATP5G1(1-136) ProteinP05496 (Uniprot-TrEMBL)
ATPMetaboliteCHEBI:15422 (ChEBI)
BCS1L ProteinQ9Y276 (Uniprot-TrEMBL)
CHCHD2 ProteinQ9Y6H1 (Uniprot-TrEMBL)
CHCHD4 ProteinQ8N4Q1 (Uniprot-TrEMBL)
COQ2 ProteinQ96H96 (Uniprot-TrEMBL)
COQ2(1-371) ProteinQ96H96 (Uniprot-TrEMBL)
COX17 ProteinQ14061 (Uniprot-TrEMBL)
COX19 ProteinQ49B96 (Uniprot-TrEMBL)
CS(1-466) ProteinO75390 (Uniprot-TrEMBL)
CYC1(1-325) ProteinP08574 (Uniprot-TrEMBL)
Cargo of SAM50ComplexR-HSA-1268003 (Reactome)
Cargo of SAM50ComplexR-HSA-1268005 (Reactome)
Cargo of TIMM22ComplexR-HSA-1307796 (Reactome)
Cargo of TIMM22ComplexR-HSA-1307800 (Reactome)
Cargo of TIMM23 PAMComplexR-HSA-1299460 (Reactome)
Cargo of TIMM23 SORTComplexR-HSA-1299464 (Reactome)
Cargo of TOMM40ComplexR-HSA-1268006 (Reactome)
Cargo of TOMM40ComplexR-HSA-1268010 (Reactome)
DNAJC19 ProteinQ96DA6 (Uniprot-TrEMBL)
FXN(1-210) ProteinQ16595 (Uniprot-TrEMBL)
FXN(42-210) ProteinQ16595 (Uniprot-TrEMBL)
GFER ProteinP55789 (Uniprot-TrEMBL)
GRPEL1 ProteinQ9HAV7 (Uniprot-TrEMBL)
GRPEL2 ProteinQ8TAA5 (Uniprot-TrEMBL)
HSCB ProteinQ8IWL3 (Uniprot-TrEMBL)
HSCB(1-235) ProteinQ8IWL3 (Uniprot-TrEMBL)
HSPA9 ProteinP38646 (Uniprot-TrEMBL)
HSPA9(1-679) ProteinP38646 (Uniprot-TrEMBL)
HSPD1 ProteinP10809 (Uniprot-TrEMBL)
HSPD1(1-573) ProteinP10809 (Uniprot-TrEMBL)
IDH3G(1-393) ProteinP51553 (Uniprot-TrEMBL)
LDHD(1-507) ProteinQ86WU2 (Uniprot-TrEMBL)
LDHD(18-507) ProteinQ86WU2 (Uniprot-TrEMBL) The N-terminus of LDLD is predicted by software.
MIA40:ERV1ComplexR-HSA-1307797 (Reactome)
MTX1 ProteinQ13505 (Uniprot-TrEMBL)
MTX2 ProteinO75431 (Uniprot-TrEMBL)
Mitochondrial

processing

peptidase
ComplexR-HSA-1299458 (Reactome)
PAM16 ProteinQ9Y3D7 (Uniprot-TrEMBL)
PMPCA ProteinQ10713 (Uniprot-TrEMBL)
PMPCB ProteinO75439 (Uniprot-TrEMBL)
PiMetaboliteCHEBI:18367 (ChEBI)
Precursor Cargo of TIMM23 PAMComplexR-HSA-1299468 (Reactome)
Precursor Cargo of TIMM23 SORTComplexR-HSA-1268004 (Reactome)
Products of MIA40:ERV1ComplexR-HSA-1307799 (Reactome)
Proteins Chaperoned by TIMM8:TIMM13ComplexR-HSA-1299467 (Reactome)
Proteins Chaperoned by TIMM9:TIMM10ComplexR-HSA-1955378 (Reactome)
SAM50 ComplexComplexR-HSA-1252247 (Reactome) The SAM50 complex (SAMM50 complex) is inferred from homologous subunits in Saccharomyces cerevisiae. Xie et al. (2007) found human SAM50 in a complex with metaxin 1, metaxin 2, mitofilin, CHCHD3, CHCHD6, and DnaJC1 however Kozjak-Pavlovic et al. (2007) found SAM50 in a separate complex from the metaxins.
SAMM50 ProteinQ9Y512 (Uniprot-TrEMBL)
SLC25A12 ProteinO75746 (Uniprot-TrEMBL)
SLC25A13 ProteinQ9UJS0 (Uniprot-TrEMBL)
SLC25A4 ProteinP12235 (Uniprot-TrEMBL)
SLC25A6 ProteinP12236 (Uniprot-TrEMBL)
Substrates of MIA40:ERV1ComplexR-HSA-1307798 (Reactome)
TAZ ProteinQ16635 (Uniprot-TrEMBL)
TIMM10 ProteinP62072 (Uniprot-TrEMBL)
TIMM13 ProteinQ9Y5L4 (Uniprot-TrEMBL)
TIMM17A ProteinQ99595 (Uniprot-TrEMBL)
TIMM17B ProteinO60830 (Uniprot-TrEMBL)
TIMM21 ProteinQ9BVV7 (Uniprot-TrEMBL)
TIMM22 ProteinQ9Y584 (Uniprot-TrEMBL)
TIMM22ProteinQ9Y584 (Uniprot-TrEMBL)
TIMM23

SORT:Precursor

Cargo
ComplexR-HSA-1299473 (Reactome)
TIMM23 ComplexComplexR-HSA-1252242 (Reactome)
TIMM23 ProteinO14925 (Uniprot-TrEMBL)
TIMM23 PAM:CargoComplexR-HSA-1299474 (Reactome)
TIMM23 PAM:Precursor CargoComplexR-HSA-1299462 (Reactome)
TIMM23 SORT:CargoComplexR-HSA-1299469 (Reactome)
TIMM44(?-452) ProteinO43615 (Uniprot-TrEMBL)
TIMM50 ProteinQ3ZCQ8 (Uniprot-TrEMBL)
TIMM8:TIMM13:ProteinComplexR-HSA-1299471 (Reactome)
TIMM8:TIMM13ComplexR-HSA-1299461 (Reactome)
TIMM8A ProteinO60220 (Uniprot-TrEMBL)
TIMM8B ProteinQ9Y5J9 (Uniprot-TrEMBL)
TIMM9 ProteinQ9Y5J7 (Uniprot-TrEMBL)
TIMM9:TIMM10:FXC1:TIM22:ProteinComplexR-HSA-1299470 (Reactome)
TIMM9:TIMM10:ProteinComplexR-HSA-1955377 (Reactome)
TIMM9:TIMM10ComplexR-HSA-1955372 (Reactome)
TOMM20 ProteinQ15388 (Uniprot-TrEMBL)
TOMM22 ProteinQ9NS69 (Uniprot-TrEMBL)
TOMM40 ComplexComplexR-HSA-1252240 (Reactome)
TOMM40 ProteinO96008 (Uniprot-TrEMBL)
TOMM5 ProteinQ8N4H5 (Uniprot-TrEMBL)
TOMM6 ProteinQ96B49 (Uniprot-TrEMBL)
TOMM7 ProteinQ9P0U1 (Uniprot-TrEMBL)
TOMM70A ProteinO94826 (Uniprot-TrEMBL)
VDAC1 ProteinP21796 (Uniprot-TrEMBL)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
4xHC-TIMM10BR-HSA-1955380 (Reactome)
ADPArrowR-HSA-1299475 (Reactome)
ATPR-HSA-1299475 (Reactome)
Cargo of SAM50ArrowR-HSA-1268025 (Reactome)
Cargo of SAM50R-HSA-1268025 (Reactome)
Cargo of TIMM22ArrowR-HSA-1307803 (Reactome)
Cargo of TIMM22R-HSA-1307803 (Reactome)
Cargo of TIMM23 PAMArrowR-HSA-1299475 (Reactome)
Cargo of TIMM23 SORTArrowR-HSA-1299482 (Reactome)
Cargo of TOMM40ArrowR-HSA-1268022 (Reactome)
Cargo of TOMM40R-HSA-1268022 (Reactome)
MIA40:ERV1mim-catalysisR-HSA-1307802 (Reactome)
Mitochondrial

processing

peptidase
mim-catalysisR-HSA-1299476 (Reactome)
Mitochondrial

processing

peptidase
mim-catalysisR-HSA-1299478 (Reactome)
PiArrowR-HSA-1299475 (Reactome)
Precursor Cargo of TIMM23 PAMR-HSA-1299480 (Reactome)
Precursor Cargo of TIMM23 SORTR-HSA-1299487 (Reactome)
Products of MIA40:ERV1ArrowR-HSA-1307802 (Reactome)
Proteins Chaperoned by TIMM8:TIMM13R-HSA-1299484 (Reactome)
Proteins Chaperoned by TIMM9:TIMM10R-HSA-1299481 (Reactome)
R-HSA-1268022 (Reactome) As inferred from the yeast TOM40:TOM70 complex, the human TOMM40:TOMM70 complex transports precursor proteins from the cytosol, across the outer membrane of the mitochondrion, and into the intermembrane space from where they may be targeted to all locations within the mitochondrion. As inferred from yeast, TOMM40, TOMM22, TOMM5, TOMM6, and TOMM7 probably form the general import pore across the membrane. On the cytosolic side TOMM20 and TOMM22 interact with presequences on mitochondrial precursors while TOMM70 interacts with hydrophobic sequences in mature internal regions of mitochondrial proteins.
In yeast, experimentally verified substrates of the TOM40:TOM70 complex include ATP1 (ATP5A1 in human), ATP2 (ATP5B in human), ATP9 (ATP5G1 in human), TOM40 (TOMM40 in human), SSC1 (mtHsp70, HSPA9 in human), CIT1 (CS in human), ACO1 (ACO2 in human), IDH1 (IDH3G in human), BCS1 (BCS1L in human), CYT1 (CYC1 in human), TIM54 (TIMM54 in human), TIM22 (TIMM22 in human), AAC (ADP/ATP translocase 1, ANT, SLC25A4 in human), HSP60, and CYB2. In humans, TOMM40 has been shown to be a substrate (Humphries et al. 2005). In yeast some proteins such as ACO1, ATP1, CIT1, IDH1, and ATP2 contain both presequences that interact with TOM20 and mature regions that interact with TOM70 (Yamamoto et al. 2009). Most proteins imported into mitochondria are anticipated to be transported through the TOMM40:TOMM70 complex.
R-HSA-1268025 (Reactome) As inferred from the yeast SAM50 complex, the human SAMM50 Complex (SAM50 complex, TOB55 complex) inserts mainly beta-barrel proteins into the outer membrane after they have passed from the cytosol, through the TOMM40:TOMM70 complex, and into the intermembrane space.
In yeast, experimentally verified substrates of the SAM50 complex include TOM40 (TOMM40 in human), MDM10, Porin1 (VDAC1 in human), and TOM22 (TOMM22 in human). In humans, TOMM40 (Humphries et al. 2005) and VDAC1 (Kozjak-Pavlovic et al. 2007, homologous to yeast Porin1) have been shown to be substrates. Many other mitochondrial proteins are anticipated to be substrates of the SAMM50 complex.
R-HSA-1299475 (Reactome) As inferred from the yeast TIM23 complex, the human TIMM23 complex transports precursor proteins across the inner membrane and into the matrix. As in yeast, subunits TIMM50, TIMM17, and TIMM23 are probably necessary for initiating translocation while the PAM complex with mtHSP70 (HSPA9, yeast SSC1) provides the motive force that drives the transport. mtHSP70 binding to the precursor pulls the protein into the matrix in a reaction requiring ATP hydrolysis. The yeast reaction appears to use a Brownian ratchet mechanism (Yamano et al. 2008).
In yeast experimentally verified substrates of TIM23 PAM include Hsp60 (HSP60 in human) and Yfh1 (Frataxin, FXN in human). Many other matrix proteins are believed to be substrates of the TIMM23 complex
R-HSA-1299476 (Reactome) As inferred from yeast, the alpha subunit of the mitochondrial processing peptidase (MPP) binds presequences of mitochondrial precursors and the beta subunit cleaves the presequence. After cleavage, proteins destined for the inner membrane are released laterally from TIMM23 SORT into the membrane.
R-HSA-1299478 (Reactome) As inferred from yeast, the alpha subunit of the mitochondrial processing peptidase (MPP) binds presequences of mitochondrial precursors and the beta subunit cleaves the presequence. After cleavage, proteins destined for the matrix are drawn into the matrix by ATP-dependent interaction with mtHSP70 (HSPA9, homolog of yeast SSC1) of the PAM complex.
R-HSA-1299480 (Reactome) As inferred from the yeast TIM23 complex, the human TIMM23 complex resides in the inner membrane of the mitochondrion and transfers precursor proteins to the matrix. The TIMM23 complex appears to adopt different configurations (and perhaps different subunit compositions) depending on whether the substrate is destined for the inner membrane or the matrix. Here we refer to the TIMM23 PAM complex as the configuration that delivers inner membrane proteins. The PAM17 subcomplex is required for this activity. The N-terminal presequence of precursors first interacts with TIMM50 and TIMM23. The TIMM17 and TIMM23 subunits form a channel and are required to initiate translocation of precursors.
In yeast experimentally verified substrates of TIM23:PAM include Hsp60 (HSP60 in human) and Yfh1 (Frataxin, FXN in human). Many other matrix proteins are believed to be substrates of the TIMM23 complex.
R-HSA-1299481 (Reactome) As inferred from the yeast TIM9:TIM10 complex, the human TIMM9:TIMM10:FXC1 complex chaperones hydrophobic membrane proteins in the intermembrane space until their insertion into the inner or outer membrane. Whereas the yeast TIM9:TIM10 complex is soluble in the intermembrane space, the human TIMM9:TIMM10 complex is associated with the outer surface of the inner membrane (Muhlebein et al. 2004).
Experimentally verified substrates of the yeast TIM9:TIM10 complex include AAC (ADP/ATP translocase 1, ANT, SLC25A4 in human), TIM17 (TIMM17 in human), TOM40 (TOMM40 in human), TIM23 (TIMM23 in human), TIM22 (TIMM22 in human), and Tafazzin (Tafazzin, TAZ in human). Many other mitochondrial proteins are anticipated to be chaperoned by the TIMM9:TIMM10 complex.
R-HSA-1299482 (Reactome) As inferred from the yeast TIM23 complex, the human TIMM23 complex resides in the inner membrane of the mitochondrion and transfers precursor proteins to the inner membrane. The presequences of proteins targeted to the inner membrane are transferred to the matrix where they are cleaved. Sequences in the mature regions of the proteins then interact with the TIMM23 complex to halt transfer across the inner membrane and the proteins are released laterally into the inner membrane. TIMM21 is required.
In yeast experimentally verified substrates of the TIM23 complex targeted to the inner membrane include CYB2, DLD (LDHD in human), ATP9 (ATP5G1 in human), COQ2, TIM54 (TIMM54 in human), COX4, COX5A, and ATP2 (ATP5B in human). Many other inner membrane proteins are believed to be substrates of the TIMM23 complex.
R-HSA-1299484 (Reactome) As inferred from the yeast TIM8:TIM13 complex, the human TIMM8:TIMM13 complex chaperones hydrophobic membrane proteins in the intermembrane space until their insertion into the inner or outer membrane. In yeast experimentally verified substrates of the TIM8:TIM13 complex include TIM23 (TIMM23 in human) and TOM40 (TOMM40 in human). Many other mitochondrial proteins are anticipated to be chaperoned by the TIMM8:TIMM13 complex.
R-HSA-1299487 (Reactome) As inferred from the yeast TIM23 complex, the human TIMM23 complex resides in the inner membrane of the mitochondrion and transfers precursor proteins to the inner membrane. The TIMM23 complex appears to adopt different configurations (and perhaps different subunit compositions) depending on whether the substrate is destined for the inner membrane or the matrix. Here we refer to the TIMM23 SORT complex as the configuration that delivers inner membrane proteins. The TIMM21 subunit is required for this activity. In yeast, the N-terminal presequences of precursors first interact with TIM50 and TIM23 (TIMM50 and TIMM23 in human). The TIM17 and TIM23 subunits (TIMM17 and TIMM23 in human) form a channel and are required to initiate translocation of precursors.
In yeast experimentally verified substrates of the TIM23 SORT complex targeted to the inner membrane include CYB2, DLD (LDHD in human), ATP9 (ATP5G1 in human), COQ2, TIM54 (TIMM54 in human), COX4, COX5A, and ATP2 (ATP5B in human). Many other inner membrane proteins are believed to be substrates of the TIMM23 complex.
R-HSA-1307802 (Reactome) Proteins are imported into the intermembrane space via the interaction between cysteine residues on the imported protein and CHCHD4 (MIA40 in yeast), which functions as a receptor to mediate translocation across the outer membrane. As inferred from the yeast MIA40:ERV1 complex, human CHCHD4 (MIA40 homolog) catalyzes the oxidation of cysteine residues in precursor proteins in the intermembrane space to form cystine bonds. The electrons from the cysteine residues are transferred to CHCHD4, then to GFER (ERV1 in yeast), and eventually to the respiratory chain. The interaction between yeast MIA40 and ERV1 is transitory.
In yeast, experimentally verified substrates of MIA40:ERV1 include COX17, COX19, CMC2, CMC3, CMC4, TIM13 (TIMM13 in human), TIM9 (TIMM9 in human), TIM10 (TIMM10 in human), CCS1 (CCS in human), TIM8 (TIMM8 in human), and ERV1 (GFER in human). Many other mitochondrial proteins are anticipated to be substrates of the MIA40:ERV1 complex.
R-HSA-1307803 (Reactome) As inferred from the yeast TIM22 complex, human TIMM22 inserts precursor proteins into the inner membrane of the mitochondrion. The precursors are hydrophobic and may be chaperoned to TIMM22 by small TIM proteins (TIMM10, TIMM12) of the intermembrane space. In yeast, experimentally verified substrates of the TIM22 complex include AAC (ADP/ATP translocase 1, ANT, SLC25A4 in human), PIC, TIM22 (TIMM22 in human), and TIM23 (TIMM23 in human). Many other inner membrane proteins are anticipated to be substrates ofthe TIMM22 complex.
R-HSA-1955380 (Reactome) TIMM9:TIMM10 with bound substrate protein interacts with FXC1 (TIMM9B, TIMM10B) and TIMM22 at the inner membrane (Muhlenbein et al. 2004). It is believed that TIMM22 then inserts the protein into the inner membrane and TIMM9:TIMM10 and FXC1 are released.
SAM50 Complexmim-catalysisR-HSA-1268025 (Reactome)
Substrates of MIA40:ERV1R-HSA-1307802 (Reactome)
TIMM22R-HSA-1955380 (Reactome)
TIMM22mim-catalysisR-HSA-1307803 (Reactome)
TIMM23

SORT:Precursor

Cargo
ArrowR-HSA-1299487 (Reactome)
TIMM23

SORT:Precursor

Cargo
R-HSA-1299476 (Reactome)
TIMM23 ComplexArrowR-HSA-1299475 (Reactome)
TIMM23 ComplexArrowR-HSA-1299482 (Reactome)
TIMM23 ComplexR-HSA-1299480 (Reactome)
TIMM23 ComplexR-HSA-1299487 (Reactome)
TIMM23 PAM:CargoArrowR-HSA-1299478 (Reactome)
TIMM23 PAM:CargoR-HSA-1299475 (Reactome)
TIMM23 PAM:Cargomim-catalysisR-HSA-1299475 (Reactome)
TIMM23 PAM:Precursor CargoArrowR-HSA-1299480 (Reactome)
TIMM23 PAM:Precursor CargoR-HSA-1299478 (Reactome)
TIMM23 SORT:CargoArrowR-HSA-1299476 (Reactome)
TIMM23 SORT:CargoR-HSA-1299482 (Reactome)
TIMM23 SORT:Cargomim-catalysisR-HSA-1299482 (Reactome)
TIMM8:TIMM13:ProteinArrowR-HSA-1299484 (Reactome)
TIMM8:TIMM13R-HSA-1299484 (Reactome)
TIMM9:TIMM10:FXC1:TIM22:ProteinArrowR-HSA-1955380 (Reactome)
TIMM9:TIMM10:ProteinArrowR-HSA-1299481 (Reactome)
TIMM9:TIMM10:ProteinR-HSA-1955380 (Reactome)
TIMM9:TIMM10R-HSA-1299481 (Reactome)
TOMM40 Complexmim-catalysisR-HSA-1268022 (Reactome)
Personal tools