Mitochondrial translation (Homo sapiens)

From WikiPathways

Revision as of 13:13, 25 July 2016 by Ryanmiller (Talk | contribs)
Jump to: navigation, search
1, 2, 4, 6, 9...3, 12, 234, 8, 10, 13, 27128, 13, 17, 21, 26...451211313, 12mitochondrial matrixGTP MRPS26 MRPS25 ICT1 MRPS21 MRPL27 MRPL52 MRPS18C MRPL51 55Sribosome:MRRF:GFM2:GTPMRPL14 MRPL36 MRPS14 MRPL47 MRPL55 MRPS22 MRPS5 MRPS23 MRPL2 Trp-tRNA(Trp) PTCD3 Trp-tRNA(Trp) polypeptidetRNA(Gln) MRPS9 MRPS18A MRPL19 MRPL4 MRPL41 MRPL38 MRPS23 MRPL20 MRPL14 MRPS10 MRPL14 MT-TV MRPL35 tRNA(Gln) MRPL32 MTRF1L MRPL12 MRPL22 MRPL53 MRPL53 MRPL35 MT-TV MRPS7 MRPS10 MRPL2 MRPS27 MRPL42 MRPL51 MRPL42 MTIF2 MRPS15 mRNA MRPL28 Mitochondrial 16S rRNA MRPL11 MRPL15 MRPL2 MRPL19 MRPS6 MRPS34 MRPL28 AURKAIP1 Mitochondrial 12S rRNA MRPS30 MRPL24 28Sribosomalsubunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNAMRPS23 MRPL3 MRPS12 GFM2:GTPMRPL24 MRPS21 MRPS18B MRPS18B 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNAtRNA(Gln) MRPL54 MRPS15 MRPS10 MRPL46 MRPL14 AURKAIP1 MRPS21 MRPL55 CHCHD1 MRPL18 MRPS18B MRPL35 MRPL11 MRPL49 MRPL50 MRPL55 MRPL27 tRNA(Leu) MRPL14 MRPL21 CHCHD1 MRPL30 MRPS14 MRPL38 MRPL43 MRPL17 ICT1 ICT1 MTRF1L, ICT1Pro-tRNA(Pro) ICT1 MRPL46 MRPS14 MRPS31 Lys-tRNA(Lys) PiMRPL27 DAP3 MRPL3 tRNA(Pro) Thr-tRNA(Thr) MRPL22 tRNA(Cys) MRPL40 MRPL44 MRPL12 MRPS36 MRPS5 MRPS15 Tyr-tRNA(Tyr) PTCD3 MRPL4 MRPS36 MRPL24 MRPS33 MRPS24 MRPL20 MRPL24 MRPL47 GFM1 MRPL40 MRPL13 MRPS21 Mitochondrial 12S rRNA MRPL10 PTCD3 MRPS22 MRPS9 Ser-tRNA(Ser) GDPMRPS18B MRPL39 MRPS23 GDP55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPMRPL27 MRPL19 MRPS33 MRPL54 MRPL43 MRPS36 MRPS5 AURKAIP1 MRPL14 MRPL47 tRNA(Gly) MRPS12 MRPL39 MRPL41 MRPS18B PTCD3 MRPS33 MRPL33 MRPL3 MRPS12 MRPS5 MRPL51 MRPS28 MRPL20 MRPS11 tRNA(Leu) MRPS24 MRPS33 MRPS30 MT-TV MRPL12 MRPL18 MRPS21 mRNA mRNA MRPS21 MRPL41 MRPL54 tRNA(Cys) MRPL17 MRPS28 MRPL37 MRPL2 MRPL10 MRPL18 MRPL39 MRPL18 MRPS26 MRPL15 Asn-tRNA(Asn) PTCD3 MRPL18 MRPL16 MRPS30 MRPS6 MRPL52 MRPS30 MRPL12 MRPS14 MRPS23 MRPS23 MRPL15 MRPS36 MRPL42 MRPL16 MRPS17 Mitochondrial 16S rRNA tRNA(Ile) mRNA MRPL52 DAP3 MRPL23 MRPS9 MRPL41 MRPS33 MRPL18 MRPS12 GTP Cys-tRNA(Cys) MTIF3 MRPS5 MRPL47 MRPL52 Ala-tRNA(Ala) MRPS35 MRPS10 MRPS18A fMet-tRNA(fMet) MRPS31 MT-TV MRPS34 10-formyl-THFMRPL3 MRPL4 CHCHD1 MRPS16 MRPS35 GTPtRNA(Ala) Met-tRNA(Met) MRPL36 MRPS23 tRNA(His) MRPS24 MRPS35 MRPS14 ICT1 MRPS21 MRPS33 MRPL4 MRPS36 MRPL19 MRPL32 tRNA(Pro) tRNA(Lys) MRPS18B Pro-tRNA(Pro) tRNA(His) AURKAIP1 MRPS36 55Sribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPMRPL45 MRPS16 PiMRPS11 MRPL10 MRPS15 MRPL12 MRPS18B MRPL47 MRPL12 MRPL17 tRNA(Pro) MRPS18C Ala-tRNA(Ala) MRPS7 MRPS22 MRPL34 MRPS28 MRPL35 GADD45GIP1 MRPL33 MRPL10 GADD45GIP1 MRPL40 MRPL37 tRNA(Cys) MRPL3 55Sribosome:mRNA:fMet-tRNAMRPL21 Ser-tRNA(Ser) CHCHD1 MRPL53 GTPMitochondrial 16S rRNA MRPS23 MRPL39 MRPS18C MRPL55 MRPL37 MRPS31 MRPL28 MRPS27 MRPS11 MRPL12 MRPS18B MRPS35 MRPL33 MRPS21 MRPL30 MRPL52 MRPL20 DAP3 MRPL33 MRPL32 MRPS6 MRPS18B MRPS21 MRPS22 MRPL33 MRPL22 PitRNA(Met) Mitochondrial 12S rRNA MRPS26 MRPS22 MRPS14 MRPL30 MRPL28 MRPL47 MRPS34 MRPS5 MRPL50 Tyr-tRNA(Tyr) Ile-tRNA(Ile) MRPS18C Val-tRNA(Val) MRPS22 MRPS5 MRPS12 MRPL11 MRPL47 MRPL1 MRPS22 Leu-tRNA(Leu) MRPL44 MRPL39 MRPL48 MRPS15 MRPL1 MRPL9 tRNA(His) MRPS33 MRPL39 MRPL40 MRPS26 Leu-tRNA(Leu) MRPS17 tRNA(Tyr) Mitochondrial 16S rRNA MRPL17 28S ribosomalsubunit:MTIF3CHCHD1 MRPS27 MRPS25 MRPL17 MRPL54 MRPS27 tRNA(Phe) MRPL11 MRPS18A MRPL48 MRPL45 tRNA(Met)MRPL18 MRPL27 tRNA(Leu) MRPL46 MRRF MRPS17 MRPS16 MRPS33 MRPL19 MRPL22 GFM1 MRPS26 MRPL53 MRPL3 Cys-tRNA(Cys) MRPS14 MRPS15 MRPL37 MRPL39 MRPS26 AURKAIP1 Mitochondrial 16S rRNA Ala-tRNA(Ala) MRPL42 MRPL24 MRPL1 MRPS15 MRPL43 tRNA(Thr) MRPS25 tRNA(Trp) MRPL40 mRNA MRPS18A MRPL53 MRPS12 Lys-tRNA(Lys) MRPL39 MRPL17 GTP Cys-tRNA(Cys) Cys-tRNA(Cys) MRPL34 MRPS6 MRPL51 GDP MRPL2 MRPS5 DAP3 MRPL21 55Sribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPMRPL50 tRNA(Asn) MRPL49 MRPS17 MRPL41 MRPL12 MRRF MRPL16 Glu-tRNA(Glu) MRPS31 MRPS36 MRPL20 MRPL42 Lys-tRNA(Lys) MRPS34 MRPL46 MRPS25 MRPL47 MRPL45 Leu-tRNA(Leu) MRPL18 MRPL41 MRPL9 tRNA(Ala) MRPS6 tRNA(Met) MRPL45 mRNAMRPL15 MRPL3 MRPL10 MRPL1 MRPL1 TSFM MRPS28 MRPS11 Met-tRNA(Met)MRPL42 MRPL50 tRNA(Arg) PTCD3 MRPL53 MRPS6 TUFM:TSFMMRPS31 MRPS31 GADD45GIP1 MRPS5 MRPL34 MRPL16 GADD45GIP1 MRPL51 MRPS7 Met-tRNA(Met) MRPL28 MRPS16 MRPL33 tRNA(Arg) MRPS11 MRPL38 MRPL45 CHCHD1 MRPL16 MRPS21 MRPS28 MRPS27 MRPS18C Pro-tRNA(Pro) MRPL30 MRPS9 PTCD3 MRPL14 MRPL20 MRPS24 MRPL23 MT-TV MRPS30 MRPL2 MRPL15 MRPS25 GTP MRPS35 Mitochondrial 16S rRNA MRPS6 MRRFMRPS17 MRPL30 MRPL13 MRPS12 MRPL1 MRPS24 MRPS5 AURKAIP1 MRPS26 MRPL4 MRPL12 MRPS33 GADD45GIP1 MRPS18A MRPL34 MRPL15 MRPS12 Gly-tRNA(Gly) MRPL42 MRPL41 Arg-tRNA(Arg) peptidyl-tRNA with elongated peptide MRPL17 MRPL10 MRPS24 MTIF3MRPL50 MRPS17 MRPL55 MRPL49 MRPL4 MRPS9 MRPS9 MRPS11 MRPL10 MRPL30 MRPL42 MRPL37 MRPS35 MRPS7 MRPL33 MRPL32 MRPL28 MRPL50 DAP3 MRPL40 MRPL49 Glu-tRNA(Glu) MRPS25 MRPL28 MRPL48 MRPS12 MRPS15 MRPL9 MRPL52 MRPS23 Leu-tRNA(Leu) MRPL24 MRPS7 Gln-tRNA(Gln) Pro-tRNA(Pro) MRPL15 tRNA(Tyr) MRPS6 Gly-tRNA(Gly) MRPS16 MRPS11 MRPL47 MRPS24 MRPS27 MRPS30 MRPS10 GTP MRPL22 MRPL21 GADD45GIP1 MRPS10 fMet-tRNA(fMet) TSFMfMet-tRNA(fMet) MRPL36 MRPL55 MRPL43 MRPL44 GADD45GIP1 Gly-tRNA(Gly) MRPL48 Thr-tRNA(Thr) Mitochondrial 16S rRNA MRPL37 MRPL33 MRPL9 MRPL3 MRPS25 MRPL40 MRPS25 GFM2 Mitochondrial 12S rRNA GADD45GIP1 MRPS17 MRPL16 MRPS25 tRNA(Val) CHCHD1 MRPL48 MTIF3 MRPL32 MRPL9 MRPS30 MRPL23 MRPL21 MRPL44 Gln-tRNA(Gln) MRPL4 MRPS16 MRPS36 His-tRNA(His) MRPS35 MRPS12 MRPS24 MRPL36 MRPL20 MRPL16 Mitochondrial 12S rRNA MRPS6 MRPS31 MRPS21 MRPL34 MRPL36 MRPS31 MRPL53 MRPS7 MRPL13 MRPL45 MRPL32 mRNA 55Sribosome:mRNA:tRNAMRPS22 CHCHD1 GFM2 MRPL49 Mitochondrial 12S rRNA MRPL1 tRNA(Asn) MRPS30 CHCHD1 MRPL2 MRPL55 CHCHD1 ICT1 MRPL52 GDP GFM2 MRPL20 THFtRNA(Asp) MRPS22 MRPL49 tRNA(Glu) MRPS28 Arg-tRNA(Arg) MRPL45 tRNA(Ser) MRPL34 MRPL28 MRPL22 MRPL34 MRPS17 MRPS9 MRPS24 MRPL43 MRPS5 MRPL2 MRPS27 fMet-tRNA(fMet) MRPL22 AURKAIP1 TUFM:GTP:aminoacyl-tRNAMRPL27 His-tRNA(His) MRPL38 tRNA(Thr) Mitochondrial 16S rRNA MRPL53 MRPS10 MRPL36 tRNA(Phe) Gln-tRNA(Gln) Arg-tRNA(Arg) tRNA(Asp) MTIF2MRPL51 MRPL47 AURKAIP1 MRPL11 MRPS27 Trp-tRNA(Trp) DAP3 MRPL43 MRPL46 MRPS25 PTCD3 MRPL54 55Sribosome:mRNA:tRNA:MRRFMRPL38 MRPL51 MRPL21 MRPL2 MRPL55 MRPL33 MRPL41 tRNA(Trp) MRPL18 MRPL14 Asp-tRNA(Asp) MRPL32 tRNA(Asp) MRPL13 Asp-tRNA(Asp) MRPS18C MRPL2 MRPL38 MRPS34 MRPL36 MRPL23 GTP MRPL34 PTCD3 tRNA(Val) MRPL44 Ala-tRNA(Ala) MRPL54 MRPL13 MRPS24 MRPS28 MRPL14 MRPS14 MRPS28 MRPS18C ICT1 MRPL50 tRNA(Trp) MRPS27 TUFM MRPL49 MRPL43 MRPL23 MRPS31 MRPL23 MRPL15 tRNA(Met) MRPS26 MRPS18A MRPL52 MRPL35 CHCHD1 MRPS18C MRPL49 MRPS25 MRPL37 DAP3 MTIF2 MRPL51 MRPL44 MRPL28 MRPL37 Mitochondrial 12S rRNA MRPL34 MRPS34 MRPS18C MRPL9 MRPS18B MRPL11 MRPS27 MRPL17 MRPL46 MRPS17 MRPL40 MRPL54 MRPS34 MRPL10 MRPS11 MRPS28 MTFMTMRPL19 tRNA(Ser) MRPS26 MRPS10 MRPL19 Mitochondrial 16S rRNA MRPL13 MRPS16 mRNA MRPS16 MRPL50 MRPL34 MRPL24 MRPL21 MRPL19 MRPL21 ICT1 GTP Glu-tRNA(Glu) MRPL16 Asp-tRNA(Asp) MRPL12 MRPL3 MRPL44 MRPL10 MRPL48 mRNA MRPS36 MRPL36 AURKAIP1 MRPS14 MRPS28 MRPS23 MRPL48 MRPS35 MT-TV MRPL10 Thr-tRNA(Thr) MRPL9 MRPS18A MRPL37 tRNA(Arg) GTP Mitochondrial 12S rRNA MRPS5 MRPS33 MRPS14 MRPL13 MRPS35 MTIF2:GTPMitochondrial 12S rRNA MRPS31 MRPL40 55Sribosome:mRNA:peptidyl-tRNA at P-siteMRPL55 MRPL9 Ser-tRNA(Ser) MRPL18 MRPL21 TUFM fMet-tRNA(fMet) MRPS17 MRPL21 GADD45GIP1 MRPS18B MRPL44 tRNA(Phe) MRPL27 MRPL33 AURKAIP1 MT-TV MRPL27 GADD45GIP1 MRPS12 MRPL27 GDPMRPL13 Ile-tRNA(Ile) tRNASer-tRNA(Ser) MRPL49 mRNA MRPL42 MRPL22 MRPL35 MRPL11 MRPS24 tRNA(Glu) MRPS7 MRPL4 MRPS35 AURKAIP1 MRPL22 MRPL51 MRPL15 MRPS10 MRPS18A MRPL13 MRPS12 MRPL11 tRNA(Asn) MRPL53 MT-TV MRPS14 MRPS30 MRPL41 MRPS27 MRPL43 Tyr-tRNA(Tyr) MRPL14 MRPL38 MRPL36 MRPL48 MRPL14 MRPS27 MRPL54 peptidyl-tRNA with elongated peptide MRPL49 peptidyl-tRNA with elongated peptide MRPS18B fMet-tRNA(fMet) MRPL35 MRPL52 MRPL23 MRPL42 MRPL46 AURKAIP1 MRPL22 GFM1:GTPDAP3 MRPS7 MRPL33 tRNA(Thr) MRPS21 MRPL45 MRPL39 MRPS18C MRPL51 DAP3 MRPS21 MRPS30 PTCD3 MRPL19 tRNA(Lys) MRPS28 Trp-tRNA(Trp) Phe-tRNA(Phe) ICT1 MRPL44 MRPS11 Mitochondrial 16S rRNA PTCD3 MRPS15 Glu-tRNA(Glu) MRPL36 MRPS33 MRPS34 MRPL12 PiMRPL40 MRPS18A MRPS18C MRPL11 MRPL49 MRPL4 MRPS16 MRPL30 MRPS7 MRPS17 MRPS15 DAP3 DAP3 MRPL1 ICT1 MRPS9 MRPL16 Arg-tRNA(Arg) MRPL45 MRPL17 DAP3 tRNA(Ile) MRPS26 Ile-tRNA(Ile) MRPS15 MRPL53 fMet-tRNA(fMet)MRPS11 MRPL35 MRPL20 GFM2:GDPMRPL37 28S ribosomalsubunitMRPS6 MRPL30 Asp-tRNA(Asp) MRPL39 MRPL17 Gly-tRNA(Gly) MRPL43 MRPL21 GDP MRPS7 MRPS11 MRPS30 MRPL15 MRPL1 MRPS34 MRPL19 MRPL24 MRPL16 MRPL52 MRPS6 tRNA(Glu) MRPL55 MRPS14 Asn-tRNA(Asn) Val-tRNA(Val) MRPL30 MRPL23 MRPS22 MRPL46 MRPS35 MRPL9 MRPL19 MRPS26 tRNA(Val) Phe-tRNA(Phe) MRPL24 MRPL18 MRPL23 tRNA(Lys) MRPL48 MRPS22 MRPL35 MRPS18B MRPS31 55Sribosome:mRNA:tRNA:peptidyl-tRNA at A-siteMRPL41 MRPL38 TUFM MRPL45 MRPS35 PiDAP3 MRPL54 39S ribosomalsubunitMRPL36 MRPL46 Mitochondrial 12S rRNA Phe-tRNA(Phe) Tyr-tRNA(Tyr) MTRF1L MRPL32 MRPL3 MRPS30 MRPL13 MRPL10 MRPL37 MRPS10 MRPS18A MRPS7 MRPL23 MRPL44 MRPS28 MRPL48 MRPS24 MRPS18C Mitochondrial 16S rRNA MRPS16 MRPL38 MRPS28 MRPS18A MRPL27 Val-tRNA(Val) Mitochondrial 12S rRNA MRPL28 MRPS9 MRPS23 MRPL55 MRPS9 CHCHD1 MRPS12 MRPS31 AURKAIP1 MRPL52 MRPL51 MRPL9 MRPL30 mRNA GFM1:GDPMet-tRNA(Met) ICT1 Asn-tRNA(Asn) MRPL23 MRPS23 tRNA(Ile) MRPL35 MRPL50 MRPS16 MRPS17 Thr-tRNA(Thr) MRPL32 Val-tRNA(Val) MRPL17 MRPS9 MRPL43 MRPL28 TUFM:GTPtRNA(Tyr) MRPL50 MRPS9 GTP MRPL46 MRPL38 MRPL42 MRPL1 MRPS5 Lys-tRNA(Lys) CHCHD1 TUFM MRPS36 MRPS36 MRPL34 MRPS7 MRPS23 Ile-tRNA(Ile) MT-TV tRNA(Ser) MRPS15 MRPL32 MRPS16 MRPS6 MRPL46 MT-TV MRPL16 ICT1 MRPL32 PTCD3 MRPS25 MRPS33 Phe-tRNA(Phe) MRPL9 Mitochondrial 12S rRNA Mitochondrial 12S rRNA MRPL41 MRPS14 MRPS10 MRPS26 MRPL43 MRPS10 aminoacyl-tRNAMRPL13 MRPS11 MRPS34 MRPS35 MRPL1 TUFM:GDPMRPL50 MRPS26 MRPL39 His-tRNA(His) MRPS9 tRNA(Gly) MRPL2 tRNA(Ala) MRPL20 PTCD3 MRPS27 MRPS36 MRPL24 MRPS24 TUFM MRPS18A MRPL27 MRPL44 MRPL45 MRPL15 MRPS34 MRPS7 MRPL20 MRPS33 Gln-tRNA(Gln) MRPL3 MRPS18A MRPS25 MRPS18C MRPL48 MRPL35 GFM1 MRPL40 MRPL4 MRPL24 ICT1 MRPS22 MRPL22 MRPS36 MRPS31 MRPL47 MRPS16 GTP MRPL11 peptidyl-tRNA with elongated peptide His-tRNA(His) MRPL30 MRPL54 MRPS22 MRPL38 MRPL54 MRPS10 tRNA(Gly) MRPS17 MRPS34 MRPS30 MRPS11 GADD45GIP1 Asn-tRNA(Asn) MRPL53 MRPS6 MRPL11 MRPL4 Met-tRNA(Met) MRPS34 MT-TV MRPS15 7, 16, 3210, 21, 2614, 16


Description

Of the roughly 1000 human mitochondrial proteins only 13 proteins, all of them hydrophobic inner membrane proteins that are components of the oxidative phosphorylation apparatus, are encoded in the mitochondrial genome and translated by mitoribosomes at the matrix face of the inner membrane (reviewed in Herrmann et al. 2012, Hallberg and Larsson 2014, Lightowlers et al. 2014). The remainder, including all proteins of the mitochondrial translation system, are encoded in the nucleus and imported from the cytosol into the mitochondrion. Translation in the mitochondrion reflects both the bacterial origin of the organelle and subsequent divergent evolution during symbiosis (reviewed in Huot et al. 2014, Richman et al. 2014). Human mitochondrial ribosomes have a low sedimentation coefficient of only 55S, but at 2.71 MDa they retain a similar mass to E. coli 70S particles. The 55S particles are protein-rich compared to both cytosolic ribosomes and eubacterial ribosomes. This is due to shorter mt-rRNAs, mitochondria-specific proteins, and numerous rearrangements in individual protein positions within the two ribosome subunits (inferred from bovine ribosomes in Sharma et al. 2003, Greber et al. 2014, Kaushal et al. 2014, reviewed in Agrawal and Sharma 2012).
Mitochondrial mRNAs have either no untranslated leader or short leaders of 1-3 nucleotides, with the exception of the 2 bicistronic transcripts, RNA7 and RNA14, which have overlapping orfs that encode ND4L/ND4 and ATP8/ATP6 respectively. Translation is believed to initiate with the mRNA binding the 28S subunit:MTIF3 (28S subunit:IF-3Mt, 28S subunit:IF2mt) complex together with MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP) at the matrix face of the inner membrane (reviewed in Christian and Spremulli 2012). MTIF3 can dissociate 55S particles in preparation for initiation, enhances formation of initiation complexes, and inhibits N-formylmethionine-tRNA (fMet-tRNA) binding to 28S subunits in the absence of mRNA. Binding of fMet-tRNA to the start codon of the mRNA results in a stable complex while absence of a start codon at the 5' end of the mRNA causes eventual dissociation of the mRNA from the 28S subunit. After recognition of a start codon, the 39S subunit then binds the stable complex, GTP is hydrolyzed, and the initiation factors MTIF3 and MTIF2:GDP dissociate.
Translation elongation then proceeds by cycles of aminoacyl-tRNAs binding, peptide bond formation, and displacement of deacylated tRNAs. In each cycle an aminoacyl-tRNA in a complex with TUFM:GTP (EF-Tu:GTP) binds at the A-site of the ribosome, GTP is hydrolyzed, and TUFM:GDP dissociates. The elongating polypeptide bonded to the tRNA at the P-site is transferred to the aminoacyl group at the A-site by peptide bond formation at the peptidyl transferase center, leaving a deacylated tRNA at the P-site and the elongating polypeptide attached to the tRNA at the A-site. The polypeptide is co-translationally inserted into the inner mitochondrial membrane via an interaction with OXA1L (Haque et al. 2010, reviewed in Ott and Hermann 2010). After peptide bond formation, GFM1:GTP (EF-Gmt:GTP) then binds the ribosome complex, GTP is hydrolyzed, GFM1:GDP dissociates, and the ribosome translocates 3 nucleotides in the 3' direction along the mRNA, relocating the polypeptide-tRNA to the P-site and allowing another cycle to begin. TUFM:GDP is regenerated to TUFM:GTP by the guanine nucleotide exchange factor TSFM (EF-Ts, EF-TsMt).
Translation is terminated when MTRF1L:GTP (MTRF1a:GTP) recognizes an UAA or UAG termination codon at the A-site of the ribosome (Tsuboi et al. 2009). GTP hydrolysis does not appear to be required. The tRNA-aminoacyl bond between the translated polypeptide and the final tRNA at the P-site is hydrolyzed by the 39S subunit, facilitating release of the polypeptide. MRRF (RRF) and GFM2:GTP (EF-G2mt:GTP) then act to release the remaining tRNA and mRNA from the ribosome and dissociate the 55S ribosome into 28S and 39S subunits.
Mutations have been identified in genes encoding mitochondrial ribosomal proteins and translation factors. These have been shown to be pathogenic, causing neurological and other diseases (reviewed in Koopman et al. 2013, Pearce et al. 2013). View original pathway at:Reactome.

Comments

Reactome Converter 
Pathway is converted from Reactome id:

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Soleimanpour-Lichaei HR, Kühl I, Gaisne M, Passos JF, Wydro M, Rorbach J, Temperley R, Bonnefoy N, Tate W, Lightowlers R, Chrzanowska-Lightowlers Z.; ''mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  2. Richter R, Rorbach J, Pajak A, Smith PM, Wessels HJ, Huynen MA, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome.''; PubMed Europe PMC Scholia
  3. Lightowlers RN, Rozanska A, Chrzanowska-Lightowlers ZM.; ''Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation.''; PubMed Europe PMC Scholia
  4. Zhang Y, Spremulli LL.; ''Identification and cloning of human mitochondrial translational release factor 1 and the ribosome recycling factor.''; PubMed Europe PMC Scholia
  5. Valente L, Shigi N, Suzuki T, Zeviani M.; ''The R336Q mutation in human mitochondrial EFTu prevents the formation of an active mt-EFTu.GTP.aa-tRNA ternary complex.''; PubMed Europe PMC Scholia
  6. Hällberg BM, Larsson NG.; ''Making proteins in the powerhouse.''; PubMed Europe PMC Scholia
  7. Herrmann JM, Longen S, Weckbecker D, Depuydt M.; ''Biogenesis of mitochondrial proteins.''; PubMed Europe PMC Scholia
  8. Rackham O, Filipovska A.; ''Supernumerary proteins of mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  9. Dennerlein S, Rozanska A, Wydro M, Chrzanowska-Lightowlers ZM, Lightowlers RN.; ''Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit.''; PubMed Europe PMC Scholia
  10. Koopman WJ, Distelmaier F, Smeitink JA, Willems PH.; ''OXPHOS mutations and neurodegeneration.''; PubMed Europe PMC Scholia
  11. Koc EC, Cimen H, Kumcuoglu B, Abu N, Akpinar G, Haque ME, Spremulli LL, Koc H.; ''Identification and characterization of CHCHD1, AURKAIP1, and CRIF1 as new members of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  12. Rorbach J, Richter R, Wessels HJ, Wydro M, Pekalski M, Farhoud M, Kühl I, Gaisne M, Bonnefoy N, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''The human mitochondrial ribosome recycling factor is essential for cell viability.''; PubMed Europe PMC Scholia
  13. Christian BE, Spremulli LL.; ''Mechanism of protein biosynthesis in mammalian mitochondria.''; PubMed Europe PMC Scholia
  14. Tucker EJ, Hershman SG, Köhrer C, Belcher-Timme CA, Patel J, Goldberger OA, Christodoulou J, Silberstein JM, McKenzie M, Ryan MT, Compton AG, Jaffe JD, Carr SA, Calvo SE, RajBhandary UL, Thorburn DR, Mootha VK.; ''Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation.''; PubMed Europe PMC Scholia
  15. Huynen MA, Duarte I, Chrzanowska-Lightowlers ZM, Nabuurs SB.; ''Structure based hypothesis of a mitochondrial ribosome rescue mechanism.''; PubMed Europe PMC Scholia
  16. Agrawal RK, Sharma MR.; ''Structural aspects of mitochondrial translational apparatus.''; PubMed Europe PMC Scholia
  17. Nozaki Y, Matsunaga N, Ishizawa T, Ueda T, Takeuchi N.; ''HMRF1L is a human mitochondrial translation release factor involved in the decoding of the termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  18. Cavdar Koc E, Burkhart W, Blackburn K, Moseley A, Spremulli LL.; ''The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  19. Akabane S, Ueda T, Nierhaus KH, Takeuchi N.; ''Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria.''; PubMed Europe PMC Scholia
  20. Temperley R, Richter R, Dennerlein S, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''Hungry codons promote frameshifting in human mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  21. Lind C, Sund J, Aqvist J.; ''Codon-reading specificities of mitochondrial release factors and translation termination at non-standard stop codons.''; PubMed Europe PMC Scholia
  22. Uchiumi T, Ohgaki K, Yagi M, Aoki Y, Sakai A, Matsumoto S, Kang D.; ''ERAL1 is associated with mitochondrial ribosome and elimination of ERAL1 leads to mitochondrial dysfunction and growth retardation.''; PubMed Europe PMC Scholia
  23. Bhargava K, Templeton P, Spremulli LL.; ''Expression and characterization of isoform 1 of human mitochondrial elongation factor G.''; PubMed Europe PMC Scholia
  24. Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM, Moseley A, Spremulli LL.; ''The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  25. Huot JL, Enkler L, Megel C, Karim L, Laporte D, Becker HD, Duchêne AM, Sissler M, Maréchal-Drouard L.; ''Idiosyncrasies in decoding mitochondrial genomes.''; PubMed Europe PMC Scholia
  26. Richman TR, Rackham O, Filipovska A.; ''Mitochondria: Unusual features of the mammalian mitoribosome.''; PubMed Europe PMC Scholia
  27. Chung HK, Spremulli LL.; ''Purification and characterization of elongation factor G from bovine liver mitochondria.''; PubMed Europe PMC Scholia
  28. Ott M, Herrmann JM.; ''Co-translational membrane insertion of mitochondrially encoded proteins.''; PubMed Europe PMC Scholia
  29. Young DJ, Edgar CD, Murphy J, Fredebohm J, Poole ES, Tate WP.; ''Bioinformatic, structural, and functional analyses support release factor-like MTRF1 as a protein able to decode nonstandard stop codons beginning with adenine in vertebrate mitochondria.''; PubMed Europe PMC Scholia
  30. Haque ME, Elmore KB, Tripathy A, Koc H, Koc EC, Spremulli LL.; ''Properties of the C-terminal tail of human mitochondrial inner membrane protein Oxa1L and its interactions with mammalian mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  31. Kaushal PS, Sharma MR, Booth TM, Haque EM, Tung CS, Sanbonmatsu KY, Spremulli LL, Agrawal RK.; ''Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  32. Pearce S, Nezich CL, Spinazzola A.; ''Mitochondrial diseases: translation matters.''; PubMed Europe PMC Scholia
  33. Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V.; ''Structure of the large ribosomal subunit from human mitochondria.''; PubMed Europe PMC Scholia
  34. Tsuboi M, Morita H, Nozaki Y, Akama K, Ueda T, Ito K, Nierhaus KH, Takeuchi N.; ''EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis.''; PubMed Europe PMC Scholia
  35. Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F, Erzberger JP, Leibundgut M, Aebersold R, Ban N.; ''Architecture of the large subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114740view16:22, 25 January 2021ReactomeTeamReactome version 75
113184view11:25, 2 November 2020ReactomeTeamReactome version 74
112412view15:35, 9 October 2020ReactomeTeamReactome version 73
101316view11:20, 1 November 2018ReactomeTeamreactome version 66
100853view20:52, 31 October 2018ReactomeTeamreactome version 65
100394view19:26, 31 October 2018ReactomeTeamreactome version 64
99942view16:11, 31 October 2018ReactomeTeamreactome version 63
99498view14:44, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99147view12:41, 31 October 2018ReactomeTeamreactome version 62
93746view13:33, 16 August 2017ReactomeTeamreactome version 61
93261view11:18, 9 August 2017ReactomeTeamreactome version 61
87964view13:13, 25 July 2016RyanmillerOntology Term : 'translation pathway' added !
87963view13:13, 25 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86341view09:15, 11 July 2016ReactomeTeamreactome version 56
83252view10:32, 18 November 2015ReactomeTeamVersion54
81361view12:53, 21 August 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
10-formyl-THFMetaboliteCHEBI:15637 (ChEBI)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ComplexR-HSA-5368280 (Reactome)
28S ribosomal subunit:MTIF3ComplexR-HSA-5368269 (Reactome)
28S ribosomal subunitComplexR-HSA-5368239 (Reactome)
39S ribosomal subunitComplexR-HSA-5368233 (Reactome)
55S ribosome:MRRF:GFM2:GTPComplexR-HSA-5419282 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPComplexR-HSA-5389851 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAComplexR-HSA-5389838 (Reactome)
55S ribosome:mRNA:fMet-tRNAComplexR-HSA-5368273 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteComplexR-HSA-5419272 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPComplexR-HSA-5419280 (Reactome)
55S ribosome:mRNA:tRNA:MRRFComplexR-HSA-5419275 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteComplexR-HSA-5389843 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPComplexR-HSA-5419267 (Reactome)
55S ribosome:mRNA:tRNAComplexR-HSA-5419262 (Reactome)
AURKAIP1 ProteinQ9NWT8 (Uniprot-TrEMBL)
Ala-tRNA(Ala) R-HSA-379730 (Reactome)
Arg-tRNA(Arg) R-HSA-379708 (Reactome)
Asn-tRNA(Asn) R-HSA-379718 (Reactome)
Asp-tRNA(Asp) R-HSA-379698 (Reactome)
CHCHD1 ProteinQ96BP2 (Uniprot-TrEMBL)
Cys-tRNA(Cys) R-HSA-379713 (Reactome)
DAP3 ProteinP51398 (Uniprot-TrEMBL)
GADD45GIP1 ProteinQ8TAE8 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GFM1 ProteinQ96RP9 (Uniprot-TrEMBL)
GFM1:GDPComplexR-HSA-5419260 (Reactome)
GFM1:GTPComplexR-HSA-5419274 (Reactome)
GFM2 ProteinQ969S9 (Uniprot-TrEMBL)
GFM2:GDPComplexR-HSA-5419266 (Reactome)
GFM2:GTPComplexR-HSA-5419270 (Reactome)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Gln-tRNA(Gln) R-HSA-379753 (Reactome)
Glu-tRNA(Glu) R-HSA-379744 (Reactome)
Gly-tRNA(Gly) R-HSA-379781 (Reactome)
His-tRNA(His) R-HSA-379764 (Reactome)
ICT1 ProteinQ14197 (Uniprot-TrEMBL)
Ile-tRNA(Ile) R-HSA-379769 (Reactome)
Leu-tRNA(Leu) R-HSA-379773 (Reactome)
Lys-tRNA(Lys) R-HSA-379795 (Reactome)
MRPL1 ProteinQ9BYD6 (Uniprot-TrEMBL)
MRPL10 ProteinQ7Z7H8 (Uniprot-TrEMBL)
MRPL11 ProteinQ9Y3B7 (Uniprot-TrEMBL)
MRPL12 ProteinP52815 (Uniprot-TrEMBL)
MRPL13 ProteinQ9BYD1 (Uniprot-TrEMBL)
MRPL14 ProteinQ6P1L8 (Uniprot-TrEMBL)
MRPL15 ProteinQ9P015 (Uniprot-TrEMBL)
MRPL16 ProteinQ9NX20 (Uniprot-TrEMBL)
MRPL17 ProteinQ9NRX2 (Uniprot-TrEMBL)
MRPL18 ProteinQ9H0U6 (Uniprot-TrEMBL)
MRPL19 ProteinP49406 (Uniprot-TrEMBL)
MRPL2 ProteinQ5T653 (Uniprot-TrEMBL)
MRPL20 ProteinQ9BYC9 (Uniprot-TrEMBL)
MRPL21 ProteinQ7Z2W9 (Uniprot-TrEMBL)
MRPL22 ProteinQ9NWU5 (Uniprot-TrEMBL)
MRPL23 ProteinQ16540 (Uniprot-TrEMBL)
MRPL24 ProteinQ96A35 (Uniprot-TrEMBL)
MRPL27 ProteinQ9P0M9 (Uniprot-TrEMBL)
MRPL28 ProteinQ13084 (Uniprot-TrEMBL)
MRPL3 ProteinP09001 (Uniprot-TrEMBL)
MRPL30 ProteinQ8TCC3 (Uniprot-TrEMBL)
MRPL32 ProteinQ9BYC8 (Uniprot-TrEMBL)
MRPL33 ProteinO75394 (Uniprot-TrEMBL)
MRPL34 ProteinQ9BQ48 (Uniprot-TrEMBL)
MRPL35 ProteinQ9NZE8 (Uniprot-TrEMBL)
MRPL36 ProteinQ9P0J6 (Uniprot-TrEMBL)
MRPL37 ProteinQ9BZE1 (Uniprot-TrEMBL)
MRPL38 ProteinQ96DV4 (Uniprot-TrEMBL)
MRPL39 ProteinQ9NYK5 (Uniprot-TrEMBL)
MRPL4 ProteinQ9BYD3 (Uniprot-TrEMBL)
MRPL40 ProteinQ9NQ50 (Uniprot-TrEMBL)
MRPL41 ProteinQ8IXM3 (Uniprot-TrEMBL)
MRPL42 ProteinQ9Y6G3 (Uniprot-TrEMBL)
MRPL43 ProteinQ8N983 (Uniprot-TrEMBL)
MRPL44 ProteinQ9H9J2 (Uniprot-TrEMBL)
MRPL45 ProteinQ9BRJ2 (Uniprot-TrEMBL)
MRPL46 ProteinQ9H2W6 (Uniprot-TrEMBL)
MRPL47 ProteinQ9HD33 (Uniprot-TrEMBL)
MRPL48 ProteinQ96GC5 (Uniprot-TrEMBL)
MRPL49 ProteinQ13405 (Uniprot-TrEMBL)
MRPL50 ProteinQ8N5N7 (Uniprot-TrEMBL)
MRPL51 ProteinQ4U2R6 (Uniprot-TrEMBL)
MRPL52 ProteinQ86TS9 (Uniprot-TrEMBL)
MRPL53 ProteinQ96EL3 (Uniprot-TrEMBL)
MRPL54 ProteinQ6P161 (Uniprot-TrEMBL)
MRPL55 ProteinQ7Z7F7 (Uniprot-TrEMBL)
MRPL9 ProteinQ9BYD2 (Uniprot-TrEMBL)
MRPS10 ProteinP82664 (Uniprot-TrEMBL)
MRPS11 ProteinP82912 (Uniprot-TrEMBL)
MRPS12 ProteinO15235 (Uniprot-TrEMBL)
MRPS14 ProteinO60783 (Uniprot-TrEMBL)
MRPS15 ProteinP82914 (Uniprot-TrEMBL)
MRPS16 ProteinQ9Y3D3 (Uniprot-TrEMBL)
MRPS17 ProteinQ9Y2R5 (Uniprot-TrEMBL)
MRPS18A ProteinQ9NVS2 (Uniprot-TrEMBL)
MRPS18B ProteinQ9Y676 (Uniprot-TrEMBL)
MRPS18C ProteinQ9Y3D5 (Uniprot-TrEMBL)
MRPS21 ProteinP82921 (Uniprot-TrEMBL)
MRPS22 ProteinP82650 (Uniprot-TrEMBL)
MRPS23 ProteinQ9Y3D9 (Uniprot-TrEMBL)
MRPS24 ProteinQ96EL2 (Uniprot-TrEMBL)
MRPS25 ProteinP82663 (Uniprot-TrEMBL)
MRPS26 ProteinQ9BYN8 (Uniprot-TrEMBL)
MRPS27 ProteinQ92552 (Uniprot-TrEMBL)
MRPS28 ProteinQ9Y2Q9 (Uniprot-TrEMBL)
MRPS30 ProteinQ9NP92 (Uniprot-TrEMBL)
MRPS31 ProteinQ92665 (Uniprot-TrEMBL)
MRPS33 ProteinQ9Y291 (Uniprot-TrEMBL)
MRPS34 ProteinP82930 (Uniprot-TrEMBL)
MRPS35 ProteinP82673 (Uniprot-TrEMBL)
MRPS36 ProteinP82909 (Uniprot-TrEMBL)
MRPS5 ProteinP82675 (Uniprot-TrEMBL)
MRPS6 ProteinP82932 (Uniprot-TrEMBL)
MRPS7 ProteinQ9Y2R9 (Uniprot-TrEMBL)
MRPS9 ProteinP82933 (Uniprot-TrEMBL)
MRRF ProteinQ96E11 (Uniprot-TrEMBL)
MRRFProteinQ96E11 (Uniprot-TrEMBL)
MT-TV ProteinENST00000387342 (Ensembl)
MTFMTProteinQ96DP5 (Uniprot-TrEMBL)
MTIF2 ProteinP46199 (Uniprot-TrEMBL)
MTIF2:GTPComplexR-HSA-5368285 (Reactome)
MTIF2ProteinP46199 (Uniprot-TrEMBL)
MTIF3 ProteinQ9H2K0 (Uniprot-TrEMBL)
MTIF3ProteinQ9H2K0 (Uniprot-TrEMBL)
MTRF1L ProteinQ9UGC7 (Uniprot-TrEMBL)
MTRF1L, ICT1ComplexR-HSA-5432633 (Reactome) Both MTRF1L and ICT1 can bind a standard stop codon in the A-site of the ribosome and cause release of the polypeptide. ICT1 can also cause release of ribosomes stalled in non-standard conformations (e.g. non-standard stop codons, mRNA lacking a stop codon) (inferred from pig mitoribosomes in Akabane et al. 2014).
Met-tRNA(Met) R-HSA-379780 (Reactome)
Met-tRNA(Met)R-HSA-379780 (Reactome)
Mitochondrial 12S rRNA ProteinENST00000389680 (Ensembl)
Mitochondrial 16S rRNA ProteinENST00000387347 (Ensembl)
PTCD3 ProteinQ96EY7 (Uniprot-TrEMBL)
Phe-tRNA(Phe) R-HSA-379789 (Reactome)
PiMetaboliteCHEBI:18367 (ChEBI)
Pro-tRNA(Pro) R-HSA-379745 (Reactome)
Ser-tRNA(Ser) R-HSA-379777 (Reactome)
THFMetaboliteCHEBI:15635 (ChEBI)
TSFM ProteinP43897 (Uniprot-TrEMBL)
TSFMProteinP43897 (Uniprot-TrEMBL)
TUFM ProteinP49411 (Uniprot-TrEMBL)
TUFM:GDPComplexR-HSA-5389856 (Reactome)
TUFM:GTP:aminoacyl-tRNAComplexR-HSA-5389855 (Reactome)
TUFM:GTPComplexR-HSA-5389853 (Reactome)
TUFM:TSFMComplexR-HSA-5419263 (Reactome)
Thr-tRNA(Thr) R-HSA-379779 (Reactome)
Trp-tRNA(Trp) R-HSA-379759 (Reactome)
Tyr-tRNA(Tyr) R-HSA-379755 (Reactome)
Val-tRNA(Val) R-HSA-379782 (Reactome)
aminoacyl-tRNAComplexR-HSA-5389847 (Reactome)
fMet-tRNA(fMet) R-HSA-5368270 (Reactome)
fMet-tRNA(fMet)R-HSA-5368270 (Reactome)
mRNA R-NUL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
mRNAR-NUL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
peptidyl-tRNA with elongated peptide R-NUL-5389836 (Reactome)
polypeptideR-NUL-5419287 (Reactome)
tRNA(Ala) R-HSA-379729 (Reactome)
tRNA(Arg) R-HSA-379727 (Reactome)
tRNA(Asn) R-HSA-379699 (Reactome)
tRNA(Asp) R-HSA-379715 (Reactome)
tRNA(Cys) R-HSA-379714 (Reactome)
tRNA(Gln) R-HSA-379740 (Reactome)
tRNA(Glu) R-HSA-379754 (Reactome)
tRNA(Gly) R-HSA-379770 (Reactome)
tRNA(His) R-HSA-379752 (Reactome)
tRNA(Ile) R-HSA-379750 (Reactome)
tRNA(Leu) R-HSA-379788 (Reactome)
tRNA(Lys) R-HSA-379747 (Reactome)
tRNA(Met) R-HSA-379741 (Reactome)
tRNA(Met)R-HSA-379741 (Reactome)
tRNA(Phe) R-HSA-379760 (Reactome)
tRNA(Pro) R-HSA-379775 (Reactome)
tRNA(Ser) R-HSA-379761 (Reactome)
tRNA(Thr) R-HSA-379791 (Reactome)
tRNA(Trp) R-HSA-379774 (Reactome)
tRNA(Tyr) R-HSA-379756 (Reactome)
tRNA(Val) R-HSA-379735 (Reactome)
tRNAComplexR-HSA-5389844 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
10-formyl-THFR-HSA-5389841 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ArrowR-HSA-5389849 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
R-HSA-5389839 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
mim-catalysisR-HSA-5389839 (Reactome)
28S ribosomal subunit:MTIF3ArrowR-HSA-5368279 (Reactome)
28S ribosomal subunit:MTIF3R-HSA-5389849 (Reactome)
28S ribosomal subunitArrowR-HSA-5419273 (Reactome)
28S ribosomal subunitR-HSA-5368279 (Reactome)
39S ribosomal subunitArrowR-HSA-5419273 (Reactome)
39S ribosomal subunitR-HSA-5389839 (Reactome)
55S ribosome:MRRF:GFM2:GTPArrowR-HSA-5419277 (Reactome)
55S ribosome:MRRF:GFM2:GTPR-HSA-5419273 (Reactome)
55S ribosome:MRRF:GFM2:GTPmim-catalysisR-HSA-5419273 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPArrowR-HSA-5389848 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPmim-catalysisR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAArrowR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAR-HSA-5389857 (Reactome)
55S ribosome:mRNA:fMet-tRNAArrowR-HSA-5389839 (Reactome)
55S ribosome:mRNA:fMet-tRNAR-HSA-5389848 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteArrowR-HSA-5419279 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPArrowR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNA:MRRFArrowR-HSA-5419281 (Reactome)
55S ribosome:mRNA:tRNA:MRRFR-HSA-5419277 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteArrowR-HSA-5389857 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPArrowR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPmim-catalysisR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNAArrowR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNAR-HSA-5419281 (Reactome)
GDPArrowR-HSA-5389839 (Reactome)
GDPArrowR-HSA-5419269 (Reactome)
GDPArrowR-HSA-5419271 (Reactome)
GFM1:GDPArrowR-HSA-5419279 (Reactome)
GFM1:GTPR-HSA-5419261 (Reactome)
GFM2:GDPArrowR-HSA-5419273 (Reactome)
GFM2:GTPR-HSA-5419277 (Reactome)
GTPR-HSA-5419264 (Reactome)
GTPR-HSA-5419268 (Reactome)
MRRFArrowR-HSA-5419273 (Reactome)
MRRFR-HSA-5419281 (Reactome)
MTFMTmim-catalysisR-HSA-5389841 (Reactome)
MTIF2:GTPR-HSA-5389849 (Reactome)
MTIF2ArrowR-HSA-5389839 (Reactome)
MTIF3ArrowR-HSA-5389839 (Reactome)
MTIF3R-HSA-5368279 (Reactome)
MTRF1L, ICT1ArrowR-HSA-5419271 (Reactome)
MTRF1L, ICT1R-HSA-5419264 (Reactome)
Met-tRNA(Met)R-HSA-5389841 (Reactome)
PiArrowR-HSA-5389839 (Reactome)
PiArrowR-HSA-5389842 (Reactome)
PiArrowR-HSA-5419271 (Reactome)
PiArrowR-HSA-5419273 (Reactome)
PiArrowR-HSA-5419279 (Reactome)
R-HSA-5368279 (Reactome) As inferred from bovine mitochondrial homologs, MTIF3 (IF-3Mt, IF3mt) binds the 28S ribosomal subunit in preparation for binding mRNA and initiating translation. MTIF3 also dissociates 55S particles that have not already been dissociated by GFM2 plus MRRF and displaces N-formylmethionyl-tRNA from the 28S subunit in the absence of mRNA but cannot displace mRNA from the 28S subunit. The activity of MTIF3 is necessary for translation initiation.. The 28S subunit associates with the matrix-side face of the inner mitochondrial membrane and translation products are inserted directly into the membrane.
R-HSA-5389839 (Reactome) As inferred from bovine homologs, the 39S ribosomal subunit binds the 28S subunit:mRNA:N-formylmethionyl-tRNA complex, MTIF2 hydrolyzes GTP, then MTIF2, GDP, and MTIF3 dissociate. (MTIF2 has a very low affinity for GDP so it is unclear whether MTIF2 and GDP remain associated after hydrolysis of GTP.) The 28S subunit, 39S subunit, and 55S holoribosome associate with the inner mitochondrial membrane during translation and in the absence of translation.
R-HSA-5389841 (Reactome) Like bacteria, mitochondria initiate translation with N-formylmethionine. Unlike bacteria, mammalian mitochondria do not have a tRNA dedicated to N-formylmethionine. Instead, the mitochondrial enzyme MTFMT (methionyl-tRNA formyltransferase, FMT, FMT1) transfers a formyl group from 10-formyltetrahydrofolate (10-formyl-THF) to the amino group of methionyl-tRNA in a portion of the methionyl-tRNAs in the matrix.
R-HSA-5389842 (Reactome) As inferred from bovine homologs, interaction of the cognate aminoacyl-tRNA in the A-site with the codon in the mRNA causes TUFM (EF-Tu) to hydrolyze GTP. TUFM:GDP then dissociates from the ribosome.
R-HSA-5389845 (Reactome) As inferred from bovine homologs, TUFM:GTP (EF-Tu:GTP) binds an aminoacyl-tRNA to form the ternary complex.
R-HSA-5389848 (Reactome) As inferred from bovine homologs, the ternary complex containing TUFM:GTP (EF-Tu:GTP) and aminoacyl-tRNA enters the A-site of the 55S ribosome (reviewed in Christian and Spremulli 2012).
R-HSA-5389849 (Reactome) As inferred from bovine homologs, the 28S ribosomal subunit in a complex with MTIF3 (IF-3Mt, IF3mt) binds mRNA and, at some point, MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP). If an initiation codon is present at the 5' end of the mRNA then MTIF2:GTP assists the binding of N-formylmethionyl-tRNA and a stable, productive initiation complex results. If no initiation codon is present, the mRNA slides through the 28S subunit and then dissociates.
R-HSA-5389857 (Reactome) As inferred from bovine homologs, the ribosome catalyzes formation of a peptide bond between the aminoacyl group of the aminoacyl-tRNA at the A-site and the peptidyl-tRNA at the P-site. The result is a polypeptide, longer by one amino acid, attached to the tRNA at the A-site by an ester bond. A deacylated tRNA remains at the P-site. 55S ribosomes associate with the inner mitochondrial membrane and the translation products are cotranslationally inserted into the inner membrane.
R-HSA-5419261 (Reactome) GFMT1:GTP (EF-G1mt:GTP) binds ribosomes possessing a peptidyl-tRNA at the A site and an empty P site (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419264 (Reactome) MTRF1L (mtRF1a) binds the stop codons UAA and UAG of the mRNA when they are in the A site of the ribosome (Soleimanpour-Lichaei 2007, Nozaki et al. 2008). (The UGA codon is recognized by the tryptophan tRNA in mitochondrial translation.) ICT1 can also bind standard stop codons in the A-site (inferred from pig mitochondrial ribosomes in Akabane et al. 2014). MTRF1 was also thought to play a role in translation termination by recognizing the unconventional termination codons AGA and AGG (Zhang and Spremulli 1998, Young et al. 2010) but frameshifting is now confirmed in the termination mechanism of these codons (Temperley et al. 2010). Structural features of MTRF1 have been reported suggesting it could recognize an empty A-site (Huynen et al. 2012) or UAA and UAG codons (Lind et al. 2013) however there is no direct experimental data to confirm these last two postulates.
R-HSA-5419268 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor for TUFM (EF-Tu). In the second step of the process TUFM in the TUFM:TSFM complex binds GTP and TSFM is released, yielding TUFM:GTP and TSFM.
R-HSA-5419269 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor to regenerate TUFM:GTP (EF-Tu:GTP) from TUFM:GDP. In the first step of the process TSFM binds TUFM:GDP and displaces GDP, yielding a TSFM:TUFM complex and GDP.
R-HSA-5419271 (Reactome) Binding of the MTRF1L (MTRF1a) termination factor triggers hydrolysis of the peptidyl-tRNA bond by the 39S subunit of the ribosome and release of the translated polypeptide (Soleimanpour-Lichaei et al. 2007, Nozaki et al. 2008, reviewed in Christian and Spremulli 2012). MTRF1L hydrolyzes GTP during the reaction. Stalled ribosomes are rescued by binding of an ICT1 protein in addition to the ICT1 subunit integrated in the 39S subunit (Richter et al. 2010, Akabane et al. 2014).
R-HSA-5419273 (Reactome) When complexed with ribosomes GFM2 (EF-G2mt) hydrolyzes GTP and, together with MRRF, acts as a ribosome releasing factor by splitting 55S ribosomes into 28S and 39S subunits (Tsuboi et al. 2009). Though GTP is hydrolyzed during the reaction, hydrolysis is not necessary for splitting the 55S ribosome into 39S and 28S subunits, but is necessary for dissociation of GFM2 (as GFM2:GDP) and MRRF from the large ribosomal subunit after splitting (Tsuboi et al. 2009).
R-HSA-5419277 (Reactome) GFM2:GTP (EF-G2mt:GTP) joins MRRF at the A site of the ribosome after translation has been terminated by MTRF1L (MTRF1a) at a stop codon.
R-HSA-5419279 (Reactome) GFM1 (EF-Gmt, EF-G1mt) of the GFM1:GTP complex hydrolyzes GTP, yielding GFM1:GDP (Tsuboi et al. 2009). The hydrolysis of GTP drives translocation of the peptidyl-tRNA from the A-site to the P-site with consequent ejection of the deacylated tRNA from the P-site and translocation of the ribosome in the 3' direction along the mRNA (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419281 (Reactome) The mitochondrial ribosome releasing factor MRRF (RRF) binds the 55S ribosome at the A-site after translation has been terminated by MTRF1L (MTRF1a) at a stop codon and the translated polypeptide has been hydrolyzed from the last tRNA, which remains in the P-site (Rorbach et al. 2008).
THFArrowR-HSA-5389841 (Reactome)
TSFMArrowR-HSA-5419268 (Reactome)
TSFMR-HSA-5419269 (Reactome)
TUFM:GDPArrowR-HSA-5389842 (Reactome)
TUFM:GDPR-HSA-5419269 (Reactome)
TUFM:GTP:aminoacyl-tRNAArrowR-HSA-5389845 (Reactome)
TUFM:GTP:aminoacyl-tRNAR-HSA-5389848 (Reactome)
TUFM:GTPArrowR-HSA-5419268 (Reactome)
TUFM:GTPR-HSA-5389845 (Reactome)
TUFM:TSFMArrowR-HSA-5419269 (Reactome)
TUFM:TSFMR-HSA-5419268 (Reactome)
aminoacyl-tRNAR-HSA-5389845 (Reactome)
fMet-tRNA(fMet)ArrowR-HSA-5389841 (Reactome)
fMet-tRNA(fMet)R-HSA-5389849 (Reactome)
mRNAArrowR-HSA-5419277 (Reactome)
mRNAR-HSA-5389849 (Reactome)
polypeptideArrowR-HSA-5419271 (Reactome)
tRNA(Met)ArrowR-HSA-5419279 (Reactome)
tRNAArrowR-HSA-5419277 (Reactome)
Personal tools