PTEN Regulation (Homo sapiens)

From WikiPathways

Revision as of 11:19, 9 August 2017 by ReactomeTeam (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search
1, 2, 4-8, 11...30, 3814, 6813, 2130377068385, 9, 13, 14, 20...15, 9325132, 353029, 412349571511, 312315730301, 2, 12, 17, 27...6816, 653855, 63303052, 6130, 6824, 484042, 4649302014, 68302922, 333825, 5023, 7, 11, 15, 16, 22...1147, 59, 672687, 163012, 17, 27, 35cytosollysosomal membranenucleoplasmTNRC6A RPS27A(1-76) XIAP,NEDD4TNRC6A EIF2C2 PSMB2 UBC(305-380) RPS27A(1-76) UBB(153-228) EIF2C2 miR-19a RISCMonoUb-K13,K289-PTENUBC(457-532) MOV10 PTEN mRNA MOV10 UBA52(1-76) UBC(229-304) NEDD4 EIF2C1 TNRC6C CBX6 UBC(457-532) RHEB MOV10 EIF2C1 EIF2C1 MTOR RBBP7 miR-25 TP53 Tetramer:PTENGeneXIAP PTEN mRNA TNRC6B PSMA4 UBC(457-532) EIF2C4 miR-106b PSMD11 EIF2C2 miR-205 RISC:PTENmRNAmiR-19b RISC:CNOT6LmRNAPTENP1 mRNA RING1 miR-19a RISC:VAPAmRNANR2E1 TNRC6C PPARG:Fatty AcidLigandPPARG EIF2C2 EIF2C4 EIF2C4 EIF2C1 USP13,OTUD3TNRC6C SALL4 TNRC6B TNRC6C GATAD2B EIF2C1 TNRC6A BMI1 EIF2C4 EIF2C2 miR-93 RISCActos H2OTNRC6C UBB(77-152) PSMC6 PTEN gene PSMC4 EIF2C2 TNRC6B CNOT6L mRNA TNRC6A EIF2C2 TNRC6B PTEN gene PHC3 MOV10 TNRC6B TNRC6C PolyUb-PTEN UBB(1-76) PTEN NR2E1:(CoRESTcomplex,ATN1,HDAC3,HDAC5,HDAC7)TNRC6C RBBP7 PHC3 UBC(77-152) miR-17 miR-19b2 TNRC6B PTEN mRNA TP53 TetramermiR-214NonendonucleolyticRISCPSMB11 CBX2 miR-20 RISC:CNOT6LmRNAHDAC3,5,7 SNAI2 EIF2C4 MECOM CBX4 UBC(77-152) ATPCBX8 TNRC6B TNRC6C UBB(1-76) EIF2C4 PTEN gene MOV10 UbADPTNRC6C EIF2C3 MAF1PSMA7 RNF2 EIF2C1 UBC(1-76) MAF1:PTEN geneUBC(1-76) MOV10 PTEN gene PolyUb-PTEN,K48polyUb-K289-PTENPPARG SNAI1,SNAI2TNRC6B UBB(77-152) TNRC6B UBC(153-228) TNRC6A NEDD4,STUB1,WWP2 andXIAPEIF2C4 UBA52(1-76) TNRC6B MOV10 RBBP4 SALL4 RCOR1 USP13 EIF2C4 UBC(305-380) EIF2C4 EIF2C2 MTA3 TNRC6C TNRC6A JUNmiR-106b 13(S')-HODE miR-26A2 TNRC6B EIF2C1 PolyUb-K324,K344,K349-RibC-E40,E150,D326-PTEN EIF2C3 CSNK2B UBC(229-304) TNRC6B miR-20a UbUBC(533-608) p-S109-MKRN1TNRC6B MOV10 PSME1 GATAD2A ATPmiR-17 KDM1A miR-20b TNRC6A EIF2C4 miR-19b1 TRIM27 CHD3 EIF2C1 SCMH1-2 UBC(533-608) MKRN1RPS27A(1-76) miR-20a EIF2C2 EIF2C4 TNRC6C MOV10 SNAI2 EIF2C1 TNRC6C MOV10 PSMD12 miR-19b RISC:PTENmRNAMOV10 UBA52(1-76) UBC(381-456) SNAI1 PSMB8 UBC(1-76) Casein kinase IIEIF2C3 PPARG:Fatty AcidLigand:PTEN geneEIF2C3 MOV10 TNRC6B MECOM EIF2C4 TNRC6C JUN:PTEN geneTNRC6A TNRC6C MOV10 EIF2C3 miR-19a UBC(609-684) UBC(457-532) PSMC2 EIF2C3 TNRC6B miR-19b1 RRAGB UBC(609-684) miR-19b1 EIF2C3 UBC(305-380) miR-106 RISC:CNOT6LmRNAPTEN PSMB10 EIF2C4 TNRC6C PTEN gene PSMD7 TNRC6A UBB(77-152) EIF2C3 miR-20b UBC(609-684) MTA1 PSMB1 PSMD14 UBC(1-76) EIF2C2 EIF2C1 EIF2C1 miR-106 RISC:PTENmRNAp-T305,S472-AKT3 miR-205 UBB(77-152) TNRC6B TNRC6B EIF2C3 NAMEED UbTNRC6A PTEN gene TNRC6C PTENmiR-19b2 PolyUb-PTEN PTENP1 mRNAPTEN gene MOV10 EIF2C2 TNRC6A PHC2 MOV10 EZH2 EIF2C4 UBC(457-532) TNRC6A TNRC6C PSMC3 SNAI1,SNAI2:PTENgeneRibC-E40,E150,D326-PTENMOV10 ATPTNRC6C CBX2 UBB(77-152) STUB1 EIF2C2 SALL4MOV10 NR2E1:(CoRESTcomplex,ATN1,HDAC3,HDAC5,HDAC7):PTEN GeneEIF2C4 miR-214 UBC(77-152) p-Y387-FRKEIF2C2 UBC(381-456) miR-106a p-T202,Y204-MAPK3 HDAC3,5,7 MECOM:PTEN genemiR-93 JUN TNRC6A UBC(381-456) EIF2C1 UBB(77-152) TNRC6B UbBMI1 VAPA mRNA miR-19a RISC:PTENmRNAGDP CBX8 PSMB3 EIF2C1 RBBP7 UBB(1-76) UBC(305-380) 13(S')-HODE UBA52(1-76) UBC(533-608) p-T69,T71-ATF2:PTENgeneEIF2C2 PTEN:p-Y387-FRKmiR-19a PSMA2 EIF2C3 UBC(457-532) ADPUBA52(1-76) p-T185,Y187-MAPK1 EIF2C3 PTEN mRNA EIF2C1 9S-HODE PTEN mRNA RPS27A(1-76) TNKS2 UBC(533-608) MOV10 EIF2C3 PTEN, p-3S,2T-PTENTNRC6B RNF146EIF2C1 PSMB5 TNRC6A Actos EIF2C2 GTP TNRC6C GATAD2A EGR1 EIF2C1 EIF2C1 PSMA3 PREX2:PTEN,p-3S,2T-PTENPTEN MOV10 mTORC1:Ragulator:Rag:GNP:RHEB:GTPMOV10 UBA52(1-76) UBC(609-684) EIF2C3 MOV10 miR-26A RISCPSMA1 TNRC6A p-T,Y MAPK dimersTNRC6B EIF2C1 UBB(1-76) miR-106a UBC(1-76) PHC1 TP53 EIF2C4 MTA1 HDAC2 UBC(609-684) EIF2C4 EIF2C2 ATN1 EIF2C3 PIP3 activates AKTsignalingEIF2C3 PSMD2 EIF2C3 EIF2C1 RRAGD PMLSALL4:NuRD:PTEN geneEIF2C4 PTEN gene RGZ PTEN mRNA miR-26A2 EIF2C1 miR-19b RISC:PTENP1mRNATNRC6A EIF2C4 miR-21NonendonucleolyticRISCEIF2C3 miR-20b miR-19a TNRC6A PTEN:TRIM27EIF2C4 CNOT6L mRNA SHFM1 p-Y387-FRK EIF2C1 EIF2C1 p-T308,S473-AKT1 miR-25 MOV10 miR-20 RISC:PTENP1mRNAmiR-26A1 CSNK2A1 EIF2C2 EED K48polyUb-K289-PTENPSMD6 EIF2C3 TNRC6A miR-20a p-T309,S474-AKT2 ADPEIF2C2 MOV10 TNKS miR-205 RISCTNRC6B EIF2C3 miR-19a RBBP4 UBB(153-228) H2OEIF2C1 TNRC6B TNRC6B RCOR1 miR-106a PTEN PTEN gene miR-214 CBX4 MOV10 PRC1.4,PRC2 (EZH2)coremiR-17 EIF2C4 miR-20a PTEN mRNA TNRC6B LAMTOR4 miR-20a UBC(77-152) TNRC6C MBD3 EIF2C3 UBC(229-304) EIF2C3 TNRC6A SALL4:PTEN geneRBBP7 REST EIF2C1 miR-25 RISCEIF2C4 MOV10 miR-214NonendonucleolyticRISC:PTEN mRNATNRC6B HDAC1 miR-205 miR-20b UBC(381-456) TNRC6A TNRC6C TNRC6A EIF2C1 RING1 UBC(77-152) PREX2TNRC6B CSNK2A2 HDAC2 PTEN mRNAMAF1 VAPA mRNAp-3S,2T-PTEN HDAC1 EIF2C4 UBC(153-228) EIF2C2 TNRC6C TNKS1/2K48polyUb-K289-PTEN PSMD8 RPTOR UBC(229-304) XIAP PREX2 TNRC6C Active AKTmiR-106b miR-106b MOV10 MTA2 miR-17 miR-19b2 UBB(153-228) TNRC6C EIF2C3 EIF2C1 TNRC6B MECOMTRIM27MAF1MLST8 LAMTOR3 TNRC6A p-T69,T71-ATF2PSMD5 PSMB9 TNRC6A EIF2C2 PSMA5 HDAC1 TNRC6B PTEN geneEIF2C3 EIF2C3 miR-25 RISC:PTENmRNATNRC6B ADPEIF2C3 miR-26A1 TNRC6A PTEN mRNA UBB(153-228) CHD3 TNRC6C UBC(1-76) miR-20 RISCMBD3 RRAGA PSME3 miR-17 RISCEIF2C4 TNRC6B TNRC6C miR-21 EIF2C4 PSMF1 MTA2 UBC(153-228) EIF2C4 MOV10 RBBP4 EIF2C2 EZH2 TNRC6C PSMD9 HDAC2 miR-93:PTEN mRNAEIF2C2 MOV10 EIF2C4 TNRC6C OTUD3 PTENP1 mRNA PTEN mRNA miR-21 PSMB4 TNRC6C EIF2C3 CNOT6L mRNA RRAGC NuRD complexEIF2C3 PSMB6 TNRC6C miR-17 RISC:VAPAmRNANEDD4 TNRC6C WWP2 miR-22 RISC:PTENmRNAVAPA mRNA TNRC6A EIF2C4 UBC(153-228) EIF2C1 LAMTOR1 EIF2C2 PTEN gene TNRC6A CNOT6L mRNAEGR1MECOM:(PRC1.4,PRC2(EZH2) core):PTENgenep-T69,T71-ATF2 miR-21NonendonucleolyticRISC:PTEN mRNAUBC(305-380) MTA3 EIF2C3 UBC(77-152) CHD4 KDM1A EIF2C4 UBC(153-228) UBB(153-228) EIF2C2 p-S60,S68,S75-MAF1EIF2C4 LAMTOR5 UBC(229-304) EIF2C1 PolyUb-PTENUBC(229-304) SLC38A9 miR-106 RISC:VAPAmRNAPTEN mRNA MOV10 UBC(153-228) PSMA8 9S-HODE EIF2C3 EIF2C3 NR2E1 miR-19b1 EIF2C1 PTEN gene EIF2C1 ATN1 CNOT6L mRNA EIF2C4 PTEN mRNA:miR-26ARISCPTEN mRNA HDAC2 UBB(1-76) p-Y336-PTENEIF2C1 TNRC6B TNRC6C TNRC6A EIF2C1 HDAC1 EIF2C2 TNRC6C PTEN mRNA SUZ12 EIF2C1 TNRC6A MOV10 EIF2C2 PolyUb-K324,K344,K349-RibC-E40,E150,D326-PTENSNAI1 EIF2C4 EIF2C2 miR-19b RISCPSMD1 UBC(381-456) EIF2C2 UBC(381-456) TNRC6A EIF2C3 CHD4 PSME4 VAPA mRNA EIF2C2 RGZ miR-93 TNRC6C REST CNOT6L mRNA UBC(533-608) NAD+EIF2C4 PTEN gene EIF2C2 LAMTOR2 MOV10 EIF2C3 PTENRPS27A(1-76) miR-17 RISC:PTENmRNAPSMA6 PSMD3 MOV10 TNRC6A EIF2C1 EGR1:PTEN geneUBC(305-380) TNRC6B miR-20 RISC:PTENmRNAmiR-22 RISCUBB(1-76) EIF2C4 miR-106 RISCTNRC6B TNRC6B PSMB7 CBX6 UBC(533-608) miR-20b USP7RBBP4 RNF2 ATPK27polyUb-PTENPSMD4 EIF2C2 UBC(609-684) TNRC6A miR-22 K48polyUb-K289-PTEN TNRC6A p-3S,2T-PTENMonoUb-K13,K289-PTENPSMC1 UBB(153-228) miR-106a TNRC6B miR-22 UbTNRC6A 26S proteasomePSME2 miR-20 RISC:VAPAmRNAEIF2C3 EIF2C3 SCMH1-2 EIF2C3 PHC2 PSMD13 GATAD2B TNRC6C PHC1 EIF2C4 miR-17 RISC:CNOT6LmRNAMOV10 MOV10 RPS27A(1-76) PSMD10 p-3S,2T-PTEN TNRC6A miR-19a RISC:CNOT6LmRNAPSMC5 TP53 TNRC6A MOV10 UbEIF2C1 PolyUb-PTEN,K48polyUb-K289-PTEN, PolyUb-K324,K344,K349-RibC-E40,E150,D326-PTENmiR-19b2 SUZ12 VAPA mRNA 47, 59, 673042, 46305711, 31383022, 3352, 615, 9233014, 6852, 6130, 6810, 3425, 506824, 4818, 434052, 61301547, 59, 67303813068702030, 3828286811307, 163437383016, 655114, 68


Description

PTEN is regulated at the level of gene transcription, mRNA translation, localization and protein stability.

Transcription of the PTEN gene is regulated at multiple levels. Epigenetic repression involves the recruitment of Mi-2/NuRD upon SALL4 binding to the PTEN promoter (Yang et al. 2008, Lu et al. 2009) or EVI1-mediated recruitment of the polycomb repressor complex (PRC) to the PTEN promoter (Song et al. 2009, Yoshimi et al. 2011). Transcriptional regulation is also elicited by negative regulators, including NR2E1:ATN1 (atrophin-1) complex, JUN (c-Jun), SNAIL and SLUG (Zhang et al. 2006, Vasudevan et al. 2007, Escriva et al. 2008, Uygur et al. 2015) and positive regulators such as TP53 (p53), MAF1, ATF2, EGR1 or PPARG (Stambolic et al. 2001, Virolle et al. 2001, Patel et al. 2001, Shen et al. 2006, Li et al. 2016).<p>MicroRNAs miR-26A1, miR-26A2, miR-22, miR-25, miR-302, miR-214, miR-17-5p, miR-19 and miR-205 bind PTEN mRNA and inhibit its translation into protein. These microRNAs are altered in cancer and can account for changes in PTEN levels (Meng et al. 2007, Xiao et al. 2008, Yang et al. 2008, Huse et al. 2009, Kim et al. 2010, Poliseno, Salmena, Riccardi et al. 2010, Cai et al. 2013). In addition, coding and non-coding RNAs can prevent microRNAs from binding to PTEN mRNA. These RNAs are termed competing endogenous RNAs or ceRNAs. Transcripts of the pseudogene PTENP1 and mRNAs transcribed from SERINC1, VAPA and CNOT6L genes exhibit this activity (Poliseno, Salmena, Zhang et al. 2010, Tay et al. 2011, Tay et al. 2014).<p>PTEN can translocate from the cytosol to the nucleus after undergoing monoubiquitination. PTEN's ability to localize to the nucleus contributes to its tumor suppressive role (Trotman et al. 2007). The ubiquitin protease USP7 (HAUSP) targets monoubiquitinated PTEN in the nucleus, resulting in PTEN deubiquitination and nuclear exclusion. PML, via an unknown mechanism that involves USP7- and PML-interacting protein DAXX, inhibits USP7-mediated deubiquitination of PTEN, thus promoting PTEN nuclear localization. Disruption of PML function in acute promyelocytic leukemia, through a chromosomal translocation that results in expression of a fusion protein PML-RARA, leads to aberrant PTEN localization (Song et al. 2008).<p>Several ubiquitin ligases, including NEDD4, WWP2, STUB1 (CHIP), RNF146, XIAP and MKRN1, polyubiquitinate PTEN and target it for proteasome-mediated degradation (Wang et al. 2007, Van Themsche et al. 2009, Ahmed et al. 2011, Maddika et al. 2011, Lee et al. 2015, Li et al. 2015). The ubiquitin proteases USP13 and OTUD3, frequently down-regulated in breast cancer, remove polyubiquitin chains from PTEN, thus preventing its degradation and increasing its half-life (Zhang et al. 2013, Yuan et al. 2015). The catalytic activity of PTEN is negatively regulated by PREX2 binding (Fine et al. 2009, Hodakoski et al. 2014) and TRIM27-mediated ubiquitination (Lee et al. 2013), most likely through altered PTEN conformation.<p>In addition to ubiquitination, PTEN also undergoes SUMOylation (Gonzalez-Santamaria et al. 2012, Da Silva Ferrada et al. 2013, Lang et al. 2015, Leslie et al. 2016). SUMOylation of the C2 domain of PTEN may regulate PTEN association with the plasma membrane (Shenoy et al. 2012) as well as nuclear localization of PTEN (Bassi et al. 2013, Collaud et al. 2016). PIASx-alpha, a splicing isorom of E3 SUMO-protein ligase PIAS2 has been implicated in PTEN SUMOylation (Wang et al. 2014). SUMOylation of PTEN may be regulated by activated AKT (Lin et al. 2016). Reactions describing PTEN SUMOylation will be annotated when mechanistic details become available.<p>Phosphorylation affects the stability and activity of PTEN. FRK tyrosine kinase (RAK) phosphorylates PTEN on tyrosine residue Y336, which increases PTEN half-life by inhibiting NEDD4-mediated polyubiquitination and subsequent degradation of PTEN. FRK-mediated phosphorylation also increases PTEN enzymatic activity (Yim et al. 2009). Casein kinase II (CK2) constitutively phosphorylates the C-terminal tail of PTEN on serine and threonine residues S370, S380, T382, T383 and S385. CK2-mediated phosphorylation increases PTEN protein stability (Torres and Pulido 2001) but results in ~30% reduction in PTEN lipid phosphatase activity (Miller et al. 2002).<p>PTEN localization and activity are affected by acetylation of its lysine residues (Okumura et al. 2006, Ikenoue et al. 2008, Meng et al. 2016). PTEN can undergo oxidation, which affects its function, but the mechanism is poorly understood (Tan et al. 2015, Shen et al. 2015, Verrastro et al. 2016). View original pathway at:Reactome.</div>

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 6807070
Reactome-version 
Reactome version: 61
Reactome Author 
Reactome Author: Orlic-Milacic, Marija

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Lee JT, Shan J, Zhong J, Li M, Zhou B, Zhou A, Parsons R, Gu W.; ''RFP-mediated ubiquitination of PTEN modulates its effect on AKT activation.''; PubMed Europe PMC Scholia
  2. Miller SJ, Lou DY, Seldin DC, Lane WS, Neel BG.; ''Direct identification of PTEN phosphorylation sites.''; PubMed Europe PMC Scholia
  3. Verrastro I, Tveen-Jensen K, Woscholski R, Spickett CM, Pitt AR.; ''Reversible oxidation of phosphatase and tensin homolog (PTEN) alters its interactions with signaling and regulatory proteins.''; PubMed Europe PMC Scholia
  4. Kim H, Huang W, Jiang X, Pennicooke B, Park PJ, Johnson MD.; ''Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship.''; PubMed Europe PMC Scholia
  5. Yokoyama A, Takezawa S, Schüle R, Kitagawa H, Kato S.; ''Transrepressive function of TLX requires the histone demethylase LSD1.''; PubMed Europe PMC Scholia
  6. Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K, Yang GH.; ''MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC).''; PubMed Europe PMC Scholia
  7. Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, Karreth F, Poliseno L, Provero P, Di Cunto F, Lieberman J, Rigoutsos I, Pandolfi PP.; ''Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs.''; PubMed Europe PMC Scholia
  8. Li N, Zhang Y, Han X, Liang K, Wang J, Feng L, Wang W, Songyang Z, Lin C, Yang L, Yu Y, Chen J.; ''Poly-ADP ribosylation of PTEN by tankyrases promotes PTEN degradation and tumor growth.''; PubMed Europe PMC Scholia
  9. Zhang Y, LeRoy G, Seelig HP, Lane WS, Reinberg D.; ''The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities.''; PubMed Europe PMC Scholia
  10. González-Santamaría J, Campagna M, Ortega-Molina A, Marcos-Villar L, de la Cruz-Herrera CF, González D, Gallego P, Lopitz-Otsoa F, Esteban M, Rodríguez MS, Serrano M, Rivas C.; ''Regulation of the tumor suppressor PTEN by SUMO.''; PubMed Europe PMC Scholia
  11. Vasudevan KM, Burikhanov R, Goswami A, Rangnekar VM.; ''Suppression of PTEN expression is essential for antiapoptosis and cellular transformation by oncogenic Ras.''; PubMed Europe PMC Scholia
  12. Shor B, Wu J, Shakey Q, Toral-Barza L, Shi C, Follettie M, Yu K.; ''Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells.''; PubMed Europe PMC Scholia
  13. Virolle T, Adamson ED, Baron V, Birle D, Mercola D, Mustelin T, de Belle I.; ''The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling.''; PubMed Europe PMC Scholia
  14. Lang V, Aillet F, Da Silva-Ferrada E, Xolalpa W, Zabaleta L, Rivas C, Rodriguez MS.; ''Analysis of PTEN ubiquitylation and SUMOylation using molecular traps.''; PubMed Europe PMC Scholia
  15. Bassi C, Ho J, Srikumar T, Dowling RJ, Gorrini C, Miller SJ, Mak TW, Neel BG, Raught B, Stambolic V.; ''Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress.''; PubMed Europe PMC Scholia
  16. Yang J, Corsello TR, Ma Y.; ''Stem cell gene SALL4 suppresses transcription through recruitment of DNA methyltransferases.''; PubMed Europe PMC Scholia
  17. Ikenoue T, Inoki K, Zhao B, Guan KL.; ''PTEN acetylation modulates its interaction with PDZ domain.''; PubMed Europe PMC Scholia
  18. Nakanishi A, Kitagishi Y, Ogura Y, Matsuda S.; ''The tumor suppressor PTEN interacts with p53 in hereditary cancer (Review).''; PubMed Europe PMC Scholia
  19. Okumura K, Mendoza M, Bachoo RM, DePinho RA, Cavenee WK, Furnari FB.; ''PCAF modulates PTEN activity.''; PubMed Europe PMC Scholia
  20. Torres J, Pulido R.; ''The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation.''; PubMed Europe PMC Scholia
  21. Tay Y, Rinn J, Pandolfi PP.; ''The multilayered complexity of ceRNA crosstalk and competition.''; PubMed Europe PMC Scholia
  22. Hodakoski C, Hopkins BD, Barrows D, Mense SM, Keniry M, Anderson KE, Kern PA, Hawkins PT, Stephens LR, Parsons R.; ''Regulation of PTEN inhibition by the pleckstrin homology domain of P-REX2 during insulin signaling and glucose homeostasis.''; PubMed Europe PMC Scholia
  23. Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM, Sportoletti P, Varmeh S, Egia A, Fedele G, Rameh L, Loda M, Pandolfi PP.; ''Identification of the miR-106b~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation.''; PubMed Europe PMC Scholia
  24. Shen YH, Zhang L, Gan Y, Wang X, Wang J, LeMaire SA, Coselli JS, Wang XL.; ''Up-regulation of PTEN (phosphatase and tensin homolog deleted on chromosome ten) mediates p38 MAPK stress signal-induced inhibition of insulin signaling. A cross-talk between stress signaling and insulin signaling in resistin-treated human endothelial cells.''; PubMed Europe PMC Scholia
  25. Leslie NR, Kriplani N, Hermida MA, Alvarez-Garcia V, Wise HM.; ''The PTEN protein: cellular localization and post-translational regulation.''; PubMed Europe PMC Scholia
  26. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T.; ''MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer.''; PubMed Europe PMC Scholia
  27. Maddika S, Kavela S, Rani N, Palicharla VR, Pokorny JL, Sarkaria JN, Chen J.; ''WWP2 is an E3 ubiquitin ligase for PTEN.''; PubMed Europe PMC Scholia
  28. Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D.; ''Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation.''; PubMed Europe PMC Scholia
  29. Gao C, Dimitrov T, Yong KJ, Tatetsu H, Jeong HW, Luo HR, Bradner JE, Tenen DG, Chai L.; ''Targeting transcription factor SALL4 in acute myeloid leukemia by interrupting its interaction with an epigenetic complex.''; PubMed Europe PMC Scholia
  30. Shenoy SS, Nanda H, Lösche M.; ''Membrane association of the PTEN tumor suppressor: electrostatic interaction with phosphatidylserine-containing bilayers and regulatory role of the C-terminal tail.''; PubMed Europe PMC Scholia
  31. Cai J, Fang L, Huang Y, Li R, Yuan J, Yang Y, Zhu X, Chen B, Wu J, Li M.; ''miR-205 targets PTEN and PHLPP2 to augment AKT signaling and drive malignant phenotypes in non-small cell lung cancer.''; PubMed Europe PMC Scholia
  32. Lee MS, Jeong MH, Lee HW, Han HJ, Ko A, Hewitt SM, Kim JH, Chun KH, Chung JY, Lee C, Cho H, Song J.; ''PI3K/AKT activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis.''; PubMed Europe PMC Scholia
  33. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP.; ''A coding-independent function of gene and pseudogene mRNAs regulates tumour biology.''; PubMed Europe PMC Scholia
  34. Wang X, Trotman LC, Koppie T, Alimonti A, Chen Z, Gao Z, Wang J, Erdjument-Bromage H, Tempst P, Cordon-Cardo C, Pandolfi PP, Jiang X.; ''NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN.''; PubMed Europe PMC Scholia
  35. Wei SJ, Williams JG, Dang H, Darden TA, Betz BL, Humble MM, Chang FM, Trempus CS, Johnson K, Cannon RE, Tennant RW.; ''Identification of a specific motif of the DSS1 protein required for proteasome interaction and p53 protein degradation.''; PubMed Europe PMC Scholia
  36. Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F, Teruya-Feldstein J, Pandolfi PP.; ''The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network.''; PubMed Europe PMC Scholia
  37. Ahmed SF, Deb S, Paul I, Chatterjee A, Mandal T, Chatterjee U, Ghosh MK.; ''The chaperone-assisted E3 ligase C terminus of Hsc70-interacting protein (CHIP) targets PTEN for proteasomal degradation.''; PubMed Europe PMC Scholia
  38. Yang H, Kong W, He L, Zhao JJ, O'Donnell JD, Wang J, Wenham RM, Coppola D, Kruk PA, Nicosia SV, Cheng JQ.; ''MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN.''; PubMed Europe PMC Scholia
  39. Yuan L, Lv Y, Li H, Gao H, Song S, Zhang Y, Xing G, Kong X, Wang L, Li Y, Zhou T, Gao D, Xiao ZX, Yin Y, Wei W, He F, Zhang L.; ''Deubiquitylase OTUD3 regulates PTEN stability and suppresses tumorigenesis.''; PubMed Europe PMC Scholia
  40. Wang W, Chen Y, Wang S, Hu N, Cao Z, Wang W, Tong T, Zhang X.; ''PIASxα ligase enhances SUMO1 modification of PTEN protein as a SUMO E3 ligase.''; PubMed Europe PMC Scholia
  41. Shen SM, Guo M, Xiong Z, Yu Y, Zhao XY, Zhang FF, Chen GQ.; ''AIF inhibits tumor metastasis by protecting PTEN from oxidation.''; PubMed Europe PMC Scholia
  42. Michels AA, Robitaille AM, Buczynski-Ruchonnet D, Hodroj W, Reina JH, Hall MN, Hernandez N.; ''mTORC1 directly phosphorylates and regulates human MAF1.''; PubMed Europe PMC Scholia
  43. Singh B, Reddy PG, Goberdhan A, Walsh C, Dao S, Ngai I, Chou TC, O-Charoenrat P, Levine AJ, Rao PH, Stoffel A.; ''p53 regulates cell survival by inhibiting PIK3CA in squamous cell carcinomas.''; PubMed Europe PMC Scholia
  44. Patel L, Pass I, Coxon P, Downes CP, Smith SA, Macphee CH.; ''Tumor suppressor and anti-inflammatory actions of PPARgamma agonists are mediated via upregulation of PTEN.''; PubMed Europe PMC Scholia
  45. Trotman LC, Wang X, Alimonti A, Chen Z, Teruya-Feldstein J, Yang H, Pavletich NP, Carver BS, Cordon-Cardo C, Erdjument-Bromage H, Tempst P, Chi SG, Kim HJ, Misteli T, Jiang X, Pandolfi PP.; ''Ubiquitination regulates PTEN nuclear import and tumor suppression.''; PubMed Europe PMC Scholia
  46. Qu C, Liang Z, Huang J, Zhao R, Su C, Wang S, Wang X, Zhang R, Lee MH, Yang H.; ''MiR-205 determines the radioresistance of human nasopharyngeal carcinoma by directly targeting PTEN.''; PubMed Europe PMC Scholia
  47. Yoshimi A, Goyama S, Watanabe-Okochi N, Yoshiki Y, Nannya Y, Nitta E, Arai S, Sato T, Shimabe M, Nakagawa M, Imai Y, Kitamura T, Kurokawa M.; ''Evi1 represses PTEN expression and activates PI3K/AKT/mTOR via interactions with polycomb proteins.''; PubMed Europe PMC Scholia
  48. Song LB, Li J, Liao WT, Feng Y, Yu CP, Hu LJ, Kong QL, Xu LH, Zhang X, Liu WL, Li MZ, Zhang L, Kang TB, Fu LW, Huang WL, Xia YF, Tsao SW, Li M, Band V, Band H, Shi QH, Zeng YX, Zeng MS.; ''The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells.''; PubMed Europe PMC Scholia
  49. Yim EK, Peng G, Dai H, Hu R, Li K, Lu Y, Mills GB, Meric-Bernstam F, Hennessy BT, Craven RJ, Lin SY.; ''Rak functions as a tumor suppressor by regulating PTEN protein stability and function.''; PubMed Europe PMC Scholia
  50. Lu J, Jeong HW, Kong N, Yang Y, Carroll J, Luo HR, Silberstein LE, Yupoma, Chai L.; ''Stem cell factor SALL4 represses the transcriptions of PTEN and SALL1 through an epigenetic repressor complex.''; PubMed Europe PMC Scholia
  51. Sun G, Yu RT, Evans RM, Shi Y.; ''Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation.''; PubMed Europe PMC Scholia
  52. Hettinger K, Vikhanskaya F, Poh MK, Lee MK, de Belle I, Zhang JT, Reddy SA, Sabapathy K.; ''c-Jun promotes cellular survival by suppression of PTEN.''; PubMed Europe PMC Scholia
  53. Da Silva-Ferrada E, Xolalpa W, Lang V, Aillet F, Martin-Ruiz I, de la Cruz-Herrera CF, Lopitz-Otsoa F, Carracedo A, Goldenberg SJ, Rivas C, England P, Rodríguez MS.; ''Analysis of SUMOylated proteins using SUMO-traps.''; PubMed Europe PMC Scholia
  54. Escrivà M, Peiró S, Herranz N, Villagrasa P, Dave N, Montserrat-Sentís B, Murray SA, Francí C, Gridley T, Virtanen I, García de Herreros A.; ''Repression of PTEN phosphatase by Snail1 transcriptional factor during gamma radiation-induced apoptosis.''; PubMed Europe PMC Scholia
  55. Voges D, Zwickl P, Baumeister W.; ''The 26S proteasome: a molecular machine designed for controlled proteolysis.''; PubMed Europe PMC Scholia
  56. Yang J, Chai L, Gao C, Fowles TC, Alipio Z, Dang H, Xu D, Fink LM, Ward DC, Ma Y.; ''SALL4 is a key regulator of survival and apoptosis in human leukemic cells.''; PubMed Europe PMC Scholia
  57. Collaud S, Tischler V, Atanassoff A, Wiedl T, Komminoth P, Oehlschlegel C, Weder W, Soltermann A.; ''Lung neuroendocrine tumors: correlation of ubiquitinylation and sumoylation with nucleo-cytosolic partitioning of PTEN.''; PubMed Europe PMC Scholia
  58. Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH, Sohn-Lee C, le Sage C, Agami R, Tuschl T, Holland EC.; ''The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo.''; PubMed Europe PMC Scholia
  59. Tan PL, Shavlakadze T, Grounds MD, Arthur PG.; ''Differential thiol oxidation of the signaling proteins Akt, PTEN or PP2A determines whether Akt phosphorylation is enhanced or inhibited by oxidative stress in C2C12 myotubes derived from skeletal muscle.''; PubMed Europe PMC Scholia
  60. Lin CH, Liu SY, Lee EH.; ''SUMO modification of Akt regulates global SUMOylation and substrate SUMOylation specificity through Akt phosphorylation of Ubc9 and SUMO1.''; PubMed Europe PMC Scholia
  61. Cance WG, Craven RJ, Bergman M, Xu L, Alitalo K, Liu ET.; ''Rak, a novel nuclear tyrosine kinase expressed in epithelial cells.''; PubMed Europe PMC Scholia
  62. Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S, Mak TW.; ''Regulation of PTEN transcription by p53.''; PubMed Europe PMC Scholia
  63. Zhang J, Zhang P, Wei Y, Piao HL, Wang W, Maddika S, Wang M, Chen D, Sun Y, Hung MC, Chen J, Ma L.; ''Deubiquitylation and stabilization of PTEN by USP13.''; PubMed Europe PMC Scholia
  64. Uygur B, Abramo K, Leikina E, Vary C, Liaw L, Wu WS.; ''SLUG is a direct transcriptional repressor of PTEN tumor suppressor.''; PubMed Europe PMC Scholia
  65. Fine B, Hodakoski C, Koujak S, Su T, Saal LH, Maurer M, Hopkins B, Keniry M, Sulis ML, Mense S, Hibshoosh H, Parsons R.; ''Activation of the PI3K pathway in cancer through inhibition of PTEN by exchange factor P-REX2a.''; PubMed Europe PMC Scholia
  66. Zhang CL, Zou Y, Yu RT, Gage FH, Evans RM.; ''Nuclear receptor TLX prevents retinal dystrophy and recruits the corepressor atrophin1.''; PubMed Europe PMC Scholia
  67. Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J, Henderson JM, Kutok JL, Rajewsky K.; ''Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes.''; PubMed Europe PMC Scholia
  68. Meng Z, Jia LF, Gan YH.; ''PTEN activation through K163 acetylation by inhibiting HDAC6 contributes to tumour inhibition.''; PubMed Europe PMC Scholia
  69. Van Themsche C, Leblanc V, Parent S, Asselin E.; ''X-linked inhibitor of apoptosis protein (XIAP) regulates PTEN ubiquitination, content, and compartmentalization.''; PubMed Europe PMC Scholia
  70. Li Y, Tsang CK, Wang S, Li XX, Yang Y, Fu L, Huang W, Li M, Wang HY, Zheng XF.; ''MAF1 suppresses AKT-mTOR signaling and liver cancer through activation of PTEN transcription.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114729view16:21, 25 January 2021ReactomeTeamReactome version 75
113173view11:23, 2 November 2020ReactomeTeamReactome version 74
112401view15:33, 9 October 2020ReactomeTeamReactome version 73
101305view11:19, 1 November 2018ReactomeTeamreactome version 66
100842view20:50, 31 October 2018ReactomeTeamreactome version 65
100383view19:25, 31 October 2018ReactomeTeamreactome version 64
99930view16:09, 31 October 2018ReactomeTeamreactome version 63
99485view14:41, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
93306view11:19, 9 August 2017ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
13(S')-HODE MetaboliteCHEBI:34154 (ChEBI)
26S proteasomeComplexR-HSA-68819 (Reactome)
9S-HODE MetaboliteCHEBI:34496 (ChEBI)
ADPMetaboliteCHEBI:16761 (ChEBI)
ATN1 ProteinP54259 (Uniprot-TrEMBL)
ATPMetaboliteCHEBI:15422 (ChEBI)
Active AKTComplexR-HSA-202074 (Reactome)
Actos MetaboliteCHEBI:8228 (ChEBI)
BMI1 ProteinP35226 (Uniprot-TrEMBL)
CBX2 ProteinQ14781 (Uniprot-TrEMBL)
CBX4 ProteinO00257 (Uniprot-TrEMBL)
CBX6 ProteinO95503 (Uniprot-TrEMBL)
CBX8 ProteinQ9HC52 (Uniprot-TrEMBL)
CHD3 ProteinQ12873 (Uniprot-TrEMBL)
CHD4 ProteinQ14839 (Uniprot-TrEMBL)
CNOT6L mRNA ProteinENST00000264903 (Ensembl)
CNOT6L mRNARnaENST00000264903 (Ensembl)
CSNK2A1 ProteinP68400 (Uniprot-TrEMBL)
CSNK2A2 ProteinP19784 (Uniprot-TrEMBL)
CSNK2B ProteinP67870 (Uniprot-TrEMBL)
Casein kinase IIComplexR-HSA-201711 (Reactome)
EED ProteinO75530 (Uniprot-TrEMBL)
EGR1 ProteinP18146 (Uniprot-TrEMBL)
EGR1:PTEN geneComplexR-HSA-8944084 (Reactome)
EGR1ProteinP18146 (Uniprot-TrEMBL)
EIF2C1 ProteinQ9UL18 (Uniprot-TrEMBL)
EIF2C2 ProteinQ9UKV8 (Uniprot-TrEMBL)
EIF2C3 ProteinQ9H9G7 (Uniprot-TrEMBL)
EIF2C4 ProteinQ9HCK5 (Uniprot-TrEMBL)
EZH2 ProteinQ15910 (Uniprot-TrEMBL)
GATAD2A ProteinQ86YP4 (Uniprot-TrEMBL)
GATAD2B ProteinQ8WXI9 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GTP MetaboliteCHEBI:15996 (ChEBI)
H2OMetaboliteCHEBI:15377 (ChEBI)
HDAC1 ProteinQ13547 (Uniprot-TrEMBL)
HDAC2 ProteinQ92769 (Uniprot-TrEMBL)
HDAC3,5,7 R-HSA-6808476 (Reactome)
JUN ProteinP05412 (Uniprot-TrEMBL)
JUN:PTEN geneComplexR-HSA-8944060 (Reactome)
JUNProteinP05412 (Uniprot-TrEMBL)
K27polyUb-PTENProteinP60484 (Uniprot-TrEMBL)
K48polyUb-K289-PTEN ProteinP60484 (Uniprot-TrEMBL)
K48polyUb-K289-PTENProteinP60484 (Uniprot-TrEMBL)
KDM1A ProteinO60341 (Uniprot-TrEMBL)
LAMTOR1 ProteinQ6IAA8 (Uniprot-TrEMBL)
LAMTOR2 ProteinQ9Y2Q5 (Uniprot-TrEMBL)
LAMTOR3 ProteinQ9UHA4 (Uniprot-TrEMBL)
LAMTOR4 ProteinQ0VGL1 (Uniprot-TrEMBL)
LAMTOR5 ProteinO43504 (Uniprot-TrEMBL)
MAF1 ProteinQ9H063 (Uniprot-TrEMBL)
MAF1:PTEN geneComplexR-HSA-8944433 (Reactome)
MAF1ProteinQ9H063 (Uniprot-TrEMBL)
MBD3 ProteinO95983 (Uniprot-TrEMBL)
MECOM ProteinQ03112 (Uniprot-TrEMBL)
MECOM:(PRC1.4,PRC2

(EZH2) core):PTEN

gene
ComplexR-HSA-8943821 (Reactome)
MECOM:PTEN geneComplexR-HSA-8943810 (Reactome)
MECOMProteinQ03112 (Uniprot-TrEMBL)
MKRN1ProteinQ9UHC7 (Uniprot-TrEMBL)
MLST8 ProteinQ9BVC4 (Uniprot-TrEMBL)
MOV10 ProteinQ9HCE1 (Uniprot-TrEMBL)
MTA1 ProteinQ13330 (Uniprot-TrEMBL)
MTA2 ProteinO94776 (Uniprot-TrEMBL)
MTA3 ProteinQ9BTC8 (Uniprot-TrEMBL)
MTOR ProteinP42345 (Uniprot-TrEMBL)
MonoUb-K13,K289-PTENProteinP60484 (Uniprot-TrEMBL)
NAD+MetaboliteCHEBI:15846 (ChEBI)
NAMMetaboliteCHEBI:17154 (ChEBI)
NEDD4 ProteinP46934 (Uniprot-TrEMBL)
NEDD4,STUB1,WWP2 and XIAPComplexR-HSA-6807286 (Reactome)
NR2E1 ProteinQ9Y466 (Uniprot-TrEMBL)
NR2E1:(CoREST complex,ATN1,HDAC3,HDAC5,HDAC7):PTEN GeneComplexR-HSA-6807085 (Reactome)
NR2E1:(CoREST complex,ATN1,HDAC3,HDAC5,HDAC7)ComplexR-HSA-6807075 (Reactome)
NuRD complexComplexR-HSA-4657018 (Reactome)
OTUD3 ProteinQ5T2D3 (Uniprot-TrEMBL)
PHC1 ProteinP78364 (Uniprot-TrEMBL)
PHC2 ProteinQ8IXK0 (Uniprot-TrEMBL)
PHC3 ProteinQ8NDX5 (Uniprot-TrEMBL)
PIP3 activates AKT signalingPathwayR-HSA-1257604 (Reactome) Signaling by AKT is one of the key outcomes of receptor tyrosine kinase (RTK) activation. AKT is activated by the cellular second messenger PIP3, a phospholipid that is generated by PI3K. In ustimulated cells, PI3K class IA enzymes reside in the cytosol as inactive heterodimers composed of p85 regulatory subunit and p110 catalytic subunit. In this complex, p85 stabilizes p110 while inhibiting its catalytic activity. Upon binding of extracellular ligands to RTKs, receptors dimerize and undergo autophosphorylation. The regulatory subunit of PI3K, p85, is recruited to phosphorylated cytosolic RTK domains either directly or indirectly, through adaptor proteins, leading to a conformational change in the PI3K IA heterodimer that relieves inhibition of the p110 catalytic subunit. Activated PI3K IA phosphorylates PIP2, converting it to PIP3; this reaction is negatively regulated by PTEN phosphatase. PIP3 recruits AKT to the plasma membrane, allowing TORC2 to phosphorylate a conserved serine residue of AKT. Phosphorylation of this serine induces a conformation change in AKT, exposing a conserved threonine residue that is then phosphorylated by PDPK1 (PDK1). Phosphorylation of both the threonine and the serine residue is required to fully activate AKT. The active AKT then dissociates from PIP3 and phosphorylates a number of cytosolic and nuclear proteins that play important roles in cell survival and metabolism. For a recent review of AKT signaling, please refer to Manning and Cantley, 2007.
PMLProteinP29590 (Uniprot-TrEMBL)
PPARG ProteinP37231 (Uniprot-TrEMBL)
PPARG:Fatty Acid Ligand:PTEN geneComplexR-HSA-8944097 (Reactome)
PPARG:Fatty Acid LigandComplexR-HSA-2026077 (Reactome)
PRC1.4,PRC2 (EZH2) coreComplexR-HSA-8943822 (Reactome)
PREX2 ProteinQ70Z35 (Uniprot-TrEMBL)
PREX2:PTEN,p-3S,2T-PTENComplexR-HSA-8850934 (Reactome)
PREX2ProteinQ70Z35 (Uniprot-TrEMBL)
PSMA1 ProteinP25786 (Uniprot-TrEMBL)
PSMA2 ProteinP25787 (Uniprot-TrEMBL)
PSMA3 ProteinP25788 (Uniprot-TrEMBL)
PSMA4 ProteinP25789 (Uniprot-TrEMBL)
PSMA5 ProteinP28066 (Uniprot-TrEMBL)
PSMA6 ProteinP60900 (Uniprot-TrEMBL)
PSMA7 ProteinO14818 (Uniprot-TrEMBL)
PSMA8 ProteinQ8TAA3 (Uniprot-TrEMBL)
PSMB1 ProteinP20618 (Uniprot-TrEMBL)
PSMB10 ProteinP40306 (Uniprot-TrEMBL)
PSMB11 ProteinA5LHX3 (Uniprot-TrEMBL)
PSMB2 ProteinP49721 (Uniprot-TrEMBL)
PSMB3 ProteinP49720 (Uniprot-TrEMBL)
PSMB4 ProteinP28070 (Uniprot-TrEMBL)
PSMB5 ProteinP28074 (Uniprot-TrEMBL)
PSMB6 ProteinP28072 (Uniprot-TrEMBL)
PSMB7 ProteinQ99436 (Uniprot-TrEMBL)
PSMB8 ProteinP28062 (Uniprot-TrEMBL)
PSMB9 ProteinP28065 (Uniprot-TrEMBL)
PSMC1 ProteinP62191 (Uniprot-TrEMBL)
PSMC2 ProteinP35998 (Uniprot-TrEMBL)
PSMC3 ProteinP17980 (Uniprot-TrEMBL)
PSMC4 ProteinP43686 (Uniprot-TrEMBL)
PSMC5 ProteinP62195 (Uniprot-TrEMBL)
PSMC6 ProteinP62333 (Uniprot-TrEMBL)
PSMD1 ProteinQ99460 (Uniprot-TrEMBL)
PSMD10 ProteinO75832 (Uniprot-TrEMBL)
PSMD11 ProteinO00231 (Uniprot-TrEMBL)
PSMD12 ProteinO00232 (Uniprot-TrEMBL)
PSMD13 ProteinQ9UNM6 (Uniprot-TrEMBL)
PSMD14 ProteinO00487 (Uniprot-TrEMBL)
PSMD2 ProteinQ13200 (Uniprot-TrEMBL)
PSMD3 ProteinO43242 (Uniprot-TrEMBL)
PSMD4 ProteinP55036 (Uniprot-TrEMBL)
PSMD5 ProteinQ16401 (Uniprot-TrEMBL)
PSMD6 ProteinQ15008 (Uniprot-TrEMBL)
PSMD7 ProteinP51665 (Uniprot-TrEMBL)
PSMD8 ProteinP48556 (Uniprot-TrEMBL)
PSMD9 ProteinO00233 (Uniprot-TrEMBL)
PSME1 ProteinQ06323 (Uniprot-TrEMBL)
PSME2 ProteinQ9UL46 (Uniprot-TrEMBL)
PSME3 ProteinP61289 (Uniprot-TrEMBL)
PSME4 ProteinQ14997 (Uniprot-TrEMBL)
PSMF1 ProteinQ92530 (Uniprot-TrEMBL)
PTEN ProteinP60484 (Uniprot-TrEMBL)
PTEN gene ProteinENSG00000171862 (Ensembl)
PTEN geneGeneProductENSG00000171862 (Ensembl)
PTEN mRNA ProteinENST00000371953 (Ensembl)
PTEN mRNA:miR-26A RISCComplexR-HSA-2318750 (Reactome)
PTEN mRNARnaENST00000371953 (Ensembl)
PTEN, p-3S,2T-PTENComplexR-HSA-8850937 (Reactome)
PTEN:TRIM27ComplexR-HSA-8851000 (Reactome)
PTEN:p-Y387-FRKComplexR-HSA-8847960 (Reactome)
PTENP1 mRNA ProteinENST00000532280 (Ensembl)
PTENP1 mRNARnaENST00000532280 (Ensembl)
PTENProteinP60484 (Uniprot-TrEMBL)
PolyUb-K324,K344,K349-RibC-E40,E150,D326-PTEN ProteinP60484 (Uniprot-TrEMBL)
PolyUb-K324,K344,K349-RibC-E40,E150,D326-PTENProteinP60484 (Uniprot-TrEMBL)
PolyUb-PTEN ProteinP60484 (Uniprot-TrEMBL)
PolyUb-PTEN, K48polyUb-K289-PTEN, PolyUb-K324,K344,K349-RibC-E40,E150,D326-PTENComplexR-HSA-8948842 (Reactome)
PolyUb-PTEN,K48polyUb-K289-PTENComplexR-HSA-8948784 (Reactome)
PolyUb-PTENProteinP60484 (Uniprot-TrEMBL)
RBBP4 ProteinQ09028 (Uniprot-TrEMBL)
RBBP7 ProteinQ16576 (Uniprot-TrEMBL)
RCOR1 ProteinQ9UKL0 (Uniprot-TrEMBL)
REST ProteinQ13127 (Uniprot-TrEMBL)
RGZ MetaboliteCHEBI:50122 (ChEBI)
RHEB ProteinQ15382 (Uniprot-TrEMBL)
RING1 ProteinQ06587 (Uniprot-TrEMBL)
RNF146ProteinQ9NTX7 (Uniprot-TrEMBL)
RNF2 ProteinQ99496 (Uniprot-TrEMBL)
RPS27A(1-76) ProteinP62979 (Uniprot-TrEMBL)
RPTOR ProteinQ8N122 (Uniprot-TrEMBL)
RRAGA ProteinQ7L523 (Uniprot-TrEMBL)
RRAGB ProteinQ5VZM2 (Uniprot-TrEMBL)
RRAGC ProteinQ9HB90 (Uniprot-TrEMBL)
RRAGD ProteinQ9NQL2 (Uniprot-TrEMBL)
RibC-E40,E150,D326-PTENProteinP60484 (Uniprot-TrEMBL)
SALL4 ProteinQ9UJQ4 (Uniprot-TrEMBL)
SALL4:NuRD:PTEN geneComplexR-HSA-8943781 (Reactome)
SALL4:PTEN geneComplexR-HSA-8943729 (Reactome)
SALL4ProteinQ9UJQ4 (Uniprot-TrEMBL)
SCMH1-2 ProteinQ96GD3-2 (Uniprot-TrEMBL)
SHFM1 ProteinP60896 (Uniprot-TrEMBL)
SLC38A9 ProteinQ8NBW4 (Uniprot-TrEMBL)
SNAI1 ProteinO95863 (Uniprot-TrEMBL)
SNAI1,SNAI2:PTEN geneComplexR-HSA-8944024 (Reactome)
SNAI1,SNAI2ComplexR-HSA-8944073 (Reactome)
SNAI2 ProteinO43623 (Uniprot-TrEMBL)
STUB1 ProteinQ9UNE7 (Uniprot-TrEMBL)
SUZ12 ProteinQ15022 (Uniprot-TrEMBL)
TNKS ProteinO95271 (Uniprot-TrEMBL)
TNKS1/2ComplexR-HSA-3640826 (Reactome)
TNKS2 ProteinQ9H2K2 (Uniprot-TrEMBL)
TNRC6A ProteinQ8NDV7 (Uniprot-TrEMBL)
TNRC6B ProteinQ9UPQ9 (Uniprot-TrEMBL)
TNRC6C ProteinQ9HCJ0 (Uniprot-TrEMBL)
TP53 ProteinP04637 (Uniprot-TrEMBL)
TP53 Tetramer:PTEN GeneComplexR-HSA-5632941 (Reactome)
TP53 TetramerComplexR-HSA-3209194 (Reactome)
TRIM27 ProteinP14373 (Uniprot-TrEMBL)
TRIM27ProteinP14373 (Uniprot-TrEMBL)
UBA52(1-76) ProteinP62987 (Uniprot-TrEMBL)
UBB(1-76) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(153-228) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(77-152) ProteinP0CG47 (Uniprot-TrEMBL)
UBC(1-76) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(153-228) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(229-304) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(305-380) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(381-456) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(457-532) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(533-608) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(609-684) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(77-152) ProteinP0CG48 (Uniprot-TrEMBL)
USP13 ProteinQ92995 (Uniprot-TrEMBL)
USP13,OTUD3ComplexR-HSA-8948849 (Reactome)
USP7ProteinQ93009 (Uniprot-TrEMBL)
UbComplexR-HSA-6793517 (Reactome)
UbComplexR-HSA-68524 (Reactome)
VAPA mRNA ProteinENST00000340541 (Ensembl)
VAPA mRNARnaENST00000340541 (Ensembl)
WWP2 ProteinO00308 (Uniprot-TrEMBL)
XIAP ProteinP98170 (Uniprot-TrEMBL)
XIAP,NEDD4ComplexR-HSA-6807260 (Reactome)
mTORC1:Ragulator:Rag:GNP:RHEB:GTPComplexR-HSA-5672812 (Reactome)
miR-106 RISC:CNOT6L mRNAComplexR-HSA-8948650 (Reactome)
miR-106 RISC:PTEN mRNAComplexR-HSA-8944631 (Reactome)
miR-106 RISC:VAPA mRNAComplexR-HSA-8948642 (Reactome)
miR-106 RISCComplexR-HSA-8944629 (Reactome)
miR-106a ProteinMI0000113 (miRBase mature sequence)
miR-106b ProteinMI0000734 (miRBase mature sequence)
miR-17 ProteinMI0000071 (miRBase mature sequence)
miR-17 RISC:CNOT6L mRNAComplexR-HSA-8948580 (Reactome)
miR-17 RISC:PTEN mRNAComplexR-HSA-8944487 (Reactome)
miR-17 RISC:VAPA mRNAComplexR-HSA-8948581 (Reactome)
miR-17 RISCComplexR-HSA-8944485 (Reactome)
miR-19a ProteinMI0000073 (miRBase mature sequence)
miR-19a RISC:CNOT6L mRNAComplexR-HSA-8948605 (Reactome)
miR-19a RISC:PTEN mRNAComplexR-HSA-8944524 (Reactome)
miR-19a RISC:VAPA mRNAComplexR-HSA-8948593 (Reactome)
miR-19a RISCComplexR-HSA-8948559 (Reactome)
miR-19b RISC:CNOT6L mRNAComplexR-HSA-8948610 (Reactome)
miR-19b RISC:PTEN mRNAComplexR-HSA-8948568 (Reactome)
miR-19b RISC:PTENP1 mRNAComplexR-HSA-8948521 (Reactome)
miR-19b RISCComplexR-HSA-8948558 (Reactome)
miR-19b1 ProteinMI0000074 (miRBase mature sequence)
miR-19b2 ProteinMI0000075 (miRBase mature sequence)
miR-20 RISC:CNOT6L mRNAComplexR-HSA-8948622 (Reactome)
miR-20 RISC:PTEN mRNAComplexR-HSA-8945707 (Reactome)
miR-20 RISC:PTENP1 mRNAComplexR-HSA-8948537 (Reactome)
miR-20 RISC:VAPA mRNAComplexR-HSA-8948624 (Reactome)
miR-20 RISCComplexR-HSA-8945696 (Reactome)
miR-205 ProteinMI0000285 (miRBase mature sequence)
miR-205 RISC:PTEN mRNAComplexR-HSA-8944679 (Reactome)
miR-205 RISCComplexR-HSA-8944674 (Reactome)
miR-20a ProteinMI0000076 (miRBase mature sequence)
miR-20b ProteinMI0001519 (miRBase mature sequence)
miR-21

Nonendonucleolytic

RISC:PTEN mRNA
ComplexR-HSA-8944703 (Reactome)
miR-21

Nonendonucleolytic

RISC
ComplexR-HSA-8944705 (Reactome) The RNA-induced silencing complex contains an Argonaute (AGO) protein, whose PAZ domain binds the 3' end of the miRNA. The PIWI domain of AGO is responsible for cleavage of target RNAs, that is, RNAs complementary to the miRNA. Only AGO2 (EIF2C2) is capable of cleavage, however. AGO1 (EIF2C1), AGO3 (EIF2C3), and AGO4 (EIF2C4) repress translation of target RNAs by binding without cleavage. In vivo, cleavage by AGO2 and repression of translation by all AGOs require interaction with a TNRC6 protein (GW182 protein) and MOV10. The interaction with TNRC6 proteins is also responsible for localizing the AGO complex to Processing Bodies (P-bodies). Tethering of the C-terminal domain of a TNRC6 protein to a mRNA is sufficient to cause repression of translation.
miR-21 ProteinMI0000077 (miRBase mature sequence)
miR-214

Nonendonucleolytic

RISC:PTEN mRNA
ComplexR-HSA-8944647 (Reactome)
miR-214

Nonendonucleolytic

RISC
ComplexR-HSA-8944643 (Reactome) The RNA-induced silencing complex contains an Argonaute (AGO) protein, whose PAZ domain binds the 3' end of the miRNA. The PIWI domain of AGO is responsible for cleavage of target RNAs, that is, RNAs complementary to the miRNA. Only AGO2 (EIF2C2) is capable of cleavage, however. AGO1 (EIF2C1), AGO3 (EIF2C3), and AGO4 (EIF2C4) repress translation of target RNAs by binding without cleavage. In vivo, cleavage by AGO2 and repression of translation by all AGOs require interaction with a TNRC6 protein (GW182 protein) and MOV10. The interaction with TNRC6 proteins is also responsible for localizing the AGO complex to Processing Bodies (P-bodies). Tethering of the C-terminal domain of a TNRC6 protein to a mRNA is sufficient to cause repression of translation.
miR-214 ProteinMI0000290 (miRBase mature sequence)
miR-22 ProteinMI0000078 (miRBase mature sequence)
miR-22 RISC:PTEN mRNAComplexR-HSA-8944551 (Reactome)
miR-22 RISCComplexR-HSA-8944549 (Reactome)
miR-25 ProteinMI0000082 (miRBase mature sequence)
miR-25 RISC:PTEN mRNAComplexR-HSA-8944565 (Reactome)
miR-25 RISCComplexR-HSA-8944564 (Reactome)
miR-26A RISCComplexR-HSA-2318737 (Reactome)
miR-26A1 ProteinMI0000083 (miRBase mature sequence)
miR-26A2 ProteinMI0000750 (miRBase mature sequence)
miR-93 ProteinMI0000095 (miRBase mature sequence)
miR-93 RISCComplexR-HSA-8944601 (Reactome)
miR-93:PTEN mRNAComplexR-HSA-8944600 (Reactome)
p-3S,2T-PTEN ProteinP60484 (Uniprot-TrEMBL)
p-3S,2T-PTENProteinP60484 (Uniprot-TrEMBL)
p-S109-MKRN1ProteinQ9UHC7 (Uniprot-TrEMBL)
p-S60,S68,S75-MAF1ProteinQ9H063 (Uniprot-TrEMBL)
p-T,Y MAPK dimersComplexR-HSA-1268261 (Reactome)
p-T185,Y187-MAPK1 ProteinP28482 (Uniprot-TrEMBL)
p-T202,Y204-MAPK3 ProteinP27361 (Uniprot-TrEMBL)
p-T305,S472-AKT3 ProteinQ9Y243 (Uniprot-TrEMBL)
p-T308,S473-AKT1 ProteinP31749 (Uniprot-TrEMBL)
p-T309,S474-AKT2 ProteinP31751 (Uniprot-TrEMBL)
p-T69,T71-ATF2 ProteinP15336 (Uniprot-TrEMBL)
p-T69,T71-ATF2:PTEN geneComplexR-HSA-8944392 (Reactome)
p-T69,T71-ATF2ProteinP15336 (Uniprot-TrEMBL)
p-Y336-PTENProteinP60484 (Uniprot-TrEMBL)
p-Y387-FRK ProteinP42685 (Uniprot-TrEMBL)
p-Y387-FRKProteinP42685 (Uniprot-TrEMBL)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
26S proteasomemim-catalysisR-HSA-8850992 (Reactome)
ADPArrowR-HSA-8847977 (Reactome)
ADPArrowR-HSA-8850945 (Reactome)
ADPArrowR-HSA-8944454 (Reactome)
ADPArrowR-HSA-8948757 (Reactome)
ATPR-HSA-8847977 (Reactome)
ATPR-HSA-8850945 (Reactome)
ATPR-HSA-8944454 (Reactome)
ATPR-HSA-8948757 (Reactome)
Active AKTmim-catalysisR-HSA-8948757 (Reactome)
CNOT6L mRNAR-HSA-8948583 (Reactome)
CNOT6L mRNAR-HSA-8948602 (Reactome)
CNOT6L mRNAR-HSA-8948612 (Reactome)
CNOT6L mRNAR-HSA-8948623 (Reactome)
CNOT6L mRNAR-HSA-8948651 (Reactome)
Casein kinase IImim-catalysisR-HSA-8850945 (Reactome)
EGR1:PTEN geneArrowR-HSA-8944078 (Reactome)
EGR1:PTEN geneArrowR-HSA-8944104 (Reactome)
EGR1R-HSA-8944078 (Reactome)
H2OR-HSA-6807118 (Reactome)
H2OR-HSA-6807206 (Reactome)
JUN:PTEN geneArrowR-HSA-8944047 (Reactome)
JUN:PTEN geneTBarR-HSA-8944104 (Reactome)
JUNR-HSA-8944047 (Reactome)
K27polyUb-PTENArrowR-HSA-8851011 (Reactome)
K48polyUb-K289-PTENArrowR-HSA-8948775 (Reactome)
MAF1:PTEN geneArrowR-HSA-8944104 (Reactome)
MAF1:PTEN geneArrowR-HSA-8944420 (Reactome)
MAF1ArrowR-HSA-8944457 (Reactome)
MAF1R-HSA-8944420 (Reactome)
MAF1R-HSA-8944454 (Reactome)
MAF1R-HSA-8944457 (Reactome)
MECOM:(PRC1.4,PRC2

(EZH2) core):PTEN

gene
ArrowR-HSA-8943817 (Reactome)
MECOM:(PRC1.4,PRC2

(EZH2) core):PTEN

gene
TBarR-HSA-8944104 (Reactome)
MECOM:PTEN geneArrowR-HSA-8943811 (Reactome)
MECOM:PTEN geneR-HSA-8943817 (Reactome)
MECOMR-HSA-8943811 (Reactome)
MKRN1R-HSA-8948757 (Reactome)
MonoUb-K13,K289-PTENArrowR-HSA-6807105 (Reactome)
MonoUb-K13,K289-PTENArrowR-HSA-6807106 (Reactome)
MonoUb-K13,K289-PTENR-HSA-6807105 (Reactome)
MonoUb-K13,K289-PTENR-HSA-6807118 (Reactome)
NAD+R-HSA-8948800 (Reactome)
NAMArrowR-HSA-8948800 (Reactome)
NEDD4,STUB1,WWP2 and XIAPmim-catalysisR-HSA-6807134 (Reactome)
NR2E1:(CoREST complex,ATN1,HDAC3,HDAC5,HDAC7):PTEN GeneArrowR-HSA-6807077 (Reactome)
NR2E1:(CoREST complex,ATN1,HDAC3,HDAC5,HDAC7):PTEN GeneTBarR-HSA-8944104 (Reactome)
NR2E1:(CoREST complex,ATN1,HDAC3,HDAC5,HDAC7)R-HSA-6807077 (Reactome)
NuRD complexR-HSA-8943780 (Reactome)
PMLTBarR-HSA-6807118 (Reactome)
PPARG:Fatty Acid Ligand:PTEN geneArrowR-HSA-8944099 (Reactome)
PPARG:Fatty Acid Ligand:PTEN geneArrowR-HSA-8944104 (Reactome)
PPARG:Fatty Acid LigandR-HSA-8944099 (Reactome)
PRC1.4,PRC2 (EZH2) coreR-HSA-8943817 (Reactome)
PREX2:PTEN,p-3S,2T-PTENArrowR-HSA-8850961 (Reactome)
PREX2R-HSA-8850961 (Reactome)
PTEN geneR-HSA-5632939 (Reactome)
PTEN geneR-HSA-6807077 (Reactome)
PTEN geneR-HSA-8943728 (Reactome)
PTEN geneR-HSA-8943811 (Reactome)
PTEN geneR-HSA-8944026 (Reactome)
PTEN geneR-HSA-8944047 (Reactome)
PTEN geneR-HSA-8944078 (Reactome)
PTEN geneR-HSA-8944099 (Reactome)
PTEN geneR-HSA-8944104 (Reactome)
PTEN geneR-HSA-8944397 (Reactome)
PTEN geneR-HSA-8944420 (Reactome)
PTEN mRNA:miR-26A RISCArrowR-HSA-2318752 (Reactome)
PTEN mRNA:miR-26A RISCTBarR-HSA-8944497 (Reactome)
PTEN mRNAArrowR-HSA-8944104 (Reactome)
PTEN mRNAR-HSA-2318752 (Reactome)
PTEN mRNAR-HSA-8944483 (Reactome)
PTEN mRNAR-HSA-8944497 (Reactome)
PTEN mRNAR-HSA-8944522 (Reactome)
PTEN mRNAR-HSA-8944538 (Reactome)
PTEN mRNAR-HSA-8944569 (Reactome)
PTEN mRNAR-HSA-8944599 (Reactome)
PTEN mRNAR-HSA-8944632 (Reactome)
PTEN mRNAR-HSA-8944650 (Reactome)
PTEN mRNAR-HSA-8944684 (Reactome)
PTEN mRNAR-HSA-8944706 (Reactome)
PTEN mRNAR-HSA-8945709 (Reactome)
PTEN mRNAR-HSA-8948569 (Reactome)
PTEN, p-3S,2T-PTENR-HSA-8850961 (Reactome)
PTEN:TRIM27ArrowR-HSA-8850997 (Reactome)
PTEN:TRIM27R-HSA-8851011 (Reactome)
PTEN:TRIM27mim-catalysisR-HSA-8851011 (Reactome)
PTEN:p-Y387-FRKArrowR-HSA-8847968 (Reactome)
PTEN:p-Y387-FRKR-HSA-8847977 (Reactome)
PTEN:p-Y387-FRKmim-catalysisR-HSA-8847977 (Reactome)
PTENArrowR-HSA-6807118 (Reactome)
PTENArrowR-HSA-6807126 (Reactome)
PTENArrowR-HSA-6807206 (Reactome)
PTENArrowR-HSA-8944497 (Reactome)
PTENP1 mRNAR-HSA-8948524 (Reactome)
PTENP1 mRNAR-HSA-8948536 (Reactome)
PTENR-HSA-6807106 (Reactome)
PTENR-HSA-6807126 (Reactome)
PTENR-HSA-6807134 (Reactome)
PTENR-HSA-8847968 (Reactome)
PTENR-HSA-8850945 (Reactome)
PTENR-HSA-8850997 (Reactome)
PTENR-HSA-8948775 (Reactome)
PTENR-HSA-8948800 (Reactome)
PolyUb-K324,K344,K349-RibC-E40,E150,D326-PTENArrowR-HSA-8948832 (Reactome)
PolyUb-PTEN, K48polyUb-K289-PTEN, PolyUb-K324,K344,K349-RibC-E40,E150,D326-PTENR-HSA-8850992 (Reactome)
PolyUb-PTEN,K48polyUb-K289-PTENR-HSA-6807206 (Reactome)
PolyUb-PTENArrowR-HSA-6807134 (Reactome)
R-HSA-2318752 (Reactome) MIR26A microRNAs, miR-26A1 and miR-26A2, transcribed from genes on chromosome 3 and 12, respectively, bind PTEN mRNA (Huse et al. 2009).

The MIR26A2 locus is frequently amplified in glioma tumors that retain one wild-type PTEN allele. The resulting miR-26A2 overexpression leads to down-regulation of PTEN protein level. Overexpression of miR-26A2 was shown to enhance tumorigenesis and negatively correlates with the loss of heterozygosity at the PTEN locus in a mouse PTEN +/- glioma model, based on monoallelic PTEN loss (Huse et al. 2009, Kim et al. 2010).
R-HSA-5632939 (Reactome) PTEN (phosphatase and tensin homolog deleted in chromosome 10) is a tumor suppressor gene that is deleted or mutated in a variety of human cancers. TP53 (p53) binds to the p53-binding site at the PTEN promoter level (Stambolic et al. 2001).
R-HSA-6807077 (Reactome) NR2E1 (TLX) associated with transcription repressors binds the evolutionarily conserved TLX consensus site in the PTEN promoter. NR2E1 inhibits PTEN transcription by associating with various transcriptional repressors, probably in a cell type or tissue specific manner. PTEN transcription is inhibited when NR2E1 forms a complex with ATN1 (atrophin-1) (Zhang et al. 2006, Yokoyama et al. 2008), KDM1A (LSD1) histone methyltransferase containing CoREST complex (Yokoyama et al. 2008), or histone deacetylases HDAC3, HDAC5 or HDAC7 (Sun et al. 2007).
R-HSA-6807105 (Reactome) Monoubiquitinated PTEN translocates to the nucleus. Lysine residues K13 and K289 of PTEN are important monoubiquitination targets and their mutation abrogates PTEN nuclear localization (Trotman et al. 2007).
R-HSA-6807106 (Reactome) When present at low levels in the cell, the E3 ubiquitin ligase XIAP monoubiquitinates PTEN (Van Themsche et al. 2009). NEDD4 (NEDD4-1) can also monoubiquitinate PTEN (Trotman et al. 2007). Monoubiquitination of PTEN on at least lysine residues K13 and K289 causes translocation of PTEN from the cytosol to the nucleus (Trotman et al. 2007, Van Themsche et al. 2009).
R-HSA-6807118 (Reactome) USP7 (HAUSP) deubiquitinates monoubiquitinated nuclear PTEN, thus promoting relocalization of PTEN to the cytosol. USP7-mediated deubiquitination of PTEN is negatively regulated by PML in the presence of DAXX, but the exact mechanism has not been elucidated (Song et al. 2008).
R-HSA-6807126 (Reactome) After nuclear monoubiquitinated PTEN gets deubiquitinated by USP7 (HAUSP), it translocates to the cytosol (Song et al. 2008).
R-HSA-6807134 (Reactome) Several ubiquitin ligases, including NEDD4 (Wang et al. 2007), STUB1 (CHIP) (Ahmed et al. 2012), WWP2 (Maddika et al. 2011) and XIAP (Van Themsche et al. 2009) can polyubiquitinate PTEN, targeting it for degradation.
R-HSA-6807206 (Reactome) Several ubiquitin proteases deubiquitinate polyubiquitinated PTEN. USP13 and OTUD3 prolong the half-life of PTEN by preventing its proteasome-mediated degradation. Loss of USP13 or OTUD3 expression promotes AKT activation and cancer aggressiveness (Zhang et al. 2013, Yuan et al. 2015).
R-HSA-8847968 (Reactome) FRK (RAK), a SRC family member kinase, binds PTEN. The interaction involves the SH3 domain of FRK and the C2 domain of PTEN (Yim et al. 2009). Like other SRC family members, FRK is autophosphorylated on a C-terminal tyrosine residue Y387. FRK possesses a nuclear localization signal and is found in both nucleus and the cytosol (Cance et al. 1994).
R-HSA-8847977 (Reactome) FRK tyrosine kinase (RAK) phosphorylates PTEN on tyrosine residue Y336. FRK-mediated phosphorylation inhibits NEDD4-mediated polyubiquitination and subsequent degradation of PTEN, thus increasing PTEN half-life. FRK-mediated phosphorylation also increases PTEN enzymatic activity (Yim et al. 2009).
R-HSA-8850945 (Reactome) Casein kinase II (CK2) constitutively phosphorylates the C-terminal tail of PTEN on serine and threonine residues S370, S380, T382, T383 and S385. S370 and S385 are the main CK2 phosphorylation sites in PTEN (Torres and Pulido 2001, Miller et al. 2002). CK2-mediated phosphorylation increases PTEN protein stability (Torres and Pulido 2001) but results in ~30% reduction in PTEN lipid phosphatase activity (Miller et al. 2002).
R-HSA-8850961 (Reactome) PREX2, a RAC1 guanine nucleotide exchange factor (GEF), binds to PTEN and inhibits its catalytic activity, resulting in enhanced PI3K/AKT signaling (Fine et al. 2009). The interaction involves the inositol polyphosphate 4-phosphatase domain and the pleckstrin homology (PH) domain of PREX2 and the PDZ binding domain, the phosphatase domain and the C2 domain of PTEN (Fine et al. 2009, Hodakoski et al. 2014). PREX2 binds both the unphosphorylated PTEN and PTEN phosphorylated at the C-terminal tail by casein kinase II, but inhibits the lipid phosphatase activity of phosphorylated PTEN only (Hodakoski et al. 2014). The GEF activity of PREX2 is not needed for PTEN inhibition (Fine et al. 2009).

PREX2 is frequently overexpressed in breast and prostate cancer (Fine et al. 2009) and mutated in melanoma (Berger et al. 2012).

R-HSA-8850992 (Reactome) PTEN, polyubiquitinated by either NEDD4 (Wang et al. 2007), STUB1 (CHIP) (Ahmed et al. 2011), WWP2 (Maddika et al. 2011), XIAP (Van Themsche et al. 2009), MKRN1 (Lee et al. 2015) or RNF146 (Li et al. 2015), is degraded by the proteasome.
R-HSA-8850997 (Reactome) TRIM27 (RFP) binds PTEN. The interaction involves the C-terminal RFP domain of TRIM27 and the C-terminal tail of PTEN (Lee et al. 2013).
R-HSA-8851011 (Reactome) TRIM27 (RFP) is an E3 ubiquitin ligase for PTEN. TRIM27 polyubiquitinates PTEN on multiple lysines in the C2 domain of PTEN using K27-linkage between ubiquitin molecules. TRIM27-mediated ubiquitination inhibits PTEN lipid phosphatase activity, but does not affect PTEN protein localization or stability (Lee et al. 2013).
R-HSA-8943728 (Reactome) The transcription factor SALL4 binds the promoter of the PTEN gene (Yang et al. 2008, Lu et al. 2009).
R-HSA-8943780 (Reactome) SALL4 recruits the transcriptional repressor complex NuRD, containing histone deacetylases HDAC1 and HDAC2, to the PTEN gene promoter (Lu et al 2009, Gao et al. 2013). SALL4 may also recruit DNA methyltransferases (DNMTs) to the PTEN promoter (Yang et al. 2012).
R-HSA-8943811 (Reactome) The transcription factor MECOM (EVI1) binds the promoter of the PTEN gene (Yoshimi et al. 2011).
R-HSA-8943817 (Reactome) The transcription factor MECOM (EVI1) can associate with the polycomb repressor complexes (PRCs) and recruit them to the promoter of the PTEN gene (Song et al. 2009). Both the BMI1-containing PRC, supposedly PRC1.4, and the EZH2-containing PRC2 complex are recruited to the PTEN promoter, resulting in transcriptional silencing of the PTEN gene (Song et al. 2009, Yoshimi et al. 2011). Since the exact composition of the EZH2-containing PRC2 at the PTEN promoter is not known, the core EZH2-PRC2 complex is shown.
R-HSA-8944026 (Reactome) The transcriptional repressor SNAI1 (Snail1) binds the promoter of the PTEN gene. Binding of SNAI1 to the PTEN promoter increases in response to ionizing radiation and interferes with binding of TP53 to the PTEN promoter. Phosphorylation of SNAI1 at serine residue S246 may be required for SNAI1-mediated repression of PTEN transcription (Escriva et al. 2008). Another Slug/Snail family member SNAI2 (SLUG) can also bind to the PTEN gene promoter to repress PTEN transcription (Uygur et al. 2015).
R-HSA-8944047 (Reactome) The transcription factor JUN binds the AP-1 element in the PTEN gene promoter (Hettinger et al. 2007) and represses PTEN gene transcription. RAS/RAF/MAPK signaling positively affects JUN-mediated inhibition of PTEN transcription, but the mechanism is not known. The JUN partner FOS is not needed for JUN-mediated downregulation of PTEN (Vasudevan et al. 2007).
R-HSA-8944078 (Reactome) In response to UV-induced DNA damage, expresion levels of both EGR1 and PTEN increase. EGR1 binds directly to the EGR1 binding site GCGGCGGCG in the promoter region of PTEN to stimulate PTEN transcription (Virolle et al. 2001).
R-HSA-8944099 (Reactome) The nuclear receptor PPARG (PPARgamma), activated by ligand binding, binds to peroxisome proliferator response elements (PPREs) in the promoter of the PTEN gene to activate PTEN transcription. It has not been tested whether nuclear receptors that heterodimerize with PPARG are involved in transcriptional regulation of PTEN (Patel et al. 2001).
R-HSA-8944104 (Reactome) PTEN (phosphatase and tensin homolog deleted in chromosome 10) is a tumor suppressor gene that is deleted or mutated in a variety of human cancers. TP53 (p53) stimulates PTEN transcription (Stambolic et al. 2000, Singh et al. 2002). PTEN, acting as a negative regulator of PI3K/AKT signaling, affects cell survival, cell cycling, proliferation and migration. PTEN regulates TP53 stability by inhibiting AKT-mediated activation of TP53 ubiquitin ligase MDM2, and thus enhances TP53 transcriptional activity and its own transcriptional activation by TP53. Beside their cross-regulation, PTEN and TP53 can interact and cooperate to regulate survival or apoptotic phenomena (Stambolic et al. 2000, Singh et al. 2002, Nakanishi et al. 2014).
In response to UV induced DNA damage, PTEN transcription is stimulated by binding of the transcription factor EGR1 to the promoter region of PTEN (Virolle et al. 2001).
PTEN transcription is also stimulated by binding of the activated nuclear receptor PPARG (PPARgamma) to peroxisome proliferator response elements (PPREs) in the promoter of the PTEN gene (Patel et al. 2001), binding of the ATF2 transcription factor, activated by stress kinases of the p38 MAPK family, to ATF response elements in the PTEN gene promoter (Shen et al. 2006) and by the transcription factor MAF1 (Li et al. 2016).
NR2E1 (TLX) associated with transcription repressors binds the evolutionarily conserved TLX consensus site in the PTEN promoter. NR2E1 inhibits PTEN transcription by associating with various transcriptional repressors, probably in a cell type or tissue specific manner. PTEN transcription is inhibited when NR2E1 forms a complex with ATN1 (atrophin-1) (Zhang et al. 2006, Yokoyama et al. 2008), KDM1A (LSD1) histone methyltransferase containing CoREST complex (Yokoyama et al. 2008), or histone deacetylases HDAC3, HDAC5 or HDAC7 (Sun et al. 2007).
Binding of the transcriptional repressor SNAI1 (Snail1) to the PTEN promoter represses PTEN transcription. SNAI1-mediated repression of PTEN transcription may require phosphorylation of SNAI1 on serine residue S246. Binding of SNAI1 to the PTEN promoter increases in response to ionizing radiation and is implicated in SNAI1-mediated resistance to gamma-radiation induced apoptosis (Escriva et al. 2008). Binding of another Slug/Snail family member SNAI2 (SLUG) to the PTEN gene promoter also represses PTEN transcription (Uygur et al. 2015).
Binding of JUN to the AP-1 element in the PTEN gene promoter (Hettinger et al. 2007) inhibits PTEN transcription. JUN partner FOS is not needed for JUN-mediated downregulation of PTEN (Vasudevan et al. 2007).
Binding of the transcription factor SALL4 to the PTEN gene promoter (Yang et al. 2008) and SALL4-medaited recruitment of the transcriptional repressor complex NuRD (Lu et al. 2009, Gao et al. 2013), containing histone deacetylases HDAC1 and HDAC2, inhibits the PTEN gene transcription. SALL4-mediated recruitment of DNA methyltransferases (DNMTs) is also implicated in transcriptional repression of PTEN (Yang et al. 2012).
Binding of the transcription factor MECOM (EVI1) to the PTEN gene promoter and MECOM-mediated recruitment of polycomb repressor complexes containing BMI1 (supposedly PRC1.4), and EZH2 (PRC2) leads to repression of PTEN transcription (Song et al. 2009, Yoshimi et al. 2011).
R-HSA-8944397 (Reactome) The transcription factor ATF2, activated downstream of stress signaling by p38 MAPKs, binds to ATF response elements in the PTEN gene promoter to activate PTEN transcription. It has not been examined whether ATF2 heterodimerization partners are involved in ATF2-mediated up-regulation of PTEN (Shen et al. 2006).
R-HSA-8944420 (Reactome) The transcription factor MAF1 binds to the promoter region of the PTEN gene to stimulate PTEN transcription (Li et al. 2016). MAF1 is known as a transcriptional repressor of RNA polymerase III-dependent genes, such as genes encoding transport RNAs (tRNAs). Phosphorylation of MAF1 by the mTORC1 complex inhibits MAF1 translocation to the nucleus and transcriptional activity of MAF1 (Shor et al. 2010, Michels et al. 2010).
R-HSA-8944454 (Reactome) Activated mTORC1 complex phosphorylates the transcription factor MAF1 on serine residues S60, S68 and S75 (Shor et al. 2010, Michels et al. 2010). mTORC1-mediated phosphorylation of MAF1 inhibits translocation of MAF1 to the nucleus (Shor et al. 2010).
R-HSA-8944457 (Reactome) Phosphorylation of MAF1 by the activated mTORC1 complex inhibits translocation of MAF1 to the nucleus, and hence its transcriptional activity, but the mechanism has not been elucidated (Shor et al. 2010).
R-HSA-8944483 (Reactome) MicroRNA miR-17-5p, one of the two mature products of miR-17, binds the 3'UTR of PTEN mRNA (Xiao et al. 2008, Poliseno et al. 2010). miR-17 causes reduction in both PTEN mRNA and protein levels and is thus shown to function as a part of the endonucleolytic RISC. It is possible that miR-17 also functions as a part of the nonendonucleolytic RISC.
R-HSA-8944497 (Reactome) PTEN protein synthesis is negatively regulated by microRNAs miR-26A1 and miR-26A2, which recruit the RISC complex to PTEN mRNA. Overexpression of miR-26A2, caused by genomic amplification of MIR26A2 locus on chromosome 12, is frequently observed in human brain glioma tumors possessing one wild-type PTEN allele, and is thought to contribute to tumor progression by repressing PTEN protein expression from the remaining allele (Huse et al. 2009). Other microRNAs, which may also be altered in cancer, such as miR-17, miR-19a, miR-19b, miR-20a, miR-20b, miR-21, miR-22, miR-25, miR-93, miR-106a, miR-106b, miR 205, and miR 214, also bind PTEN mRNA and inhibit its translation into protein (Meng et al. 2007, Xiao et al. 2008, Yang et al. 2008, Kim et al. 2010, Poliseno, Salmena, Riccardi et al. 2010, Zhang et al. 2010, Tay et al. 2011, Qu et al. 2012, Cai et al. 2013).
R-HSA-8944522 (Reactome) MicroRNA miR-19a-3p, one of the two mature products of miR-19a, binds the 3'UTR of PTEN mRNA (Xiao et al. 2008, Poliseno, Salmena, Riccardi et al. 2010). miR-19a microRNA causes reduction in both PTEN mRNA and protein levels and is thus shown to function as a part of the endonucleolytic RISC. It is possible that miR-19a microRNA also functions as a part of the nonendonucleolytic RISC.
R-HSA-8944538 (Reactome) MicroRNA miR-22-3p, one of the two mature products of miR-22, binds the 3'UTR of PTEN mRNA (Poliseno et al. 2010). miR-22 causes reduction in both PTEN mRNA and protein levels and is thus shown to function as a part of the endonucleolytic RISC. It is possible that miR-22 also functions as a part of the nonendonucleolytic RISC.
R-HSA-8944569 (Reactome) MicroRNA miR-25-3p, one of the two mature products of miR-25, binds the 3'UTR of PTEN mRNA (Poliseno et al. 2010). miR-25 causes reduction in both PTEN mRNA and protein levels and is thus shown to function as a part of the endonucleolytic RISC. It is possible that miR-25 also functions as a part of the nonendonucleolytic RISC.
R-HSA-8944599 (Reactome) MicroRNA miR-93-5p, one of the two mature products of miR-93, binds the 3'UTR of PTEN mRNA (Poliseno et al. 2010). miR-93 causes reduction in both PTEN mRNA and protein levels and is thus shown to function as a part of the endonucleolytic RISC. It is possible that miR-93 also functions as a part of the nonendonucleolytic RISC.
R-HSA-8944632 (Reactome) MicroRNA miR-106b-5p, one of the two mature products of miR-106b, binds the 3'UTR of PTEN mRNA (Poliseno et al. 2010). miR-106b causes reduction in both PTEN mRNA and protein levels and is thus shown to function as a part of the endonucleolytic RISC. It is possible that miR-106b also functions as a part of the nonendonucleolytic RISC. MicroRNA miR-106a-5p, one of the two mature products of miR-106a, is homologous to miR-106b and binds to the 3'UTR of PTEN mRNA. miR-106a presumably functions in a manner similar to miR-106b (Tay et al. 2011).
R-HSA-8944650 (Reactome) MicroRNA miR-214-3p, one of the two mature products of miR-214, binds to the 3'UTR of the PTEN mRNA and inhibits PTEN mRNA translation. As miR-214 reduces PTEN protein levels but not PTEN mRNA levels, miR-214 presumably functions as part of the nonendonucleolytic RISC. miR-214 is frequently overexpressed in ovarian cancer (Yang et al. 2008).
R-HSA-8944684 (Reactome) MicroRNA miR-205-5p, one of the two mature products of miR-205, binds the 3'UTR of the PTEN mRNA, resulting in downregulation of PTEN mRNA and protein levels. miR-205 functions as part of both endonucleolytic and nonendonucleolytic RISCs (Qu et al. 2012, Cai et al. 2013). In addition to PTEN, miR-205 targets another negative regulator of PI3K/AKT signaling - the protein serine/threonine phosphatase PHLPP2 (Cai et al. 2013).
R-HSA-8944706 (Reactome) miR-21-5p, one of the two mature products of miR-21, binds the 3'UTR of PTEN mRNA to inhibit PTEN mRNA translation. miR-21 only affects PTEN protein level and thus presumably functions as part of the nonendonucleolytic RISC (Meng et al. 2007, Zhang et al. 2010)
R-HSA-8945709 (Reactome) MicroRNAs miR-20a-5p and miR-20b-5p, encoded by MIR20A and MIR20B genes, respectively, bind the 3'UTR of PTEN mRNA and downregulate PTEN mRNA translation (Poliseno et al. 2010, Tay et al. 2011). miR-20a-5p downregulates both PTEN mRNA and protein levels and is thus considered to function as part of the endonucleolytic RISC, but it may also function as a part of nonendonucleolytic RISC (Poliseno et al. 2010). miR-20b presumably functions in a similar manner (Tay et al. 2011).
R-HSA-8948524 (Reactome) PTENP1 mRNA is the product of the PTEN pseudogene PTENP1 and is highly homologous to PTEN mRNA. PTENP1 mRNA contains a perfect match for the miR-19 family of microRNAs, which target PTEN mRNA for degradation. miR-19b was shown to suppress both PTENP1 and PTEN transcript levels.
Overexpression of PTENP1 3'UTR results in de-repression of both PTEN mRNA and protein in the presence of mature PTEN-targeting microRNAs. Knockdown of PTENP1 decreases abundance of PTEN mRNA and protein. PTENP1 therefore functions as a competing endogenous RNA (ce-RNA) in microRNA-mediated PTEN regulation. PTENP1 losses have been reported in cancer (Poliseno et al. 2010).
R-HSA-8948536 (Reactome) PTENP1 mRNA is the product of the PTEN pseudogene PTENP1 and is highly homologous to PTEN mRNA. PTENP1 mRNA contains a perfect match for the miR-20 family of microRNAs, which target PTEN mRNA for degradation. miR-20a was shown to suppress both PTENP1 and PTEN transcript levels, and it is possible that miR-20b functions in a similar manner.
Overexpression of PTENP1 3'UTR results in de-repression of both PTEN mRNA and protein in the presence of mature PTEN-targeting microRNAs. Knockdown of PTENP1 decreases abundance of PTEN mRNA and protein. PTENP1 therefore functions as a competing endogenous RNA (ce-RNA) in microRNA-mediated PTEN regulation. PTENP1 losses have been reported in cancer (Poliseno et al. 2010).
R-HSA-8948569 (Reactome) MicroRNA miR-19b, encoded by two genomic loci, MIR19B1 and MIR19B2, is homologous to miR-19a and also binds to the 3'UTR of PTEN mRNA (Polseno, Salmena, Zhang et al. 2010). miR-19b microRNA causes reduction in both PTEN mRNA and protein levels and is thus shown to function as a part of the endonucleolytic RISC. It is possible that miR-19b microRNA also functions as a part of the nonendonucleolytic RISC.
R-HSA-8948582 (Reactome) MicroRNA miR-17 binds the VAPA mRNA. VAPA mRNA acts as a competing endogenous RNA (ceRNA) for PTEN, preventing binding of miR-17 microRNA to PTEN mRNA and PTEN downregulation (Tay et al. 2011).
R-HSA-8948583 (Reactome) MicroRNA miR-17 binds the CNOT6L mRNA. CNOT6L mRNA acts as a competing endogenous RNA (ceRNA) for PTEN, preventing binding of miR-17 microRNA to PTEN mRNA and PTEN downregulation (Tay et al. 2011).
R-HSA-8948594 (Reactome) MicroRNA miR-19a binds the VAPA mRNA. VAPA mRNA acts as a competing endogenous RNA (ceRNA) for PTEN, preventing binding of miR-19a microRNA to PTEN mRNA and PTEN downregulation (Tay et al. 2011).
R-HSA-8948602 (Reactome) MicroRNA miR-19a binds the CNOT6L mRNA. CNOT6L mRNA acts as a competing endogenous RNA (ceRNA) for PTEN, preventing binding of miR-19a microRNA to PTEN mRNA and PTEN downregulation (Tay et al. 2011).
R-HSA-8948612 (Reactome) MicroRNA miR-19b, encoded by the MIR19B1 and MIR19B2 genes, binds the CNOT6L mRNA. CNOT6L mRNA acts as a competing endogenous RNA (ceRNA) for PTEN, preventing binding of miR-19b microRNA to PTEN mRNA and PTEN downregulation (Tay et al. 2011).
R-HSA-8948621 (Reactome) MicroRNAs miR-20a and miR-20b bind the VAPA mRNA. VAPA mRNA acts as a competing endogenous RNA (ceRNA) for PTEN, preventing binding of miR-20 microRNAs to PTEN mRNA and PTEN downregulation (Tay et al. 2011).
R-HSA-8948623 (Reactome) MicroRNAs miR-20a and miR-20b bind the CNOT6L mRNA. CNOT6L mRNA acts as a competing endogenous RNA (ceRNA) for PTEN, preventing binding of miR-20 microRNAs to PTEN mRNA and PTEN downregulation (Tay et al. 2011).
R-HSA-8948641 (Reactome) MicroRNAs miR-106a and miR-106b bind the VAPA mRNA. VAPA mRNA acts as a competing endogenous RNA (ceRNA) for PTEN, preventing binding of miR-106 microRNAs to PTEN mRNA and PTEN downregulation (Tay et al. 2011).
R-HSA-8948651 (Reactome) MicroRNA miR-106a (possibly also miR-106b) binds the CNOT5L mRNA. CNOT6L mRNA acts as a competing endogenous RNA (ceRNA) for PTEN, preventing binding of miR-106a microRNA to PTEN mRNA and PTEN downregulation (Tay et al. 2011).
R-HSA-8948757 (Reactome) AKT1 (and possibly AKT2 and AKT3), activated in response to EGF treatment, phosphorylates MKRN1, an E3 ubiquitin ligase, on serine residue S109. AKT-mediated phosphorylation results in stabilization of MKRN1, protecting it from ubiquitination and proteasome-mediated degradation (Lee et al. 2015).
R-HSA-8948775 (Reactome) The C-terminal region of the E3 ubiquitin ligase MKRN1 interacts with PTEN and polyubiquitinates it on lysine residue K289, via K48 linkage. AKT-mediated phosphorylation of MKRN1 on serine residue S109 is a pre-requisite for MKRN1 stabilization and MKRN1-mediated ubiquitination of PTEN. MKRN1 is implicated as an oncogene in cervical cancer (Lee et al. 2015).
R-HSA-8948800 (Reactome) PTEN can bind tankyrases TNKS (TNKS1) and TNKS2. The interaction involves the tankyrase binding motif at the N-terminus of PTEN (RYQEDG). TNKS and TNKS2 poly-ADP-ribosylate (PARylate) PTEN on glutamic acid residues E40 and E150 and on aspartic acid residue D326. PTEN PARylation is a pre-requisite for RNF146-mediated ubiquitination of PTEN (Li et al. 2015).
R-HSA-8948832 (Reactome) The E3 ubiquitin ligase RNF146 possesses a PAR recognition domain (WWE) which binds to PARylated PTEN. RNF146 polyubiquitinates PARylated PTEN, with lysine residues K342, K344 and K349 as major ubiquitination sites. RNF146-mediated ubiquitination targets PTEN for proteasome-mediated degradation (Li et al. 2015).
RNF146mim-catalysisR-HSA-8948832 (Reactome)
RibC-E40,E150,D326-PTENArrowR-HSA-8948800 (Reactome)
RibC-E40,E150,D326-PTENR-HSA-8948832 (Reactome)
SALL4:NuRD:PTEN geneArrowR-HSA-8943780 (Reactome)
SALL4:NuRD:PTEN geneTBarR-HSA-8944104 (Reactome)
SALL4:PTEN geneArrowR-HSA-8943728 (Reactome)
SALL4:PTEN geneR-HSA-8943780 (Reactome)
SALL4R-HSA-8943728 (Reactome)
SNAI1,SNAI2:PTEN geneArrowR-HSA-8944026 (Reactome)
SNAI1,SNAI2:PTEN geneTBarR-HSA-8944104 (Reactome)
SNAI1,SNAI2R-HSA-8944026 (Reactome)
TBarR-HSA-8944497 (Reactome)
TNKS1/2mim-catalysisR-HSA-8948800 (Reactome)
TP53 Tetramer:PTEN GeneArrowR-HSA-5632939 (Reactome)
TP53 Tetramer:PTEN GeneArrowR-HSA-8944104 (Reactome)
TP53 TetramerR-HSA-5632939 (Reactome)
TRIM27ArrowR-HSA-8851011 (Reactome)
TRIM27R-HSA-8850997 (Reactome)
USP13,OTUD3mim-catalysisR-HSA-6807206 (Reactome)
USP7mim-catalysisR-HSA-6807118 (Reactome)
UbArrowR-HSA-6807118 (Reactome)
UbArrowR-HSA-6807206 (Reactome)
UbArrowR-HSA-8850992 (Reactome)
UbR-HSA-6807106 (Reactome)
UbR-HSA-6807134 (Reactome)
UbR-HSA-8851011 (Reactome)
UbR-HSA-8948775 (Reactome)
UbR-HSA-8948832 (Reactome)
VAPA mRNAR-HSA-8948582 (Reactome)
VAPA mRNAR-HSA-8948594 (Reactome)
VAPA mRNAR-HSA-8948621 (Reactome)
VAPA mRNAR-HSA-8948641 (Reactome)
XIAP,NEDD4mim-catalysisR-HSA-6807106 (Reactome)
mTORC1:Ragulator:Rag:GNP:RHEB:GTPTBarR-HSA-8944457 (Reactome)
mTORC1:Ragulator:Rag:GNP:RHEB:GTPmim-catalysisR-HSA-8944454 (Reactome)
miR-106 RISC:CNOT6L mRNAArrowR-HSA-8948651 (Reactome)
miR-106 RISC:CNOT6L mRNATBarR-HSA-8944632 (Reactome)
miR-106 RISC:PTEN mRNAArrowR-HSA-8944632 (Reactome)
miR-106 RISC:VAPA mRNAArrowR-HSA-8948641 (Reactome)
miR-106 RISC:VAPA mRNATBarR-HSA-8944632 (Reactome)
miR-106 RISCR-HSA-8944632 (Reactome)
miR-106 RISCR-HSA-8948641 (Reactome)
miR-106 RISCR-HSA-8948651 (Reactome)
miR-17 RISC:CNOT6L mRNAArrowR-HSA-8948583 (Reactome)
miR-17 RISC:CNOT6L mRNATBarR-HSA-8944483 (Reactome)
miR-17 RISC:PTEN mRNAArrowR-HSA-8944483 (Reactome)
miR-17 RISC:VAPA mRNAArrowR-HSA-8948582 (Reactome)
miR-17 RISC:VAPA mRNATBarR-HSA-8944483 (Reactome)
miR-17 RISCR-HSA-8944483 (Reactome)
miR-17 RISCR-HSA-8948582 (Reactome)
miR-17 RISCR-HSA-8948583 (Reactome)
miR-19a RISC:CNOT6L mRNAArrowR-HSA-8948602 (Reactome)
miR-19a RISC:CNOT6L mRNATBarR-HSA-8944522 (Reactome)
miR-19a RISC:PTEN mRNAArrowR-HSA-8944522 (Reactome)
miR-19a RISC:VAPA mRNAArrowR-HSA-8948594 (Reactome)
miR-19a RISC:VAPA mRNATBarR-HSA-8944522 (Reactome)
miR-19a RISCR-HSA-8944522 (Reactome)
miR-19a RISCR-HSA-8948594 (Reactome)
miR-19a RISCR-HSA-8948602 (Reactome)
miR-19b RISC:CNOT6L mRNAArrowR-HSA-8948612 (Reactome)
miR-19b RISC:CNOT6L mRNATBarR-HSA-8948569 (Reactome)
miR-19b RISC:PTEN mRNAArrowR-HSA-8948569 (Reactome)
miR-19b RISC:PTENP1 mRNAArrowR-HSA-8948524 (Reactome)
miR-19b RISC:PTENP1 mRNATBarR-HSA-8948569 (Reactome)
miR-19b RISCR-HSA-8948524 (Reactome)
miR-19b RISCR-HSA-8948569 (Reactome)
miR-19b RISCR-HSA-8948612 (Reactome)
miR-20 RISC:CNOT6L mRNAArrowR-HSA-8948623 (Reactome)
miR-20 RISC:CNOT6L mRNATBarR-HSA-8945709 (Reactome)
miR-20 RISC:PTEN mRNAArrowR-HSA-8945709 (Reactome)
miR-20 RISC:PTENP1 mRNAArrowR-HSA-8948536 (Reactome)
miR-20 RISC:PTENP1 mRNATBarR-HSA-8945709 (Reactome)
miR-20 RISC:VAPA mRNAArrowR-HSA-8948621 (Reactome)
miR-20 RISC:VAPA mRNATBarR-HSA-8945709 (Reactome)
miR-20 RISCR-HSA-8945709 (Reactome)
miR-20 RISCR-HSA-8948536 (Reactome)
miR-20 RISCR-HSA-8948621 (Reactome)
miR-20 RISCR-HSA-8948623 (Reactome)
miR-205 RISC:PTEN mRNAArrowR-HSA-8944684 (Reactome)
miR-205 RISC:PTEN mRNATBarR-HSA-8944497 (Reactome)
miR-205 RISCR-HSA-8944684 (Reactome)
miR-21

Nonendonucleolytic

RISC:PTEN mRNA
ArrowR-HSA-8944706 (Reactome)
miR-21

Nonendonucleolytic

RISC:PTEN mRNA
TBarR-HSA-8944497 (Reactome)
miR-21

Nonendonucleolytic

RISC
R-HSA-8944706 (Reactome)
miR-214

Nonendonucleolytic

RISC:PTEN mRNA
ArrowR-HSA-8944650 (Reactome)
miR-214

Nonendonucleolytic

RISC:PTEN mRNA
TBarR-HSA-8944497 (Reactome)
miR-214

Nonendonucleolytic

RISC
R-HSA-8944650 (Reactome)
miR-22 RISC:PTEN mRNAArrowR-HSA-8944538 (Reactome)
miR-22 RISC:PTEN mRNATBarR-HSA-8944497 (Reactome)
miR-22 RISCR-HSA-8944538 (Reactome)
miR-25 RISC:PTEN mRNAArrowR-HSA-8944569 (Reactome)
miR-25 RISC:PTEN mRNATBarR-HSA-8944497 (Reactome)
miR-25 RISCR-HSA-8944569 (Reactome)
miR-26A RISCR-HSA-2318752 (Reactome)
miR-93 RISCR-HSA-8944599 (Reactome)
miR-93:PTEN mRNAArrowR-HSA-8944599 (Reactome)
miR-93:PTEN mRNATBarR-HSA-8944497 (Reactome)
p-3S,2T-PTENArrowR-HSA-8850945 (Reactome)
p-S109-MKRN1ArrowR-HSA-8948757 (Reactome)
p-S109-MKRN1mim-catalysisR-HSA-8948775 (Reactome)
p-S60,S68,S75-MAF1ArrowR-HSA-8944454 (Reactome)
p-T,Y MAPK dimersArrowR-HSA-8944047 (Reactome)
p-T69,T71-ATF2:PTEN geneArrowR-HSA-8944104 (Reactome)
p-T69,T71-ATF2:PTEN geneArrowR-HSA-8944397 (Reactome)
p-T69,T71-ATF2R-HSA-8944397 (Reactome)
p-Y336-PTENArrowR-HSA-8847977 (Reactome)
p-Y387-FRKArrowR-HSA-8847977 (Reactome)
p-Y387-FRKR-HSA-8847968 (Reactome)

Personal tools