rRNA processing (Homo sapiens)
From WikiPathways
Description
Each eukaryotic cytosolic ribosome contains 4 molecules of RNA: 28S rRNA (25S rRNA in yeast), 5.8S rRNA, and 5S rRNA in the 60S subunit and 18S rRNA in the 40S subunit. The 18S rRNA, 5.8S rRNA, and 28S rRNA are produced by endonucleolytic and exonucleolytic processing of a single 47S precursor (pre-rRNA) (reviewed in Henras et al. 2015). Transcription of ribosomal RNA genes, processing of pre-rRNA, and assembly of precursor 60S and 40S subunits occur in the nucleolus (reviewed in Hernandez-Verdun et al. 2010), with a few late reactions occurring in the cytosol. Within the nucleolus non-transcribed DNA and inactive polymerase complexes are located in the fibrillar center, active DNA polymerase I transcription occurs at the interface between the fibrillar center and the dense fibrillar component, early processing of pre-rRNA occurs in the dense fibrillar component, and late processing of pre-rRNA occurs in the granular component (Stanek et al. 2001).
Processed ribosomal RNA contains many modified nucleotides which are generated by enzymes acting on encoded nucleotides contained in the precursor rRNA (reviewed in Boschi-Muller and Motorin 2013). The most numerous modifications are pseudouridine residues and 2'-O-methylribonucleotides. Pseudouridylation is guided by base pairing between the precursor rRNA and a small nucleolar RNA (snoRNA) in a Box C/D snoRNP (reviewed in Henras et al 2004, Yu and Meier 2014). Similarly, 2'-O-methylation is guided by base pairing between the precursor rRNA and a snoRNA in a Box H/ACA snoRNP (reviewed in Henras et al. 2004, Hamma and Ferre-D'Amare 2010). Other modifications include N(1)-methylpseudouridine, 5-methylcytosine, 7-methylguanosine, 6-dimethyladenosine, and 4-acetylcytidine. Modification of nucleotides occur as the pre-rRNA is being cleaved. However, the order of cleavage and modification steps is not clear so these two processes are presented separately here. Defects in ribosome biogenesis factors can cause disease (reviewed in Freed et al. 2010).
Mitochondrial ribosomes are completely distinct from cytoplasmic ribosomes, having different protein subunits and 12S rRNA and 16S rRNA. The mitochondrial rRNAs are encoded in the mitochondrial genome and are produced by processing of a long H strand transcript. Specific residues in the rRNAs are modified by enzymes to yield 5 different types of modified nucleotides: View original pathway at:Reactome.
Processed ribosomal RNA contains many modified nucleotides which are generated by enzymes acting on encoded nucleotides contained in the precursor rRNA (reviewed in Boschi-Muller and Motorin 2013). The most numerous modifications are pseudouridine residues and 2'-O-methylribonucleotides. Pseudouridylation is guided by base pairing between the precursor rRNA and a small nucleolar RNA (snoRNA) in a Box C/D snoRNP (reviewed in Henras et al 2004, Yu and Meier 2014). Similarly, 2'-O-methylation is guided by base pairing between the precursor rRNA and a snoRNA in a Box H/ACA snoRNP (reviewed in Henras et al. 2004, Hamma and Ferre-D'Amare 2010). Other modifications include N(1)-methylpseudouridine, 5-methylcytosine, 7-methylguanosine, 6-dimethyladenosine, and 4-acetylcytidine. Modification of nucleotides occur as the pre-rRNA is being cleaved. However, the order of cleavage and modification steps is not clear so these two processes are presented separately here. Defects in ribosome biogenesis factors can cause disease (reviewed in Freed et al. 2010).
Mitochondrial ribosomes are completely distinct from cytoplasmic ribosomes, having different protein subunits and 12S rRNA and 16S rRNA. The mitochondrial rRNAs are encoded in the mitochondrial genome and are produced by processing of a long H strand transcript. Specific residues in the rRNAs are modified by enzymes to yield 5 different types of modified nucleotides: View original pathway at:Reactome.
Try the New WikiPathways
View approved pathways at the new wikipathways.org.Quality Tags
Ontology Terms
Bibliography
History
External references
DataNodes
the nucleus and
cytosolAnnotated Interactions
Mitochondrial RNase P, comprising 3 protein subunits and no RNA moiety (Holzmann et al. 2008), endonucleolytically cleaves polycistronic mitochondrial transcripts at the 5' ends of the tRNA sequences (Sanchez et al. 2011, Howard et al. 2012, Vilardo et al. 2012, Li et al. 2015, Reinhard et al. 2015, Vilardo and Rossmanith 2015). A subcomplex of RNase P also functions as a tRNA methyltransferase and the SDR5C1 subunit is an amino acid and fatty acid dehydrogenase. Mutations in the SDR5C1 subunit of RNase P cause HSD10 disease, which is characterized by progressive neurodegeneration and cardiomyopathy (Vilardo and Rossmanith 2015)
ELAC2 cleaves polycistronic mitochondrial transcripts at the 3' ends of the tRNA sequences (Brzezniak et al. 2011, Sanchez et al. 2011). Different isoforms of ELAC2 are present in the nucleus and mitochondria (Rossmanith 2011). Mutations in ELAC2 cause cardiac hypertrophy (Haack et al. 2013) and disorders of oxidative phosphorylation (reviewed in Van Haute et al. 2015).
Unknown nucleases also cleave the H strand transcript at sites 5' to MT-CO3, 5' to MT-CO1, and 5' to MT-CYB (reviewed in Van Haute et al. 2015).