Mitochondrial translation (Homo sapiens)

From WikiPathways

Revision as of 13:33, 16 August 2017 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
3, 4, 9, 10, 17...3, 6, 11, 13, 16181952332323, 272, 6, 8, 11, 12, 21...20, 23, 27mitochondrial matrixDAP3 MRPL11 MRPL48 AURKAIP1 CHCHD1 MRPL47 MRPS26 MRPL34 MRPS25 MRPS34 MT-TV tRNA(Leu) MRPL11 MRPS15 DAP3 MRPL27 PTCD3 Met-tRNA(Met) MRPL27 CHCHD1 ICT1 MRPS9 MRPS34 MRPL46 MRPL44 Thr-tRNA(Thr) MRPS22 MRPS24 MRPS17 MRPL24 MRRFGADD45GIP1 MRPL22 MRPL55 MRPL17 MRPS26 MRPS10 PTCD3 MT-TV MRPS5 tRNA(Cys) Ile-tRNA(Ile) mRNA tRNA(Val) AURKAIP1 MRPS27 MTRF1L MRPS28 PTCD3 MRPL57 MRPL18 MRPS18C MRPS36 MRPS33 MRPL2 MRPS18B MTIF2:GTPMRPS27 MRPS18C His-tRNA(His) MRPL55 MRPL57 MRPL41 Lys-tRNA(Lys) MRPL46 MRPL22 GADD45GIP1 Asp-tRNA(Asp) Ala-tRNA(Ala) MRPL22 GFM1:GTPMRPL21 MRPS21 tRNA(Lys) PiMRPL10 MRPS30 MRPL46 MRPL32 MRPS9 Arg-tRNA(Arg) MRPL37 AURKAIP1 MRPS28 Gln-tRNA(Gln) MRPL15 tRNA(His) MRPS23 Glu-tRNA(Glu) MRPL23 MRPL15 MRPS9 MRPL39 Ser-tRNA(Ser) MRPS14 MTFMTMRPS30 MTIF3 ERAL1 MRPL12 GFM1 MRPS2 Lys-tRNA(Lys) MRPS11 MRPL57 MRPS12 ERAL1 tRNA(Ser) MRPS14 Pro-tRNA(Pro) MRPS27 MRPL16 MRPL1 MRPL9 MRPL11 PTCD3 Cys-tRNA(Cys) CHCHD1 MRPL23 MRPL53 MRPS34 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNAMRPS15 MRPL11 MRPL24 Ser-tRNA(Ser) MRPS33 tRNA(Tyr) MRPS15 MTIF3MRPL16 GTP MRPL28 MRPL35 MRPL53 MRPS28 MRPS34 tRNA(Cys) MRPS30 Mitochondrial 16S rRNA MRPL33 MRPL57 tRNA(Arg) MRPS11 ERAL1 MRPS14 MRPL9 MRPS16 MRPL48 MRPL50 Cys-tRNA(Cys) Ile-tRNA(Ile) MRPL9 MRPL23 MRPL48 MRPL43 MRPS21 CHCHD1 PiGDPPiMRPL37 Mitochondrial 12S rRNA MRPS5 MRPL24 Mitochondrial 16S rRNA MRPL38 MTIF2 MRPS35 MRPS36 MRPL22 MRPS27 MRPS11 MRPL33 MRPL38 MRPL54 MRPL57 MRPL49 MRPL18 MRPL27 MRPS16 MRPL46 MRPS21 MRPL39 MRPS7 MRPL18 MRPL13 MRPL4 MRPS36 Lys-tRNA(Lys) MRPL4 MRPL12 aminoacyl-tRNAMRPL2 MRPL4 MRPS31 MRPL11 MRPS18C MRPS14 MRPL10 peptidyl-tRNA with elongated peptide MRPL50 Ile-tRNA(Ile) MRPS15 Mitochondrial 16S rRNA Trp-tRNA(Trp) MRPL32 MRPL9 MRPL11 Leu-tRNA(Leu) mRNA MRPL44 MRPS18C MRPL47 MRPL55 MRPL27 MRPL46 MRPL41 MRPL57 MRPL37 MRPS16 Ser-tRNA(Ser) MRPL30 MRPS23 MRPS17 Mitochondrial 12S rRNA MRPL14 MRPS14 mRNA tRNA(Asp) MRPS10 MRPS6 MRPS21 MRPL41 MRPL57 MRPL4 ICT1 MRPL16 MRPL54 MRPL38 MRPS21 MRPL1 MRPL12 MRPL43 MRPS6 GADD45GIP1 MRPS18C tRNA(Glu) MRPL53 MRPS33 MRPL14 Mitochondrial 16S rRNA MRPS25 MRPL46 MRPL42 MRPL36 MRPS2 MRPS7 MRPL20 tRNA(Ala) tRNA(Phe) MRPL14 MRPS5 MRPL24 MRPL23 MRPL36 PTCD3 His-tRNA(His) MRPL4 tRNA(Pro) TUFM tRNAMT-TV GTP MRPS18C ERAL1 Mitochondrial 16S rRNA MRPL30 ERAL1 MRPL47 MRPL4 MRPL10 MRPS36 MRPL10 MRPL13 MRPL19 MRPL51 MRPL1 Cys-tRNA(Cys) MRPL21 MRPS18A MRPL52 MT-TV MRPL14 MRPL43 MRPL42 MRPL42 MRPS12 tRNA(Leu) MRPL30 MRPS17 tRNA(Asn) CHCHD1 MRPS21 Gly-tRNA(Gly) MRPS36 MRPS17 MRPS22 DAP3 MRPS21 mRNAmRNA MRPL32 MRPS18C MRPS35 MRPS7 PTCD3 MRPS30 tRNA(Trp) Leu-tRNA(Leu) Mitochondrial 12S rRNA mRNA MRPL46 MRPS23 MRPS28 MRPL40 GTP MRPL34 MRPL53 MRPS21 MRPL42 MRPL41 mRNA MRPL3 TUFM MRPS34 tRNA(Ala) MRPL47 tRNA(Leu) tRNA(Ile) MRPL18 MRPL36 MRPL21 MRPL30 MRPS24 peptidyl-tRNA with elongated peptide ERAL1 MRPS18A MRPS24 MRPL23 MRPL20 MRPS22 MRPS14 MRPS27 MRPL38 MRPL45 MRPS6 MT-TV MRPL51 MRPL51 MRPL33 MRPL33 MRPL53 MRPL35 GADD45GIP1 MRPL55 MRPS6 MRPL52 MRPL13 MRPL24 MRPS6 MRPS7 MRPS28 MRPL37 His-tRNA(His) ERAL1 PTCD3 MRPL49 MRPS15 MT-TV ERAL1 MRPL21 AURKAIP1 MRPL15 tRNA(Tyr) MRPS9 Ile-tRNA(Ile) MRPL45 MRPS25 MRPL30 Thr-tRNA(Thr) tRNA(Met) MRPS25 MRPL1 MRPS18B Asp-tRNA(Asp) MRPL35 MRPS36 MRPS33 MRPS18C Mitochondrial 16S rRNA tRNA(Gln) MRPL10 MRPS30 MRPL17 MRPL43 MRPL22 Met-tRNA(Met)Tyr-tRNA(Tyr) TUFM:GDPMRPL11 MRPL35 MRPS24 TSFM tRNA(Ser) MRPL19 MRPS11 MRPL21 tRNA(Lys) tRNA(Thr) MRPL2 MRPL50 MRPS5 MRPL1 MRPS12 TSFMMRPL30 tRNA(Pro) MRPL19 MRPS30 MRPL13 MRPL43 MRPL14 MRPS30 DAP3 MRPL49 MRPS31 Asp-tRNA(Asp) MRPL2 MRPS24 fMet-tRNA(fMet) MRPL41 MRPS22 MRPL13 MRPL46 tRNA(Lys) MRPL39 MRPS7 MRPL44 Trp-tRNA(Trp) MRPL17 Asp-tRNA(Asp) Pro-tRNA(Pro) MRPL12 MRPS35 MRPS30 ERAL1 MRPL20 MRPS15 Mitochondrial 16S rRNA MRPS5 His-tRNA(His) MRPL20 MRPL33 MRPL3 MRPL51 MRPS22 MRPL22 MRPS31 MRPS23 GFM2 MRPL19 MRPS24 MRPS22 MRPL19 55Sribosome:mRNA:fMet-tRNAtRNA(Thr) AURKAIP1 MRPS18B ICT1 MRPL12 MRPS12 MRPL18 Gly-tRNA(Gly) tRNA(Gly) MRPS10 Asn-tRNA(Asn) Glu-tRNA(Glu) MRPL50 PTCD3 Ser-tRNA(Ser) 28Sribosomalsubunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNAmRNA MRPS11 MRPS18C MRPL40 PTCD3 tRNA(Ile) DAP3 MRPL39 MRPL12 MRPS28 Mitochondrial 12S rRNA MRPL39 MRPS16 Phe-tRNA(Phe) MRPS7 MRPS28 TUFM MRPL23 Val-tRNA(Val) MRPL49 Glu-tRNA(Glu) MRPS11 MRPS28 MRPL23 MRPS6 MRPS16 MRPL51 MTRF1L MRPL53 MRPL44 MRPL20 MRPL22 GFM1 MRPL40 MRPL48 MRPS10 Phe-tRNA(Phe) Lys-tRNA(Lys) MRPL45 MRPS7 MRPL38 GDPMRPL37 Met-tRNA(Met) MRPL20 MRPL51 DAP3 MRPL32 MRPS36 MRPS33 MRPL14 tRNA(His) MTIF2Leu-tRNA(Leu) MRPS10 PTCD3 Mitochondrial 12S rRNA MRPL43 MRPL3 peptidyl-tRNA with elongated peptide ERAL1 MRPL24 MRPS28 MRPL41 MTRF1L, ICT1MRPL45 MRPL17 MRPL16 tRNA(Trp) tRNA(Val) MRPL16 MRPL14 GADD45GIP1 Mitochondrial 12S rRNA MRPL3 AURKAIP1 MRPL39 MRPL50 MRPS7 MRPS2 MRPS18C MRPS16 MRPL2 MRPL34 MRPL16 THF55Sribosome:mRNA:tRNA:peptidyl-tRNA at A-siteMRPS36 MRPS5 TUFM:GTPMRPL33 MRPL52 GTPTUFM:TSFMMRPS24 MRPL54 MRPS10 MRPS17 MRPL18 MRPL28 MRPL48 MRPS16 GDPMRPS27 MRPS17 MRPL28 MRPL52 MRPS25 MT-TV MRPL2 MRPL27 Met-tRNA(Met) MRPL18 MRPL4 MRPL49 MRPS14 Asn-tRNA(Asn) GTP MRPS22 MRPL45 MRPL32 ERAL1 MRPL12 MRPL44 tRNA(Arg) MRPL1 MRPS18C GTP Ala-tRNA(Ala) AURKAIP1 MTIF2 mRNA MRPS34 AURKAIP1 MRPS27 MRPS33 MRPL19 MRPS22 MRPL33 MRPS26 55Sribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPPiMRPS24 tRNA(Cys) MRPS23 MRPS18A MRPL34 MRPS12 MRPS31 MRPL9 MRPS18B MRPS11 MRPL11 MRPS12 MRPS30 MRPL27 28S ribosomalsubunitMitochondrial 12S rRNA MRPS25 PiGADD45GIP1 tRNA(Glu) MRPS31 MRPL2 tRNA(Met)Val-tRNA(Val) MRPS31 MRPL47 ICT1 MRPL27 GADD45GIP1 MRPL2 MRPL37 MRPS9 MRPL47 MRPS21 MRPS10 MRPL46 MRPL41 TUFM:GTP:aminoacyl-tRNAMRPS28 MRPS25 MRPS11 Trp-tRNA(Trp) MRPS6 MRPL3 MRPL53 MRPS7 MRPS23 MRPS2 MRPS18A MRPL22 MRPL36 MRPL43 MRPS34 MRPL49 Arg-tRNA(Arg) MRPS18A MRPL11 MRPL53 MT-TV MRPS26 MRPL48 MRPS35 DAP3 MRPL36 MRPS35 Tyr-tRNA(Tyr) MRPS18B MRPS17 MRPS10 MRPS35 MRPL32 MRPL10 MRRF MRPL15 tRNA(His) tRNA(Glu) GADD45GIP1 fMet-tRNA(fMet) peptidyl-tRNA with elongated peptide fMet-tRNA(fMet)MRPL23 MRPL48 MRPL15 MRPS10 MRPL30 fMet-tRNA(fMet) MRPL30 tRNA(Gly) ERAL1 MRPS23 MRPL52 MRPL4 tRNA(Asn) MRPL17 MRPS23 CHCHD1 MRPL15 MRPS18A Arg-tRNA(Arg) MRPS15 MRPL13 MRPS31 MRPL14 MRPL43 CHCHD1 MRPL47 MRPS12 Mitochondrial 12S rRNA MRPS18B MRPL54 MRPL33 MRPL30 MRPL4 GFM2 MRPS26 MRPS24 MRPL16 MRPL28 MRPS7 MRPS16 MRPS5 GADD45GIP1 MRPS22 MRPL52 MRPS17 MRPS18C tRNA(Gly) MRPS27 MRPL17 ICT1 MRPL44 MRPL18 MRPS10 MRPS31 MRPL35 MRPL45 MRPL22 Val-tRNA(Val) MRPS30 Val-tRNA(Val) ICT1 tRNA(Ala) MRPL13 MRPS34 MRPL50 MRPL16 MRPS35 ICT1 MRPL15 MRPS33 Gln-tRNA(Gln) MRPL27 MRPL19 MRPL54 MRPL23 MRPL37 MRPL44 MRPS24 MRPS27 DAP3 Pro-tRNA(Pro) MRPS2 Mitochondrial 12S rRNA MRPS26 tRNA(Tyr) MRPL54 MRPL48 TUFM GTP MRPL1 MRPL28 tRNA(Arg) MRPL20 MRPS23 MRPS23 Asn-tRNA(Asn) MRPL49 MRPS23 MRPL36 MRPS16 Gln-tRNA(Gln) Mitochondrial 16S rRNA MRPS33 MRPS24 MRPS17 MRPS12 DAP3 MRPS22 MRPL50 MRPS18A MRPS18A MRPL50 MRPL33 MRPL38 MRPL39 MRPS5 MRPL28 tRNA(Ser) MRPS36 MRPL9 MRPL39 polypeptideMRPL12 MRPL17 MRPL18 MRPS16 MRPL10 MRPL54 MRPL13 MRPL13 MRPS21 MRPL53 GDP MRPL43 mRNA 55Sribosome:mRNA:tRNA:MRRFMRPS31 MRPL39 MRPL15 GADD45GIP1 MRPL12 MRPL42 MRPS28 MRPS21 MRPL53 MRPS12 CHCHD1 MRPL55 MRPL35 MRPL34 MRPL9 MRPL32 MRPS2 MRPL28 GFM2 Mitochondrial 12S rRNA MRPL40 MRPL3 PTCD3 MRPL47 tRNA(Pro) MRPS9 MRPL1 MRPL54 MRPL40 MRPL21 MRPL40 ICT1 MRPL15 MRPS36 MRPL19 Gly-tRNA(Gly) MRPS34 MRPS26 AURKAIP1 MRPS17 MRPS21 GADD45GIP1 MRPL48 mRNA MRPL38 Mitochondrial 12S rRNA MRPS22 MRPS22 MRPL48 GTP MRPS35 MRPL10 MRPS26 MRPS33 MRPL44 CHCHD1 Tyr-tRNA(Tyr) MRPS25 MRPL2 MRPS12 MRPS35 28S ribosomalsubunit:MTIF3MRPL23 MRPS26 MRPL28 MRPS14 MT-TV GFM2:GTPGFM2:GDPGDP tRNA(Ile) Leu-tRNA(Leu) MRPL35 CHCHD1 MRPL47 MRPS33 MRPL39 MT-TV MRPS12 39S ribosomalsubunitPro-tRNA(Pro) MRPL20 MRPS7 MRPL43 MRPS2 MRPL41 AURKAIP1 MRPS21 MRPS18B MRPL18 MRPL33 MRPL57 MRPL50 MRPS23 MRPL28 Phe-tRNA(Phe) MRPS10 MRPS36 MRPS18B MRPS14 MRPL36 MRPL36 MRPS18B MRPL15 MRPS5 DAP3 MRPL45 MRPL57 MRPS26 MRPS30 MRPS14 tRNA(Thr) MRPS25 MRPS17 Arg-tRNA(Arg) tRNA(Asn) MRPS2 AURKAIP1 MRPL45 MRPS15 MRPL16 MRPL22 MRPS28 MRPS11 MRPL37 CHCHD1 MRPL46 MRPL24 MRPS27 Glu-tRNA(Glu) MRPL40 MRPS9 MRPL51 MRPL34 MRPL24 MRPS6 MRPS11 MRPL1 MRPS34 fMet-tRNA(fMet) MRPL2 MRPL48 MRPS27 MRPL34 MRPL55 MRPL34 MRPL45 MRPS34 MRPL42 Ala-tRNA(Ala) MRPL52 MRPS9 MRPS9 MRPL2 MRPL50 AURKAIP1 MRPS5 MRPS15 MRPL52 MRPL24 MRPL27 MRPL49 MRPL4 MRPL11 MRPL41 MRPL38 MRPL13 55Sribosome:MRRF:GFM2:GTPMitochondrial 16S rRNA MRPL37 MRPL1 MRPL37 MRPL20 MRPS12 MRPS15 MRPL46 MRPL17 55Sribosome:mRNA:peptidyl-tRNA at P-siteMRPL42 MRPL42 MRPS25 MRPS2 MRPS36 MRPS30 MRPL15 MRPS31 MRPL47 MRPL21 MRPS15 MRPS26 GFM1 MRPS18B MRPL4 Mitochondrial 12S rRNA MRPL35 MRPS11 MRPL55 MRPL36 ICT1 MRPS15 ICT1 MRPS5 MRPL28 Mitochondrial 12S rRNA MRPS30 MRPL19 MRPL44 MRPL3 tRNA(Gln) tRNA(Asp) DAP3 MRPS34 MRPS9 MRPS35 MRPL49 MRPL44 MRPL19 MRPL3 Trp-tRNA(Trp) GTPMRPS24 MRPL11 MRPS7 MRPL16 MRPS35 GTP MRPL20 MRPL51 MRPL32 MRPS18B GTP MRPL10 DAP3 MRPS33 MRPL30 MRPL52 MRPS22 MRPS6 MRPS25 MRPS24 MRPS9 MRPL3 tRNA(Phe) MRPL55 MRPL32 MRPL10 MRPL51 55Sribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPMRPL52 Met-tRNA(Met) MRPL32 MRPL9 MRPL16 Ala-tRNA(Ala) MRPL40 fMet-tRNA(fMet) CHCHD1 MRPS26 MRRF MRPL42 ICT1 MRPS2 MRPS18C MRPS14 MRPL21 MRPL32 MRPL9 MRPL57 MRPS18B Gln-tRNA(Gln) MRPS10 MRPL43 MRPL34 MRPS5 MRPL57 Cys-tRNA(Cys) MRPL24 MRPL34 MRPL45 MRPS9 MRPS18B MRPS6 ICT1 MRPS6 MRPS9 MRPL28 MRPS18A MRPL17 Thr-tRNA(Thr) MRPL17 MRPS6 tRNA(Met) MRPS31 MRPL38 MRPS5 MRPL21 Mitochondrial 16S rRNA MRPS17 MRPL36 ICT1 MRPL30 MRPS34 tRNA(Asp) MRPL37 PTCD3 MRPS15 GTP MRPS33 MRPS10 MRPS26 MRPS28 10-formyl-THFMRPS35 MRPL27 MRPL24 MRPL35 MRPL52 MRPL42 fMet-tRNA(fMet) MRPL19 MRPL23 MRPL18 MRPL1 MRPS18A AURKAIP1 MRPL41 MRPS31 MRPL20 MRPL41 MRPS14 MRPS25 MRPL9 MRPS6 MRPS14 MT-TV MRPL55 tRNA(Gln) MRPS2 MRPL35 GDP MRPL21 MRPL13 MRPL51 MRPL39 MRPS35 MRPS18A MRPL38 Phe-tRNA(Phe) MRPS17 MRPL33 MRPL14 MTIF3 MRPL21 MRPL40 MRPL9 MRPL49 MRPL34 MRPS18A MRPL49 tRNA(Phe) MRPL50 DAP3 55Sribosome:mRNA:tRNAMRPS27 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPMRPL47 MRPL3 MRPL38 MRPL55 MRPL40 MRPS16 tRNA(Val) MRPS25 Mitochondrial 16S rRNA MRPL42 MRPL55 GFM1:GDPTyr-tRNA(Tyr) MRPL17 MRPS11 TUFM Asn-tRNA(Asn) MRPS33 MRPL54 MRPS18A MRPS23 tRNA(Trp) MRPS11 ERAL1 MRPL45 MRPL53 MRPL44 MRPL36 MRPS31 MRPL3 MRPS36 MRPS2 PTCD3 MRPL22 MRPS16 CHCHD1 MRPL40 tRNA(Met) MRPS16 MRPS27 MRPS2 Gly-tRNA(Gly) MRPL27 Thr-tRNA(Thr) MRPS7 MRPL14 MRPL14 MRPL10 MRPL54 MRPL51 MRPS12 MRPL54 MRPL35 MRPL12 MRPL12 14, 2814, 2814, 281, 15, 2514, 2814, 2814, 2814, 2814, 287, 14, 15, 288, 13, 3314, 2814, 2814, 2814, 2814, 28


Description

Of the roughly 1000 human mitochondrial proteins only 13 proteins, all of them hydrophobic inner membrane proteins that are components of the oxidative phosphorylation apparatus, are encoded in the mitochondrial genome and translated by mitoribosomes at the matrix face of the inner membrane (reviewed in Herrmann et al. 2012, Hallberg and Larsson 2014, Lightowlers et al. 2014). The remainder, including all proteins of the mitochondrial translation system, are encoded in the nucleus and imported from the cytosol into the mitochondrion. Translation in the mitochondrion reflects both the bacterial origin of the organelle and subsequent divergent evolution during symbiosis (reviewed in Huot et al. 2014, Richman et al. 2014). Human mitochondrial ribosomes have a low sedimentation coefficient of only 55S, but at 2.71 MDa they retain a similar mass to E. coli 70S particles. The 55S particles are protein-rich compared to both cytosolic ribosomes and eubacterial ribosomes. This is due to shorter mt-rRNAs, mitochondria-specific proteins, and numerous rearrangements in individual protein positions within the two ribosome subunits (inferred from bovine ribosomes in Sharma et al. 2003, Greber et al. 2014, Kaushal et al. 2014, reviewed in Agrawal and Sharma 2012).
Mitochondrial mRNAs have either no untranslated leader or short leaders of 1-3 nucleotides, with the exception of the 2 bicistronic transcripts, RNA7 and RNA14, which have overlapping orfs that encode ND4L/ND4 and ATP8/ATP6 respectively. Translation is believed to initiate with the mRNA binding the 28S subunit:MTIF3 (28S subunit:IF-3Mt, 28S subunit:IF2mt) complex together with MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP) at the matrix face of the inner membrane (reviewed in Christian and Spremulli 2012). MTIF3 can dissociate 55S particles in preparation for initiation, enhances formation of initiation complexes, and inhibits N-formylmethionine-tRNA (fMet-tRNA) binding to 28S subunits in the absence of mRNA. Binding of fMet-tRNA to the start codon of the mRNA results in a stable complex while absence of a start codon at the 5' end of the mRNA causes eventual dissociation of the mRNA from the 28S subunit. After recognition of a start codon, the 39S subunit then binds the stable complex, GTP is hydrolyzed, and the initiation factors MTIF3 and MTIF2:GDP dissociate.
Translation elongation then proceeds by cycles of aminoacyl-tRNAs binding, peptide bond formation, and displacement of deacylated tRNAs. In each cycle an aminoacyl-tRNA in a complex with TUFM:GTP (EF-Tu:GTP) binds at the A-site of the ribosome, GTP is hydrolyzed, and TUFM:GDP dissociates. The elongating polypeptide bonded to the tRNA at the P-site is transferred to the aminoacyl group at the A-site by peptide bond formation at the peptidyl transferase center, leaving a deacylated tRNA at the P-site and the elongating polypeptide attached to the tRNA at the A-site. The polypeptide is co-translationally inserted into the inner mitochondrial membrane via an interaction with OXA1L (Haque et al. 2010, reviewed in Ott and Hermann 2010). After peptide bond formation, GFM1:GTP (EF-Gmt:GTP) then binds the ribosome complex, GTP is hydrolyzed, GFM1:GDP dissociates, and the ribosome translocates 3 nucleotides in the 3' direction along the mRNA, relocating the polypeptide-tRNA to the P-site and allowing another cycle to begin. TUFM:GDP is regenerated to TUFM:GTP by the guanine nucleotide exchange factor TSFM (EF-Ts, EF-TsMt).
Translation is terminated when MTRF1L:GTP (MTRF1a:GTP) recognizes an UAA or UAG termination codon at the A-site of the ribosome (Tsuboi et al. 2009). GTP hydrolysis does not appear to be required. The tRNA-aminoacyl bond between the translated polypeptide and the final tRNA at the P-site is hydrolyzed by the 39S subunit, facilitating release of the polypeptide. MRRF (RRF) and GFM2:GTP (EF-G2mt:GTP) then act to release the remaining tRNA and mRNA from the ribosome and dissociate the 55S ribosome into 28S and 39S subunits.
Mutations have been identified in genes encoding mitochondrial ribosomal proteins and translation factors. These have been shown to be pathogenic, causing neurological and other diseases (reviewed in Koopman et al. 2013, Pearce et al. 2013). View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 5368287
Reactome-version 
Reactome version: 61
Reactome Author 
Reactome Author: May, Bruce

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Soleimanpour-Lichaei HR, Kühl I, Gaisne M, Passos JF, Wydro M, Rorbach J, Temperley R, Bonnefoy N, Tate W, Lightowlers R, Chrzanowska-Lightowlers Z.; ''mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  2. Richter R, Rorbach J, Pajak A, Smith PM, Wessels HJ, Huynen MA, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome.''; PubMed Europe PMC Scholia
  3. Lightowlers RN, Rozanska A, Chrzanowska-Lightowlers ZM.; ''Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation.''; PubMed Europe PMC Scholia
  4. Zhang Y, Spremulli LL.; ''Identification and cloning of human mitochondrial translational release factor 1 and the ribosome recycling factor.''; PubMed Europe PMC Scholia
  5. Valente L, Shigi N, Suzuki T, Zeviani M.; ''The R336Q mutation in human mitochondrial EFTu prevents the formation of an active mt-EFTu.GTP.aa-tRNA ternary complex.''; PubMed Europe PMC Scholia
  6. Hällberg BM, Larsson NG.; ''Making proteins in the powerhouse.''; PubMed Europe PMC Scholia
  7. Herrmann JM, Longen S, Weckbecker D, Depuydt M.; ''Biogenesis of mitochondrial proteins.''; PubMed Europe PMC Scholia
  8. Rackham O, Filipovska A.; ''Supernumerary proteins of mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  9. Dennerlein S, Rozanska A, Wydro M, Chrzanowska-Lightowlers ZM, Lightowlers RN.; ''Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit.''; PubMed Europe PMC Scholia
  10. Koopman WJ, Distelmaier F, Smeitink JA, Willems PH.; ''OXPHOS mutations and neurodegeneration.''; PubMed Europe PMC Scholia
  11. Koc EC, Cimen H, Kumcuoglu B, Abu N, Akpinar G, Haque ME, Spremulli LL, Koc H.; ''Identification and characterization of CHCHD1, AURKAIP1, and CRIF1 as new members of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  12. Rorbach J, Richter R, Wessels HJ, Wydro M, Pekalski M, Farhoud M, Kühl I, Gaisne M, Bonnefoy N, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''The human mitochondrial ribosome recycling factor is essential for cell viability.''; PubMed Europe PMC Scholia
  13. Christian BE, Spremulli LL.; ''Mechanism of protein biosynthesis in mammalian mitochondria.''; PubMed Europe PMC Scholia
  14. Tucker EJ, Hershman SG, Köhrer C, Belcher-Timme CA, Patel J, Goldberger OA, Christodoulou J, Silberstein JM, McKenzie M, Ryan MT, Compton AG, Jaffe JD, Carr SA, Calvo SE, RajBhandary UL, Thorburn DR, Mootha VK.; ''Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation.''; PubMed Europe PMC Scholia
  15. Huynen MA, Duarte I, Chrzanowska-Lightowlers ZM, Nabuurs SB.; ''Structure based hypothesis of a mitochondrial ribosome rescue mechanism.''; PubMed Europe PMC Scholia
  16. Agrawal RK, Sharma MR.; ''Structural aspects of mitochondrial translational apparatus.''; PubMed Europe PMC Scholia
  17. Nozaki Y, Matsunaga N, Ishizawa T, Ueda T, Takeuchi N.; ''HMRF1L is a human mitochondrial translation release factor involved in the decoding of the termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  18. Cavdar Koc E, Burkhart W, Blackburn K, Moseley A, Spremulli LL.; ''The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  19. Akabane S, Ueda T, Nierhaus KH, Takeuchi N.; ''Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria.''; PubMed Europe PMC Scholia
  20. Temperley R, Richter R, Dennerlein S, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''Hungry codons promote frameshifting in human mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  21. Lind C, Sund J, Aqvist J.; ''Codon-reading specificities of mitochondrial release factors and translation termination at non-standard stop codons.''; PubMed Europe PMC Scholia
  22. Uchiumi T, Ohgaki K, Yagi M, Aoki Y, Sakai A, Matsumoto S, Kang D.; ''ERAL1 is associated with mitochondrial ribosome and elimination of ERAL1 leads to mitochondrial dysfunction and growth retardation.''; PubMed Europe PMC Scholia
  23. Bhargava K, Templeton P, Spremulli LL.; ''Expression and characterization of isoform 1 of human mitochondrial elongation factor G.''; PubMed Europe PMC Scholia
  24. Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM, Moseley A, Spremulli LL.; ''The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  25. Huot JL, Enkler L, Megel C, Karim L, Laporte D, Becker HD, Duchêne AM, Sissler M, Maréchal-Drouard L.; ''Idiosyncrasies in decoding mitochondrial genomes.''; PubMed Europe PMC Scholia
  26. Richman TR, Rackham O, Filipovska A.; ''Mitochondria: Unusual features of the mammalian mitoribosome.''; PubMed Europe PMC Scholia
  27. Chung HK, Spremulli LL.; ''Purification and characterization of elongation factor G from bovine liver mitochondria.''; PubMed Europe PMC Scholia
  28. Ott M, Herrmann JM.; ''Co-translational membrane insertion of mitochondrially encoded proteins.''; PubMed Europe PMC Scholia
  29. Young DJ, Edgar CD, Murphy J, Fredebohm J, Poole ES, Tate WP.; ''Bioinformatic, structural, and functional analyses support release factor-like MTRF1 as a protein able to decode nonstandard stop codons beginning with adenine in vertebrate mitochondria.''; PubMed Europe PMC Scholia
  30. Haque ME, Elmore KB, Tripathy A, Koc H, Koc EC, Spremulli LL.; ''Properties of the C-terminal tail of human mitochondrial inner membrane protein Oxa1L and its interactions with mammalian mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  31. Kaushal PS, Sharma MR, Booth TM, Haque EM, Tung CS, Sanbonmatsu KY, Spremulli LL, Agrawal RK.; ''Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  32. Pearce S, Nezich CL, Spinazzola A.; ''Mitochondrial diseases: translation matters.''; PubMed Europe PMC Scholia
  33. Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V.; ''Structure of the large ribosomal subunit from human mitochondria.''; PubMed Europe PMC Scholia
  34. Tsuboi M, Morita H, Nozaki Y, Akama K, Ueda T, Ito K, Nierhaus KH, Takeuchi N.; ''EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis.''; PubMed Europe PMC Scholia
  35. Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F, Erzberger JP, Leibundgut M, Aebersold R, Ban N.; ''Architecture of the large subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114740view16:22, 25 January 2021ReactomeTeamReactome version 75
113184view11:25, 2 November 2020ReactomeTeamReactome version 74
112412view15:35, 9 October 2020ReactomeTeamReactome version 73
101316view11:20, 1 November 2018ReactomeTeamreactome version 66
100853view20:52, 31 October 2018ReactomeTeamreactome version 65
100394view19:26, 31 October 2018ReactomeTeamreactome version 64
99942view16:11, 31 October 2018ReactomeTeamreactome version 63
99498view14:44, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99147view12:41, 31 October 2018ReactomeTeamreactome version 62
93746view13:33, 16 August 2017ReactomeTeamreactome version 61
93261view11:18, 9 August 2017ReactomeTeamreactome version 61
87964view13:13, 25 July 2016RyanmillerOntology Term : 'translation pathway' added !
87963view13:13, 25 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86341view09:15, 11 July 2016ReactomeTeamreactome version 56
83252view10:32, 18 November 2015ReactomeTeamVersion54
81361view12:53, 21 August 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
10-formyl-THFMetaboliteCHEBI:15637 (ChEBI)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ComplexR-HSA-5368280 (Reactome)
28S ribosomal subunit:MTIF3ComplexR-HSA-5368269 (Reactome)
28S ribosomal subunitComplexR-HSA-5368239 (Reactome)
39S ribosomal subunitComplexR-HSA-5368233 (Reactome)
55S ribosome:MRRF:GFM2:GTPComplexR-HSA-5419282 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPComplexR-HSA-5389851 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAComplexR-HSA-5389838 (Reactome)
55S ribosome:mRNA:fMet-tRNAComplexR-HSA-5368273 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteComplexR-HSA-5419272 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPComplexR-HSA-5419280 (Reactome)
55S ribosome:mRNA:tRNA:MRRFComplexR-HSA-5419275 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteComplexR-HSA-5389843 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPComplexR-HSA-5419267 (Reactome)
55S ribosome:mRNA:tRNAComplexR-HSA-5419262 (Reactome)
AURKAIP1 ProteinQ9NWT8 (Uniprot-TrEMBL)
Ala-tRNA(Ala) R-HSA-379730 (Reactome)
Arg-tRNA(Arg) R-HSA-379708 (Reactome)
Asn-tRNA(Asn) R-HSA-379718 (Reactome)
Asp-tRNA(Asp) R-HSA-379698 (Reactome)
CHCHD1 ProteinQ96BP2 (Uniprot-TrEMBL)
Cys-tRNA(Cys) R-HSA-379713 (Reactome)
DAP3 ProteinP51398 (Uniprot-TrEMBL)
ERAL1 ProteinO75616 (Uniprot-TrEMBL)
GADD45GIP1 ProteinQ8TAE8 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GFM1 ProteinQ96RP9 (Uniprot-TrEMBL)
GFM1:GDPComplexR-HSA-5419260 (Reactome)
GFM1:GTPComplexR-HSA-5419274 (Reactome)
GFM2 ProteinQ969S9 (Uniprot-TrEMBL)
GFM2:GDPComplexR-HSA-5419266 (Reactome)
GFM2:GTPComplexR-HSA-5419270 (Reactome)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Gln-tRNA(Gln) R-HSA-379753 (Reactome)
Glu-tRNA(Glu) R-HSA-379744 (Reactome)
Gly-tRNA(Gly) R-HSA-379781 (Reactome)
His-tRNA(His) R-HSA-379764 (Reactome)
ICT1 ProteinQ14197 (Uniprot-TrEMBL)
Ile-tRNA(Ile) R-HSA-379769 (Reactome)
Leu-tRNA(Leu) R-HSA-379773 (Reactome)
Lys-tRNA(Lys) R-HSA-379795 (Reactome)
MRPL1 ProteinQ9BYD6 (Uniprot-TrEMBL)
MRPL10 ProteinQ7Z7H8 (Uniprot-TrEMBL)
MRPL11 ProteinQ9Y3B7 (Uniprot-TrEMBL)
MRPL12 ProteinP52815 (Uniprot-TrEMBL)
MRPL13 ProteinQ9BYD1 (Uniprot-TrEMBL)
MRPL14 ProteinQ6P1L8 (Uniprot-TrEMBL)
MRPL15 ProteinQ9P015 (Uniprot-TrEMBL)
MRPL16 ProteinQ9NX20 (Uniprot-TrEMBL)
MRPL17 ProteinQ9NRX2 (Uniprot-TrEMBL)
MRPL18 ProteinQ9H0U6 (Uniprot-TrEMBL)
MRPL19 ProteinP49406 (Uniprot-TrEMBL)
MRPL2 ProteinQ5T653 (Uniprot-TrEMBL)
MRPL20 ProteinQ9BYC9 (Uniprot-TrEMBL)
MRPL21 ProteinQ7Z2W9 (Uniprot-TrEMBL)
MRPL22 ProteinQ9NWU5 (Uniprot-TrEMBL)
MRPL23 ProteinQ16540 (Uniprot-TrEMBL)
MRPL24 ProteinQ96A35 (Uniprot-TrEMBL)
MRPL27 ProteinQ9P0M9 (Uniprot-TrEMBL)
MRPL28 ProteinQ13084 (Uniprot-TrEMBL)
MRPL3 ProteinP09001 (Uniprot-TrEMBL)
MRPL30 ProteinQ8TCC3 (Uniprot-TrEMBL)
MRPL32 ProteinQ9BYC8 (Uniprot-TrEMBL)
MRPL33 ProteinO75394 (Uniprot-TrEMBL)
MRPL34 ProteinQ9BQ48 (Uniprot-TrEMBL)
MRPL35 ProteinQ9NZE8 (Uniprot-TrEMBL)
MRPL36 ProteinQ9P0J6 (Uniprot-TrEMBL)
MRPL37 ProteinQ9BZE1 (Uniprot-TrEMBL)
MRPL38 ProteinQ96DV4 (Uniprot-TrEMBL)
MRPL39 ProteinQ9NYK5 (Uniprot-TrEMBL)
MRPL4 ProteinQ9BYD3 (Uniprot-TrEMBL)
MRPL40 ProteinQ9NQ50 (Uniprot-TrEMBL)
MRPL41 ProteinQ8IXM3 (Uniprot-TrEMBL)
MRPL42 ProteinQ9Y6G3 (Uniprot-TrEMBL)
MRPL43 ProteinQ8N983 (Uniprot-TrEMBL)
MRPL44 ProteinQ9H9J2 (Uniprot-TrEMBL)
MRPL45 ProteinQ9BRJ2 (Uniprot-TrEMBL)
MRPL46 ProteinQ9H2W6 (Uniprot-TrEMBL)
MRPL47 ProteinQ9HD33 (Uniprot-TrEMBL)
MRPL48 ProteinQ96GC5 (Uniprot-TrEMBL)
MRPL49 ProteinQ13405 (Uniprot-TrEMBL)
MRPL50 ProteinQ8N5N7 (Uniprot-TrEMBL)
MRPL51 ProteinQ4U2R6 (Uniprot-TrEMBL)
MRPL52 ProteinQ86TS9 (Uniprot-TrEMBL)
MRPL53 ProteinQ96EL3 (Uniprot-TrEMBL)
MRPL54 ProteinQ6P161 (Uniprot-TrEMBL)
MRPL55 ProteinQ7Z7F7 (Uniprot-TrEMBL)
MRPL57 ProteinQ9BQC6 (Uniprot-TrEMBL)
MRPL9 ProteinQ9BYD2 (Uniprot-TrEMBL)
MRPS10 ProteinP82664 (Uniprot-TrEMBL)
MRPS11 ProteinP82912 (Uniprot-TrEMBL)
MRPS12 ProteinO15235 (Uniprot-TrEMBL)
MRPS14 ProteinO60783 (Uniprot-TrEMBL)
MRPS15 ProteinP82914 (Uniprot-TrEMBL)
MRPS16 ProteinQ9Y3D3 (Uniprot-TrEMBL)
MRPS17 ProteinQ9Y2R5 (Uniprot-TrEMBL)
MRPS18A ProteinQ9NVS2 (Uniprot-TrEMBL)
MRPS18B ProteinQ9Y676 (Uniprot-TrEMBL)
MRPS18C ProteinQ9Y3D5 (Uniprot-TrEMBL)
MRPS2 ProteinQ9Y399 (Uniprot-TrEMBL)
MRPS21 ProteinP82921 (Uniprot-TrEMBL)
MRPS22 ProteinP82650 (Uniprot-TrEMBL)
MRPS23 ProteinQ9Y3D9 (Uniprot-TrEMBL)
MRPS24 ProteinQ96EL2 (Uniprot-TrEMBL)
MRPS25 ProteinP82663 (Uniprot-TrEMBL)
MRPS26 ProteinQ9BYN8 (Uniprot-TrEMBL)
MRPS27 ProteinQ92552 (Uniprot-TrEMBL)
MRPS28 ProteinQ9Y2Q9 (Uniprot-TrEMBL)
MRPS30 ProteinQ9NP92 (Uniprot-TrEMBL)
MRPS31 ProteinQ92665 (Uniprot-TrEMBL)
MRPS33 ProteinQ9Y291 (Uniprot-TrEMBL)
MRPS34 ProteinP82930 (Uniprot-TrEMBL)
MRPS35 ProteinP82673 (Uniprot-TrEMBL)
MRPS36 ProteinP82909 (Uniprot-TrEMBL)
MRPS5 ProteinP82675 (Uniprot-TrEMBL)
MRPS6 ProteinP82932 (Uniprot-TrEMBL)
MRPS7 ProteinQ9Y2R9 (Uniprot-TrEMBL)
MRPS9 ProteinP82933 (Uniprot-TrEMBL)
MRRF ProteinQ96E11 (Uniprot-TrEMBL)
MRRFProteinQ96E11 (Uniprot-TrEMBL)
MT-TV ProteinENST00000387342 (Ensembl)
MTFMTProteinQ96DP5 (Uniprot-TrEMBL)
MTIF2 ProteinP46199 (Uniprot-TrEMBL)
MTIF2:GTPComplexR-HSA-5368285 (Reactome)
MTIF2ProteinP46199 (Uniprot-TrEMBL)
MTIF3 ProteinQ9H2K0 (Uniprot-TrEMBL)
MTIF3ProteinQ9H2K0 (Uniprot-TrEMBL)
MTRF1L ProteinQ9UGC7 (Uniprot-TrEMBL)
MTRF1L, ICT1ComplexR-HSA-5432633 (Reactome) Both MTRF1L and ICT1 can bind a standard stop codon in the A-site of the ribosome and cause release of the polypeptide. ICT1 can also cause release of ribosomes stalled in non-standard conformations (e.g. non-standard stop codons, mRNA lacking a stop codon) (inferred from pig mitoribosomes in Akabane et al. 2014).
Met-tRNA(Met) R-HSA-379780 (Reactome)
Met-tRNA(Met)R-HSA-379780 (Reactome)
Mitochondrial 12S rRNA ProteinENST00000389680 (Ensembl)
Mitochondrial 16S rRNA ProteinENST00000387347 (Ensembl)
PTCD3 ProteinQ96EY7 (Uniprot-TrEMBL)
Phe-tRNA(Phe) R-HSA-379789 (Reactome)
PiMetaboliteCHEBI:18367 (ChEBI)
Pro-tRNA(Pro) R-HSA-379745 (Reactome)
Ser-tRNA(Ser) R-HSA-379777 (Reactome)
THFMetaboliteCHEBI:15635 (ChEBI)
TSFM ProteinP43897 (Uniprot-TrEMBL)
TSFMProteinP43897 (Uniprot-TrEMBL)
TUFM ProteinP49411 (Uniprot-TrEMBL)
TUFM:GDPComplexR-HSA-5389856 (Reactome)
TUFM:GTP:aminoacyl-tRNAComplexR-HSA-5389855 (Reactome)
TUFM:GTPComplexR-HSA-5389853 (Reactome)
TUFM:TSFMComplexR-HSA-5419263 (Reactome)
Thr-tRNA(Thr) R-HSA-379779 (Reactome)
Trp-tRNA(Trp) R-HSA-379759 (Reactome)
Tyr-tRNA(Tyr) R-HSA-379755 (Reactome)
Val-tRNA(Val) R-HSA-379782 (Reactome)
aminoacyl-tRNAComplexR-HSA-5389847 (Reactome)
fMet-tRNA(fMet) R-HSA-5368270 (Reactome)
fMet-tRNA(fMet)R-HSA-5368270 (Reactome)
mRNA R-NUL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
mRNAR-NUL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
peptidyl-tRNA with elongated peptide R-NUL-5389836 (Reactome)
polypeptideR-NUL-5419287 (Reactome)
tRNA(Ala) R-HSA-379729 (Reactome)
tRNA(Arg) R-HSA-379727 (Reactome)
tRNA(Asn) R-HSA-379699 (Reactome)
tRNA(Asp) R-HSA-379715 (Reactome)
tRNA(Cys) R-HSA-379714 (Reactome)
tRNA(Gln) R-HSA-379740 (Reactome)
tRNA(Glu) R-HSA-379754 (Reactome)
tRNA(Gly) R-HSA-379770 (Reactome)
tRNA(His) R-HSA-379752 (Reactome)
tRNA(Ile) R-HSA-379750 (Reactome)
tRNA(Leu) R-HSA-379788 (Reactome)
tRNA(Lys) R-HSA-379747 (Reactome)
tRNA(Met) R-HSA-379741 (Reactome)
tRNA(Met)R-HSA-379741 (Reactome)
tRNA(Phe) R-HSA-379760 (Reactome)
tRNA(Pro) R-HSA-379775 (Reactome)
tRNA(Ser) R-HSA-379761 (Reactome)
tRNA(Thr) R-HSA-379791 (Reactome)
tRNA(Trp) R-HSA-379774 (Reactome)
tRNA(Tyr) R-HSA-379756 (Reactome)
tRNA(Val) R-HSA-379735 (Reactome)
tRNAComplexR-HSA-5389844 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
10-formyl-THFR-HSA-5389841 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ArrowR-HSA-5389849 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
R-HSA-5389839 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
mim-catalysisR-HSA-5389839 (Reactome)
28S ribosomal subunit:MTIF3ArrowR-HSA-5368279 (Reactome)
28S ribosomal subunit:MTIF3R-HSA-5389849 (Reactome)
28S ribosomal subunitArrowR-HSA-5419273 (Reactome)
28S ribosomal subunitR-HSA-5368279 (Reactome)
39S ribosomal subunitArrowR-HSA-5419273 (Reactome)
39S ribosomal subunitR-HSA-5389839 (Reactome)
55S ribosome:MRRF:GFM2:GTPArrowR-HSA-5419277 (Reactome)
55S ribosome:MRRF:GFM2:GTPR-HSA-5419273 (Reactome)
55S ribosome:MRRF:GFM2:GTPmim-catalysisR-HSA-5419273 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPArrowR-HSA-5389848 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPmim-catalysisR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAArrowR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAR-HSA-5389857 (Reactome)
55S ribosome:mRNA:fMet-tRNAArrowR-HSA-5389839 (Reactome)
55S ribosome:mRNA:fMet-tRNAR-HSA-5389848 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteArrowR-HSA-5419279 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPArrowR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNA:MRRFArrowR-HSA-5419281 (Reactome)
55S ribosome:mRNA:tRNA:MRRFR-HSA-5419277 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteArrowR-HSA-5389857 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPArrowR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPmim-catalysisR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNAArrowR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNAR-HSA-5419281 (Reactome)
GDPArrowR-HSA-5389839 (Reactome)
GDPArrowR-HSA-5419269 (Reactome)
GDPArrowR-HSA-5419271 (Reactome)
GFM1:GDPArrowR-HSA-5419279 (Reactome)
GFM1:GTPR-HSA-5419261 (Reactome)
GFM2:GDPArrowR-HSA-5419273 (Reactome)
GFM2:GTPR-HSA-5419277 (Reactome)
GTPR-HSA-5419264 (Reactome)
GTPR-HSA-5419268 (Reactome)
MRRFArrowR-HSA-5419273 (Reactome)
MRRFR-HSA-5419281 (Reactome)
MTFMTmim-catalysisR-HSA-5389841 (Reactome)
MTIF2:GTPR-HSA-5389849 (Reactome)
MTIF2ArrowR-HSA-5389839 (Reactome)
MTIF3ArrowR-HSA-5389839 (Reactome)
MTIF3R-HSA-5368279 (Reactome)
MTRF1L, ICT1ArrowR-HSA-5419271 (Reactome)
MTRF1L, ICT1R-HSA-5419264 (Reactome)
Met-tRNA(Met)R-HSA-5389841 (Reactome)
PiArrowR-HSA-5389839 (Reactome)
PiArrowR-HSA-5389842 (Reactome)
PiArrowR-HSA-5419271 (Reactome)
PiArrowR-HSA-5419273 (Reactome)
PiArrowR-HSA-5419279 (Reactome)
R-HSA-5368279 (Reactome) As inferred from bovine mitochondrial homologs, MTIF3 (IF-3Mt, IF3mt) binds the 28S ribosomal subunit in preparation for binding mRNA and initiating translation. MTIF3 also dissociates 55S particles that have not already been dissociated by GFM2 plus MRRF and displaces N-formylmethionyl-tRNA from the 28S subunit in the absence of mRNA but cannot displace mRNA from the 28S subunit. The activity of MTIF3 is necessary for translation initiation.. The 28S subunit associates with the matrix-side face of the inner mitochondrial membrane and translation products are inserted directly into the membrane.
R-HSA-5389839 (Reactome) As inferred from bovine homologs, the 39S ribosomal subunit binds the 28S subunit:mRNA:N-formylmethionyl-tRNA complex, MTIF2 hydrolyzes GTP, then MTIF2, GDP, and MTIF3 dissociate. (MTIF2 has a very low affinity for GDP so it is unclear whether MTIF2 and GDP remain associated after hydrolysis of GTP.) The 28S subunit, 39S subunit, and 55S holoribosome associate with the inner mitochondrial membrane during translation and in the absence of translation.
R-HSA-5389841 (Reactome) Like bacteria, mitochondria initiate translation with N-formylmethionine. Unlike bacteria, mammalian mitochondria do not have a tRNA dedicated to N-formylmethionine. Instead, the mitochondrial enzyme MTFMT (methionyl-tRNA formyltransferase, FMT, FMT1) transfers a formyl group from 10-formyltetrahydrofolate (10-formyl-THF) to the amino group of methionyl-tRNA in a portion of the methionyl-tRNAs in the matrix.
R-HSA-5389842 (Reactome) As inferred from bovine homologs, interaction of the cognate aminoacyl-tRNA in the A-site with the codon in the mRNA causes TUFM (EF-Tu) to hydrolyze GTP. TUFM:GDP then dissociates from the ribosome.
R-HSA-5389845 (Reactome) As inferred from bovine homologs, TUFM:GTP (EF-Tu:GTP) binds an aminoacyl-tRNA to form the ternary complex.
R-HSA-5389848 (Reactome) As inferred from bovine homologs, the ternary complex containing TUFM:GTP (EF-Tu:GTP) and aminoacyl-tRNA enters the A-site of the 55S ribosome (reviewed in Christian and Spremulli 2012).
R-HSA-5389849 (Reactome) As inferred from bovine homologs, the 28S ribosomal subunit in a complex with MTIF3 (IF-3Mt, IF3mt) binds mRNA and, at some point, MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP). If an initiation codon is present at the 5' end of the mRNA then MTIF2:GTP assists the binding of N-formylmethionyl-tRNA and a stable, productive initiation complex results. If no initiation codon is present, the mRNA slides through the 28S subunit and then dissociates.
R-HSA-5389857 (Reactome) As inferred from bovine homologs, the ribosome catalyzes formation of a peptide bond between the aminoacyl group of the aminoacyl-tRNA at the A-site and the peptidyl-tRNA at the P-site. The result is a polypeptide, longer by one amino acid, attached to the tRNA at the A-site by an ester bond. A deacylated tRNA remains at the P-site. 55S ribosomes associate with the inner mitochondrial membrane and the translation products are cotranslationally inserted into the inner membrane.
R-HSA-5419261 (Reactome) GFMT1:GTP (EF-G1mt:GTP) binds ribosomes possessing a peptidyl-tRNA at the A site and an empty P site (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419264 (Reactome) MTRF1L (mtRF1a) binds the stop codons UAA and UAG of the mRNA when they are in the A site of the ribosome (Soleimanpour-Lichaei 2007, Nozaki et al. 2008). (The UGA codon is recognized by the tryptophan tRNA in mitochondrial translation.) ICT1 can also bind standard stop codons in the A-site (inferred from pig mitochondrial ribosomes in Akabane et al. 2014). MTRF1 was also thought to play a role in translation termination by recognizing the unconventional termination codons AGA and AGG (Zhang and Spremulli 1998, Young et al. 2010) but frameshifting is now confirmed in the termination mechanism of these codons (Temperley et al. 2010). Structural features of MTRF1 have been reported suggesting it could recognize an empty A-site (Huynen et al. 2012) or UAA and UAG codons (Lind et al. 2013) however there is no direct experimental data to confirm these last two postulates.
R-HSA-5419268 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor for TUFM (EF-Tu). In the second step of the process TUFM in the TUFM:TSFM complex binds GTP and TSFM is released, yielding TUFM:GTP and TSFM.
R-HSA-5419269 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor to regenerate TUFM:GTP (EF-Tu:GTP) from TUFM:GDP. In the first step of the process TSFM binds TUFM:GDP and displaces GDP, yielding a TSFM:TUFM complex and GDP.
R-HSA-5419271 (Reactome) Binding of the MTRF1L (MTRF1a) termination factor triggers hydrolysis of the peptidyl-tRNA bond by the 39S subunit of the ribosome and release of the translated polypeptide (Soleimanpour-Lichaei et al. 2007, Nozaki et al. 2008, reviewed in Christian and Spremulli 2012). MTRF1L hydrolyzes GTP during the reaction. Stalled ribosomes are rescued by binding of an ICT1 protein in addition to the ICT1 subunit integrated in the 39S subunit (Richter et al. 2010, Akabane et al. 2014).
R-HSA-5419273 (Reactome) When complexed with ribosomes GFM2 (EF-G2mt) hydrolyzes GTP and, together with MRRF, acts as a ribosome releasing factor by splitting 55S ribosomes into 28S and 39S subunits (Tsuboi et al. 2009). Though GTP is hydrolyzed during the reaction, hydrolysis is not necessary for splitting the 55S ribosome into 39S and 28S subunits, but is necessary for dissociation of GFM2 (as GFM2:GDP) and MRRF from the large ribosomal subunit after splitting (Tsuboi et al. 2009).
R-HSA-5419277 (Reactome) GFM2:GTP (EF-G2mt:GTP) joins MRRF at the A site of the ribosome after translation has been terminated by MTRF1L (MTRF1a) at a stop codon.
R-HSA-5419279 (Reactome) GFM1 (EF-Gmt, EF-G1mt) of the GFM1:GTP complex hydrolyzes GTP, yielding GFM1:GDP (Tsuboi et al. 2009). The hydrolysis of GTP drives translocation of the peptidyl-tRNA from the A-site to the P-site with consequent ejection of the deacylated tRNA from the P-site and translocation of the ribosome in the 3' direction along the mRNA (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419281 (Reactome) The mitochondrial ribosome releasing factor MRRF (RRF) binds the 55S ribosome at the A-site after translation has been terminated by MTRF1L (MTRF1a) at a stop codon and the translated polypeptide has been hydrolyzed from the last tRNA, which remains in the P-site (Rorbach et al. 2008).
THFArrowR-HSA-5389841 (Reactome)
TSFMArrowR-HSA-5419268 (Reactome)
TSFMR-HSA-5419269 (Reactome)
TUFM:GDPArrowR-HSA-5389842 (Reactome)
TUFM:GDPR-HSA-5419269 (Reactome)
TUFM:GTP:aminoacyl-tRNAArrowR-HSA-5389845 (Reactome)
TUFM:GTP:aminoacyl-tRNAR-HSA-5389848 (Reactome)
TUFM:GTPArrowR-HSA-5419268 (Reactome)
TUFM:GTPR-HSA-5389845 (Reactome)
TUFM:TSFMArrowR-HSA-5419269 (Reactome)
TUFM:TSFMR-HSA-5419268 (Reactome)
aminoacyl-tRNAR-HSA-5389845 (Reactome)
fMet-tRNA(fMet)ArrowR-HSA-5389841 (Reactome)
fMet-tRNA(fMet)R-HSA-5389849 (Reactome)
mRNAArrowR-HSA-5419277 (Reactome)
mRNAR-HSA-5389849 (Reactome)
polypeptideArrowR-HSA-5419271 (Reactome)
tRNA(Met)ArrowR-HSA-5419279 (Reactome)
tRNAArrowR-HSA-5419277 (Reactome)
Personal tools