Cellular response to hypoxia (Homo sapiens)

From WikiPathways

Revision as of 13:48, 16 August 2017 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
3, 10, 27, 29, 32...21, 23, 26, 41, 53...4423, 25, 581, 528, 33, 49, 513, 6, 8, 14, 16...4, 8, 33, 51, 643, 6, 8, 14, 16...7, 12, 13, 16, 24...4, 8, 51, 6416, 24, 48, 6315, 42, 6117, 19, 51, 6722, 24, 39, 49, 57...7, 11, 13, 16, 24...2, 5, 40, 42, 599, 18, 43, 59, 6920, 39, 638, 49, 5111, 22, 24, 39, 49...nucleoplasmmitochondrial inner membranecytosolHN-EPAS1 CUL2 HP-HIF3A UBC(153-228) UBC(533-608) 2xHP-EPAS1 2xHP-HIF1A HN-HIF1A VEGFAVHL UBC(229-304) CUL2 CO2UBC(77-152) WTIP HIF3AHIF-alphaLIMD1 UBC(305-380) HIGD1AUBA52(1-76) HP-HIF3A O2EGLN3 RBX1 TCEB2 HP-HIF3A DNAhydroxyPro-HIF-alpha:VHL:EloB,C:CUL2:RBX1UBC(533-608) RPS27A(1-76) VEGFA geneUBC(457-532) hydroxyPro-HIF-alpha:VHL:EloB,C:CUL2:RBX1:LIMD1,AJUBA,WTIP:PHD2,3UBC(305-380) UBC(381-456) SUCCAEP300 EGLN1 EP300UBE2D1 EGLN3 2OGUBC(305-380) VHL ub-HIF-alpha:VHL:EloB,C:CUL2:RBX1VHL PSMD12 RPS27A(1-76) HIFUBC(153-228) UBB(1-76) ELOC CA9 geneUBB(77-152) ELOC UBB(153-228) PSME1 UBC(381-456) WTIP PSMD11 PSMB5 RPS27A(1-76) CUL2 SHFM1 CUL2 UBC(609-684) AJUBA TCEB2 TCEB1 2OG2OGFIH1:FIH1SUCCAHIF3AUBC(77-152) CO2ELOC EPAS1 VBC complex (with orwithout LIMD1)UBC(381-456) RBX1 2xHP-HIF1A EPAS1 UBE2D1 UBA52(1-76) DNA RBX1-CUL2-EloB,C-VHLHIF1A HIF3A EGLN1 VHL CO2PSMB7 ub-hydroxyPro-HIF-alpha:VCB (with or without LIMD1)2xHP-HIF1A PSMB9 HIF1AUBC(229-304) UBB(153-228) RBX1 TCEB1 HP-HIF3A ELOC UBB(153-228) RBX1 ARNTUBC(305-380) CO2PSME2 2xHP-HIF1A UBC(457-532) UBC(1-76) HIF1A UBE2D3 hydroxyPro-HIF-alpha2xHP-EPAS1 UBB(77-152) UbEGLN3 UBC(1-76) RBX1 UBC(609-684) VHL TCEB2 O2UBC(1-76) PSMA4 PSMB3 HP-HIF3A UBC(381-456) PSMC6 UBA52(1-76) PSME3 EPO geneHIGD1A gene2OGELOC 2xHP-HIF1A CREBBPUBB(77-152) RBX1 UBC(609-684) HP-HIF3A 2xHP-EPAS1 EPAS1 UBC(1-76) UBC(229-304) UBC(77-152) WTIP TCEB2 UBC(457-532) 2xHP-HIF1A PSMA1 RPS27A(1-76) UBE2D2 2xHP-EPAS1 HIF1A UBE2D1,2,3HIF1A PSMF1 PSMD8 PSMC4 LIMD1 O2SUCCAUBB(77-152) WTIP VHL UBA52(1-76) HIF1A HP-HIF3A UBC(609-684) PSMD14 AJUBA UBC(229-304) HIF1AN UBA52(1-76) UBC(457-532) ELOC EPOUBB(1-76) UBC(457-532) 2xHP-EPAS1PSMD5 SUCCAPSMD7 UBC(305-380) VHL UBC(305-380) UBC(609-684) PSMD4 PHD2,3:LIMD1,AJUBA,WTIP:VHL:EloB:EloC:CUL2:RBX1UBE2D3 UBC(229-304) UBC(381-456) UBC(1-76) UBC(153-228) PSMD10 CITED2TCEB1 PSMB8 UBC(153-228) 26S proteasomePSMB10 UBB(153-228) PSMD2 UBE2D3 EGLN1 HIF1A,HIF2AAJUBA UBE2D2 UBB(77-152) PSMB1 HIF3A UBC(533-608) UBE2D2 HP-HIF3AUBE2D1,2,3:UbiquitinPSMA7 UBC(153-228) PSMC3 UBE2D1,2,3RBX1 UBB(153-228) LIMD1 UBA52(1-76) 2xHP-EPAS1 PSMB6 UBC(457-532) UBB(153-228) HIF-alphaTCEB2 2xHP-EPAS1 ub-hydroxyPro-HIF-alpha:VHL:EloB:EloC:CUL2:RBX1:LIMD1,AJUBA,WTIF:PHD2,3EGLN1 VHL TCEB2 2xHP-HIF1APSMA5 UBE2D1 PSMA2 2xHP-EPAS1 PSMD13 CUL2 PSMA6 UBE2D3 UBE2D2 VHL O2UBC(1-76) RBX1 CUL2 UBC(457-532) 2xHP-HIF1A VHL 2xHP-EPAS1 UBC(609-684) PSMB11 UBB(77-152) EPAS1 PSMA3 UBB(1-76) AJUBA PSMB2 UBB(1-76) UBC(153-228) HP-HIF3AUBC(229-304) TCEB2 UBC(1-76) EGLN3 UBB(153-228) UBC(533-608) UBB(1-76) RPS27A(1-76) HIF1AEGLN3 RPS27A(1-76) PSMC1 ELOC 2xHP-HIF1AWTIP UBC(533-608) UBC(609-684) PSMD3 EPAS1AJUBA UBC(77-152) PSMD1 RBX1 2OGCO2EPAS1 LIMD1 RPS27A(1-76) EPAS1HIF3A UBC(381-456) CUL2 UBC(77-152) PHD1,3UBC(533-608) RBX1 TCEB2 UBC(381-456) UBE2D1 CA9UBC(153-228) HIF:CBP:p300UBA52(1-76) UBB(1-76) EGLN2 ub-hydroxyPro-HIF-alpha:VHL:EloB:EloC:CUL2:RBX1TCEB2 2xHP-HIF1A PSMD6 TCEB2 UBC(305-380) PSME4 PSMD9 ARNT EGLN3 CUL2 UBC(229-304) SUCCAO2PSMA8 2xHP-EPAS1HIF3A PSMB4 CUL2 VHL:EloB,C:CUL2:RBX1CUL2 HP-HIF3A ARNT hydroxyPro-HIF-alphaUBC(77-152) UBB(77-152) UBC(77-152) UBC(533-608) PSMC5 UBB(1-76) PSMC2 UBE2D1,2,3:UbiquitinEGLN1 LIMD1 CREBBP hydroxyAsn-HIF1A,HIF2A1121, 23, 26, 41, 53...1160111135, 374717314547, 625135, 37, 39, 636845


Description

In the presence of oxygen members of the transcription factor family HIF-alpha, comprising HIF1A, HIF2A (EPAS1), and HIF3A, are hydroxylated on proline residues by PHD1 (EGLN2), PHD2 (EGLN1), and PHD3 (EGLN3) and on asparagine residues by HIF1AN (FIH) (reviewed in Pouyssegur et al. 2006, Semenza 2007, Kaelin and Ratcliffe 2008, Nizet and Johnson 2009, Brahimi-Horn and Pouyssegur 2009, Majmundar et al. 2010, Loenarz and Schofield 2011). Both types of reaction require molecular oxygen as a substrate and it is probable that at least some HIF-alpha molecules carry both hydroxylated asparagine and hydroxylated proline (Tian et al. 2011).
Hydroxylated asparagine interferes with the ability of HIF-alpha to interact with p300 and CBP while hydroxylated proline facilitates the interaction of HIF-alpha with the E3 ubiquitin ligase VHL, causing ubiquitination and proteolysis of HIF-alpha. Hypoxia inhibits both types of hydroxylation, resulting in the stabilization of HIF-alpha, which then enters the nucleus, binds HIF-beta, and recruits p300 and CBP to activate target genes such as EPO and VEGF. View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 1234174
Reactome-version 
Reactome version: 61
Reactome Author 
Reactome Author: May, Bruce

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Yu F, White SB, Zhao Q, Lee FS.; ''HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation.''; PubMed Europe PMC Scholia
  2. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML.; ''Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch.''; PubMed Europe PMC Scholia
  3. Kallio PJ, Okamoto K, O'Brien S, Carrero P, Makino Y, Tanaka H, Poellinger L.; ''Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha.''; PubMed Europe PMC Scholia
  4. Pause A, Lee S, Worrell RA, Chen DY, Burgess WH, Linehan WM, Klausner RD.; ''The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins.''; PubMed Europe PMC Scholia
  5. Berra E, Benizri E, Ginouvès A, Volmat V, Roux D, Pouysségur J.; ''HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia.''; PubMed Europe PMC Scholia
  6. Vukotic M, Oeljeklaus S, Wiese S, Vögtle FN, Meisinger C, Meyer HE, Zieseniss A, Katschinski DM, Jans DC, Jakobs S, Warscheid B, Rehling P, Deckers M.; ''Rcf1 mediates cytochrome oxidase assembly and respirasome formation, revealing heterogeneity of the enzyme complex.''; PubMed Europe PMC Scholia
  7. Fedulova N, Hanrieder J, Bergquist J, Emrén LO.; ''Expression and purification of catalytically active human PHD3 in Escherichia coli.''; PubMed Europe PMC Scholia
  8. Tuckerman JR, Zhao Y, Hewitson KS, Tian YM, Pugh CW, Ratcliffe PJ, Mole DR.; ''Determination and comparison of specific activity of the HIF-prolyl hydroxylases.''; PubMed Europe PMC Scholia
  9. Jiang BH, Rue E, Wang GL, Roe R, Semenza GL.; ''Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1.''; PubMed Europe PMC Scholia
  10. Semenza GL.; ''Hydroxylation of HIF-1: oxygen sensing at the molecular level.''; PubMed Europe PMC Scholia
  11. Hirsilä M, Koivunen P, Günzler V, Kivirikko KI, Myllyharju J.; ''Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor.''; PubMed Europe PMC Scholia
  12. Furlow PW, Percy MJ, Sutherland S, Bierl C, McMullin MF, Master SR, Lappin TR, Lee FS.; ''Erythrocytosis-associated HIF-2alpha mutations demonstrate a critical role for residues C-terminal to the hydroxylacceptor proline.''; PubMed Europe PMC Scholia
  13. Gu J, Milligan J, Huang LE.; ''Molecular mechanism of hypoxia-inducible factor 1alpha -p300 interaction. A leucine-rich interface regulated by a single cysteine.''; PubMed Europe PMC Scholia
  14. Berra E, Roux D, Richard DE, Pouysségur J.; ''Hypoxia-inducible factor-1 alpha (HIF-1 alpha) escapes O(2)-driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm.''; PubMed Europe PMC Scholia
  15. Brahimi-Horn MC, Pouysségur J.; ''HIF at a glance.''; PubMed Europe PMC Scholia
  16. Nizet V, Johnson RS.; ''Interdependence of hypoxic and innate immune responses.''; PubMed Europe PMC Scholia
  17. Majmundar AJ, Wong WJ, Simon MC.; ''Hypoxia-inducible factors and the response to hypoxic stress.''; PubMed Europe PMC Scholia
  18. Iwai K, Yamanaka K, Kamura T, Minato N, Conaway RC, Conaway JW, Klausner RD, Pause A.; ''Identification of the von Hippel-lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex.''; PubMed Europe PMC Scholia
  19. Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogawa K, Poellinger L, Fujii-Kuriyama Y.; ''Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300.''; PubMed Europe PMC Scholia
  20. Tanimoto K, Makino Y, Pereira T, Poellinger L.; ''Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein.''; PubMed Europe PMC Scholia
  21. Kaelin WG, Ratcliffe PJ.; ''Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway.''; PubMed Europe PMC Scholia
  22. Koivunen P, Hirsilä M, Günzler V, Kivirikko KI, Myllyharju J.; ''Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases.''; PubMed Europe PMC Scholia
  23. Wang W, Yang L, Hu L, Li F, Ren L, Yu H, Liu Y, Xia L, Lei H, Liao Z, Zhou F, Xie C, Zhou Y.; ''Inhibition of UBE2D3 expression attenuates radiosensitivity of MCF-7 human breast cancer cells by increasing hTERT expression and activity.''; PubMed Europe PMC Scholia
  24. Ivan M, Haberberger T, Gervasi DC, Michelson KS, Günzler V, Kondo K, Yang H, Sorokina I, Conaway RC, Conaway JW, Kaelin WG.; ''Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor.''; PubMed Europe PMC Scholia
  25. Lancaster DE, McNeill LA, McDonough MA, Aplin RT, Hewitson KS, Pugh CW, Ratcliffe PJ, Schofield CJ.; ''Disruption of dimerization and substrate phosphorylation inhibit factor inhibiting hypoxia-inducible factor (FIH) activity.''; PubMed Europe PMC Scholia
  26. Chachami G, Paraskeva E, Mingot JM, Braliou GG, Görlich D, Simos G.; ''Transport of hypoxia-inducible factor HIF-1alpha into the nucleus involves importins 4 and 7.''; PubMed Europe PMC Scholia
  27. Ebert BL, Bunn HF.; ''Regulation of transcription by hypoxia requires a multiprotein complex that includes hypoxia-inducible factor 1, an adjacent transcription factor, and p300/CREB binding protein.''; PubMed Europe PMC Scholia
  28. Maynard MA, Qi H, Chung J, Lee EH, Kondo Y, Hara S, Conaway RC, Conaway JW, Ohh M.; ''Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex.''; PubMed Europe PMC Scholia
  29. Erbel PJ, Card PB, Karakuzu O, Bruick RK, Gardner KH.; ''Structural basis for PAS domain heterodimerization in the basic helix--loop--helix-PAS transcription factor hypoxia-inducible factor.''; PubMed Europe PMC Scholia
  30. Tian YM, Yeoh KK, Lee MK, Eriksson T, Kessler BM, Kramer HB, Edelmann MJ, Willam C, Pugh CW, Schofield CJ, Ratcliffe PJ.; ''Differential sensitivity of hypoxia inducible factor hydroxylation sites to hypoxia and hydroxylase inhibitors.''; PubMed Europe PMC Scholia
  31. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ.; ''Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation.''; PubMed Europe PMC Scholia
  32. Wykoff CC, Beasley NJ, Watson PH, Turner KJ, Pastorek J, Sibtain A, Wilson GD, Turley H, Talks KL, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL.; ''Hypoxia-inducible expression of tumor-associated carbonic anhydrases.''; PubMed Europe PMC Scholia
  33. Hewitson KS, McNeill LA, Riordan MV, Tian YM, Bullock AN, Welford RW, Elkins JM, Oldham NJ, Bhattacharya S, Gleadle JM, Ratcliffe PJ, Pugh CW, Schofield CJ.; ''Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family.''; PubMed Europe PMC Scholia
  34. Pouysségur J, Dayan F, Mazure NM.; ''Hypoxia signalling in cancer and approaches to enforce tumour regression.''; PubMed Europe PMC Scholia
  35. Voges D, Zwickl P, Baumeister W.; ''The 26S proteasome: a molecular machine designed for controlled proteolysis.''; PubMed Europe PMC Scholia
  36. Ameri K, Jahangiri A, Rajah AM, Tormos KV, Nagarajan R, Pekmezci M, Nguyen V, Wheeler ML, Murphy MP, Sanders TA, Jeffrey SS, Yeghiazarians Y, Rinaudo PF, Costello JF, Aghi MK, Maltepe E.; ''HIGD1A Regulates Oxygen Consumption, ROS Production, and AMPK Activity during Glucose Deprivation to Modulate Cell Survival and Tumor Growth.''; PubMed Europe PMC Scholia
  37. Kamura T, Sato S, Iwai K, Czyzyk-Krzeska M, Conaway RC, Conaway JW.; ''Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex.''; PubMed Europe PMC Scholia
  38. Wang GL, Semenza GL.; ''Purification and characterization of hypoxia-inducible factor 1.''; PubMed Europe PMC Scholia
  39. Tian H, McKnight SL, Russell DW.; ''Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells.''; PubMed Europe PMC Scholia
  40. Dames SA, Martinez-Yamout M, De Guzman RN, Dyson HJ, Wright PE.; ''Structural basis for Hif-1 alpha /CBP recognition in the cellular hypoxic response.''; PubMed Europe PMC Scholia
  41. Bonicalzi ME, Groulx I, de Paulsen N, Lee S.; ''Role of exon 2-encoded beta -domain of the von Hippel-Lindau tumor suppressor protein.''; PubMed Europe PMC Scholia
  42. Depping R, Steinhoff A, Schindler SG, Friedrich B, Fagerlund R, Metzen E, Hartmann E, Köhler M.; ''Nuclear translocation of hypoxia-inducible factors (HIFs): involvement of the classical importin alpha/beta pathway.''; PubMed Europe PMC Scholia
  43. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG.; ''Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein.''; PubMed Europe PMC Scholia
  44. Metzen E, Berchner-Pfannschmidt U, Stengel P, Marxsen JH, Stolze I, Klinger M, Huang WQ, Wotzlaw C, Hellwig-Bürgel T, Jelkmann W, Acker H, Fandrey J.; ''Intracellular localisation of human HIF-1 alpha hydroxylases: implications for oxygen sensing.''; PubMed Europe PMC Scholia
  45. Foxler DE, Bridge KS, James V, Webb TM, Mee M, Wong SC, Feng Y, Constantin-Teodosiu D, Petursdottir TE, Bjornsson J, Ingvarsson S, Ratcliffe PJ, Longmore GD, Sharp TV.; ''The LIMD1 protein bridges an association between the prolyl hydroxylases and VHL to repress HIF-1 activity.''; PubMed Europe PMC Scholia
  46. Kamura T, Maenaka K, Kotoshiba S, Matsumoto M, Kohda D, Conaway RC, Conaway JW, Nakayama KI.; ''VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases.''; PubMed Europe PMC Scholia
  47. Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM.; ''Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor.''; PubMed Europe PMC Scholia
  48. Wang GL, Semenza GL.; ''General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia.''; PubMed Europe PMC Scholia
  49. Freedman SJ, Sun ZY, Poy F, Kung AL, Livingston DM, Wagner G, Eck MJ.; ''Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 alpha.''; PubMed Europe PMC Scholia
  50. Wei SJ, Williams JG, Dang H, Darden TA, Betz BL, Humble MM, Chang FM, Trempus CS, Johnson K, Cannon RE, Tennant RW.; ''Identification of a specific motif of the DSS1 protein required for proteasome interaction and p53 protein degradation.''; PubMed Europe PMC Scholia
  51. Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK.; ''FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor.''; PubMed Europe PMC Scholia
  52. Wang GL, Jiang BH, Rue EA, Semenza GL.; ''Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension.''; PubMed Europe PMC Scholia
  53. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL.; ''Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1.''; PubMed Europe PMC Scholia
  54. Zheng X, Ruas JL, Cao R, Salomons FA, Cao Y, Poellinger L, Pereira T.; ''Cell-type-specific regulation of degradation of hypoxia-inducible factor 1 alpha: role of subcellular compartmentalization.''; PubMed Europe PMC Scholia
  55. Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ, Maxwell PH.; ''Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein.''; PubMed Europe PMC Scholia
  56. Arany Z, Huang LE, Eckner R, Bhattacharya S, Jiang C, Goldberg MA, Bunn HF, Livingston DM.; ''An essential role for p300/CBP in the cellular response to hypoxia.''; PubMed Europe PMC Scholia
  57. Shioda T, Fenner MH, Isselbacher KJ.; ''msg1, a novel melanocyte-specific gene, encodes a nuclear protein and is associated with pigmentation.''; PubMed Europe PMC Scholia
  58. Huang LE, Ho V, Arany Z, Krainc D, Galson D, Tendler D, Livingston DM, Bunn HF.; ''Erythropoietin gene regulation depends on heme-dependent oxygen sensing and assembly of interacting transcription factors.''; PubMed Europe PMC Scholia
  59. Loenarz C, Schofield CJ.; ''Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases.''; PubMed Europe PMC Scholia
  60. Bruick RK, McKnight SL.; ''A conserved family of prolyl-4-hydroxylases that modify HIF.''; PubMed Europe PMC Scholia
  61. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG.; ''HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing.''; PubMed Europe PMC Scholia
  62. Yu F, White SB, Zhao Q, Lee FS.; ''Dynamic, site-specific interaction of hypoxia-inducible factor-1alpha with the von Hippel-Lindau tumor suppressor protein.''; PubMed Europe PMC Scholia
  63. Percy MJ, Furlow PW, Lucas GS, Li X, Lappin TR, McMullin MF, Lee FS.; ''A gain-of-function mutation in the HIF2A gene in familial erythrocytosis.''; PubMed Europe PMC Scholia
  64. Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA.; ''Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha.''; PubMed Europe PMC Scholia
  65. Lewis MD, Roberts BJ.; ''Role of nuclear and cytoplasmic localization in the tumour-suppressor activity of the von Hippel-Lindau protein.''; PubMed Europe PMC Scholia
  66. Rantanen K, Pursiheimo J, Högel H, Himanen V, Metzen E, Jaakkola PM.; ''Prolyl hydroxylase PHD3 activates oxygen-dependent protein aggregation.''; PubMed Europe PMC Scholia
  67. Groulx I, Lee S.; ''Oxygen-dependent ubiquitination and degradation of hypoxia-inducible factor requires nuclear-cytoplasmic trafficking of the von Hippel-Lindau tumor suppressor protein.''; PubMed Europe PMC Scholia
  68. Hu CJ, Sataur A, Wang L, Chen H, Simon MC.; ''The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1alpha and HIF-2alpha.''; PubMed Europe PMC Scholia
  69. Grabmaier K, A de Weijert MC, Verhaegh GW, Schalken JA, Oosterwijk E.; ''Strict regulation of CAIX(G250/MN) by HIF-1alpha in clear cell renal cell carcinoma.''; PubMed Europe PMC Scholia
  70. Semenza GL.; ''Life with oxygen.''; PubMed Europe PMC Scholia
  71. Lee S, Neumann M, Stearman R, Stauber R, Pause A, Pavlakis GN, Klausner RD.; ''Transcription-dependent nuclear-cytoplasmic trafficking is required for the function of the von Hippel-Lindau tumor suppressor protein.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114982view16:51, 25 January 2021ReactomeTeamReactome version 75
113426view11:50, 2 November 2020ReactomeTeamReactome version 74
112628view16:01, 9 October 2020ReactomeTeamReactome version 73
101544view11:41, 1 November 2018ReactomeTeamreactome version 66
101079view21:23, 31 October 2018ReactomeTeamreactome version 65
100609view19:58, 31 October 2018ReactomeTeamreactome version 64
100160view16:42, 31 October 2018ReactomeTeamreactome version 63
99710view15:11, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99290view12:46, 31 October 2018ReactomeTeamreactome version 62
93972view13:48, 16 August 2017ReactomeTeamreactome version 61
93573view11:27, 9 August 2017ReactomeTeamreactome version 61
88138view12:54, 26 July 2016RyanmillerOntology Term : 'hypoxia inducible factor pathway' added !
88137view12:54, 26 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86674view09:23, 11 July 2016ReactomeTeamreactome version 56
83312view10:45, 18 November 2015ReactomeTeamVersion54
81762view10:08, 26 August 2015ReactomeTeamVersion53
76947view08:22, 17 July 2014ReactomeTeamFixed remaining interactions
76652view12:02, 16 July 2014ReactomeTeamFixed remaining interactions
76134view13:14, 11 June 2014AnweshaUpdated version
75039view13:55, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74683view08:45, 30 April 2014ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
26S proteasomeComplexR-HSA-68819 (Reactome)
2OGMetaboliteCHEBI:30915 (ChEBI)
2xHP-EPAS1 ProteinQ99814 (Uniprot-TrEMBL)
2xHP-EPAS1ProteinQ99814 (Uniprot-TrEMBL)
2xHP-HIF1A ProteinQ16665 (Uniprot-TrEMBL)
2xHP-HIF1AProteinQ16665 (Uniprot-TrEMBL)
AJUBA ProteinQ96IF1 (Uniprot-TrEMBL)
ARNT ProteinP27540 (Uniprot-TrEMBL)
ARNTProteinP27540 (Uniprot-TrEMBL)
CA9 geneGeneProductENSG00000107159 (Ensembl)
CA9ProteinQ16790 (Uniprot-TrEMBL)
CITED2ProteinQ99967 (Uniprot-TrEMBL)
CO2MetaboliteCHEBI:16526 (ChEBI)
CREBBP ProteinQ92793 (Uniprot-TrEMBL)
CREBBPProteinQ92793 (Uniprot-TrEMBL)
CUL2 ProteinQ13617 (Uniprot-TrEMBL)
DNA R-NUL-29428 (Reactome)
DNAR-NUL-29428 (Reactome)
EGLN1 ProteinQ9GZT9 (Uniprot-TrEMBL)
EGLN2 ProteinQ96KS0 (Uniprot-TrEMBL)
EGLN3 ProteinQ9H6Z9 (Uniprot-TrEMBL)
ELOC ProteinQ15369 (Uniprot-TrEMBL)
EP300 ProteinQ09472 (Uniprot-TrEMBL)
EP300ProteinQ09472 (Uniprot-TrEMBL)
EPAS1 ProteinQ99814 (Uniprot-TrEMBL)
EPAS1ProteinQ99814 (Uniprot-TrEMBL)
EPO geneGeneProductENSG00000130427 (Ensembl)
EPOProteinP01588 (Uniprot-TrEMBL)
FIH1:FIH1ComplexR-HSA-1235007 (Reactome)
HIF-alphaComplexR-HSA-1234147 (Reactome)
HIF-alphaComplexR-HSA-1234153 (Reactome)
HIF1A ProteinQ16665 (Uniprot-TrEMBL)
HIF1A,HIF2AComplexR-HSA-1234109 (Reactome)
HIF1AN ProteinQ9NWT6 (Uniprot-TrEMBL)
HIF1AProteinQ16665 (Uniprot-TrEMBL)
HIF3A ProteinQ9Y2N7 (Uniprot-TrEMBL)
HIF3AProteinQ9Y2N7 (Uniprot-TrEMBL)
HIF:CBP:p300ComplexR-HSA-1234099 (Reactome)
HIFComplexR-HSA-1234130 (Reactome)
HIGD1A geneGeneProductENSG00000181061 (Ensembl)
HIGD1AProteinQ9Y241 (Uniprot-TrEMBL)
HN-EPAS1 ProteinQ99814 (Uniprot-TrEMBL)
HN-HIF1A ProteinQ16665 (Uniprot-TrEMBL)
HP-HIF3A ProteinQ9Y2N7 (Uniprot-TrEMBL)
HP-HIF3AProteinQ9Y2N7 (Uniprot-TrEMBL)
LIMD1 ProteinQ9UGP4 (Uniprot-TrEMBL)
O2MetaboliteCHEBI:15379 (ChEBI)
PHD1,3ComplexR-HSA-1234124 (Reactome)
PHD2,3:LIMD1,AJUBA,WTIP:VHL:EloB:EloC:CUL2:RBX1ComplexR-HSA-8932458 (Reactome)
PSMA1 ProteinP25786 (Uniprot-TrEMBL)
PSMA2 ProteinP25787 (Uniprot-TrEMBL)
PSMA3 ProteinP25788 (Uniprot-TrEMBL)
PSMA4 ProteinP25789 (Uniprot-TrEMBL)
PSMA5 ProteinP28066 (Uniprot-TrEMBL)
PSMA6 ProteinP60900 (Uniprot-TrEMBL)
PSMA7 ProteinO14818 (Uniprot-TrEMBL)
PSMA8 ProteinQ8TAA3 (Uniprot-TrEMBL)
PSMB1 ProteinP20618 (Uniprot-TrEMBL)
PSMB10 ProteinP40306 (Uniprot-TrEMBL)
PSMB11 ProteinA5LHX3 (Uniprot-TrEMBL)
PSMB2 ProteinP49721 (Uniprot-TrEMBL)
PSMB3 ProteinP49720 (Uniprot-TrEMBL)
PSMB4 ProteinP28070 (Uniprot-TrEMBL)
PSMB5 ProteinP28074 (Uniprot-TrEMBL)
PSMB6 ProteinP28072 (Uniprot-TrEMBL)
PSMB7 ProteinQ99436 (Uniprot-TrEMBL)
PSMB8 ProteinP28062 (Uniprot-TrEMBL)
PSMB9 ProteinP28065 (Uniprot-TrEMBL)
PSMC1 ProteinP62191 (Uniprot-TrEMBL)
PSMC2 ProteinP35998 (Uniprot-TrEMBL)
PSMC3 ProteinP17980 (Uniprot-TrEMBL)
PSMC4 ProteinP43686 (Uniprot-TrEMBL)
PSMC5 ProteinP62195 (Uniprot-TrEMBL)
PSMC6 ProteinP62333 (Uniprot-TrEMBL)
PSMD1 ProteinQ99460 (Uniprot-TrEMBL)
PSMD10 ProteinO75832 (Uniprot-TrEMBL)
PSMD11 ProteinO00231 (Uniprot-TrEMBL)
PSMD12 ProteinO00232 (Uniprot-TrEMBL)
PSMD13 ProteinQ9UNM6 (Uniprot-TrEMBL)
PSMD14 ProteinO00487 (Uniprot-TrEMBL)
PSMD2 ProteinQ13200 (Uniprot-TrEMBL)
PSMD3 ProteinO43242 (Uniprot-TrEMBL)
PSMD4 ProteinP55036 (Uniprot-TrEMBL)
PSMD5 ProteinQ16401 (Uniprot-TrEMBL)
PSMD6 ProteinQ15008 (Uniprot-TrEMBL)
PSMD7 ProteinP51665 (Uniprot-TrEMBL)
PSMD8 ProteinP48556 (Uniprot-TrEMBL)
PSMD9 ProteinO00233 (Uniprot-TrEMBL)
PSME1 ProteinQ06323 (Uniprot-TrEMBL)
PSME2 ProteinQ9UL46 (Uniprot-TrEMBL)
PSME3 ProteinP61289 (Uniprot-TrEMBL)
PSME4 ProteinQ14997 (Uniprot-TrEMBL)
PSMF1 ProteinQ92530 (Uniprot-TrEMBL)
RBX1 ProteinP62877 (Uniprot-TrEMBL)
RBX1-CUL2-EloB,C-VHLComplexR-HSA-976093 (Reactome)
RPS27A(1-76) ProteinP62979 (Uniprot-TrEMBL)
SHFM1 ProteinP60896 (Uniprot-TrEMBL)
SUCCAMetaboliteCHEBI:15741 (ChEBI)
TCEB1 ProteinQ15369 (Uniprot-TrEMBL)
TCEB2 ProteinQ15370 (Uniprot-TrEMBL)
UBA52(1-76) ProteinP62987 (Uniprot-TrEMBL)
UBB(1-76) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(153-228) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(77-152) ProteinP0CG47 (Uniprot-TrEMBL)
UBC(1-76) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(153-228) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(229-304) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(305-380) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(381-456) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(457-532) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(533-608) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(609-684) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(77-152) ProteinP0CG48 (Uniprot-TrEMBL)
UBE2D1 ProteinP51668 (Uniprot-TrEMBL)
UBE2D1,2,3:UbiquitinComplexR-HSA-1234116 (Reactome)
UBE2D1,2,3:UbiquitinComplexR-HSA-1234123 (Reactome)
UBE2D1,2,3ComplexR-HSA-1234118 (Reactome)
UBE2D1,2,3ComplexR-HSA-1234120 (Reactome)
UBE2D2 ProteinP62837 (Uniprot-TrEMBL)
UBE2D3 ProteinP61077 (Uniprot-TrEMBL)
UbComplexR-HSA-113595 (Reactome)
VBC complex (with or without LIMD1)ComplexR-HSA-8932481 (Reactome)
VEGFA geneGeneProductENSG00000112715 (Ensembl)
VEGFAProteinP15692 (Uniprot-TrEMBL)
VHL ProteinP40337 (Uniprot-TrEMBL)
VHL:EloB,C:CUL2:RBX1ComplexR-HSA-1234141 (Reactome)
WTIP ProteinA6NIX2 (Uniprot-TrEMBL)
hydroxyAsn-HIF1A,HIF2AComplexR-HSA-1234148 (Reactome)
hydroxyPro-HIF-alpha:VHL:EloB,C:CUL2:RBX1:LIMD1,AJUBA,WTIP:PHD2,3ComplexR-HSA-1234125 (Reactome)
hydroxyPro-HIF-alpha:VHL:EloB,C:CUL2:RBX1ComplexR-HSA-1234101 (Reactome)
hydroxyPro-HIF-alphaComplexR-HSA-1234106 (Reactome)
hydroxyPro-HIF-alphaComplexR-HSA-1234132 (Reactome)
ub-HIF-alpha:VHL:EloB,C:CUL2:RBX1ComplexR-HSA-1234103 (Reactome)
ub-hydroxyPro-HIF-alpha:VCB (with or without LIMD1)ComplexR-HSA-8932465 (Reactome)
ub-hydroxyPro-HIF-alpha:VHL:EloB:EloC:CUL2:RBX1:LIMD1,AJUBA,WTIF:PHD2,3ComplexR-HSA-8932472 (Reactome)
ub-hydroxyPro-HIF-alpha:VHL:EloB:EloC:CUL2:RBX1ComplexR-HSA-1234138 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
26S proteasomemim-catalysisR-HSA-1234159 (Reactome)
2OGR-HSA-1234164 (Reactome)
2OGR-HSA-1234165 (Reactome)
2OGR-HSA-1234166 (Reactome)
2OGR-HSA-1234173 (Reactome)
2OGR-HSA-1234177 (Reactome)
2OGR-HSA-1234179 (Reactome)
2OGR-HSA-1234181 (Reactome)
2xHP-EPAS1ArrowR-HSA-1234166 (Reactome)
2xHP-EPAS1ArrowR-HSA-1234179 (Reactome)
2xHP-HIF1AArrowR-HSA-1234177 (Reactome)
2xHP-HIF1AArrowR-HSA-1234181 (Reactome)
ARNTR-HSA-1234171 (Reactome)
CA9 geneR-HSA-1235035 (Reactome)
CA9ArrowR-HSA-1235035 (Reactome)
CITED2TBarR-HSA-1234167 (Reactome)
CO2ArrowR-HSA-1234164 (Reactome)
CO2ArrowR-HSA-1234165 (Reactome)
CO2ArrowR-HSA-1234166 (Reactome)
CO2ArrowR-HSA-1234173 (Reactome)
CO2ArrowR-HSA-1234177 (Reactome)
CO2ArrowR-HSA-1234179 (Reactome)
CO2ArrowR-HSA-1234181 (Reactome)
CREBBPR-HSA-1234167 (Reactome)
DNAR-HSA-1234167 (Reactome)
EP300R-HSA-1234167 (Reactome)
EPAS1R-HSA-1234166 (Reactome)
EPAS1R-HSA-1234179 (Reactome)
EPO geneR-HSA-1235070 (Reactome)
EPOArrowR-HSA-1235070 (Reactome)
FIH1:FIH1mim-catalysisR-HSA-1234164 (Reactome)
HIF-alphaArrowR-HSA-1234161 (Reactome)
HIF-alphaR-HSA-1234161 (Reactome)
HIF-alphaR-HSA-1234171 (Reactome)
HIF1A,HIF2AR-HSA-1234164 (Reactome)
HIF1AR-HSA-1234177 (Reactome)
HIF1AR-HSA-1234181 (Reactome)
HIF3AR-HSA-1234165 (Reactome)
HIF3AR-HSA-1234173 (Reactome)
HIF:CBP:p300ArrowR-HSA-1234167 (Reactome)
HIF:CBP:p300ArrowR-HSA-1235035 (Reactome)
HIF:CBP:p300ArrowR-HSA-1235037 (Reactome)
HIF:CBP:p300ArrowR-HSA-1235070 (Reactome)
HIFArrowR-HSA-1234171 (Reactome)
HIFArrowR-HSA-8932184 (Reactome)
HIFR-HSA-1234167 (Reactome)
HIGD1A geneR-HSA-8932184 (Reactome)
HIGD1AArrowR-HSA-8932184 (Reactome)
HP-HIF3AArrowR-HSA-1234165 (Reactome)
HP-HIF3AArrowR-HSA-1234173 (Reactome)
O2R-HSA-1234164 (Reactome)
O2R-HSA-1234165 (Reactome)
O2R-HSA-1234166 (Reactome)
O2R-HSA-1234173 (Reactome)
O2R-HSA-1234177 (Reactome)
O2R-HSA-1234179 (Reactome)
O2R-HSA-1234181 (Reactome)
PHD1,3mim-catalysisR-HSA-1234165 (Reactome)
PHD1,3mim-catalysisR-HSA-1234166 (Reactome)
PHD1,3mim-catalysisR-HSA-1234181 (Reactome)
PHD2,3:LIMD1,AJUBA,WTIP:VHL:EloB:EloC:CUL2:RBX1R-HSA-1234183 (Reactome)
PHD2,3:LIMD1,AJUBA,WTIP:VHL:EloB:EloC:CUL2:RBX1mim-catalysisR-HSA-1234173 (Reactome)
PHD2,3:LIMD1,AJUBA,WTIP:VHL:EloB:EloC:CUL2:RBX1mim-catalysisR-HSA-1234177 (Reactome)
PHD2,3:LIMD1,AJUBA,WTIP:VHL:EloB:EloC:CUL2:RBX1mim-catalysisR-HSA-1234179 (Reactome)
R-HSA-1234159 (Reactome) Destruction of ubiquitinated HIF-alpha can occur in both the cytosol and nucleus (Berra et al. 2001). Upon reoxygenation of hypoxic cells HIF-alpha is ubiquitinated in the nucleus and transported to the cytosol in a complex with VHL:ElonginB:ElonginC:CUL2:RBX1 where it is destroyed (Groulx and Lee 2002, Jaakkola et al. 2001, Ivan et al. 2001)
R-HSA-1234161 (Reactome) HIF-alpha is translocated into the nucleus (Kallio et al. 1998, Depping et al. 2008, Chachami et al. 2009). Importin 4 and importin 7 (Chachami et al. 2009) as well as the importin alpha/beta pathway (Depping et al. 2008) appear to be capable of interacting with HIF-alpha. During hypoxia HIF-alpha accumulates in the nucleus where it associates with CBP and p300 (Kallio et al. 1998).
R-HSA-1234163 (Reactome) VHL is an E3 ubiquitin ligase that conjugates ubiquitin to hydroxylated HIF-alpha (Iwai et al. 1999, Kamura et al. 2000, Ohh et al. 2000, Groulx and Lee 2002, Maynard et al. 2003). VHL is predominantly cytosolic and shuttles between the cytosol and the nucleus (Lee et al. 1999, Groulx and Lee 2002). Ubiquitination and degradation of HIF-alpha can occur in both the cytosol and the nucleus (Berra et al. 2001).
R-HSA-1234164 (Reactome) HIF1AN (FIH, FIH-1) catalyzes the hydroxylation of an asparagine residue on each of HIF1A and HIF2A (Hewitson et al. 2002, Lando et al. 2002, Metzen et al. 2003, Lancaster et al. 2004). The reaction requires molecular oxygen as a substrate and is therefore inhibited by hypoxia.
R-HSA-1234165 (Reactome) Proline hydroxylases PHD1 (EGLN2) and PHD3 (EGLN3) located in the nucleus (Metzen et al. 2003) hydroxylate HIF3A at proline-492 (Hirsila et al. 2003, Maynard et al. 2003). Note that proline-492 of the reference isoform is proline-490 in isoform 2, the protein cited by Maynard et al. 2003. The amount of hydroxylation occurring in the nucleus is controversial. Most hydroxylation is believed to occur in the cytosol.
R-HSA-1234166 (Reactome) Proline hydroxylases PHD1 (EGLN2) and PHD3 (EGLN3) located in the nucleus hydroxylate HIF2A (EPAS1) at proline-405 and proline-531 (Hirsila et al. 2003, Percy et al. 2008, Furlow et al. 2009). The amount of hydroxylation occurring in the nucleus is controversial. Most hydroxylation is believed to be cytosolic.
R-HSA-1234167 (Reactome) HIF (heterodimer of HIF-alpha and HIF-beta) recruits p300 and CBP to the promoters of target genes (Kallio et al. 1998, Ebert and Bunn 1998, Ema et al. 1999, Gu et al. 2001, Dames et al. 2002, Freedman et al. 2002).
R-HSA-1234169 (Reactome) The VHL component of the VHL:ElonginB:ElonginC:CUL2:RBX1 binds HIF-alpha that have hydroxylated proline residues (Cockman et al. 2000, Ohh et al. 2000, Tanimoto et al. 2000, Jaakkola et al. 2001, Ivan et al. 2001, Yu et al. 2001, Bonicalzi et al. 2001). The VHL:HIF-alpha complex is predominantly nuclear (Lewis and Roberts 2003) however binding and degradation of HIF-alpha can also occur in the cytosol (Berra et al. 2001).
R-HSA-1234171 (Reactome) HIF-alpha (HIF1A, HIF2A (EPAS1), HIF3A) forms a heterodimer with ARNT (HIF1-beta) (Wang et al. 1995, Jiang et al. 1996, Tian et al. 1997, Gu et al. 1998, Erbel et al. 2003).
R-HSA-1234172 (Reactome) VHL is an E3 ubiquitin ligase that conjugates ubiquitin to hydroxylated HIF-alpha (Iwai et al. 1999, Kamura et al. 2000, Ohh et al. 2000, Groulx and Lee 2002, Maynard et al. 2003). VHL is predominantly cytosolic and shuttles between the cytosol and the nucleus (Lee et al. 1999, Groulx and Lee 2002). Ubiquitination and degradation of HIF-alpha can occur in both the cytosol and the nucleus (Berra et al. 2001). Upon return to normoxia from hypoxia most ubiquitinated HIF-alpha is nuclear (Groulx and Lee 2002).
R-HSA-1234173 (Reactome) Proline hydroxylases PHD2 (EGLN1) and PHD3 (EGLN3) located in the cytosol (Metzen et al. 2003) hydroxylate HIF3A at proline-492 (Hirsila et al. 2003, Maynard et al. 2003). A portion of PHD3 (EGLN3) is also located in the nucleus (Rantanen et al. 2008).
R-HSA-1234175 (Reactome) When hypoxic cells return to normoxia, HIF-alpha is ubiquitinated in the nucleus and exported to the cytosol (Groulx and Lee 2002). The shuttling of VHL between the nucleus and cytosol is required (Groulx and Lee 2002, Lee et al. 1999). Different cell types have different nucleocytoplasmic compartmentalization of HIF degradation (Zheng et al. 2006).
R-HSA-1234177 (Reactome) Proline hydroxylases PHD2 (EGLN1) and PHD3 (EGLN3) located in the cytosol (Metzen et al. 2003) hydroxylate HIF1A at proline-402 and proline-564 (Bruick and McKnight 2001, Jaakkola et al. 2001, Ivan et al. 2001, Ivan et al. 2002, Berra et al. 2003, Hirsila et al. 2003, Appelhoff et al. 2004, Tuckerman et al. 2004, Fedulova et al. 2007, Tian et al. 2011). A portion of PHD3 (EGLN3) is also located in the nucleus (Rantanen et al. 2008).
R-HSA-1234179 (Reactome) Proline hydroxylases PHD2 (EGLN1) and PHD3 (EGLN3) located in the cytosol (Metzen et al. 2003) hydroxylate EPAS1 (HIF2A) at proline-405 and proline-531 (Hirsila et al. 2003, Percy et al. 2008, Furlow et al. 2009). A portion of PHD3 (EGLN3) is also located in the nucleus (Rantanen et al. 2008).
R-HSA-1234181 (Reactome) Proline hydroxylases PHD1 (EGLN2) and PHD3 (EGLN3) located in the nucleus (Metzen et al. 2003) hydroxylate HIF1A at proline-402 and proline-564 (Buick and McKnight 2001, Jaakkola et al. 2001, Ivan et al. 2001, Ivan et al. 2002, Berra et al. 2003, Hirsila et al. 2003, Appelhoff et al. 2004, Tuckerman et al. 2004, Fedulova et al. 2007, Tian et al. 2011). The amount of hydroxylation occurring in the nucleus is controversial. Most hydroxylation is believed to occur in the cytosol.
R-HSA-1234183 (Reactome) VHL within the VHL:ElonginB:ElonginC:CUL2:RBX1 Complex binds HIF-alpha subunits that have hydroxylated proline residues (Cockman et al. 2000, Ohh et al. 2000, Tanimoto et al. 2000, Jaakkola et al. 2001, Ivan et al. 2001, Yu et al. 2001). VHL constitutively shuttles between the cytosol and nucleoplasm (Lewis and Roberts 2003) and though the VHL:HIF-alpha complex is predominantly nuclear, binding and degradation can occur in both the cytosol and the nucleus (Berra et al. 2001).
R-HSA-1235035 (Reactome) The gene encoding carbonic anhydrase IX (CA9) is transcribed to yield mRNA and the mRNA is translated to yield protein. Hypoxia-inducible factor binds the promoter of CA9 and enhances expression of CA9.
R-HSA-1235037 (Reactome) The VEGFA (VEGF) gene is transcribed to yield mRNA and the mRNA is translated to yield protein. Hypoxia-inducible factor binds the VEGF promoter, recruits p300 and CBP, and enhances transcription.
R-HSA-1235070 (Reactome) The EPO gene is transcribed to yield mRNA and the mRNA is translated to yield protein. Transcription of EPO is enhanced by Hypoxia-inducible factor, which binds to the EPO promoter.
R-HSA-8932184 (Reactome) The HIGD1A (RCF1A, HIG1) gene is transcribed to yield mRNA and the mRNA is translated to yield protein (Ameri et al. 2015). Expression of HIGD1A is transactivated by HIF in response to hypoxia (Ameri et al. 2015).
SUCCAArrowR-HSA-1234164 (Reactome)
SUCCAArrowR-HSA-1234165 (Reactome)
SUCCAArrowR-HSA-1234166 (Reactome)
SUCCAArrowR-HSA-1234173 (Reactome)
SUCCAArrowR-HSA-1234177 (Reactome)
SUCCAArrowR-HSA-1234179 (Reactome)
SUCCAArrowR-HSA-1234181 (Reactome)
UBE2D1,2,3:UbiquitinR-HSA-1234163 (Reactome)
UBE2D1,2,3:UbiquitinR-HSA-1234172 (Reactome)
UBE2D1,2,3ArrowR-HSA-1234163 (Reactome)
UBE2D1,2,3ArrowR-HSA-1234172 (Reactome)
UbArrowR-HSA-1234159 (Reactome)
VBC complex (with or without LIMD1)ArrowR-HSA-1234159 (Reactome)
VEGFA geneR-HSA-1235037 (Reactome)
VEGFAArrowR-HSA-1235037 (Reactome)
VHL:EloB,C:CUL2:RBX1R-HSA-1234169 (Reactome)
hydroxyAsn-HIF1A,HIF2AArrowR-HSA-1234164 (Reactome)
hydroxyPro-HIF-alpha:VHL:EloB,C:CUL2:RBX1:LIMD1,AJUBA,WTIP:PHD2,3ArrowR-HSA-1234183 (Reactome)
hydroxyPro-HIF-alpha:VHL:EloB,C:CUL2:RBX1:LIMD1,AJUBA,WTIP:PHD2,3R-HSA-1234163 (Reactome)
hydroxyPro-HIF-alpha:VHL:EloB,C:CUL2:RBX1:LIMD1,AJUBA,WTIP:PHD2,3mim-catalysisR-HSA-1234163 (Reactome)
hydroxyPro-HIF-alpha:VHL:EloB,C:CUL2:RBX1ArrowR-HSA-1234169 (Reactome)
hydroxyPro-HIF-alpha:VHL:EloB,C:CUL2:RBX1R-HSA-1234172 (Reactome)
hydroxyPro-HIF-alpha:VHL:EloB,C:CUL2:RBX1mim-catalysisR-HSA-1234172 (Reactome)
hydroxyPro-HIF-alphaR-HSA-1234169 (Reactome)
hydroxyPro-HIF-alphaR-HSA-1234183 (Reactome)
ub-HIF-alpha:VHL:EloB,C:CUL2:RBX1ArrowR-HSA-1234172 (Reactome)
ub-HIF-alpha:VHL:EloB,C:CUL2:RBX1R-HSA-1234175 (Reactome)
ub-hydroxyPro-HIF-alpha:VCB (with or without LIMD1)R-HSA-1234159 (Reactome)
ub-hydroxyPro-HIF-alpha:VHL:EloB:EloC:CUL2:RBX1:LIMD1,AJUBA,WTIF:PHD2,3ArrowR-HSA-1234163 (Reactome)
ub-hydroxyPro-HIF-alpha:VHL:EloB:EloC:CUL2:RBX1ArrowR-HSA-1234175 (Reactome)
Personal tools