Fc epsilon receptor (FCERI) signaling (Homo sapiens)

From WikiPathways

Revision as of 12:40, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
69, 11912214120, 13737, 44, 13541, 51104, 1391, 9228, 56, 8940, 43, 8411, 30, 85, 133, 14747, 49, 52, 9342, 8112460, 78, 95, 11138, 87, 140, 14459, 6447, 72, 75, 102, 1096, 70, 1121189, 8833, 107, 13617, 65, 1171315, 62, 1388, 50, 777376, 95, 12936, 1344, 115, 130, 1486, 106, 126, 14616, 1168210, 18, 19, 2226, 107, 13913, 2358, 91, 10345, 48, 12834, 68, 86, 10499, 14315, 24, 32, 145293, 21, 8627, 29, 63, 90, 110...15, 24, 32, 145115, 13011310014, 557, 72675157, 12512, 31, 54, 105, 108endoplasmic reticulum lumennucleoplasmcytosolDAGs IGLC1 IGHV1-2 p-Y113,128,145-LCP2 NFAT:CaN:CaMp-S177,S181-IKKB:IKKA:NEMOIg lambda chain V-III region SH p-5Y-LAT-2 I(1,4,5)P3 IGLV4-69(1-?) IGKC p-Y172-VAV2 NFKB1(1-433):RELAMAPK9 PSMD1 Ig heavy chain V-III region KOL Ig kappa chain V-III region VG IGLV2-33(1-?) CALM1 FCERI:IgE:allerginaggregateIg heavy chain V-III region WEA BCL10 oligomer Ig kappa chain V-I region AG PSMB10 PPP3CA 26S proteasomeIg kappa chain V-III region POM VAV1 p-Y173-VAV3 SOS1 ATPIGLV2-11(1-?) Ig heavy chain V-III region WEA I(1,4,5)P3IGKC Ig kappa chain V-I region HK101 DAGs p-Y239,Y240,Y317-SHC1-2 Ig kappa chain V-I region AU p-Y174-VAV1 Ig heavy chain V-III region TRO FCERI:IgE aggregate TAB3 Ig heavy chain V-III region BUT p-Y1400,Y1412-MAP3K1IGKV2D-30 UBE2N IGKV2-28 IGLV7-46(1-?) IGLC1 IGLV3-16(1-?) KRAS Ig kappa chain V-III region VG p-S63,S73-JUN IGKVA18(21-?) Ig kappa chain V-II region FR p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAV:TEC kinases:PIP3Ig kappa chain V-III region POM Ig kappa chain V-I region AG PLCG2 Ig heavy chain V-I region EU IGLV1-36(1-?) PSMB7 Ig kappa chain V-II region Cum p-Y113,128,145-LCP2 IGLV3-16(1-?) MAP2K4Allergin IGHV(1-?) IGLV8-61(1-?) IGLV2-23(1-?) p-Y180,Y512-ITK p-Y239,Y240,Y317-SHC1-2 IGHV7-81(1-?) IGLV3-12(1-?) ADPp-Y239,Y240,Y317-SHC1-2PLCG1 IGHV1-2 p-Y91,Y420-TXK TRAF6 oligomer p-5Y-LAT-2 p-T221,Y223-MAPK10 Ig heavy chain V-III region WEA IGHE p-Y396-LYN SHFM1 IGLC6 p-Y519-TEC Ig heavy chain V-II region MCE IGLV(23-?) IGLV3-16(1-?) SHC1-2Ub-352-UBC(305-380) IGLV3-25(1-?) Ig kappa chain V-I region Gal PSMC5 PDPK1IGKV1-12 IGLV11-55(1-?) IGLV4-3(1-?) Ig heavy chain V-III region CAM ATPMALT1 PSMD9 Ig lambda chain V-I region NEW CALM1Ig lambda chain V region 4A Ig lambda chain V-I region HA Ig kappa chain V-I region Gal UBE2N:UBE2V1Ig heavy chain V-III region CAM PPP3CB PSMC4 IGLV7-43(1-?) RAC1 CALM1 Ig lambda chain V-II region NEI IGLV2-11(1-?) p-6Y-SYK IGKV4-1(21-?) CARD11IGLV3-22(1-?) IGKV1-5(23-?) Ig lambda chain V-I region HA Ig heavy chain V-III region BUT GRAP2 p-5Y-LAT-2 p-T202,Y204-MAPK3 CDC34 Ig kappa chain V-I region DEE ADPIg heavy chain V-III region BUT IgH heavy chain V-III region VH26 precursor K63polyUb-NEMO PI(3,4,5)P3 GRAP2 Ig kappa chain V-I region Gal Clusteredp:LYN:p-FCERI:IgE:allergin:p-6Y-SYKIg lambda chain V-II region BOH p-S271,T275-MAP2K7RAF/MAP kinasecascadep-Y174-VAV1 BCL10:MALT1Ig lambda chain V-II region BOH Ig lambda chain V-I region NEWM PiRAC1 Ig lambda chain V-II region TOG p-Y174-VAV1 GTP p-S177,S181-IKKB:IKKA:pUb-NEMOIGLV10-54(1-?) GADS:SLP76Ig lambda chain V-II region MGC Zn2+ PI(3,4,5)P3 IGKVA18(21-?) DAGs DAG:p-5Y-PKC-theta:CBM oligomer:TRAF6 oligomerIGLV7-46(1-?) Ig kappa chain V-I region Wes GDPPSMB1 Ig lambda chain V-III region SH GRAP2 PI(3,4,5)P3 Ig kappa chain V-I region Wes p-6Y-SYK Ig lambda chain V-II region TOG IGLV4-60(1-?) IGLV5-45(1-?) Ig kappa chain V region EV15 SKP1 IGLC6 Ig heavy chain V-I region EU p-Y420-TXK IGLV1-36(1-?) ADPIg kappa chain V-I region DEE IgH heavy chain V-III region VH26 precursor p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:SLP76:PLCGIg kappa chain V-II region RPMI 6410 PI(3,4,5)P3 IGLV11-55(1-?) UBE2V1 UBE2N:UBE2V1DAGs p-14S-NFATC2 PDPK1 RASGRP2 p-Y91,Y420-TXK IGLV8-61(1-?) ATPp-5Y-LAT-2 p-Y519-TEC Ig kappa chain V-III region VG FCER1A MAPK8/9/10IGLV3-25(1-?) IGLC2 Ig heavy chain V-III region JON Ig heavy chain V-III region BRO p-Y223,Y551-BTK RASGRP1 PI(3,4,5)P3 RELA p-Y551-BTK Ig lambda chain V-III region LOI GTP Ig heavy chain V-III region DOB Ig heavy chain V-III region BUT p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAV:p-2Y-BTK/p-2Y-ITK:PIP3PLCG2 IGKC UBE2D2,UBE2D1,(CDC34)SOS1 Ig lambda chain V-II region NEI Ig lambda chain V-II region MGC p-Y90-PKC-theta:DAGDAGsATPIGLV(23-?) IGLV3-16(1-?) DAG:p-5Y-PKC-theta:CBM oligomerp-Y113,128,145-LCP2 CALM1 Ig heavy chain V-III region DOB Ig lambda chain V-I region HA DAG:p-5Y-PKC-theta:CBM complexADPp-Y239,Y240,Y317-SHC1-2 RELA PSMA2 p-Y90,T219,T538,S676,S695-PRKCQ Ig kappa chain V-II region RPMI 6410 IkB(alpha):NF-kBcomplexp-S32,S36-NFKBIA UBE2D1 K63polyUb-TRAF6 GRB2-1 RASGRP2 Ig lambda chain V-I region NEW MALT1 oligomer p-S271,T275-MAP2K7 Ig heavy chain V-II region WAH IGLV11-55(1-?) PSMB9 IGHV7-81(1-?) p-Y239,Y240,Y317-SHC1-2 IGLV3-12(1-?) p-S141,T402-PAK2 IGLV3-12(1-?) ATPPI(3,4,5)P3p-Y90,T219,T538,S676,S695-PRKCQ p-S257-NFATC1 p-S552,S645-CARD11p-CARMA1 oligomer PSMD13 Ig kappa chain V-II region Cum Ig heavy chain V-III region DOB p-Y239,Y240,Y317-SHC1-2 Calcineurin (CaN)IGLV3-22(1-?) BCL10PSMB5 Ig kappa chain V region EV15 ADPIg kappa chain V-I region BAN ATPp-Y239,Y240,Y317-SHC1-2 IGLV7-43(1-?) Ub-200-UBC(153-228) p-Y239,Y240,Y317-SHC1-2 p-Y90,T219,T538,S676,S695-PRKCQ PIK3R2 GRAP2 ATPp-2S-cJUN:p-2S,2T-cFOSIGLV2-11(1-?) DAG:p-5Y-PKC-theta:p-S552,S645-CARMA1 oligomerIGKV3D-20 MALT1 oligomer Ig lambda chain V-I region VOR p-Y113,128,145-LCP2 PLC gamma1,2PAK2 p-S552,S645-CARD11 IgH heavy chain V-III region VH26 precursor p-Y239,Y240,Y317-SHC1-2 Ig heavy chain V-II region ARH-77 Ig heavy chain V-III region WEA Ig heavy chain V-II region WAH IGLV3-22(1-?) p-Y172-VAV2 RELA ATPIg kappa chain V-II region FR IGLV2-23(1-?) p-FCERI aggregate p-5Y-LAT-2 Ca2+ DAGs IGLV4-69(1-?) Ig kappa chain V-I region Daudi Ig heavy chain V-III region JON Ig heavy chain V-II region ARH-77 SOS1 NFKB1(1-433) Ig lambda chain V-I region NEWM ATPIGLV2-18(1-?) Zn2+ Allergin:p-LYN:p-FCERI:IgE aggregatePPP3CA Ig kappa chain V-I region DEE IGLV4-69(1-?) Ig kappa chain V-I region HK101 PSME3 Ig kappa chain V-I region HK101 SYK/FYNIg heavy chain V-II region MCE BCL10 IGLV1-40(1-?) VAV1 K63polyUb-TRAF6 p-T,Y-MAPK8 Ca2+ Ig heavy chain V-III region BRO p-Y396-LYN VAV3 ITPR1 MALT1 ATPPSMD3 GRB2-1 IGHV1-2 IGLV2-11(1-?) PIK3CB p-Y396-LYN GRB2-1 PPP3CA Ig lambda chain V-IV region Kern PSMC2 Ca2+Ig heavy chain V-III region BUT IGLV7-43(1-?) MAPK10 Ig heavy chain V-II region ARH-77 VAV1 Ig heavy chain V-III region WEA PSMD7 Ca2+p-Y90,T219,T538,S676,S695-PRKCQ GRB2-1 KRAS GRB2-1:SOS1SOS1 ATPIGHV1-2 IGKC GRB2-1 IGLV(23-?) IGLV8-61(1-?) Ig heavy chain V-III region KOL SOS1 GAB2p-Y90,T219,T538,S676,S695-PRKCQ IGLV7-46(1-?) TEC Ig heavy chain V-II region NEWM Ub-TRAF6 trimerbound to CBMcomplexTAB2 IGHV7-81(1-?) Ig kappa chain V-I region BAN ATPIg lambda chain V-VI region AR Ig kappa chain V-I region Daudi NFKB1(1-433) IGHE PSMB6 Ig lambda chain V-II region NEI p-Y206,Y519-TEC TAB1 IGKV1-5(23-?) Ig kappa chain V-I region HK101 VAV2 GDPIGKV4-1(21-?) Ig heavy chain V-III region JON Ig heavy chain V-I region HG3 p-Y180,Y512-ITK ATPIg lambda chain V-II region MGC RasGRPs:DAG:Ca2+PPP3CB GRB2-1 IGLC2 GRB2-1 p-MAPK8/9/10PSMA5 ATPPSMA8 PLCG2 IGKV2-28 SOS1 Ig lambda chain V-II region NEI CHUK PAK2 Ig lambda chain V-III region LOI p-MAP2K4/p-MAP2K7PLCG2 Ig kappa chain V-II region Cum CALM1 VAV1 Ig lambda chain V-II region TOG IGLV3-16(1-?) PI(3,4)P2 Ig lambda chain V-I region VOR SOS1 p-10Y-LAT2IGLV7-43(1-?) MALT1 oligomer MAP2K7VAV1,2,3IGKVA18(21-?) Ig lambda chain V-IV region Hil IGLC2 NAD+ BCL10 oligomer FCERI:IgEGDP PIP3, PI(3,4)P2Ig kappa chain V-II region RPMI 6410 IGLV3-22(1-?) Ig heavy chain V-II region OU IGLV1-40(1-?) IGLV(23-?) PSMA1 MAP3K7 Ig heavy chain V-II region WAH PSMA3 Ig lambda chain V-III region LOI p-S177,S181-IKBKB Ig lambda chain V-II region BOH IKBKB TAB2 K48-UbIg lambda chain V-IV region Bau p-Y113,128,145-LCP2 Allergin IGLV5-45(1-?) PLCG1 Ig kappa chain V-I region AU p-Y239,Y240,Y317-SHC1-2 IP3 receptorhomotetramerIg kappa chain V region EV15 IGLV3-27(1-?) IGLV3-12(1-?) IGHV7-81(1-?) GRB2-1 FBXW11 BCL10 oligomer Ig lambda chain V region 4A PSMD5 Ig heavy chain V-III region JON NRAS Ig heavy chain V-III region TRO Zn2+ IGLV2-33(1-?) K48PolyUb-K21,22-p-S32,36-IkBA:NF-kB complexIg kappa chain V-I region Daudi p-Y113,128,145-LCP2 Ig heavy chain V-I region HG3 Ig lambda chain V-IV region Hil Ig heavy chain V-I region EU NFKBIA GRB2-1 Ig kappa chain V-I region BAN ADPIGKVA18(21-?) Ig heavy chain V-III region TRO SOS1 IGLV1-44(1-?) RASGRP4 DAG:p-5Y-PKC-theta:CBM oligomer:oligo-K63-poly Ub-TRAF6:activated TAK1 complexGTPADPIGHE p-FCERI aggregate IGLC7 ATPIGKV2-28 p-4Y-PLCG1 p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCGGRB2-1 PLCG2 Ig heavy chain V-III region KOL p-Y452,Y476,Y584-GAB2 Ig lambda chain V-I region NEWM p-SHC1:GRB2:SOSADPFe3+ Ig kappa chain V-I region AU p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAV:p-2Y-TEC kinasesIg lambda chain V-II region TOG p-Y551-BTK IGLV5-37(1-?) IGLV2-23(1-?) ITPR2 H2OPSMA4 PSMA6 LCP2 PSME4 PSMD12 IGKV1-5(23-?) Ig kappa chain V-II region RPMI 6410 CHUK VAV1 Ig lambda chain V-I region VOR GRB2-1 Ig lambda chain V-I region NEW PIK3R1 PIK3CA p-S265-NFATC3 Ig lambda chain V-VI region AR IGLV1-44(1-?) Ig lambda chain V-II region TOG MS4A2 ITPR1 IGHE Ig kappa chain V-I region AU Clusteredp:LYN:p-FCERI:IgE:allergin:SYKIg kappa chain V-III region VG p-Y396-LYN ADPIg lambda chain V-II region MGC Ig lambda chain V-III region SH PAK1 Ig kappa chain V-III region POM IGLV4-69(1-?) Ig heavy chain V-I region HG3 VAV3 Ig heavy chain V-III region BRO NFAT:CaN:CaMVAV2 p-CARMA1 oligomer Ig kappa chain V-I region AU p-S257,T261-MAP2K4 Ig kappa chain V-II region FR IGKV1-5(23-?) ATPp-Y113,128,145-LCP2 p-Y512-ITK IGLV5-37(1-?) IGLV4-69(1-?) IGKV4-1(21-?) LAT-2SOS1 p-MAPK8/9/10Ig heavy chain V-II region ARH-77 p-Y90,T219,T538,S676,S695-PRKCQ Fe3+ PI(4,5)P2IGLV2-33(1-?) Ig lambda chain V region 4A Ig kappa chain V-I region AG DAG:p-5Y-PKC-theta:CBM oligomer:TRAF6Ig lambda chain V-IV region Hil GRB2-1 IGHV1-2 Ig heavy chain V-II region OU BCL10 oligomer IGLC7 IGKVA18(21-?) PIK3R2 IGKV2D-30 ATPADPIGLV2-33(1-?) p-5Y-LAT:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:PIP3:p-VAVDAGs IGKV2D-30 IGLV11-55(1-?) IGLV2-33(1-?) IGKV3D-20 CALM1:4xCa2+TEC PLCG2 PRKCQ SOS1 Ig heavy chain V-I region HG3 Ub-580-UBC(533-608) p-Y396-LYN Ig lambda chain V-I region NEW IGLV10-54(1-?) DAGs Ig kappa chain V-I region Daudi Ig heavy chain V-II region MCE Ig kappa chain V-II region RPMI 6410 ADPMALT1Ig lambda chain V-IV region Kern Ig heavy chain V-II region NEWM PIK3CA ATPIGLV2-18(1-?) PPP3CB p-Y239,Y240,Y317-SHC1-2 p-10Y-NTAL:p-SHC1:GRB2:SOS:p-3Y-GAB2:PI3KPI(3,4,5)P3 Ig lambda chain V-II region MGC IGLV2-33(1-?) p-Y223,Y551-BTK Ig kappa chain V-III region VG p-5Y-LAT-2 K63polyUb-TRAF6 IGLV2-11(1-?) SOS1 VAV2 Ig lambda chain V-I region NEWM FCER1G IGLV5-37(1-?) p-10Y-NTAL:p-SHC1:GRB2:SOS:p-3Y-GAB2SOS1 p-Y239,Y240,Y317-SHC1-2 GRB2-1 Ig kappa chain V-I region Daudi TEC,BTK,ITK,(TXK)p-10Y-NTAL:p-SHC1:GRB2:SOS:GAB2ADPVAV3 Zn2+ GRB2-1 NFKB1(1-433) IGLV5-45(1-?) ADPp-5Y-LAT:p-SHC1:GRB2:SOS1TAB1 IGKV2D-30 p-5Y-LAT-2 IGLV3-25(1-?) p-CARMA1 oligomer UBE2D2 TRAF6IGLV2-23(1-?) PDPK1 IGLV10-54(1-?) Ig lambda chain V-I region VOR IGHV(1-?) IGLV4-69(1-?) IGLV11-55(1-?) Ig lambda chain V-II region BOH GRAP2 VAV2 TXK ITPR2 GRAP2 p-S265-NFATC3 IGLV7-43(1-?) p-5Y-LAT:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:PIP3:p-VAV:RAC1-GTPFe3+ PPP3R1 PhosphorylatedNFATC1,2,3PSMC6 IGLC3 IGLV2-18(1-?) Ig kappa chain V-I region Gal TRAF6 HRAS Ig heavy chain V-II region MCE VAV3 IGLV4-60(1-?) p-T,Y MAPK dimersIGLV1-36(1-?) GRB2-1 p-FCERI aggregate K48PolyUb-K21,22-p-S32,S36-IkBA VAV3 p-Y512-ITK IGKC IGLV2-18(1-?) IGLV5-45(1-?) LCP2 PIP3 activates AKTsignalingIg heavy chain V-II region WAH p-10Y-LAT2 Ub-276-UBC(229-304) IGLC7 PDK1:PIP2,PIP3PLCG1 GTP Ig lambda chain V-IV region Hil DAGs GRAP2 AMPPLCG1 p-Y172-VAV2 Ig heavy chain V-II region OU Ig kappa chain V-III region POM IGKV1-12 p21 RAS:GTPIGLV2-23(1-?) Ig lambda chain V-IV region Hil TAB1 RAC1 MALT1 oligomer DAGs p-S257,T261-MAP2K4NFKB1(1-433) MAP3K7 p-Y173-VAV3 PI(3,4)P2 DAGs p-S177,S181-IKBKB TAB1:TAB2,TAB3:TAK1Ig lambda chain V-II region MGC p-Y239,Y240,Y317-SHC1-2 ITPR1 Ub-124-UBC(77-152) MALT1 oligomer IgH heavy chain V-III region VH26 precursor ITK Ig lambda chain V-IV region Bau p-4Y-PLCG2 DAGsIg lambda chain V-I region NEWM IGLV5-45(1-?) H2OIGLV1-40(1-?) Ig lambda chain V-IV region Kern Ig heavy chain V-I region EU RAC1:GDPp-Y173-VAV3 RasGRPsIg lambda chain V-I region HA Ig kappa chain V-I region HK101 p-CARMA1 oligomer p-Y239,Y240,Y317-SHC1-2 Ig heavy chain V-III region BRO Allergin Ig heavy chain V-II region ARH-77 IGHE Ub-48-UBB(1-76) IGLV3-27(1-?) Ig kappa chain V-II region FR Ig lambda chain V-I region NEW Ig heavy chain V-III region KOL Ig heavy chain V-III region DOB IGLV3-12(1-?) Ig heavy chain V-III region DOB IGLC7 GDP Ig heavy chain V-I region HG3 Ig kappa chain V-I region Wes IGLC3 Ig heavy chain V-III region KOL ATPp-Y239,Y240,Y317-SHC1-2 p-Y113,128,145-LCP2 Ig lambda chain V region 4A IGLC1 ADPp-5Y-LAT-2 PSMD2 Ig kappa chain V-I region DEE PLCG1 PAK1 p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:SLP76I(1,4,5)P3 p-Y396-LYNIg kappa chain V-III region POM IGLV1-36(1-?) IGKC PI(3,4,5)P3 Ig lambda chain V-III region LOI Ig lambda chain V-I region HA p-T185,Y187-MAPK1 Ig lambda chain V-IV region Bau Ig kappa chain V-I region DEE PSMC1 Ig lambda chain V-III region SH PPP3CB p-CARMA1 oligomer PSMD10 LAT2VAV1 LYNIGKV3D-20 Ub-48-UBA52(1-76) Ig heavy chain V-II region NEWM PLCG2 p-Y90,T219,T538,S676,S695-PRKCQ IGKV2D-30 IGLV4-3(1-?) p-T221,Y223-MAPK10 DAG:p-5Y-PKC-theta:CBM oligomer:oligo-K63-poly Ub-TRAF6Ig kappa chain V-I region Wes Ig kappa chain V-I region AG p-Y90,T219,T538,S676,S695-PRKCQ IGLV10-54(1-?) IGLV5-37(1-?) p-5Y-LAT-2 Allergin IGKVA18(21-?) PSMB8 IGLV4-60(1-?) IGLV2-23(1-?) HRAS ATPIGKV2-28 p-12S-NFATC1 ATPIGLV1-44(1-?) PSMB11 IgH heavy chain V-III region VH26 precursor TAB3 PLCG1 IGLV2-18(1-?) Ig heavy chain V-II region OU ITPR3 NRAS ADPJUNPPP3R1 IGKV3D-20 PI(3,4,5)P3IGLV8-61(1-?) ATPIGLV4-3(1-?) DAGs IGLV3-16(1-?) Ig heavy chain V-II region OU IGLV7-43(1-?) p-T183,Y185-MAPK9 ITPR3 Ig heavy chain V-II region MCE IGLC7 p-10Y-NTAL:p-SHC1:GRB2:SOSIGLV5-45(1-?) Ig kappa chain V-III region B6 IGLV3-27(1-?) BCL10 IGLC1 IGLV1-44(1-?) Ub-48-RPS27A(1-76) IGLV3-25(1-?) IGLV4-3(1-?) IGLV7-46(1-?) IGLV1-40(1-?) Calcineurin:Calmodulin (CaN:CaM)Ig lambda chain V-I region NEWM ADPCHUK IGLV7-46(1-?) IGHV(1-?) Ig heavy chain V-III region TRO IGKV2-28 p-Y90-PRKCQ PLCG2 Ig kappa chain V-II region Cum Fe3+ IGLV4-3(1-?) TAB3 BCL10 oligomer PSMD8 Ig heavy chain V-III region CAM p-S243-NFATC2 IGKV1-12 GRB2-1 VAV2 IGLV(23-?) Ig lambda chain V-II region NEI IGLV3-25(1-?) p-CARMA1 oligomer p-T,Y-MAPK8 p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAVIg lambda chain V-VI region AR MAP3K1Ub-504-UBC(457-532) ADPIGLC2 p-Y420-TXK VAV2 PPP3R1 IGHV(1-?) p-Y113,128,145-LCP2 p-Y90,T219,T538,S676,S695-PRKCQ p-T325,T331,S362,S374-FOS PAK dimerIg lambda chain V-I region VOR IGLV10-54(1-?) IGLV3-22(1-?) p-Y206,Y519-TEC IGLC6 RELA Ig kappa chain V-III region POM Ig heavy chain V-II region ARH-77 DAGs UBE2N IGLC1 PSMD6 IGLV4-60(1-?) IGLC3 PSMA7 DAG:p-5Y-PKC-theta:p-S552,S645-CARMA1Ig lambda chain V-IV region Kern Ub-656-UBC(609-684) Ig heavy chain V-III region BRO IKBKG IGLV3-27(1-?) Ub-124-UBB(77-152) Ig kappa chain V-III region B6 ATPIg kappa chain V-II region FR PI(3,4,5)P3PLCG1 Ig lambda chain V-II region BOH PPP3R1 PSMF1 Ig heavy chain V-II region NEWM PRKQC closedconformationPI(3,4)P2 PSMB4 CHUK:IKBKB:IKBKGK63polyUb-TRAF6 p-S243-NFATC2 Ig lambda chain V-IV region Kern PI(3,4,5)P3 PSMB3 Ig lambda chain V-IV region Bau ADPPSMD11 RASGRP1 p-5Y-LAT-2 SCF-beta-TRCPPLCG2 PSME2 PLCG1 p-13S-NFATC3 IGLV1-44(1-?) PI(3,4,5)P3 IKBKG p-10Y-LAT2 PLCG2 p-S144,T423-PAK1 p21 RAS:GDPIGLV4-3(1-?) SOS1 TAB2 Ub-48-UBC(1-76) Ub-200-UBB(153-228) Ig lambda chain V-VI region AR PLCG1 ADPGTPIg heavy chain V-II region NEWM Ig heavy chain V-III region DOB IGLV10-54(1-?) Ig kappa chain V-I region Daudi IGLC7 TXK Ig kappa chain V-I region Gal Ig heavy chain V-III region BRO Ig lambda chain V-IV region Hil IGLV3-27(1-?) IGLV4-60(1-?) Ig heavy chain V-III region BUT IGHE IGKV1-12 p-5Y-LAT-2 p-5Y-LAT-2 p-10Y-LAT2 PI(3,4,5)P3 p-Y239,Y240,Y317-SHC1-2 PLCG1 K63polyUbIGLC2 SYK Ig lambda chain V-IV region Bau Ub-428-UBC(381-456) p-6Y-SYK IgH heavy chain V-III region VH26 precursor PSMB2 GAB2 SOS1 PPP3CA PSMD14 Ig lambda chain V region 4A p-CARMA1 oligomer Ig kappa chain V-II region Cum IGLC3 LCP2 Ig kappa chain V-I region Wes NFKB1(1-433):RELAIg lambda chain V-II region NEI Ig kappa chain V region EV15 IGLV3-22(1-?) PPiRASGRP4 Ig lambda chain V-I region VOR Ig heavy chain V-II region OU CUL1 IGLV7-46(1-?) MAPK8 Ig kappa chain V region EV15 Ig kappa chain V-I region HK101 ADPp-5Y-LAT-2 Ca2+ ATPp-FCERI aggregate IGKV1-12 Ig heavy chain V-II region WAH PSMC3 PLCG2 IGLC3 Ig kappa chain V-II region RPMI 6410 Ig kappa chain V-II region Cum p-Y239,Y240,Y317-SHC1-2 Ig heavy chain V-III region JON IGLC6 GRB2-1 p-5Y-PKC-theta:DAGIGLV3-25(1-?) IGLC6 Allergin PIK3CB Ig kappa chain V region EV15 Ig kappa chain V-III region B6 GRAP2 IGLV11-55(1-?) SOS1 IGHV(1-?) IGLV1-40(1-?) p-5Y-LAT-2GRAP2 Ig kappa chain V-III region B6 IGLC2 Ig lambda chain V-IV region Kern Ca2+p-FCERI aggregate p-2Y-PAKIg heavy chain V-I region HG3 p-10Y-LAT2 ADPCa2+ IGKV4-1(21-?) IGKV4-1(21-?) p-T325,T331,S362,S374-FOSIGLV(23-?) PIK3R1 Ig lambda chain V-VI region AR Ig lambda chain V-I region NEW VAV1 Ig heavy chain V-III region WEA ADPIGLV1-44(1-?) BTRC ATPIGLV5-37(1-?) Ig kappa chain V-III region B6 Ig heavy chain V-III region KOL Allergin p-S552-CARD11 p-S257-NFATC1 p-Y90,T219,T538,S676,S695-PRKCQ SOS1 DAGs Ig heavy chain V-III region CAM AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramerPI(3,4,5)P3p-SYK/p-BTKIg kappa chain V-I region AG IGLC6 Ig kappa chain V-I region AG GRB2-1 SOS1 p-5Y-LAT:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:PIP3:p-VAV:RAC1-GTP:PAK dimerIg lambda chain V-IV region Bau Ig kappa chain V-III region VG p-Y113,128,145-LCP2 NFKB1(1-433) Ig lambda chain V-II region TOG VAV3 ITPR:I(1,4,5)P3tetramerPKC-theta (open):DAGIGHV1-2 AllerginIg heavy chain V-I region EU Ig heavy chain V-III region CAM ADPADPIg heavy chain V-II region WAH IGKV3D-20 SOS1 ITPR2 p-Y452,Y476,Y584-GAB2 IGLV1-36(1-?) Ig kappa chain V-I region BAN Ig lambda chain V-III region SH IGLV2-11(1-?) MyrG-p-Y420-FYN BTK Ig heavy chain V-III region JON PI3KPLCG1 IGLV2-18(1-?) AHCYL1 MALT1 oligomer p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAV:p-TEC kinases:PIP3IGLV1-36(1-?) Ig lambda chain V-III region LOI p-CARMA1 oligomer ATPBTK Ig lambda chain V-I region HA Ca2+ PSME1 FOSGRB2-1 GRAP2 Ig kappa chain V-I region BAN RELA IGLC3 Ig heavy chain V-I region EU IGLV3-12(1-?) p-Y239,Y240,Y317-SHC1-2 Ig kappa chain V-III region B6 IGKV1-12 VAV2 p-BCL10 PI(3,4,5)P3 ITK PI(4,5)P2Ig kappa chain V-I region BAN Ig lambda chain V-III region SH Ig lambda chain V region 4A PI(3,4,5)P3 p-T183,Y185-MAPK9 IGHV7-81(1-?) GRAP2 Ig lambda chain V-II region BOH GRAP2 IGKV1-5(23-?) Ig heavy chain V-II region NEWM p-Y239,Y240,Y317-SHC1-2 IGHV(1-?) Ig kappa chain V-II region FR p-S63,S73-JUNIg heavy chain V-III region CAM Ig kappa chain V-I region AU MAP3K7 IGKV3D-20 ADPIGLV4-60(1-?) IGKV2-28 SYKIg lambda chain V-VI region AR Ig kappa chain V-I region DEE GRAP2 IGKV4-1(21-?) UBE2V1 ITPR3 Ig heavy chain V-III region TRO Ig kappa chain V-I region Wes Ig lambda chain V-III region LOI p-S32,36-IkB-alpha:NF-kB complexIGHV7-81(1-?) IGLV3-27(1-?) IGLV5-37(1-?) IGLV1-40(1-?) IGKV2D-30 PI(3,4,5)P3 Ig heavy chain V-II region MCE Ig kappa chain V-I region Gal BCL10 oligomer VAV3 IGLV8-61(1-?) Ig heavy chain V-III region TRO IGLC1 DAG:p-5Y-PKC-theta:CBM oligomer:oligo-K63-poly Ub-TRAF6:TAK1:TAB1:TAB2/3IGLV8-61(1-?) SOS1 MALT1 PSMD4 IGKV1-5(23-?) 8067780466783, 11410167127611271272, 25, 35, 39, 53...1271271278012771, 97, 132127127801271276783


Description

Mast cells (MC) are distributed in tissues throughout the human body and have long been recognized as key cells of type I hypersensitivity reactions. They also play important roles in inflammatory and immediate allergic reactions. Activation through FCERI-bound antigen-specific IgE causes release of potent inflammatory mediators, such as histamine, proteases, chemotactic factors, cytokines and metabolites of arachidonic acid that act on the vasculature, smooth muscle, connective tissue, mucous glands and inflammatory cells (Borish & Joseph 1992, Amin 2012, Metcalfe et al. 1993). FCERI is a multimeric cell-surface receptor that binds the Fc fragment of IgE with high affinity. On mast cells and basophils FCERI exists as a tetrameric complex consisting of one alpha-chain, one beta-chain, and two disulfide-bonded gamma-chains, and on dendritic cells, Langerhans cells, macrophages, and eosinophils it exists as a trimeric complex with one alpha-chain and two disulfide-bonded gamma-chains (Wu 2011, Kraft & Kinet 2007). FCERI signaling in mast cells includes a network of signaling molecules and adaptor proteins. These molecules coordinate ultimately leading to effects on degranulation, eicosanoid production, and cytokine and chemokine production and cell migration and adhesion, growth and survival.
The first step in FCERI signaling is the phosphorylation of the tyrosine residues in the ITAM of both the beta and the gamma subunits of the FCERI by LYN, which is bound to the FCERI beta-chain. The phosphorylated ITAM then recruits the protein tyrosine kinase SYK (spleen tyrosine kinase) which then phosphorylates the adaptor protein LAT. Phosphorylated LAT (linker for activation of T cells) acts as a scaffolding protein and recruits other cytosolic adaptor molecules GRB2 (growth-factor-receptor-bound protein 2), GADS (GRB2-related adaptor protein), SHC (SRC homology 2 (SH2)-domain-containing transforming protein C) and SLP76 (SH2-domain-containing leukocyte protein of 76 kDa), as well as the exchange factors and adaptor molecules VAV and SOS (son of sevenless homologue), and the signalling enzyme phospholipase C gamma1 (PLC-gamma1). Tyrosoine phosphorylation of enzymes and adaptors, including VAV, SHC GRB2 and SOS stimulate small GTPases such as RAC, RAS and RAF. These pathways lead to activation of the ERK, JNK and p38 MAP kinases, histamine release and cytokine production. FCERI activation also triggers the phosphorylation of PLC-gamma which upon membrane localisation hydrolyse PIP2 to form IP3 and 1,2-diacylglycerol (DAG) - second messengers that release Ca2+ from internal stores and activate PKC, respectively. Degranulation or histamine release follows the activation of PLC-gamma and protein kinase C (PKC) and the increased mobilization of calcium (Ca2+). Receptor aggregation also results in the phosphorylation of adaptor protein NTAL/LAT2 which then recruits GAB2. PI3K associates with phosphorylated GAB2 and catalyses the formation of PIP3 in the membrane, which attracts many PH domain proteins like BTK, PLC-gamma, AKT and PDK. PI3K mediated activation of AKT then regulate the mast cell proliferation, development and survival (Gu et al. 2001). View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 2454202
Reactome-version 
Reactome version: 62
Reactome Author 
Reactome Author: Niarakis, Anna

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Roskoski R.; ''RAF protein-serine/threonine kinases: structure and regulation.''; PubMed Europe PMC Scholia
  2. Turjanski AG, Vaqué JP, Gutkind JS.; ''MAP kinases and the control of nuclear events.''; PubMed Europe PMC Scholia
  3. Yablonski D, Kadlecek T, Weiss A.; ''Identification of a phospholipase C-gamma1 (PLC-gamma1) SH3 domain-binding site in SLP-76 required for T-cell receptor-mediated activation of PLC-gamma1 and NFAT.''; PubMed Europe PMC Scholia
  4. Shen X, Li H, Ou Y, Tao W, Dong A, Kong J, Ji C, Yu S.; ''The secondary structure of calcineurin regulatory region and conformational change induced by calcium/calmodulin binding.''; PubMed Europe PMC Scholia
  5. Reeve JL, Zou W, Liu Y, Maltzman JS, Ross FP, Teitelbaum SL.; ''SLP-76 couples Syk to the osteoclast cytoskeleton.''; PubMed Europe PMC Scholia
  6. Bubeck Wardenburg J, Fu C, Jackman JK, Flotow H, Wilkinson SE, Williams DH, Johnson R, Kong G, Chan AC, Findell PR.; ''Phosphorylation of SLP-76 by the ZAP-70 protein-tyrosine kinase is required for T-cell receptor function.''; PubMed Europe PMC Scholia
  7. Spencer E, Jiang J, Chen ZJ.; ''Signal-induced ubiquitination of IkappaBalpha by the F-box protein Slimb/beta-TrCP.''; PubMed Europe PMC Scholia
  8. Zhang W, Trible RP, Zhu M, Liu SK, McGlade CJ, Samelson LE.; ''Association of Grb2, Gads, and phospholipase C-gamma 1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell angigen receptor-mediated signaling.''; PubMed Europe PMC Scholia
  9. Hendricks-Taylor LR, Motto DG, Zhang J, Siraganian RP, Koretzky GA.; ''SLP-76 is a substrate of the high affinity IgE receptor-stimulated protein tyrosine kinases in rat basophilic leukemia cells.''; PubMed Europe PMC Scholia
  10. Bonizzi G, Karin M.; ''The two NF-kappaB activation pathways and their role in innate and adaptive immunity.''; PubMed Europe PMC Scholia
  11. Cui J, Zhu L, Xia X, Wang HY, Legras X, Hong J, Ji J, Shen P, Zheng S, Chen ZJ, Wang RF.; ''NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways.''; PubMed Europe PMC Scholia
  12. Liu SK, Fang N, Koretzky GA, McGlade CJ.; ''The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors.''; PubMed Europe PMC Scholia
  13. Plotnikov A, Zehorai E, Procaccia S, Seger R.; ''The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation.''; PubMed Europe PMC Scholia
  14. Parrini MC, Lei M, Harrison SC, Mayer BJ.; ''Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1.''; PubMed Europe PMC Scholia
  15. Young RM, Holowka D, Baird B.; ''A lipid raft environment enhances Lyn kinase activity by protecting the active site tyrosine from dephosphorylation.''; PubMed Europe PMC Scholia
  16. Roberts PJ, Der CJ.; ''Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer.''; PubMed Europe PMC Scholia
  17. Tkaczyk C, Horejsi V, Iwaki S, Draber P, Samelson LE, Satterthwaite AB, Nahm DH, Metcalfe DD, Gilfillan AM.; ''NTAL phosphorylation is a pivotal link between the signaling cascades leading to human mast cell degranulation following Kit activation and Fc epsilon RI aggregation.''; PubMed Europe PMC Scholia
  18. Manetz TS, Gonzalez-Espinosa C, Arudchandran R, Xirasagar S, Tybulewicz V, Rivera J.; ''Vav1 regulates phospholipase cgamma activation and calcium responses in mast cells.''; PubMed Europe PMC Scholia
  19. Tybulewicz VL, Ardouin L, Prisco A, Reynolds LF.; ''Vav1: a key signal transducer downstream of the TCR.''; PubMed Europe PMC Scholia
  20. Rusnak F, Mertz P.; ''Calcineurin: form and function.''; PubMed Europe PMC Scholia
  21. Blank U, Rivera J.; ''The ins and outs of IgE-dependent mast-cell exocytosis.''; PubMed Europe PMC Scholia
  22. Lu W, Mayer BJ.; ''Mechanism of activation of Pak1 kinase by membrane localization.''; PubMed Europe PMC Scholia
  23. Latres E, Chiaur DS, Pagano M.; ''The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin.''; PubMed Europe PMC Scholia
  24. Krappmann D, Hatada EN, Tegethoff S, Li J, Klippel A, Giese K, Baeuerle PA, Scheidereit C.; ''The I kappa B kinase (IKK) complex is tripartite and contains IKK gamma but not IKAP as a regular component.''; PubMed Europe PMC Scholia
  25. Häcker H, Karin M.; ''Regulation and function of IKK and IKK-related kinases.''; PubMed Europe PMC Scholia
  26. Cuenda A, Dorow DS.; ''Differential activation of stress-activated protein kinase kinases SKK4/MKK7 and SKK1/MKK4 by the mixed-lineage kinase-2 and mitogen-activated protein kinase kinase (MKK) kinase-1.''; PubMed Europe PMC Scholia
  27. Matsuda M, Paterson HF, Rodriguez R, Fensome AC, Ellis MV, Swann K, Katan M.; ''Real time fluorescence imaging of PLC gamma translocation and its interaction with the epidermal growth factor receptor.''; PubMed Europe PMC Scholia
  28. Loh C, Shaw KT, Carew J, Viola JP, Luo C, Perrino BA, Rao A.; ''Calcineurin binds the transcription factor NFAT1 and reversibly regulates its activity.''; PubMed Europe PMC Scholia
  29. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M.; ''A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB.''; PubMed Europe PMC Scholia
  30. Roskoski R.; ''ERK1/2 MAP kinases: structure, function, and regulation.''; PubMed Europe PMC Scholia
  31. Peng Q, Malhotra S, Torchia JA, Kerr WG, Coggeshall KM, Humphrey MB.; ''TREM2- and DAP12-dependent activation of PI3K requires DAP10 and is inhibited by SHIP1.''; PubMed Europe PMC Scholia
  32. Gross BS, Lee JR, Clements JL, Turner M, Tybulewicz VL, Findell PR, Koretzky GA, Watson SP.; ''Tyrosine phosphorylation of SLP-76 is downstream of Syk following stimulation of the collagen receptor in platelets.''; PubMed Europe PMC Scholia
  33. Wellbrock C, Karasarides M, Marais R.; ''The RAF proteins take centre stage.''; PubMed Europe PMC Scholia
  34. Nishida K, Yamasaki S, Hasegawa A, Iwamatsu A, Koseki H, Hirano T.; ''Gab2, via PI-3K, regulates ARF1 in FcεRI-mediated granule translocation and mast cell degranulation.''; PubMed Europe PMC Scholia
  35. Dong W, Liu Y, Peng J, Chen L, Zou T, Xiao H, Liu Z, Li W, Bu Y, Qi Y.; ''The IRAK-1-BCL10-MALT1-TRAF6-TAK1 cascade mediates signaling to NF-kappaB from Toll-like receptor 4.''; PubMed Europe PMC Scholia
  36. Brown MD, Sacks DB.; ''Protein scaffolds in MAP kinase signalling.''; PubMed Europe PMC Scholia
  37. Davis RJ.; ''MAPKs: new JNK expands the group.''; PubMed Europe PMC Scholia
  38. Song JS, Haleem-Smith H, Arudchandran R, Gomez J, Scott PM, Mill JF, Tan TH, Rivera J.; ''Tyrosine phosphorylation of Vav stimulates IL-6 production in mast cells by a Rac/c-Jun N-terminal kinase-dependent pathway.''; PubMed Europe PMC Scholia
  39. Altman A, Villalba M.; ''Protein kinase C-theta (PKC theta): a key enzyme in T cell life and death.''; PubMed Europe PMC Scholia
  40. Kroll M, Conconi M, Desterro MJ, Marin A, Thomas D, Friguet B, Hay RT, Virelizier JL, Arenzana-Seisdedos F, Rodriguez MS.; ''The carboxy-terminus of I kappaB alpha determines susceptibility to degradation by the catalytic core of the proteasome.''; PubMed Europe PMC Scholia
  41. Alvarez-Errico D, Lessmann E, Rivera J.; ''Adapters in the organization of mast cell signaling.''; PubMed Europe PMC Scholia
  42. Dennler S, Prunier C, Ferrand N, Gauthier JM, Atfi A.; ''c-Jun inhibits transforming growth factor beta-mediated transcription by repressing Smad3 transcriptional activity.''; PubMed Europe PMC Scholia
  43. Cseh B, Doma E, Baccarini M.; ''"RAF" neighborhood: protein-protein interaction in the Raf/Mek/Erk pathway.''; PubMed Europe PMC Scholia
  44. Qiu L, Dhe-Paganon S.; ''Oligomeric structure of the MALT1 tandem Ig-like domains.''; PubMed Europe PMC Scholia
  45. Alkalay I, Yaron A, Hatzubai A, Orian A, Ciechanover A, Ben-Neriah Y.; ''Stimulation-dependent I kappa B alpha phosphorylation marks the NF-kappa B inhibitor for degradation via the ubiquitin-proteasome pathway.''; PubMed Europe PMC Scholia
  46. Jabril-Cuenod B, Zhang C, Scharenberg AM, Paolini R, Numerof R, Beaven MA, Kinet JP.; ''Syk-dependent phosphorylation of Shc. A potential link between FcepsilonRI and the Ras/mitogen-activated protein kinase signaling pathway through SOS and Grb2.''; PubMed Europe PMC Scholia
  47. Iwaki S, Spicka J, Tkaczyk C, Jensen BM, Furumoto Y, Charles N, Kovarova M, Rivera J, Horejsi V, Metcalfe DD, Gilfillan AM.; ''Kit- and Fc epsilonRI-induced differential phosphorylation of the transmembrane adaptor molecule NTAL/LAB/LAT2 allows flexibility in its scaffolding function in mast cells.''; PubMed Europe PMC Scholia
  48. Chardin P, Camonis JH, Gale NW, van Aelst L, Schlessinger J, Wigler MH, Bar-Sagi D.; ''Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2.''; PubMed Europe PMC Scholia
  49. Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O, Akira S.; ''Essential function for the kinase TAK1 in innate and adaptive immune responses.''; PubMed Europe PMC Scholia
  50. Melowic HR, Stahelin RV, Blatner NR, Tian W, Hayashi K, Altman A, Cho W.; ''Mechanism of diacylglycerol-induced membrane targeting and activation of protein kinase Ctheta.''; PubMed Europe PMC Scholia
  51. Okazaki K, Sagata N.; ''The Mos/MAP kinase pathway stabilizes c-Fos by phosphorylation and augments its transforming activity in NIH 3T3 cells.''; PubMed Europe PMC Scholia
  52. Lennartsson J, Blume-Jensen P, Hermanson M, Pontén E, Carlberg M, Rönnstrand L.; ''Phosphorylation of Shc by Src family kinases is necessary for stem cell factor receptor/c-kit mediated activation of the Ras/MAP kinase pathway and c-fos induction.''; PubMed Europe PMC Scholia
  53. Wang X, Chuang HC, Li JP, Tan TH.; ''Regulation of PKC-θ function by phosphorylation in T cell receptor signaling.''; PubMed Europe PMC Scholia
  54. Chong C, Tan L, Lim L, Manser E.; ''The mechanism of PAK activation. Autophosphorylation events in both regulatory and kinase domains control activity.''; PubMed Europe PMC Scholia
  55. Siraganian RP.; ''Mast cell signal transduction from the high-affinity IgE receptor.''; PubMed Europe PMC Scholia
  56. Hayden MS, Ghosh S.; ''Signaling to NF-kappaB.''; PubMed Europe PMC Scholia
  57. Oeckinghaus A, Wegener E, Welteke V, Ferch U, Arslan SC, Ruland J, Scheidereit C, Krappmann D.; ''Malt1 ubiquitination triggers NF-kappaB signaling upon T-cell activation.''; PubMed Europe PMC Scholia
  58. Paz PE, Wang S, Clarke H, Lu X, Stokoe D, Abo A.; ''Mapping the Zap-70 phosphorylation sites on LAT (linker for activation of T cells) required for recruitment and activation of signalling proteins in T cells.''; PubMed Europe PMC Scholia
  59. Nore BF, Mattsson PT, Antonsson P, Bäckesjö CM, Westlund A, Lennartsson J, Hansson H, Löw P, Rönnstrand L, Smith CI.; ''Identification of phosphorylation sites within the SH3 domains of Tec family tyrosine kinases.''; PubMed Europe PMC Scholia
  60. Lamothe B, Besse A, Campos AD, Webster WK, Wu H, Darnay BG.; ''Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of I kappa B kinase activation.''; PubMed Europe PMC Scholia
  61. Sun L, Deng L, Ea CK, Xia ZP, Chen ZJ.; ''The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes.''; PubMed Europe PMC Scholia
  62. Deacon K, Blank JL.; ''Characterization of the mitogen-activated protein kinase kinase 4 (MKK4)/c-Jun NH2-terminal kinase 1 and MKK3/p38 pathways regulated by MEK kinases 2 and 3. MEK kinase 3 activates MKK3 but does not cause activation of p38 kinase in vivo.''; PubMed Europe PMC Scholia
  63. Fukumoto T, Kubota Y, Kitanaka A, Yamaoka G, Ohara-Waki F, Imataki O, Ohnishi H, Ishida T, Tanaka T.; ''Gab1 transduces PI3K-mediated erythropoietin signals to the Erk pathway and regulates erythropoietin-dependent proliferation and survival of erythroid cells.''; PubMed Europe PMC Scholia
  64. Zhao ZS, Manser E.; ''PAK and other Rho-associated kinases--effectors with surprisingly diverse mechanisms of regulation.''; PubMed Europe PMC Scholia
  65. Vanhaesebroeck B, Alessi DR.; ''The PI3K-PDK1 connection: more than just a road to PKB.''; PubMed Europe PMC Scholia
  66. Wei SJ, Williams JG, Dang H, Darden TA, Betz BL, Humble MM, Chang FM, Trempus CS, Johnson K, Cannon RE, Tennant RW.; ''Identification of a specific motif of the DSS1 protein required for proteasome interaction and p53 protein degradation.''; PubMed Europe PMC Scholia
  67. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ.; ''TAK1 is a ubiquitin-dependent kinase of MKK and IKK.''; PubMed Europe PMC Scholia
  68. Wu J, Motto DG, Koretzky GA, Weiss A.; ''Vav and SLP-76 interact and functionally cooperate in IL-2 gene activation.''; PubMed Europe PMC Scholia
  69. Chen TY, Illing M, Molday LL, Hsu YT, Yau KW, Molday RS.; ''Subunit 2 (or beta) of retinal rod cGMP-gated cation channel is a component of the 240-kDa channel-associated protein and mediates Ca(2+)-calmodulin modulation.''; PubMed Europe PMC Scholia
  70. Kim YJ, Sekiya F, Poulin B, Bae YS, Rhee SG.; ''Mechanism of B-cell receptor-induced phosphorylation and activation of phospholipase C-gamma2.''; PubMed Europe PMC Scholia
  71. Park H, Wahl MI, Afar DE, Turck CW, Rawlings DJ, Tam C, Scharenberg AM, Kinet JP, Witte ON.; ''Regulation of Btk function by a major autophosphorylation site within the SH3 domain.''; PubMed Europe PMC Scholia
  72. Liu Y, Graham C, Li A, Fisher RJ, Shaw S.; ''Phosphorylation of the protein kinase C-theta activation loop and hydrophobic motif regulates its kinase activity, but only activation loop phosphorylation is critical to in vivo nuclear-factor-kappaB induction.''; PubMed Europe PMC Scholia
  73. Rhee SG.; ''Regulation of phosphoinositide-specific phospholipase C.''; PubMed Europe PMC Scholia
  74. Holowka D, Sil D, Torigoe C, Baird B.; ''Insights into immunoglobulin E receptor signaling from structurally defined ligands.''; PubMed Europe PMC Scholia
  75. Carter RS, Geyer BC, Xie M, Acevedo-Suárez CA, Ballard DW.; ''Persistent activation of NF-kappa B by the tax transforming protein involves chronic phosphorylation of IkappaB kinase subunits IKKbeta and IKKgamma.''; PubMed Europe PMC Scholia
  76. Garman SC, Wurzburg BA, Tarchevskaya SS, Kinet JP, Jardetzky TS.; ''Structure of the Fc fragment of human IgE bound to its high-affinity receptor Fc epsilonRI alpha.''; PubMed Europe PMC Scholia
  77. Shiue L, Green J, Green OM, Karas JL, Morgenstern JP, Ram MK, Taylor MK, Zoller MJ, Zydowsky LD, Bolen JB.; ''Interaction of p72syk with the gamma and beta subunits of the high-affinity receptor for immunoglobulin E, Fc epsilon RI.''; PubMed Europe PMC Scholia
  78. Donella-Deana A, Cesaro L, Ruzzene M, Brunati AM, Marin O, Pinna LA.; ''Spontaneous autophosphorylation of Lyn tyrosine kinase at both its activation segment and C-terminal tail confers altered substrate specificity.''; PubMed Europe PMC Scholia
  79. Kishimoto K, Matsumoto K, Ninomiya-Tsuji J.; ''TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation loop.''; PubMed Europe PMC Scholia
  80. Gilmore TD.; ''Introduction to NF-kappaB: players, pathways, perspectives.''; PubMed Europe PMC Scholia
  81. Jiang Y, Cheng H.; ''Evidence of LAT as a dual substrate for Lck and Syk in T lymphocytes.''; PubMed Europe PMC Scholia
  82. Kanayama A, Seth RB, Sun L, Ea CK, Hong M, Shaito A, Chiu YH, Deng L, Chen ZJ.; ''TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains.''; PubMed Europe PMC Scholia
  83. Thuille N, Heit I, Fresser F, Krumböck N, Bauer B, Leuthaeusser S, Dammeier S, Graham C, Copeland TD, Shaw S, Baier G.; ''Critical role of novel Thr-219 autophosphorylation for the cellular function of PKCtheta in T lymphocytes.''; PubMed Europe PMC Scholia
  84. Bos JL, Rehmann H, Wittinghofer A.; ''GEFs and GAPs: critical elements in the control of small G proteins.''; PubMed Europe PMC Scholia
  85. Jevremovic D, Billadeau DD, Schoon RA, Dick CJ, Irvin BJ, Zhang W, Samelson LE, Abraham RT, Leibson PJ.; ''Cutting edge: a role for the adaptor protein LAT in human NK cell-mediated cytotoxicity.''; PubMed Europe PMC Scholia
  86. Hogan PG, Chen L, Nardone J, Rao A.; ''Transcriptional regulation by calcium, calcineurin, and NFAT.''; PubMed Europe PMC Scholia
  87. Dinh M, Grunberger D, Ho H, Tsing SY, Shaw D, Lee S, Barnett J, Hill RJ, Swinney DC, Bradshaw JM.; ''Activation mechanism and steady state kinetics of Bruton's tyrosine kinase.''; PubMed Europe PMC Scholia
  88. Baldi L, Brown K, Franzoso G, Siebenlist U.; ''Critical role for lysines 21 and 22 in signal-induced, ubiquitin-mediated proteolysis of I kappa B-alpha.''; PubMed Europe PMC Scholia
  89. Roskoski R.; ''MEK1/2 dual-specificity protein kinases: structure and regulation.''; PubMed Europe PMC Scholia
  90. Carter RS, Pennington KN, Ungurait BJ, Arrate P, Ballard DW.; ''Signal-induced ubiquitination of I kappaB Kinase-beta.''; PubMed Europe PMC Scholia
  91. Mizukami Y, Yoshioka K, Morimoto S, Yoshida Ki.; ''A novel mechanism of JNK1 activation. Nuclear translocation and activation of JNK1 during ischemia and reperfusion.''; PubMed Europe PMC Scholia
  92. Parrini MC, Camonis J, Matsuda M, de Gunzburg J.; ''Dissecting activation of the PAK1 kinase at protrusions in living cells.''; PubMed Europe PMC Scholia
  93. Yu M, Lowell CA, Neel BG, Gu H.; ''Scaffolding adapter Grb2-associated binder 2 requires Syk to transmit signals from FcepsilonRI.''; PubMed Europe PMC Scholia
  94. Aghazadeh B, Lowry WE, Huang XY, Rosen MK.; ''Structural basis for relief of autoinhibition of the Dbl homology domain of proto-oncogene Vav by tyrosine phosphorylation.''; PubMed Europe PMC Scholia
  95. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA.; ''Mutations of the BRAF gene in human cancer.''; PubMed Europe PMC Scholia
  96. Rothwarf DM, Zandi E, Natoli G, Karin M.; ''IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex.''; PubMed Europe PMC Scholia
  97. Vonakis BM, Chen H, Haleem-Smith H, Metzger H.; ''The unique domain as the site on Lyn kinase for its constitutive association with the high affinity receptor for IgE.''; PubMed Europe PMC Scholia
  98. Park S, Uesugi M, Verdine GL.; ''A second calcineurin binding site on the NFAT regulatory domain.''; PubMed Europe PMC Scholia
  99. Tanner MJ, Hanel W, Gaffen SL, Lin X.; ''CARMA1 coiled-coil domain is involved in the oligomerization and subcellular localization of CARMA1 and is required for T cell receptor-induced NF-kappaB activation.''; PubMed Europe PMC Scholia
  100. Harmer SL, DeFranco AL.; ''Shc contains two Grb2 binding sites needed for efficient formation of complexes with SOS in B lymphocytes.''; PubMed Europe PMC Scholia
  101. Murphy LO, Smith S, Chen RH, Fingar DC, Blenis J.; ''Molecular interpretation of ERK signal duration by immediate early gene products.''; PubMed Europe PMC Scholia
  102. Shambharkar PB, Blonska M, Pappu BP, Li H, You Y, Sakurai H, Darnay BG, Hara H, Penninger J, Lin X.; ''Phosphorylation and ubiquitination of the IkappaB kinase complex by two distinct signaling pathways.''; PubMed Europe PMC Scholia
  103. Raivich G.; ''c-Jun expression, activation and function in neural cell death, inflammation and repair.''; PubMed Europe PMC Scholia
  104. Adhikari A, Xu M, Chen ZJ.; ''Ubiquitin-mediated activation of TAK1 and IKK.''; PubMed Europe PMC Scholia
  105. Cantwell-Dorris ER, O'Leary JJ, Sheils OM.; ''BRAFV600E: implications for carcinogenesis and molecular therapy.''; PubMed Europe PMC Scholia
  106. Teramoto H, Salem P, Robbins KC, Bustelo XR, Gutkind JS.; ''Tyrosine phosphorylation of the vav proto-oncogene product links FcepsilonRI to the Rac1-JNK pathway.''; PubMed Europe PMC Scholia
  107. Okamura H, Aramburu J, García-Rodríguez C, Viola JP, Raghavan A, Tahiliani M, Zhang X, Qin J, Hogan PG, Rao A.; ''Concerted dephosphorylation of the transcription factor NFAT1 induces a conformational switch that regulates transcriptional activity.''; PubMed Europe PMC Scholia
  108. Whitman M, Downes CP, Keeler M, Keller T, Cantley L.; ''Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate.''; PubMed Europe PMC Scholia
  109. Boriack-Sjodin PA, Margarit SM, Bar-Sagi D, Kuriyan J.; ''The structural basis of the activation of Ras by Sos.''; PubMed Europe PMC Scholia
  110. Allen JD, Jaffer ZM, Park SJ, Burgin S, Hofmann C, Sells MA, Chen S, Derr-Yellin E, Michels EG, McDaniel A, Bessler WK, Ingram DA, Atkinson SJ, Travers JB, Chernoff J, Clapp DW.; ''p21-activated kinase regulates mast cell degranulation via effects on calcium mobilization and cytoskeletal dynamics.''; PubMed Europe PMC Scholia
  111. Manicassamy S, Gupta S, Sun Z.; ''Selective function of PKC-theta in T cells.''; PubMed Europe PMC Scholia
  112. Rueda D, Thome M.; ''Phosphorylation of CARMA1: the link(er) to NF-kappaB activation.''; PubMed Europe PMC Scholia
  113. McKay MM, Morrison DK.; ''Integrating signals from RTKs to ERK/MAPK.''; PubMed Europe PMC Scholia
  114. Asada H, Ishii N, Sasaki Y, Endo K, Kasai H, Tanaka N, Takeshita T, Tsuchiya S, Konno T, Sugamura K.; ''Grf40, A novel Grb2 family member, is involved in T cell signaling through interaction with SLP-76 and LAT.''; PubMed Europe PMC Scholia
  115. Wen R, Jou ST, Chen Y, Hoffmeyer A, Wang D.; ''Phospholipase C gamma 2 is essential for specific functions of Fc epsilon R and Fc gamma R.''; PubMed Europe PMC Scholia
  116. Uren AG, O'Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM.; ''Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma.''; PubMed Europe PMC Scholia
  117. Sakurai H, Miyoshi H, Mizukami J, Sugita T.; ''Phosphorylation-dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1.''; PubMed Europe PMC Scholia
  118. Yan M, Dai T, Deak JC, Kyriakis JM, Zon LI, Woodgett JR, Templeton DJ.; ''Activation of stress-activated protein kinase by MEKK1 phosphorylation of its activator SEK1.''; PubMed Europe PMC Scholia
  119. Deckert M, Tartare-Deckert S, Couture C, Mustelin T, Altman A.; ''Functional and physical interactions of Syk family kinases with the Vav proto-oncogene product.''; PubMed Europe PMC Scholia
  120. Kovárová M, Tolar P, Arudchandran R, Dráberová L, Rivera J, Dráber P.; ''Structure-function analysis of Lyn kinase association with lipid rafts and initiation of early signaling events after Fcepsilon receptor I aggregation.''; PubMed Europe PMC Scholia
  121. Glover JN, Harrison SC.; ''Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA.''; PubMed Europe PMC Scholia
  122. Pribluda VS, Pribluda C, Metzger H.; ''Transphosphorylation as the mechanism by which the high-affinity receptor for IgE is phosphorylated upon aggregation.''; PubMed Europe PMC Scholia
  123. Sebban-Benin H, Pescatore A, Fusco F, Pascuale V, Gautheron J, Yamaoka S, Moncla A, Ursini MV, Courtois G.; ''Identification of TRAF6-dependent NEMO polyubiquitination sites through analysis of a new NEMO mutation causing incontinentia pigmenti.''; PubMed Europe PMC Scholia
  124. Takeuchi K, Roehrl MH, Sun ZY, Wagner G.; ''Structure of the calcineurin-NFAT complex: defining a T cell activation switch using solution NMR and crystal coordinates.''; PubMed Europe PMC Scholia
  125. Yang YJ, Chen W, Carrigan SO, Chen WM, Roth K, Akiyama T, Inoue J, Marshall JS, Berman JN, Lin TJ.; ''TRAF6 specifically contributes to FcepsilonRI-mediated cytokine production but not mast cell degranulation.''; PubMed Europe PMC Scholia
  126. Kyriakis JM, Avruch J.; ''Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update.''; PubMed Europe PMC Scholia
  127. Dráber P, Dráberová L.; ''Lipid rafts in mast cell signaling.''; PubMed Europe PMC Scholia
  128. Lutz C, Nimpf J, Jenny M, Boecklinger K, Enzinger C, Utermann G, Baier-Bitterlich G, Baier G.; ''Evidence of functional modulation of the MEKK/JNK/cJun signaling cascade by the low density lipoprotein receptor-related protein (LRP).''; PubMed Europe PMC Scholia
  129. Cargnello M, Roux PP.; ''Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases.''; PubMed Europe PMC Scholia
  130. Thome M, Charton JE, Pelzer C, Hailfinger S.; ''Antigen receptor signaling to NF-kappaB via CARMA1, BCL10, and MALT1.''; PubMed Europe PMC Scholia
  131. Liu Y, Graham C, Parravicini V, Brown MJ, Rivera J, Shaw S.; ''Protein kinase C theta is expressed in mast cells and is functionally involved in Fcepsilon receptor I signaling.''; PubMed Europe PMC Scholia
  132. Besse A, Lamothe B, Campos AD, Webster WK, Maddineni U, Lin SC, Wu H, Darnay BG.; ''TAK1-dependent signaling requires functional interaction with TAB2/TAB3.''; PubMed Europe PMC Scholia
  133. Kihara H, Siraganian RP.; ''Src homology 2 domains of Syk and Lyn bind to tyrosine-phosphorylated subunits of the high affinity IgE receptor.''; PubMed Europe PMC Scholia
  134. Luo C, Shaw KT, Raghavan A, Aramburu J, Garcia-Cozar F, Perrino BA, Hogan PG, Rao A.; ''Interaction of calcineurin with a domain of the transcription factor NFAT1 that controls nuclear import.''; PubMed Europe PMC Scholia
  135. Voges D, Zwickl P, Baumeister W.; ''The 26S proteasome: a molecular machine designed for controlled proteolysis.''; PubMed Europe PMC Scholia
  136. Rawlings DJ, Scharenberg AM, Park H, Wahl MI, Lin S, Kato RM, Fluckiger AC, Witte ON, Kinet JP.; ''Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases.''; PubMed Europe PMC Scholia
  137. Sundarrajan M, Boyle DL, Chabaud-Riou M, Hammaker D, Firestein GS.; ''Expression of the MAPK kinases MKK-4 and MKK-7 in rheumatoid arthritis and their role as key regulators of JNK.''; PubMed Europe PMC Scholia
  138. Israël A.; ''The IKK complex, a central regulator of NF-kappaB activation.''; PubMed Europe PMC Scholia
  139. Kimura T, Kihara H, Bhattacharyya S, Sakamoto H, Appella E, Siraganian RP.; ''Downstream signaling molecules bind to different phosphorylated immunoreceptor tyrosine-based activation motif (ITAM) peptides of the high affinity IgE receptor.''; PubMed Europe PMC Scholia
  140. Nishida K, Yoshida Y, Itoh M, Fukada T, Ohtani T, Shirogane T, Atsumi T, Takahashi-Tezuka M, Ishihara K, Hibi M, Hirano T.; ''Gab-family adapter proteins act downstream of cytokine and growth factor receptors and T- and B-cell antigen receptors.''; PubMed Europe PMC Scholia
  141. Kim HL, Vander Griend DJ, Yang X, Benson DA, Dubauskas Z, Yoshida BA, Chekmareva MA, Ichikawa Y, Sokoloff MH, Zhan P, Karrison T, Lin A, Stadler WM, Ichikawa T, Rubin MA, Rinker-Schaeffer CW.; ''Mitogen-activated protein kinase kinase 4 metastasis suppressor gene expression is inversely related to histological pattern in advancing human prostatic cancers.''; PubMed Europe PMC Scholia
  142. Kawakami Y, Yao L, Miura T, Tsukada S, Witte ON, Kawakami T.; ''Tyrosine phosphorylation and activation of Bruton tyrosine kinase upon Fc epsilon RI cross-linking.''; PubMed Europe PMC Scholia
  143. Matsumoto R, Wang D, Blonska M, Li H, Kobayashi M, Pappu B, Chen Y, Wang D, Lin X.; ''Phosphorylation of CARMA1 plays a critical role in T Cell receptor-mediated NF-kappaB activation.''; PubMed Europe PMC Scholia
  144. Koyasu S.; ''The role of PI3K in immune cells.''; PubMed Europe PMC Scholia
  145. Wu LC.; ''Immunoglobulin E receptor signaling and asthma.''; PubMed Europe PMC Scholia
  146. Chen ZJ, Parent L, Maniatis T.; ''Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity.''; PubMed Europe PMC Scholia
  147. Wang X, Nadarajah B, Robinson AC, McColl BW, Jin JW, Dajas-Bailador F, Boot-Handford RP, Tournier C.; ''Targeted deletion of the mitogen-activated protein kinase kinase 4 gene in the nervous system causes severe brain developmental defects and premature death.''; PubMed Europe PMC Scholia
  148. Ainbinder E, Bergelson S, Pinkus R, Daniel V.; ''Regulatory mechanisms involved in activator-protein-1 (AP-1)-mediated activation of glutathione-S-transferase gene expression by chemical agents.''; PubMed Europe PMC Scholia
  149. Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K, Ninomiya-Tsuji J, Matsumoto K.; ''TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114731view16:21, 25 January 2021ReactomeTeamReactome version 75
113175view11:24, 2 November 2020ReactomeTeamReactome version 74
112403view15:34, 9 October 2020ReactomeTeamReactome version 73
101307view11:19, 1 November 2018ReactomeTeamreactome version 66
100844view20:51, 31 October 2018ReactomeTeamreactome version 65
100385view19:25, 31 October 2018ReactomeTeamreactome version 64
99932view16:09, 31 October 2018ReactomeTeamreactome version 63
99487view14:41, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99139view12:40, 31 October 2018ReactomeTeamreactome version 62
93828view13:39, 16 August 2017ReactomeTeamreactome version 61
93378view11:22, 9 August 2017ReactomeTeamreactome version 61
87447view13:46, 22 July 2016MkutmonOntology Term : 'Fc epsilon receptor mediated signaling pathway' added !
86464view09:18, 11 July 2016ReactomeTeamreactome version 56
83375view11:03, 18 November 2015ReactomeTeamVersion54
81548view13:05, 21 August 2015ReactomeTeamVersion53
77017view08:31, 17 July 2014ReactomeTeamFixed remaining interactions
76722view12:08, 16 July 2014ReactomeTeamFixed remaining interactions
76048view10:10, 11 June 2014ReactomeTeamRe-fixing comment source
75757view11:25, 10 June 2014ReactomeTeamReactome 48 Update
75107view14:05, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74754view08:50, 30 April 2014ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
26S proteasomeComplexR-HSA-68819 (Reactome)
ADPMetaboliteCHEBI:16761 (ChEBI)
AHCYL1 ProteinO43865 (Uniprot-TrEMBL)
AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramerComplexR-HSA-5226920 (Reactome)
AMPMetaboliteCHEBI:16027 (ChEBI)
ATPMetaboliteCHEBI:15422 (ChEBI)
Allergin R-ALL-2454186 (Reactome)
Allergin:p-LYN:p-FCERI:IgE aggregateComplexR-HSA-2454232 (Reactome)
AllerginR-ALL-2454186 (Reactome)
BCL10 ProteinO95999 (Uniprot-TrEMBL)
BCL10 oligomer R-HSA-2685702 (Reactome)
BCL10:MALT1ComplexR-HSA-2685715 (Reactome)
BCL10ProteinO95999 (Uniprot-TrEMBL)
BTK ProteinQ06187 (Uniprot-TrEMBL)
BTRC ProteinQ9Y297 (Uniprot-TrEMBL)
CALM1 ProteinP0DP23 (Uniprot-TrEMBL)
CALM1:4xCa2+ComplexR-HSA-74294 (Reactome)
CALM1ProteinP0DP23 (Uniprot-TrEMBL)
CARD11ProteinQ9BXL7 (Uniprot-TrEMBL)
CDC34 ProteinP49427 (Uniprot-TrEMBL)
CHUK ProteinO15111 (Uniprot-TrEMBL)
CHUK:IKBKB:IKBKGComplexR-HSA-168113 (Reactome) Co-immunoprecipitation studies and size exclusion chromatography analysis indicate that the high molecular weight (around 700 to 900 kDa) IKK complex is composed of two kinase subunits (IKK1/CHUK/IKBKA and/or IKK2/IKBKB/IKKB) bound to a regulatory gamma subunit (IKBKG/NEMO) (Rothwarf DMet al. 1998; Krappmann D et al. 2000; Miller BS & Zandi E 2001). Variants of the IKK complex containing IKBKA or IKBKB homodimers associated with NEMO may also exist. Crystallographic and quantitative analyses of the binding interactions between N-terminal NEMO and C-terminal IKBKB fragments showed that IKBKB dimers would interact with NEMO dimers resulting in 2:2 stoichiometry (Rushe M et al. 2008). Chemical cross-linking and equilibrium sedimentation analyses of IKBKG (NEMO) suggest a tetrameric oligomerization (dimers of dimers) (Tegethoff S et al. 2003). The tetrameric NEMO could sequester four kinase molecules, yielding an 2xIKBKA:2xIKBKB:4xNEMO stoichiometry (Tegethoff S et al. 2003). The above data suggest that the core IKK complex consists of an IKBKA:IKBKB heterodimer associated with an IKBKG dimer or higher oligomeric assemblies. However, the exact stoichiometry of the IKK complex remains unclear.
CUL1 ProteinQ13616 (Uniprot-TrEMBL)
Ca2+ MetaboliteCHEBI:29108 (ChEBI)
Ca2+MetaboliteCHEBI:29108 (ChEBI)
Calcineurin (CaN)ComplexR-HSA-2025977 (Reactome)
Calcineurin:Calmodulin (CaN:CaM)ComplexR-HSA-2025947 (Reactome)
Clustered p:LYN:p-FCERI:IgE:allergin:SYKComplexR-HSA-2454243 (Reactome)
Clustered p:LYN:p-FCERI:IgE:allergin:p-6Y-SYKComplexR-HSA-2454231 (Reactome)
DAG:p-5Y-PKC-theta:CBM complexComplexR-HSA-2685688 (Reactome)
DAG:p-5Y-PKC-theta:CBM oligomer:TRAF6 oligomerComplexR-HSA-2685713 (Reactome)
DAG:p-5Y-PKC-theta:CBM oligomer:TRAF6ComplexR-HSA-2685682 (Reactome)
DAG:p-5Y-PKC-theta:CBM oligomer:oligo-K63-poly Ub-TRAF6:TAK1:TAB1:TAB2/3ComplexR-HSA-2685689 (Reactome)
DAG:p-5Y-PKC-theta:CBM oligomer:oligo-K63-poly Ub-TRAF6:activated TAK1 complexComplexR-HSA-2685709 (Reactome)
DAG:p-5Y-PKC-theta:CBM oligomer:oligo-K63-poly Ub-TRAF6ComplexR-HSA-2685691 (Reactome)
DAG:p-5Y-PKC-theta:CBM oligomerComplexR-HSA-2685671 (Reactome)
DAG:p-5Y-PKC-theta:p-S552,S645-CARMA1 oligomerComplexR-HSA-2685699 (Reactome)
DAG:p-5Y-PKC-theta:p-S552,S645-CARMA1ComplexR-HSA-2685711 (Reactome)
DAGs MetaboliteCHEBI:18035 (ChEBI)
DAGsMetaboliteCHEBI:18035 (ChEBI)
FBXW11 ProteinQ9UKB1 (Uniprot-TrEMBL)
FCER1A ProteinP12319 (Uniprot-TrEMBL)
FCER1G ProteinP30273 (Uniprot-TrEMBL)
FCERI:IgE aggregate R-HSA-2685660 (Reactome)
FCERI:IgE:allergin aggregateComplexR-HSA-2454196 (Reactome)
FCERI:IgEComplexR-HSA-2454224 (Reactome)
FOSProteinP01100 (Uniprot-TrEMBL)
Fe3+ MetaboliteCHEBI:29034 (ChEBI)
GAB2 ProteinQ9UQC2 (Uniprot-TrEMBL)
GAB2ProteinQ9UQC2 (Uniprot-TrEMBL)
GADS:SLP76ComplexR-HSA-2424463 (Reactome)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GRAP2 ProteinO75791 (Uniprot-TrEMBL)
GRB2-1 ProteinP62993-1 (Uniprot-TrEMBL)
GRB2-1:SOS1ComplexR-HSA-109797 (Reactome)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
H2OMetaboliteCHEBI:15377 (ChEBI)
HRAS ProteinP01112 (Uniprot-TrEMBL)
I(1,4,5)P3 MetaboliteCHEBI:16595 (ChEBI)
I(1,4,5)P3MetaboliteCHEBI:16595 (ChEBI)
IGHE ProteinP01854 (Uniprot-TrEMBL)
IGHV(1-?) ProteinA2KUC3 (Uniprot-TrEMBL)
IGHV1-2 ProteinP23083 (Uniprot-TrEMBL)
IGHV7-81(1-?) ProteinQ6PIL0 (Uniprot-TrEMBL)
IGKC ProteinP01834 (Uniprot-TrEMBL)
IGKV1-12 ProteinA0A0C4DH73 (Uniprot-TrEMBL)
IGKV1-5(23-?) ProteinP01602 (Uniprot-TrEMBL)
IGKV2-28 ProteinA0A075B6P5 (Uniprot-TrEMBL)
IGKV2D-30 ProteinA0A075B6S6 (Uniprot-TrEMBL)
IGKV3D-20 ProteinA0A0C4DH25 (Uniprot-TrEMBL)
IGKV4-1(21-?) ProteinP06312 (Uniprot-TrEMBL)
IGKVA18(21-?) ProteinA2NJV5 (Uniprot-TrEMBL)
IGLC1 ProteinP0CG04 (Uniprot-TrEMBL)
IGLC2 ProteinP0CG05 (Uniprot-TrEMBL)
IGLC3 ProteinP0CG06 (Uniprot-TrEMBL)
IGLC6 ProteinP0CF74 (Uniprot-TrEMBL)
IGLC7 ProteinA0M8Q6 (Uniprot-TrEMBL)
IGLV(23-?) ProteinA2NXD2 (Uniprot-TrEMBL)
IGLV1-36(1-?) ProteinQ5NV67 (Uniprot-TrEMBL)
IGLV1-40(1-?) ProteinQ5NV69 (Uniprot-TrEMBL)
IGLV1-44(1-?) ProteinQ5NV81 (Uniprot-TrEMBL)
IGLV10-54(1-?) ProteinQ5NV86 (Uniprot-TrEMBL)
IGLV11-55(1-?) ProteinQ5NV87 (Uniprot-TrEMBL)
IGLV2-11(1-?) ProteinQ5NV84 (Uniprot-TrEMBL)
IGLV2-18(1-?) ProteinQ5NV65 (Uniprot-TrEMBL)
IGLV2-23(1-?) ProteinQ5NV89 (Uniprot-TrEMBL)
IGLV2-33(1-?) ProteinQ5NV66 (Uniprot-TrEMBL)
IGLV3-12(1-?) ProteinQ5NV85 (Uniprot-TrEMBL)
IGLV3-16(1-?) ProteinQ5NV64 (Uniprot-TrEMBL)
IGLV3-22(1-?) ProteinQ5NV75 (Uniprot-TrEMBL)
IGLV3-25(1-?) ProteinQ5NV90 (Uniprot-TrEMBL)
IGLV3-27(1-?) ProteinQ5NV91 (Uniprot-TrEMBL)
IGLV4-3(1-?) ProteinQ5NV61 (Uniprot-TrEMBL)
IGLV4-60(1-?) ProteinQ5NV79 (Uniprot-TrEMBL)
IGLV4-69(1-?) ProteinQ5NV92 (Uniprot-TrEMBL)
IGLV5-37(1-?) ProteinQ5NV68 (Uniprot-TrEMBL)
IGLV5-45(1-?) ProteinQ5NV82 (Uniprot-TrEMBL)
IGLV7-43(1-?) ProteinQ5NV80 (Uniprot-TrEMBL)
IGLV7-46(1-?) ProteinQ5NV83 (Uniprot-TrEMBL)
IGLV8-61(1-?) ProteinQ5NV62 (Uniprot-TrEMBL)
IKBKB ProteinO14920 (Uniprot-TrEMBL)
IKBKG ProteinQ9Y6K9 (Uniprot-TrEMBL)
IP3 receptor homotetramerComplexR-HSA-169686 (Reactome)
ITK ProteinQ08881 (Uniprot-TrEMBL)
ITPR1 ProteinQ14643 (Uniprot-TrEMBL)
ITPR2 ProteinQ14571 (Uniprot-TrEMBL)
ITPR3 ProteinQ14573 (Uniprot-TrEMBL)
ITPR:I(1,4,5)P3 tetramerComplexR-HSA-169696 (Reactome)
Ig heavy chain V-I region EU ProteinP01742 (Uniprot-TrEMBL)
Ig heavy chain V-I region HG3 ProteinP01743 (Uniprot-TrEMBL)
Ig heavy chain V-II region ARH-77 ProteinP06331 (Uniprot-TrEMBL)
Ig heavy chain V-II region MCE ProteinP01817 (Uniprot-TrEMBL)
Ig heavy chain V-II region NEWM ProteinP01825 (Uniprot-TrEMBL)
Ig heavy chain V-II region OU ProteinP01814 (Uniprot-TrEMBL)
Ig heavy chain V-II region WAH ProteinP01824 (Uniprot-TrEMBL)
Ig heavy chain V-III region BRO ProteinP01766 (Uniprot-TrEMBL)
Ig heavy chain V-III region BUT ProteinP01767 (Uniprot-TrEMBL)
Ig heavy chain V-III region CAM ProteinP01768 (Uniprot-TrEMBL)
Ig heavy chain V-III region DOB ProteinP01782 (Uniprot-TrEMBL)
Ig heavy chain V-III region JON ProteinP01780 (Uniprot-TrEMBL)
Ig heavy chain V-III region KOL ProteinP01772 (Uniprot-TrEMBL)
Ig heavy chain V-III region TRO ProteinP01762 (Uniprot-TrEMBL)
Ig heavy chain V-III region WEA ProteinP01763 (Uniprot-TrEMBL)
Ig kappa chain V region EV15 ProteinP06315 (Uniprot-TrEMBL)
Ig kappa chain V-I region AG ProteinP01593 (Uniprot-TrEMBL)
Ig kappa chain V-I region AU ProteinP01594 (Uniprot-TrEMBL)
Ig kappa chain V-I region BAN ProteinP04430 (Uniprot-TrEMBL)
Ig kappa chain V-I region DEE ProteinP01597 (Uniprot-TrEMBL)
Ig kappa chain V-I region Daudi ProteinP04432 (Uniprot-TrEMBL)
Ig kappa chain V-I region Gal ProteinP01599 (Uniprot-TrEMBL)
Ig kappa chain V-I region HK101 ProteinP01601 (Uniprot-TrEMBL)
Ig kappa chain V-I region Wes ProteinP01611 (Uniprot-TrEMBL)
Ig kappa chain V-II region Cum ProteinP01614 (Uniprot-TrEMBL)
Ig kappa chain V-II region FR ProteinP01615 (Uniprot-TrEMBL)
Ig kappa chain V-II region RPMI 6410 ProteinP06310 (Uniprot-TrEMBL)
Ig kappa chain V-III region B6 ProteinP01619 (Uniprot-TrEMBL)
Ig kappa chain V-III region POM ProteinP01624 (Uniprot-TrEMBL)
Ig kappa chain V-III region VG ProteinP04433 (Uniprot-TrEMBL)
Ig lambda chain V region 4A ProteinP04211 (Uniprot-TrEMBL)
Ig lambda chain V-I region HA ProteinP01700 (Uniprot-TrEMBL)
Ig lambda chain V-I region NEW ProteinP01701 (Uniprot-TrEMBL)
Ig lambda chain V-I region NEWM ProteinP01703 (Uniprot-TrEMBL)
Ig lambda chain V-I region VOR ProteinP01699 (Uniprot-TrEMBL)
Ig lambda chain V-II region BOH ProteinP01706 (Uniprot-TrEMBL)
Ig lambda chain V-II region MGC ProteinP01709 (Uniprot-TrEMBL)
Ig lambda chain V-II region NEI ProteinP01705 (Uniprot-TrEMBL)
Ig lambda chain V-II region TOG ProteinP01704 (Uniprot-TrEMBL)
Ig lambda chain V-III region LOI ProteinP80748 (Uniprot-TrEMBL)
Ig lambda chain V-III region SH ProteinP01714 (Uniprot-TrEMBL)
Ig lambda chain V-IV region Bau ProteinP01715 (Uniprot-TrEMBL)
Ig lambda chain V-IV region Hil ProteinP01717 (Uniprot-TrEMBL)
Ig lambda chain V-IV region Kern ProteinP01718 (Uniprot-TrEMBL)
Ig lambda chain V-VI region AR ProteinP01721 (Uniprot-TrEMBL)
IgH heavy chain V-III region VH26 precursor ProteinP01764 (Uniprot-TrEMBL)
IkB(alpha):NF-kB complexComplexR-HSA-193938 (Reactome)
JUNProteinP05412 (Uniprot-TrEMBL)
K48-UbComplexR-HSA-912722 (Reactome) The most studied polyubiquitin chains - lysine48-linked - target proteins for destruction
K48PolyUb-K21,22-p-S32,36-IkBA:NF-kB complexComplexR-HSA-5607697 (Reactome)
K48PolyUb-K21,22-p-S32,S36-IkBA ProteinP25963 (Uniprot-TrEMBL)
K63polyUb-NEMO ProteinQ9Y6K9 (Uniprot-TrEMBL)
K63polyUb-TRAF6 ProteinQ9Y4K3 (Uniprot-TrEMBL)
K63polyUbR-HSA-450152 (Reactome)
KRAS ProteinP01116 (Uniprot-TrEMBL)
LAT-2ProteinO43561-2 (Uniprot-TrEMBL)
LAT2ProteinQ9GZY6 (Uniprot-TrEMBL)
LCP2 ProteinQ13094 (Uniprot-TrEMBL)
LYNProteinP07948 (Uniprot-TrEMBL)
MALT1 ProteinQ9UDY8 (Uniprot-TrEMBL)
MALT1 oligomer R-HSA-2685673 (Reactome)
MALT1ProteinQ9UDY8 (Uniprot-TrEMBL)
MAP2K4ProteinP45985 (Uniprot-TrEMBL)
MAP2K7ProteinO14733 (Uniprot-TrEMBL)
MAP3K1ProteinQ13233 (Uniprot-TrEMBL)
MAP3K7 ProteinO43318 (Uniprot-TrEMBL)
MAPK10 ProteinP53779 (Uniprot-TrEMBL)
MAPK8 ProteinP45983 (Uniprot-TrEMBL)
MAPK8/9/10ComplexR-HSA-450289 (Reactome)
MAPK9 ProteinP45984 (Uniprot-TrEMBL)
MS4A2 ProteinQ01362 (Uniprot-TrEMBL)
MyrG-p-Y420-FYN ProteinP06241 (Uniprot-TrEMBL)
NAD+ MetaboliteCHEBI:15846 (ChEBI)
NFAT:CaN:CaMComplexR-HSA-2685690 (Reactome)
NFAT:CaN:CaMComplexR-HSA-2685705 (Reactome)
NFKB1(1-433) ProteinP19838 (Uniprot-TrEMBL)
NFKB1(1-433):RELAComplexR-HSA-194043 (Reactome)
NFKB1(1-433):RELAComplexR-HSA-194047 (Reactome)
NFKBIA ProteinP25963 (Uniprot-TrEMBL)
NRAS ProteinP01111 (Uniprot-TrEMBL)
PAK dimerComplexR-HSA-2685646 (Reactome)
PAK1 ProteinQ13153 (Uniprot-TrEMBL)
PAK2 ProteinQ13177 (Uniprot-TrEMBL)
PDK1:PIP2,PIP3ComplexR-HSA-202311 (Reactome)
PDPK1 ProteinO15530 (Uniprot-TrEMBL)
PDPK1ProteinO15530 (Uniprot-TrEMBL)
PI(3,4)P2 MetaboliteCHEBI:16152 (ChEBI)
PI(3,4,5)P3 MetaboliteCHEBI:16618 (ChEBI)
PI(3,4,5)P3MetaboliteCHEBI:16618 (ChEBI)
PI(4,5)P2MetaboliteCHEBI:18348 (ChEBI)
PI3KComplexR-HSA-74693 (Reactome)
PIK3CA ProteinP42336 (Uniprot-TrEMBL)
PIK3CB ProteinP42338 (Uniprot-TrEMBL)
PIK3R1 ProteinP27986 (Uniprot-TrEMBL)
PIK3R2 ProteinO00459 (Uniprot-TrEMBL)
PIP3 activates AKT signalingPathwayR-HSA-1257604 (Reactome) Signaling by AKT is one of the key outcomes of receptor tyrosine kinase (RTK) activation. AKT is activated by the cellular second messenger PIP3, a phospholipid that is generated by PI3K. In ustimulated cells, PI3K class IA enzymes reside in the cytosol as inactive heterodimers composed of p85 regulatory subunit and p110 catalytic subunit. In this complex, p85 stabilizes p110 while inhibiting its catalytic activity. Upon binding of extracellular ligands to RTKs, receptors dimerize and undergo autophosphorylation. The regulatory subunit of PI3K, p85, is recruited to phosphorylated cytosolic RTK domains either directly or indirectly, through adaptor proteins, leading to a conformational change in the PI3K IA heterodimer that relieves inhibition of the p110 catalytic subunit. Activated PI3K IA phosphorylates PIP2, converting it to PIP3; this reaction is negatively regulated by PTEN phosphatase. PIP3 recruits AKT to the plasma membrane, allowing TORC2 to phosphorylate a conserved serine residue of AKT. Phosphorylation of this serine induces a conformation change in AKT, exposing a conserved threonine residue that is then phosphorylated by PDPK1 (PDK1). Phosphorylation of both the threonine and the serine residue is required to fully activate AKT. The active AKT then dissociates from PIP3 and phosphorylates a number of cytosolic and nuclear proteins that play important roles in cell survival and metabolism. For a recent review of AKT signaling, please refer to Manning and Cantley, 2007.
PIP3, PI(3,4)P2ComplexR-ALL-202277 (Reactome)
PKC-theta (open): DAGComplexR-HSA-202187 (Reactome)
PLC gamma1,2ComplexR-HSA-1169089 (Reactome)
PLCG1 ProteinP19174 (Uniprot-TrEMBL)
PLCG2 ProteinP16885 (Uniprot-TrEMBL)
PPP3CA ProteinQ08209 (Uniprot-TrEMBL)
PPP3CB ProteinP16298 (Uniprot-TrEMBL)
PPP3R1 ProteinP63098 (Uniprot-TrEMBL)
PPiMetaboliteCHEBI:29888 (ChEBI)
PRKCQ ProteinQ04759 (Uniprot-TrEMBL)
PRKQC closed conformationProteinQ04759 (Uniprot-TrEMBL)
PSMA1 ProteinP25786 (Uniprot-TrEMBL)
PSMA2 ProteinP25787 (Uniprot-TrEMBL)
PSMA3 ProteinP25788 (Uniprot-TrEMBL)
PSMA4 ProteinP25789 (Uniprot-TrEMBL)
PSMA5 ProteinP28066 (Uniprot-TrEMBL)
PSMA6 ProteinP60900 (Uniprot-TrEMBL)
PSMA7 ProteinO14818 (Uniprot-TrEMBL)
PSMA8 ProteinQ8TAA3 (Uniprot-TrEMBL)
PSMB1 ProteinP20618 (Uniprot-TrEMBL)
PSMB10 ProteinP40306 (Uniprot-TrEMBL)
PSMB11 ProteinA5LHX3 (Uniprot-TrEMBL)
PSMB2 ProteinP49721 (Uniprot-TrEMBL)
PSMB3 ProteinP49720 (Uniprot-TrEMBL)
PSMB4 ProteinP28070 (Uniprot-TrEMBL)
PSMB5 ProteinP28074 (Uniprot-TrEMBL)
PSMB6 ProteinP28072 (Uniprot-TrEMBL)
PSMB7 ProteinQ99436 (Uniprot-TrEMBL)
PSMB8 ProteinP28062 (Uniprot-TrEMBL)
PSMB9 ProteinP28065 (Uniprot-TrEMBL)
PSMC1 ProteinP62191 (Uniprot-TrEMBL)
PSMC2 ProteinP35998 (Uniprot-TrEMBL)
PSMC3 ProteinP17980 (Uniprot-TrEMBL)
PSMC4 ProteinP43686 (Uniprot-TrEMBL)
PSMC5 ProteinP62195 (Uniprot-TrEMBL)
PSMC6 ProteinP62333 (Uniprot-TrEMBL)
PSMD1 ProteinQ99460 (Uniprot-TrEMBL)
PSMD10 ProteinO75832 (Uniprot-TrEMBL)
PSMD11 ProteinO00231 (Uniprot-TrEMBL)
PSMD12 ProteinO00232 (Uniprot-TrEMBL)
PSMD13 ProteinQ9UNM6 (Uniprot-TrEMBL)
PSMD14 ProteinO00487 (Uniprot-TrEMBL)
PSMD2 ProteinQ13200 (Uniprot-TrEMBL)
PSMD3 ProteinO43242 (Uniprot-TrEMBL)
PSMD4 ProteinP55036 (Uniprot-TrEMBL)
PSMD5 ProteinQ16401 (Uniprot-TrEMBL)
PSMD6 ProteinQ15008 (Uniprot-TrEMBL)
PSMD7 ProteinP51665 (Uniprot-TrEMBL)
PSMD8 ProteinP48556 (Uniprot-TrEMBL)
PSMD9 ProteinO00233 (Uniprot-TrEMBL)
PSME1 ProteinQ06323 (Uniprot-TrEMBL)
PSME2 ProteinQ9UL46 (Uniprot-TrEMBL)
PSME3 ProteinP61289 (Uniprot-TrEMBL)
PSME4 ProteinQ14997 (Uniprot-TrEMBL)
PSMF1 ProteinQ92530 (Uniprot-TrEMBL)
Phosphorylated NFATC1,2,3ComplexR-HSA-2025924 (Reactome)
PiMetaboliteCHEBI:18367 (ChEBI)
RAC1 ProteinP63000 (Uniprot-TrEMBL)
RAC1:GDPComplexR-HSA-445010 (Reactome)
RAF/MAP kinase cascadePathwayR-HSA-5673001 (Reactome) The RAS-RAF-MEK-ERK pathway regulates processes such as proliferation, differentiation, survival, senescence and cell motility in response to growth factors, hormones and cytokines, among others. Binding of these stimuli to receptors in the plasma membrane promotes the GEF-mediated activation of RAS at the plasma membrane and initiates the three-tiered kinase cascade of the conventional MAPK cascades. GTP-bound RAS recruits RAF (the MAPK kinase kinase), and promotes its dimerization and activation (reviewed in Cseh et al, 2014; Roskoski, 2010; McKay and Morrison, 2007; Wellbrock et al, 2004). Activated RAF phosphorylates the MAPK kinase proteins MEK1 and MEK2 (also known as MAP2K1 and MAP2K2), which in turn phophorylate the proline-directed kinases ERK1 and 2 (also known as MAPK3 and MAPK1) (reviewed in Roskoski, 2012a, b; Kryiakis and Avruch, 2012). Activated ERK proteins may undergo dimerization and have identified targets in both the nucleus and the cytosol; consistent with this, a proportion of activated ERK protein relocalizes to the nucleus in response to stimuli (reviewed in Roskoski 2012b; Turjanski et al, 2007; Plotnikov et al, 2010; Cargnello et al, 2011). Although initially seen as a linear cascade originating at the plasma membrane and culminating in the nucleus, the RAS/RAF MAPK cascade is now also known to be activated from various intracellular location. Temporal and spatial specificity of the cascade is achieved in part through the interaction of pathway components with numerous scaffolding proteins (reviewed in McKay and Morrison, 2007; Brown and Sacks, 2009).
The importance of the RAS/RAF MAPK cascade is highlighted by the fact that components of this pathway are mutated with high frequency in a large number of human cancers. Activating mutations in RAS are found in approximately one third of human cancers, while ~8% of tumors express an activated form of BRAF (Roberts and Der, 2007; Davies et al, 2002; Cantwell-Dorris et al, 2011).
RASGRP1 ProteinO95267 (Uniprot-TrEMBL)
RASGRP2 ProteinQ7LDG7 (Uniprot-TrEMBL)
RASGRP4 ProteinQ8TDF6 (Uniprot-TrEMBL)
RELA ProteinQ04206 (Uniprot-TrEMBL)
RasGRPs:DAG:Ca2+ComplexR-HSA-2685686 (Reactome)
RasGRPsComplexR-HSA-2685656 (Reactome) Rap1 can be activated by certain GEFs that respond to calcium and diacylglycerol (CalDAG-GEFs).
SCF-beta-TRCPComplexR-HSA-5607687 (Reactome)
SHC1-2ProteinP29353-2 (Uniprot-TrEMBL)
SHFM1 ProteinP60896 (Uniprot-TrEMBL)
SKP1 ProteinP63208 (Uniprot-TrEMBL)
SOS1 ProteinQ07889 (Uniprot-TrEMBL)
SYK ProteinP43405 (Uniprot-TrEMBL)
SYK/FYNComplexR-HSA-2685644 (Reactome)
SYKProteinP43405 (Uniprot-TrEMBL)
TAB1 ProteinQ15750 (Uniprot-TrEMBL)
TAB1:TAB2,TAB3:TAK1ComplexR-HSA-450277 (Reactome)
TAB2 ProteinQ9NYJ8 (Uniprot-TrEMBL)
TAB3 ProteinQ8N5C8 (Uniprot-TrEMBL)
TEC ProteinP42680 (Uniprot-TrEMBL)
TEC,BTK,ITK,(TXK)ComplexR-HSA-2685658 (Reactome)
TRAF6 ProteinQ9Y4K3 (Uniprot-TrEMBL)
TRAF6 oligomer R-HSA-2685708 (Reactome)
TRAF6ProteinQ9Y4K3 (Uniprot-TrEMBL)
TXK ProteinP42681 (Uniprot-TrEMBL)
UBE2D1 ProteinP51668 (Uniprot-TrEMBL)
UBE2D2 ProteinP62837 (Uniprot-TrEMBL)
UBE2D2,UBE2D1,(CDC34)ComplexR-HSA-5607669 (Reactome)
UBE2N ProteinP61088 (Uniprot-TrEMBL)
UBE2N:UBE2V1ComplexR-HSA-202463 (Reactome)
UBE2V1 ProteinQ13404 (Uniprot-TrEMBL)
Ub-124-UBB(77-152) ProteinP0CG47 (Uniprot-TrEMBL)
Ub-124-UBC(77-152) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-200-UBB(153-228) ProteinP0CG47 (Uniprot-TrEMBL)
Ub-200-UBC(153-228) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-276-UBC(229-304) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-352-UBC(305-380) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-428-UBC(381-456) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-48-RPS27A(1-76) ProteinP62979 (Uniprot-TrEMBL)
Ub-48-UBA52(1-76) ProteinP62987 (Uniprot-TrEMBL)
Ub-48-UBB(1-76) ProteinP0CG47 (Uniprot-TrEMBL)
Ub-48-UBC(1-76) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-504-UBC(457-532) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-580-UBC(533-608) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-656-UBC(609-684) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-TRAF6 trimer

bound to CBM

complex
ComplexR-HSA-202456 (Reactome)
VAV1 ProteinP15498 (Uniprot-TrEMBL)
VAV1,2,3ComplexR-HSA-430172 (Reactome)
VAV2 ProteinP52735 (Uniprot-TrEMBL)
VAV3 ProteinQ9UKW4 (Uniprot-TrEMBL)
Zn2+ MetaboliteCHEBI:29105 (ChEBI)
p-10Y-LAT2 ProteinQ9GZY6 (Uniprot-TrEMBL)
p-10Y-LAT2ProteinQ9GZY6 (Uniprot-TrEMBL)
p-10Y-NTAL:p-SHC1:GRB2:SOS:GAB2ComplexR-HSA-2685701 (Reactome)
p-10Y-NTAL:p-SHC1:GRB2:SOS:p-3Y-GAB2:PI3KComplexR-HSA-2685700 (Reactome)
p-10Y-NTAL:p-SHC1:GRB2:SOS:p-3Y-GAB2ComplexR-HSA-2685687 (Reactome)
p-10Y-NTAL:p-SHC1:GRB2:SOSComplexR-HSA-2685692 (Reactome)
p-12S-NFATC1 ProteinO95644 (Uniprot-TrEMBL)
p-13S-NFATC3 ProteinQ12968 (Uniprot-TrEMBL)
p-14S-NFATC2 ProteinQ13469 (Uniprot-TrEMBL)
p-2S-cJUN:p-2S,2T-cFOSComplexR-HSA-450327 (Reactome)
p-2Y-PAKComplexR-HSA-5567354 (Reactome)
p-4Y-PLCG1 ProteinP19174 (Uniprot-TrEMBL)
p-4Y-PLCG2 ProteinP16885 (Uniprot-TrEMBL)
p-5Y-LAT-2 ProteinO43561-2 (Uniprot-TrEMBL)
p-5Y-LAT-2ProteinO43561-2 (Uniprot-TrEMBL)
p-5Y-LAT:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:PIP3:p-VAV:RAC1-GTP:PAK dimerComplexR-HSA-2685694 (Reactome)
p-5Y-LAT:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:PIP3:p-VAV:RAC1-GTPComplexR-HSA-2685706 (Reactome)
p-5Y-LAT:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:PIP3:p-VAVComplexR-HSA-2685666 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:SLP76:PLCGComplexR-HSA-2396571 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:SLP76ComplexR-HSA-2424464 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAV:TEC kinases:PIP3ComplexR-HSA-2685683 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAV:p-2Y-BTK/p-2Y-ITK:PIP3ComplexR-HSA-2685707 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAV:p-2Y-TEC kinasesComplexR-HSA-2685650 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAV:p-TEC kinases:PIP3ComplexR-HSA-2685675 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAVComplexR-HSA-2685668 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCGComplexR-HSA-2424460 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1ComplexR-HSA-2424468 (Reactome)
p-5Y-PKC-theta:DAGComplexR-HSA-2685674 (Reactome)
p-6Y-SYK ProteinP43405 (Uniprot-TrEMBL)
p-BCL10 ProteinO95999 (Uniprot-TrEMBL)
p-CARMA1 oligomer R-HSA-2685669 (Reactome)
p-FCERI aggregate R-HSA-2685662 (Reactome)
p-MAP2K4/p-MAP2K7ComplexR-HSA-450299 (Reactome)
p-MAPK8/9/10ComplexR-HSA-450226 (Reactome)
p-MAPK8/9/10ComplexR-HSA-450253 (Reactome)
p-S141,T402-PAK2 ProteinQ13177 (Uniprot-TrEMBL)
p-S144,T423-PAK1 ProteinQ13153 (Uniprot-TrEMBL)
p-S177,S181-IKBKB ProteinO14920 (Uniprot-TrEMBL)
p-S177,S181-IKKB:IKKA:NEMOComplexR-HSA-202513 (Reactome)
p-S177,S181-IKKB:IKKA:pUb-NEMOComplexR-HSA-202562 (Reactome)
p-S243-NFATC2 ProteinQ13469 (Uniprot-TrEMBL)
p-S257,T261-MAP2K4 ProteinP45985 (Uniprot-TrEMBL)
p-S257,T261-MAP2K4ProteinP45985 (Uniprot-TrEMBL)
p-S257-NFATC1 ProteinO95644 (Uniprot-TrEMBL)
p-S265-NFATC3 ProteinQ12968 (Uniprot-TrEMBL)
p-S271,T275-MAP2K7 ProteinO14733 (Uniprot-TrEMBL)
p-S271,T275-MAP2K7ProteinO14733 (Uniprot-TrEMBL)
p-S32,36-IkB-alpha:NF-kB complexComplexR-HSA-5607671 (Reactome)
p-S32,S36-NFKBIA ProteinP25963 (Uniprot-TrEMBL)
p-S552,S645-CARD11 ProteinQ9BXL7 (Uniprot-TrEMBL)
p-S552,S645-CARD11ProteinQ9BXL7 (Uniprot-TrEMBL)
p-S552-CARD11 ProteinQ9BXL7 (Uniprot-TrEMBL)
p-S63,S73-JUN ProteinP05412 (Uniprot-TrEMBL)
p-S63,S73-JUNProteinP05412 (Uniprot-TrEMBL)
p-SHC1:GRB2:SOSComplexR-HSA-2685672 (Reactome)
p-SYK/p-BTKComplexR-HSA-2685648 (Reactome)
p-T,Y MAPK dimersComplexR-HSA-198701 (Reactome)
p-T,Y-MAPK8 ProteinP45983 (Uniprot-TrEMBL)
p-T183,Y185-MAPK9 ProteinP45984 (Uniprot-TrEMBL)
p-T185,Y187-MAPK1 ProteinP28482 (Uniprot-TrEMBL)
p-T202,Y204-MAPK3 ProteinP27361 (Uniprot-TrEMBL)
p-T221,Y223-MAPK10 ProteinP53779 (Uniprot-TrEMBL)
p-T325,T331,S362,S374-FOS ProteinP01100 (Uniprot-TrEMBL)
p-T325,T331,S362,S374-FOSProteinP01100 (Uniprot-TrEMBL)
p-Y113,128,145-LCP2 ProteinQ13094 (Uniprot-TrEMBL)
p-Y1400,Y1412-MAP3K1ProteinQ13233 (Uniprot-TrEMBL)
p-Y172-VAV2 ProteinP52735 (Uniprot-TrEMBL)
p-Y173-VAV3 ProteinQ9UKW4 (Uniprot-TrEMBL)
p-Y174-VAV1 ProteinP15498 (Uniprot-TrEMBL)
p-Y180,Y512-ITK ProteinQ08881 (Uniprot-TrEMBL)
p-Y206,Y519-TEC ProteinP42680 (Uniprot-TrEMBL)
p-Y223,Y551-BTK ProteinQ06187 (Uniprot-TrEMBL)
p-Y239,Y240,Y317-SHC1-2 ProteinP29353-2 (Uniprot-TrEMBL)
p-Y239,Y240,Y317-SHC1-2ProteinP29353-2 (Uniprot-TrEMBL)
p-Y396-LYN ProteinP07948 (Uniprot-TrEMBL)
p-Y396-LYNProteinP07948 (Uniprot-TrEMBL)
p-Y420-TXK ProteinP42681 (Uniprot-TrEMBL)
p-Y452,Y476,Y584-GAB2 ProteinQ9UQC2 (Uniprot-TrEMBL)
p-Y512-ITK ProteinQ08881 (Uniprot-TrEMBL)
p-Y519-TEC ProteinP42680 (Uniprot-TrEMBL)
p-Y551-BTK ProteinQ06187 (Uniprot-TrEMBL)
p-Y90,T219,T538,S676,S695-PRKCQ ProteinQ04759 (Uniprot-TrEMBL)
p-Y90-PKC-theta:DAGComplexR-HSA-202300 (Reactome)
p-Y90-PRKCQ ProteinQ04759 (Uniprot-TrEMBL)
p-Y91,Y420-TXK ProteinP42681 (Uniprot-TrEMBL)
p21 RAS:GDPComplexR-HSA-109796 (Reactome)
p21 RAS:GTPComplexR-HSA-109783 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
26S proteasomemim-catalysisR-HSA-5607724 (Reactome)
ADPArrowR-HSA-168136 (Reactome)
ADPArrowR-HSA-168162 (Reactome)
ADPArrowR-HSA-202541 (Reactome)
ADPArrowR-HSA-2454208 (Reactome)
ADPArrowR-HSA-2454239 (Reactome)
ADPArrowR-HSA-2730833 (Reactome)
ADPArrowR-HSA-2730835 (Reactome)
ADPArrowR-HSA-2730841 (Reactome)
ADPArrowR-HSA-2730843 (Reactome)
ADPArrowR-HSA-2730851 (Reactome)
ADPArrowR-HSA-2730856 (Reactome)
ADPArrowR-HSA-2730858 (Reactome)
ADPArrowR-HSA-2730860 (Reactome)
ADPArrowR-HSA-2730862 (Reactome)
ADPArrowR-HSA-2730863 (Reactome)
ADPArrowR-HSA-2730868 (Reactome)
ADPArrowR-HSA-2730870 (Reactome)
ADPArrowR-HSA-2730876 (Reactome)
ADPArrowR-HSA-2730882 (Reactome)
ADPArrowR-HSA-2730884 (Reactome)
ADPArrowR-HSA-2730886 (Reactome)
ADPArrowR-HSA-2730887 (Reactome)
ADPArrowR-HSA-2730888 (Reactome)
ADPArrowR-HSA-2730896 (Reactome)
ADPArrowR-HSA-2730900 (Reactome)
ADPArrowR-HSA-450325 (Reactome)
AHCYL1:NAD+:ITPR1:I(1,4,5)P3 tetramerTBarR-HSA-169683 (Reactome)
AMPArrowR-HSA-2730904 (Reactome)
ATPR-HSA-168136 (Reactome)
ATPR-HSA-168162 (Reactome)
ATPR-HSA-202541 (Reactome)
ATPR-HSA-2454208 (Reactome)
ATPR-HSA-2454239 (Reactome)
ATPR-HSA-2730833 (Reactome)
ATPR-HSA-2730835 (Reactome)
ATPR-HSA-2730841 (Reactome)
ATPR-HSA-2730843 (Reactome)
ATPR-HSA-2730851 (Reactome)
ATPR-HSA-2730856 (Reactome)
ATPR-HSA-2730858 (Reactome)
ATPR-HSA-2730860 (Reactome)
ATPR-HSA-2730862 (Reactome)
ATPR-HSA-2730863 (Reactome)
ATPR-HSA-2730868 (Reactome)
ATPR-HSA-2730870 (Reactome)
ATPR-HSA-2730876 (Reactome)
ATPR-HSA-2730882 (Reactome)
ATPR-HSA-2730884 (Reactome)
ATPR-HSA-2730886 (Reactome)
ATPR-HSA-2730887 (Reactome)
ATPR-HSA-2730888 (Reactome)
ATPR-HSA-2730896 (Reactome)
ATPR-HSA-2730900 (Reactome)
ATPR-HSA-2730904 (Reactome)
ATPR-HSA-450325 (Reactome)
Allergin:p-LYN:p-FCERI:IgE aggregateArrowR-HSA-2454208 (Reactome)
Allergin:p-LYN:p-FCERI:IgE aggregateR-HSA-2454240 (Reactome)
Allergin:p-LYN:p-FCERI:IgE aggregatemim-catalysisR-HSA-2730882 (Reactome)
AllerginR-HSA-2454192 (Reactome)
BCL10:MALT1R-HSA-2730836 (Reactome)
BCL10R-HSA-2730899 (Reactome)
CALM1:4xCa2+ArrowR-HSA-74448 (Reactome)
CALM1:4xCa2+R-HSA-2730872 (Reactome)
CALM1R-HSA-74448 (Reactome)
CARD11R-HSA-2730863 (Reactome)
CHUK:IKBKB:IKBKGR-HSA-2730876 (Reactome)
Ca2+ArrowR-HSA-169683 (Reactome)
Ca2+R-HSA-169683 (Reactome)
Ca2+R-HSA-2730871 (Reactome)
Ca2+R-HSA-2730872 (Reactome)
Ca2+R-HSA-74448 (Reactome)
Calcineurin (CaN)R-HSA-2730872 (Reactome)
Calcineurin:Calmodulin (CaN:CaM)ArrowR-HSA-2730872 (Reactome)
Calcineurin:Calmodulin (CaN:CaM)R-HSA-2730849 (Reactome)
Calcineurin:Calmodulin (CaN:CaM)mim-catalysisR-HSA-2730849 (Reactome)
Clustered p:LYN:p-FCERI:IgE:allergin:SYKArrowR-HSA-2454240 (Reactome)
Clustered p:LYN:p-FCERI:IgE:allergin:SYKR-HSA-2454239 (Reactome)
Clustered p:LYN:p-FCERI:IgE:allergin:SYKmim-catalysisR-HSA-2454239 (Reactome)
Clustered p:LYN:p-FCERI:IgE:allergin:p-6Y-SYKArrowR-HSA-2454239 (Reactome)
Clustered p:LYN:p-FCERI:IgE:allergin:p-6Y-SYKmim-catalysisR-HSA-2730833 (Reactome)
Clustered p:LYN:p-FCERI:IgE:allergin:p-6Y-SYKmim-catalysisR-HSA-2730843 (Reactome)
Clustered p:LYN:p-FCERI:IgE:allergin:p-6Y-SYKmim-catalysisR-HSA-2730851 (Reactome)
Clustered p:LYN:p-FCERI:IgE:allergin:p-6Y-SYKmim-catalysisR-HSA-2730884 (Reactome)
Clustered p:LYN:p-FCERI:IgE:allergin:p-6Y-SYKmim-catalysisR-HSA-2730886 (Reactome)
DAG:p-5Y-PKC-theta:CBM complexArrowR-HSA-2730836 (Reactome)
DAG:p-5Y-PKC-theta:CBM complexR-HSA-2730899 (Reactome)
DAG:p-5Y-PKC-theta:CBM oligomer:TRAF6 oligomerArrowR-HSA-2730903 (Reactome)
DAG:p-5Y-PKC-theta:CBM oligomer:TRAF6 oligomerR-HSA-2730904 (Reactome)
DAG:p-5Y-PKC-theta:CBM oligomer:TRAF6 oligomermim-catalysisR-HSA-2730904 (Reactome)
DAG:p-5Y-PKC-theta:CBM oligomer:TRAF6ArrowR-HSA-2730864 (Reactome)
DAG:p-5Y-PKC-theta:CBM oligomer:TRAF6R-HSA-2730903 (Reactome)
DAG:p-5Y-PKC-theta:CBM oligomer:oligo-K63-poly Ub-TRAF6:TAK1:TAB1:TAB2/3ArrowR-HSA-2730861 (Reactome)
DAG:p-5Y-PKC-theta:CBM oligomer:oligo-K63-poly Ub-TRAF6:TAK1:TAB1:TAB2/3R-HSA-2730900 (Reactome)
DAG:p-5Y-PKC-theta:CBM oligomer:oligo-K63-poly Ub-TRAF6:TAK1:TAB1:TAB2/3mim-catalysisR-HSA-2730900 (Reactome)
DAG:p-5Y-PKC-theta:CBM oligomer:oligo-K63-poly Ub-TRAF6:activated TAK1 complexArrowR-HSA-2730900 (Reactome)
DAG:p-5Y-PKC-theta:CBM oligomer:oligo-K63-poly Ub-TRAF6:activated TAK1 complexmim-catalysisR-HSA-2730876 (Reactome)
DAG:p-5Y-PKC-theta:CBM oligomer:oligo-K63-poly Ub-TRAF6ArrowR-HSA-2730904 (Reactome)
DAG:p-5Y-PKC-theta:CBM oligomer:oligo-K63-poly Ub-TRAF6R-HSA-2730861 (Reactome)
DAG:p-5Y-PKC-theta:CBM oligomerArrowR-HSA-2730899 (Reactome)
DAG:p-5Y-PKC-theta:CBM oligomerR-HSA-2730864 (Reactome)
DAG:p-5Y-PKC-theta:p-S552,S645-CARMA1 oligomerArrowR-HSA-2730902 (Reactome)
DAG:p-5Y-PKC-theta:p-S552,S645-CARMA1 oligomerR-HSA-2730836 (Reactome)
DAG:p-5Y-PKC-theta:p-S552,S645-CARMA1ArrowR-HSA-2730863 (Reactome)
DAG:p-5Y-PKC-theta:p-S552,S645-CARMA1R-HSA-2730902 (Reactome)
DAGsArrowR-HSA-2730847 (Reactome)
DAGsR-HSA-202328 (Reactome)
DAGsR-HSA-2730871 (Reactome)
FCERI:IgE:allergin aggregateArrowR-HSA-2454192 (Reactome)
FCERI:IgE:allergin aggregateR-HSA-2454208 (Reactome)
FCERI:IgER-HSA-2454192 (Reactome)
FOSR-HSA-450325 (Reactome)
GAB2R-HSA-2730848 (Reactome)
GADS:SLP76R-HSA-2396561 (Reactome)
GDPArrowR-HSA-2424477 (Reactome)
GDPArrowR-HSA-2730840 (Reactome)
GRB2-1:SOS1R-HSA-2730844 (Reactome)
GTPR-HSA-2424477 (Reactome)
GTPR-HSA-2730840 (Reactome)
H2OR-HSA-2730847 (Reactome)
H2OR-HSA-2730849 (Reactome)
I(1,4,5)P3ArrowR-HSA-169683 (Reactome)
I(1,4,5)P3ArrowR-HSA-2730847 (Reactome)
I(1,4,5)P3R-HSA-169680 (Reactome)
IP3 receptor homotetramerR-HSA-169680 (Reactome)
ITPR:I(1,4,5)P3 tetramerArrowR-HSA-169680 (Reactome)
ITPR:I(1,4,5)P3 tetramermim-catalysisR-HSA-169683 (Reactome)
IkB(alpha):NF-kB complexR-HSA-202541 (Reactome)
JUNR-HSA-168136 (Reactome)
K48-UbR-HSA-5607728 (Reactome)
K48PolyUb-K21,22-p-S32,36-IkBA:NF-kB complexArrowR-HSA-5607728 (Reactome)
K48PolyUb-K21,22-p-S32,36-IkBA:NF-kB complexR-HSA-5607724 (Reactome)
K63polyUbR-HSA-202534 (Reactome)
K63polyUbR-HSA-2730904 (Reactome)
LAT-2R-HSA-2730843 (Reactome)
LAT2R-HSA-2730884 (Reactome)
LYNR-HSA-2730862 (Reactome)
LYNmim-catalysisR-HSA-2730862 (Reactome)
MALT1R-HSA-2730899 (Reactome)
MAP2K4R-HSA-2730896 (Reactome)
MAP2K7R-HSA-2730868 (Reactome)
MAP3K1R-HSA-2730887 (Reactome)
MAP3K1mim-catalysisR-HSA-2730887 (Reactome)
MAPK8/9/10R-HSA-168162 (Reactome)
NFAT:CaN:CaMArrowR-HSA-2730849 (Reactome)
NFAT:CaN:CaMArrowR-HSA-2730867 (Reactome)
NFAT:CaN:CaMR-HSA-2730867 (Reactome)
NFKB1(1-433):RELAArrowR-HSA-2730894 (Reactome)
NFKB1(1-433):RELAArrowR-HSA-5607724 (Reactome)
NFKB1(1-433):RELAR-HSA-2730894 (Reactome)
PAK dimerR-HSA-2730889 (Reactome)
PDK1:PIP2,PIP3ArrowR-HSA-202164 (Reactome)
PDPK1R-HSA-202164 (Reactome)
PI(3,4,5)P3ArrowR-HSA-2730841 (Reactome)
PI(3,4,5)P3ArrowR-HSA-2730870 (Reactome)
PI(3,4,5)P3R-HSA-2730848 (Reactome)
PI(3,4,5)P3R-HSA-2730885 (Reactome)
PI(4,5)P2R-HSA-2730847 (Reactome)
PI(4,5)P2R-HSA-2730870 (Reactome)
PI3KR-HSA-2730842 (Reactome)
PIP3, PI(3,4)P2R-HSA-202164 (Reactome)
PKC-theta (open): DAGArrowR-HSA-202328 (Reactome)
PKC-theta (open): DAGR-HSA-2730882 (Reactome)
PLC gamma1,2R-HSA-2396606 (Reactome)
PPiArrowR-HSA-2730904 (Reactome)
PRKQC closed conformationR-HSA-202328 (Reactome)
Phosphorylated NFATC1,2,3R-HSA-2730849 (Reactome)
PiArrowR-HSA-2730849 (Reactome)
R-HSA-168136 (Reactome) JNK (c-Jun N-terminal Kinase) phosphorylates several transcription factors including c-Jun after translocation to the nucleus.
R-HSA-168162 (Reactome) Activated human JNK kinases (MKK4 and MKK7) phosphorylate Thr183 and Tyr185 residues in the characteristic Thr-Pro-Tyr phosphoacceptor loop of each JNK.

JNK is differentially regulated by MKK4 and MKK7 depending on the stimulus. MKK7 is the primary activator of JNK in TNF, LPS, and PGN responses. However, TLR3 cascade requires both MKK4 and MKK7. Some studies reported that in three JNK isoforms tested MKK4 shows a striking preference for the tyrosine residue (Tyr-185), and MKK7 a striking preference for the threonine residue (Thr-183).

R-HSA-169680 (Reactome) The IP3 receptor (IP3R) is an IP3-gated calcium channel. It is a large, homotetrameric protein, similar to other calcium channel proteins such as ryanodine. The four subunits form a 'four-leafed clover' structure arranged around the central calcium channel. Binding of ligands such as IP3 results in conformational changes in the receptor's structure that leads to channel opening.
R-HSA-169683 (Reactome) IP3 promotes the release of intracellular calcium.
R-HSA-202164 (Reactome) PI3K activation results in recruitment of the serine/threonine kinase PDK1, (3-phosphoinositide-dependent kinase 1) to the plasma membrane where PDK1 subsequently phosphorylates and activates AKT. PDK1 with its PH domain binds to either PIP3 or PIP2 and is translocated to the plasma membrane. PDK1 seems to exist in an active, phosphorylated configuration under basal conditions (Vanhaesebroeck & Alessi 2000).
R-HSA-202328 (Reactome) DAG along with intracellular calcium signals cooperatively to activate PKCs, which then trigger other pathways such as the NF-kB pathway, ultimately leading to mast cell (MC) degranulation and cytokine production (Wu 2011). PKC theta is a member of the Ca++ independent and DAG dependent, novel PKC subfamily expressed mainly in T cells. It contains, N-term C2 like domain, a pseudosubstrate (PS), DAG binding (C1) domain and a C-term kinase domain. The PS sequence resembles an ideal substrate with the exception that it contains an alanine residue instead of a substrate serine residue, is bound to the kinase domain in the resting state. As a result, PKC theta is maintained in a closed inactive state, which is inaccessible to cellular substrates.
MCs express several Protein kinase C (PKC) isozymes and these kinases are involved in both the activation and termination of the degranulation process. PKC-delta is a negative regulator of FCERI mediated mast cell degranulation, whereas PKC-theta facilitates in degranulation (Leitges et al. 2002, Liu et al. 2001). In response to FCERI activation PKC-theta translocates to membrane by binding to DAG with its C1 domain. PKC-theta exists in two conformations closed/inactive and open/active state. In resting state, PKC-theta is autoinhibited where the pseudosubstrate sequence in the N-terminal regulatory region of PKC-theta forms intramolecular interaction with the substrate-binding region in the catalytic domain. This prevents the catalytic domain gaining access to substrates. The allosteric change of PKC-theta from closed to open state involves two important mechanisms: DAG binding to the C1 domains and autophosphorylation of T538 on the activation loop. Interaction with DAG induces conformational change resulting in the exposure of the activation loop of PKC-theta (Wang et al. 2012, Melowic et al. 2007).
R-HSA-202534 (Reactome) During the phosphorylation of the IKK beta, the regulatory subunit NEMO undergoes K-63-linked polyubiquitination. Ubiquitinated TRAF6 trimer, acts as a E3 ligase and induces this ubiquitination. The ubiquitin target sites in NEMO are not yet clearly identified. Studies of different NF-kB signaling pathways revealed several potential ubiquitination sites on NEMO (e.g., K285, K277, K309 and K399) (Fuminori et al. 2009).
R-HSA-202541 (Reactome) NF-kB is sequestered in the cytosol of unstimulated cells through the interactions with a class of inhibitor proteins, called IkBs, which mask the nuclear localization signal (NLS) of NF-kB and prevent its nuclear translocation. A key event in NF-kB activation involves phosphorylation of IkB (at sites equivalent to Ser32 and Ser36 of IkB-alpha or Ser19 and Ser22 of IkB-beta) by IKK. The phosphorylated IkB-alpha is recognized by the E3 ligase complex and targeted for ubiquitin-mediated proteasomal degradation, releasing the NF-kB dimer p50/p65 into the nucleus to turn on target genes. (Karin & Ben-Neriah 2000)
R-HSA-2396561 (Reactome) Gads/GRAP2 (GRB2-related adapter protein 2) is member of the GRB2 adaptor family with a central SH2 domain and linker region flanked by amino- and carboxy-terminal SH3 domains. SLP-76 associates constitutively via its central 20-amino acid proline-rich domain with the C-terminal SH3 domain of Gads, which recruits it to LAT following receptor stimulation. Upon LAT phosphorylation, Gads:SLP-76 complex principally binds to phosphorylated LAT tyrosine 191, with a reduced amount of binding to phosphorylated tyrosine 171 and no interaction with phosphorylated tyrosines 132 or 226 (Houtman et al. 2004, Zhu et al. 2003). Gads may promote cross-talk between the LAT and SLP-76 signaling complexes, thereby coupling membrane-proximal events to downstream signaling pathways (Liu et al. 1999). The LAT-Gads-SLP-76 complex creates a platform for the recruitment of multiple signaling molecules, including PLCgamma1, GRB2, NCK, Rho GEFs, VAV and the Tec-family kinases ITK and BTK (Liu et al. 1999 & 2001, Asada et al. 1999, Yablonski et al. 2001).
R-HSA-2396599 (Reactome) GRB2 is an adapter protein that contains a central SH2 domain flanked by N- and C-terminal SH3 domains. GRB2 acts downstream of receptor protein-tyrosine kinases and is involved in Ras and MAP kinase pathway activation by associating with the guanine exchange factor (GEF) SOS. GRB2 is constitutively bound to SOS through its SH3 domains, which interact with a proline-rich sequence in the C-terminal part of SOS (Chardin et al. 1993). Following phosphorylation of LAT, the GRB2:SOS complex binds to the phosphorylated tyrosines and is thereby translocated to the inner face of the plasma membrane where inactive RAS:GDP resides. The three distal tyrosines, Y171, Y191 and Y226 of LAT are responsible for GRB2 association (Balagopalan et al. 2010, Zhang et al. 2000).
R-HSA-2396606 (Reactome) The phospholipase PLC-gamma is an important mediator of TCR, FCERI and DAP12 signal transduction. PLC-gamma hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to produce inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) and in-turn promotes the Ca+2 influx and activation of NFAT. Activation of PLC-gamma1 entails the binding of PLC-gamma1 to both LAT and SLP-76 adapter proteins. The amino-terminal SH2 domain of PLC-gamma1 was shown to preferentially bind phosphorylated LAT Y132 with high affinity and no detectable binding to phosphorylated tyrosines 171, 191, and 226. PLC-gamma1 was also shown to bind the adapter protein SLP-76 indirectly through GADS, which is bound to LAT at Y171 and Y191. SH3 domain of PLC-gamma1 associates with the proline-rich region of SLP-76 (Yablonski et al. 2001). PLC-gamma1 associates with Gads/SLP-76 complex before binding to p-Y132 of LAT (Houtman et al. 2005). PLC-gamma1 association with LAT is stabilized by Gads/SLP-76 bound to LAT (Zhu et al.2003). Association of PLC-gamma to LAT and SLP-76 couples it to the kinases (Syk and Tec family kinase) required for tyrosine phosphorylation and activation of PLC-gamma.
Mast cells express both PLC-gamma1 and PLC-gamma2 isoforms, which are phosphorylated by BTK/ITK and/or SYK. FCERI-dependent Ca2+ release requires the recruitment of PLC-gamma by SLP-76 and LAT. In mast cells, increased intracellular calcium triggers rapid release of preformed mediators, through a process of vesicle exocytosis, known as degranulation.
Recruitment and activation of phospholipase C gamma (PLC-gamma) is involved in DAP12 signal transduction. Phosphorylation of multiple substrates including PLC-gamma1 has been observed in Ly49D/DAP12 triggered NK cells (McVicar et al. 1998). In myeloid cells, PLC-gamma2 is recruited and then phosphorylated upon activation of TREM2 and DAP12 (Peng et al. 2010).
R-HSA-2424477 (Reactome) GRB2-bound SOS promotes the formation of active GTP-bound RAS. This activates the mitogen-activated protein kinase (MAPK) cascade, leading to cell growth and differentiation.
R-HSA-2454192 (Reactome) FCERI is primarily expressed on mast cells and basophils as a tetrameric complex comprising an IgE-binding alpha subunit, a signal amplifying membrane-tetraspanning beta subunit, and a disulfide-linked gamma chain dimer that provides the receptor its signaling competence (Blank & Rivera 2004). In the absence of an antigen or allergen, FCERI receptor binds to monomeric IgE antibodies, and thus the receptor adopts the antigenic specificity of the prevalent IgE repertoire (Garman et al. 2000). Mast cell activation is initiated when multivalent antigen crosslinks the IgE bound to the high-affinity FCERI, thereby aggregating FCERI (Siraganian 2003). Antigen driven aggregation of FCERI then elicits intracellular signals that result in mast cell exocytosis.
R-HSA-2454208 (Reactome) Upon FCGRI-IgE aggregation, LYN kinase phosphorylates the tyrosine residues within the ITAM (immunoreceptor tyrosine-based activation motifs) of both the beta and gamma subunits. The detailed mechanism of the initial engagement of LYN kinase and FCERI is incompletely understood, but two different models have been proposed. One model postulates that a small fraction of LYN is constitutively bound to beta subunit of FCERI prior to activation. Aggregation of FCERI facilitates the transphosphorylation of one FCERI by LYN bound to a juxtaposed receptor (Vonakis et al. 1997, Draber & Draberova 2002). Alternative model postulates that LYN is observed in lipid rafts enriched in glycosphingolipids, cholesterol, and glycosylphosphatidylinositol-anchored proteins and upon aggregation, FCERI rapidly translocates into lipid rafts, where it is phosphorylated by LYN kinase. Either the association of LYN or FCERI or both with lipid rafts is important for initiating this phosphorylation process (Young et al. 2003, Kovarova et al. 2002, Draber & Draberova 2002).
Beta subunit ITAM differs from canonical ITAMs in two ways; the spacing between the two canonical tyrosines harbours a third tyrosine, and it is one amino acid shorter than in canonical ITAMs, thus making it unfit to bind and recruit Syk. Among the three tyrosine residues (Y219, Y225 and Y229), Y219 may play a predominant role in beta chain function and LYN recruitment. Mutation of this tyrosine would decrease substantially LYN association and subsequent phosphorylation of Y225 and Y229. This would result in decreased gamma phosphorylation and decreased SYK recruitment and activation (On et al. 2004).
R-HSA-2454239 (Reactome) Multiple sites of phosphorylation are known to exist in SYK, which both regulate its activity and also serve as docking sites for other proteins. Some of these sites include Y131 of interdomain A, Y323, Y348, and Y352 of interdomain B, and Y525 and Y526 within the activation loop of the kinase domain and Y630 in the C-terminus (Zhang et al. 2002, Lupher et al. 1998, Furlong et al. 1997). Phosphorylation of these tyrosine residues disrupts autoinhibitory interactions and results in kinase activation even in the absence of phosphorylated ITAM tyrosines (Tsang et al. 2008). SYK is primarily phosphorylated by Src family kinases and this acts as an initiating trigger by generating few molecules of activated SYK which are then involved in major SYK autophosphorylation (Hillal et al. 1997).
R-HSA-2454240 (Reactome) Tyrosine phosphorylated ITAM in FCERI gamma subunit serves as docking site for SYK (spleen tyrosine kinases), whereas the beta-subunit ITAM has an extra tyrosine and is shorter than canonical ITAM which makes it unfit to bind SYK. Association of SYK to FCERI gamma-subunit disrupts the COOH-terminal-SH2 interdomain interaction of SYK causing a conformational change opening the molecule leading to its activation (Siraganian et al. 2010, de Castro et al. 2010).
R-HSA-2730833 (Reactome) BTK/ITK are activated in a two step model. In the first step they are recruited to the membrane by binding to PIP3 or, alternatively with other binding partners like SLP-76. Once at the membrane SYK or Src-kinases in the vicinity phosphorylates Y551 (Y512 in ITK) in the activation loop of the catalytic domain of BTK to fully activate it (Rawlings et al. 1996, Park et al. 1996, Kawakami et al. 1994).
R-HSA-2730835 (Reactome) T219, T538 at the activation loop, S676 at the turn motif and S695 at the hydrophobic motif are autophosphorylated in cis-maanner. Posphorylation of T538 is critical for kinase activation and it stabilises the open active conformation. Some studies suggest the involvement of PDK1 (3-phosphoinositide-dependent protein kinase 1) and GLK kinases in the phosphorylation T538.
R-HSA-2730836 (Reactome) Phosphorylation of CARMA1 causes conformational change such that its CARD motif is exposed and is free to interact with BCL10 CARD motif. BCL10 constitutively associated with MALT1 and exists as a preformed complex in the cytoplasm. BCL10 and MALT1 have been identified as key positive regulators of FCERI-dependent NF-kB activation (Klemm et al. 2006). The resulting CARMA1-BCL10-MALT1 (CBM) complex may be stabilized by interactions between the CARMA1 coiled coil (CC) domain and a C-terminal MALT1 region that lacks the DD and first two Ig domains (Thome et al. 2010, Che et al. 2004). The CBM complex transmits activating signals that ultimately result in ubiquitination (Ub) and degradation of the NF-kB inhibitor, IkBa.
R-HSA-2730837 (Reactome) Upon phosphorylation NATL/LAT2 recruits GRB2:SOS complex into the receptor-signaling complex. Residues Y95, Y118, Y136, Y193, Y233 are the putative GRB2-binding sites on NTAL (Iwaki et al. 2007).
R-HSA-2730840 (Reactome) Rac1 exists in inactive state in the cytosol until the reception of extracellular signals by the cell. To be functional Rac1 is rapidly targeted to the plasma membrane upon cell stimulation. The main factors involved in this mobilisation are the Rac GEFs like VAV and phospholipids (PtdIns(4,5)P2, PtdIns(3,4,5) P3) and lipid rafts at the plasma membrane. VAV catalyses the disassociation of GDP from Rac1 by modifying the nucleotide-binding site such that GDP is released and subsequently replaced. The incoming GTP occupies the nucleotide binding site and finally displaces VAV from Rac1 (Bos et al. 2007, Bustelo et al. 2012).
R-HSA-2730841 (Reactome) Phosphorylation of VAV stimulates its GEF activity for RAC1, and thus it plays an important role in linking FCERI to the RAC1-JNK pathway. VAV exists in an auto-inhibitory state, folded in such a way as to inhibit the GEF activity of its DH domain. This folding is mediated through binding of tyrosines in the acidic domain to the DH domain and through binding of the calponin homology (CH) domain to the C1 region. Activation of VAV may involve three events which relieve this auto-inhibition: phosphorylation of tyrosines in the acidic domain causes them to be displaced from the DH domain; binding of a ligand to the CH domain may cause it to release the C1 domain; binding of the PI3K product PIP3 to the PH domain may alter its conformation (Aghazadeh et al. 2000). VAV is phosphorylated on tyrosine residue (Y174 in VAV1/172 in VAV2/173 in VAV3) in the acidic domain. This is mediated by SYK and Src-family tyrosine kinases (Deckert et al. 1996, Schuebel et al. 1998). Once activated, VAV is involved in the activation of RAC1, PAK1, MEK and ERK and cytokine production.
R-HSA-2730842 (Reactome) Phosphorylated Y452, Y476, and Y584 of GAB2 binds p85 regulatory subunit of PI3K kinase, resulting in activation of PI3K pathway. PI3K is required for mast cell degranulation and anaphylaxis response but not for cytokine production or contact hypersensitivity (Nishida et al. 2011). Activated PI3K generates second messenger PtdInsP3 (PIP3) at the inner membrane, which provides docking sites for pleckstrin homology (PH) domains of PDK1, AKT and BTK. Activated AKT controls major downstream targets like mTORC1, FOXO3 and GSK3beta pathways that regulate mast cell growth, homeostasis, and cytokine production. BTK triggers PLCgamma2 activation, thereby inducing activation of the transcription factor NFAT and NF-kB.
R-HSA-2730843 (Reactome) LAT is palmitoylated and membrane-associated adaptor protein. It rapidly becomes tyrosine-phosphorylated upon receptor engagement. LAT has nine conserved tyrosine residues of which five have been shown to undergo phosphorylation (Y127, Y132, Y171, Y191 and Y226). Src family kinases, SYK and ZAP-70 efficiently phosphorylate LAT on these tyrosine residues (Jiang & Cheng 2007, Paz et al. 2001). Phosphorylation of LAT creates binding sites for the Src homology 2 (SH2) domain proteins PLC-gamma1, GRB2 and GADS, which indirectly bind SOS, VAV, SLP-76 and ITK (Wange 2000).
R-HSA-2730844 (Reactome) GRB2 is an adapter protein that contains a central SH2 domain flanked by N- and C-terminal SH3 domains. GRB2 acts downstream of receptor protein-tyrosine kinases and is involved in Ras and MAP kinase pathway activation by associating with the guanine exchange factor (GEF) SOS. GRB2 is constitutively bound to SOS through its SH3 domains, which interact with a proline-rich sequence in the C-terminal part of SOS (Chardin et al. 1993). GRB2-SOS complex binds to phosphotyrosine Y239 and Y317 of SHC1. SHC1 associates with the tyrosine-phosphorylated ITAMs of the FCERI beta-chain and can recruit SOS to membrane. SHC1 and SOS have also been described to associate with LAT via GRB2. Shc binding to Phospho-ITAMs (in vitro binding to phospho peptides) has never been linked to any biological function (activation) and is probably not relevant in a physiological setting.
R-HSA-2730847 (Reactome) Phosphoinositol 4,5-bisphosphate (PIP2) is cleaved in to two most important second messengers diacylglycerol (DAG) and Inositol 1,4,5-triphosphate (IP3) by phospholipase C (PLC). DAG remains within the membrane and activates protein kinase C (PKC) while IP3 leaves the cell membrane and binds to IP3 receptor that releases Ca2+ from endoplasmic reticulum (ER).
R-HSA-2730848 (Reactome) NTAL cooperates with LAT in mast cells to activate PI3K pathway and cytokine production through Grb2-associated binding protein 2 (GAB2) (Gonzalez-Espinosa et al. 2003). FCERI aggregation induced translocation of a significant fraction of GAB2 from the cytosol to the plasma membrane by binding GRB2. Two of the proline-rich motifs in GAB2 are binding sites for the SH3 of GRB2. GAB2 is also recruited to plasma membrane by binding to phosphatidylinositol-3,4,5-trisphosphate (PIP3) with its plecstrin homology (PH) domain. GAB2 can be recruited to FCERI indirectly through GRB2 bound SHC1. SHC1 is recruited to the FCERI beta chain through its SH2 domain and becomes tyrosyl-phosphorylated. Phosphorylated SHC provides a docking site for the GRB2 and this in turn recruits GAB2 (Yu et al. 2006). GAB2 and PI3K are required for FCERI-induced granule translocation.
R-HSA-2730849 (Reactome) Nuclear factor of activated T-cells (NFAT) is a transcription factor which induces genes responsible for cytokine production, for cell-cell interactions etc. NFAT transcription activity is modulated by calcium and Calcineurin concentration. In resting cells NFAT is phosphorylated and resides in the cytoplasm. Phosphorylation sites are located in NFAT's regulatory domain in three different serine rich motifs, termed SRR1, SP2 and SP. Upon stimulation, these serine residues are dephosphorylated by calcineurin, that thought to cause exposure of nuclear localization signal sequences triggering translocation of the dephosphorylated NFAT-CaN complex to the nucleus. Among all the phosphorylation sites one of the site in SRR-2 motif is not susceptable to dephosphorylation by CaN (Takeuchi et al. 2007, Hogan et al. 2003).
R-HSA-2730851 (Reactome) SLP-76 lacks intrinsic catalytic activity and acts as a scaffold, recruiting other proteins for correct localization during molecular signal transduction (Bogin et al. 2007). Activation of FCERI leads to tyrosine phosphorylation of SLP-76 (Gross et al. 1999). SLP-76 has three potential tyrosine phosphorylation sites within its amino terminus region: Y113, Y128, and Y145. Phosphorylation may be mediated by SYK, analogous to the role of ZAP-70 in phosphorylating T-cell SLP-76 (Bubeck-Wardenberg et al. 1996).
R-HSA-2730856 (Reactome) Upon dimer disassociation PAK1 autophosphorylates in both cis- and trans- manner. Serine 144 (S144) in the GTPase-binding domain and threonine 423 (T423) in the activation loop are the target sites for autophosphorylation (Parrini et al. 2002).
R-HSA-2730858 (Reactome) After initial phosphorylation by SFK's, subsequently Y223 (Y180 in ITK and Y206 in TEC) in the SH3 domain of BTK is autophosphorylated, which may prevent inhibitory intramolecular interactions (Nore et al. 2003, Joseph et al. 2007, Park et al. 1996)
R-HSA-2730860 (Reactome) GAB2 have multiple tyrosyl phosphorylation sites that are phosphorylated up on activation of FCERI. SYK is the major tyrosine kinase involved in GAB2 phosphorylation. FYN is also shown to contribute to GAB2 tyrosyl phosphorylation but it is not clear whether GAB2 is a direct substrate of FYN (Yu et al. 2006, Parravicini et al. 2002). GAB2 tyrosines (Y452, Y476 and Y584) in the YXXM motif can be the target phosphorylation sites for SYK/FYN kinases (Chan et al. 2010, Harir et al. 2007).
R-HSA-2730861 (Reactome) K-63 linked polyubiquitin (pUb) chain on TRAF6 provides a scaffold to recruit downstream effector molecules to activate NF-kB. Transforming growth factor beta-activated kinase 1 (TAK1) is a member of the mitogen-activated protein kinase (MAPK) kinase kinase family is shown to be an essential intermediate that transmits the upstream signals from the receptor complex to the downstream MAPKs and to the NF-kB pathway (Broglie et al. 2009). TAK1-binding protein 1 (TAB1), TAB2 and TAB3 constitutively bound to TAK1. TAB1 acts as the activation subunit of the TAK1 complex, aiding in the autophosphorylation of TAK1, whereas TAB2 and its homologue TAB3, act as a adaptors of TAK1 that facilitate the assembly of TAK1 complex to TRAF6. The highly conserved C-terminal zinc finger domain of TAB2 and TAB3 binds preferentially to the K-63-linked polyubiquitin chains on TRAF6 (Broglie et al. 2009, Besse et al. 2007).
R-HSA-2730862 (Reactome) LYN localized in lipid rafts undergoes an intermolecular autophosphorylation at tyrosine 396. This residue is present in the activation loop, and its phosphorylation promotes LYN kinase activity.
R-HSA-2730863 (Reactome) CARMA1 (CARD11/Caspase recruitment domain-containing protein 11), BCL10 (B-cell lymphoma/leukemia 10) and MALT1 (Mucosa-associated lymphoid tissue lymphoma translocation protein 1)/paracaspase have been identified as signaling components that act downstream of PKC-theta. CARMA1 is a scaffold protein and recruits BCL10, MALT1, PKC and TRAF6 to form a multi protein complex. CARMA1 exists in an inactive conformation in which the linker region binds to and blocks the accessibility of the CARD motif. Upon stimulation S552 and S645 linker residues are phosphorylated by PKC-theta and this may weaken this interaction, inducing an open conformation of CARMA1. Further phosphorylation studies have revealed other phosphorylation sites (S109, S551 and S555) that may also promote activation of CARMA1. Serene/threonine kinases PKC-beta, IKKbeta, HPK1 and CaMKII are involved in triggering CARMA1 activation (Thome et al. 2010, Rueda & Thome 2005). (only phosphorylated S552 and S645 are represented in this reaction)
R-HSA-2730864 (Reactome) TRAF6 is a ubiquitin ligase that plays a central role in the IKK-dependent canonical NF-kB pathway. It is recruited to the CBM complex by binding to MALT1. The MALT1 C-terminal Ig domain and extension contain two binding motifs for TRAF6 (Noels et al 2007). After oligomerzation TRAF6, together with Ubc13/Uev1A, activates TAK1 and IKK. It also acts as an E3 ligase for MALT1 and mediates lysine 63-linked ubiquitination (Oeckinghaus et al. 2007).
R-HSA-2730867 (Reactome) Dephosphorylated NFAT-calcineurin (CaN) complex translocates to nucleus, where it activates transcription of several cytokine genes (e.g..IL2).
R-HSA-2730868 (Reactome) MKK7 is activated by MEKK1 and the residues serine 271 and threonine 275 are the potential phosphorylation sites that are crucial for its kinase activity (phosphorylation sites are based on sequence alignment with MAP kinase kinase family members).
R-HSA-2730870 (Reactome) PI3K catalyzes the conversion of phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-triphosphate (PIP3). This PIP3 acts as a membrane anchor for the downstream proteins like PDK1 and AKT.
R-HSA-2730871 (Reactome) Ras guanyl nucleotide-releasing proteins (RasGRPs) are guanyl nucleotide exchange factors (GEFs) that activate Ras ultimately leading to MAPK activation. RasGRPs have a catalytic domain composed of Ras exchange motif (REM) and a CDC25 domain, an atypical pair of EF hands that bind calcium and a DAG-binding C1 domain. After PIP2 hydrolysis, RasGRPs are recruited to the plasma membrane by binding to DAG and calcium (Stone 2011, Liu et al. 2007). Upon T-cell activation RasGRP1 specifically interacts with and activates Ras on Golgi instead of the plasma membrane (Bivona et al. 2003). It remains to be determined whether activation of N-Ras by RasGRP1 in mast cells occurs in the Golgi or the plasma membrane (Liu et al. 2007). RasGRP4 is mast cell specific and is involved in the controls Ras activation.
R-HSA-2730872 (Reactome) Calcineurin (CaN), also called protein phosphatase 2B (PP2B), is a calcium/Calmodulin (CaM)-dependent serine/threonine protein phosphatase. It exists as a heterodimer consisting of CaM-binding catalytic subunit CaN A chain and a Ca+2 binding regulatory CaN B chain. At low calcium concentrations, CaN exists in an inactive state, where the autoinhibitory domain (AID) binds to the active-site cleft. Upon an increase in calcium concentration CaM binds to Ca+2 ions and gets activated. Active CaM binds to CaN regulatory domain (RD) and this causes release of the AID and activation of the phosphatase (Rumi-Masante et al. 2012). Binding of calcium to CaN B regulatory chain also causes a conformational change of the RD of CaN A chain (Yang & Klee 2000).
R-HSA-2730876 (Reactome) In humans, the IkB kinase (IKK) complex serves as the master regulator for the activation of NF-kB by various stimuli. It contains two catalytic subunits, IKK alpha and IKK beta, and a regulatory subunit, IKKgamma/NEMO. The activation of IKK complex is dependent on the phosphorylation of IKK alpha/beta at its activation loop and the K63-linked ubiquitination of NEMO. This basic trimolecular complex is referred to as the IKK complex.
IKK subunits have a N-term kinase domain a leucine zipper (LZ) motifs, a helix-loop-helix (HLH) and a C-ter NEMO binding domain (NBD). IKK catalytic subunits are dimerized through their LZ motifs. IKK beta is the major IKK catalytic subunit for NF-kB activation. Activated TAK1 phosphorylate IKK beta on S177 and S181 (S176 and S180 in IKK alpha) in the activation loop and thus activate the IKK kinase activity, leading to the IkB alpha phosphorylation and NF-kB activation.
R-HSA-2730882 (Reactome) Raft localized PKC-theta is phosphorylated and is activated. Phosphorylation of both tyrosine and serine-threonine residues is important in the regulation of PKC function. Six phosphorylation sites have been identified on PKC-theta: Y90, T219, T538, S676, S685, and S695. Phosphorylation of Y90 positively regulates NF-AT and NF-kB activation in T-cells. In mast cells Src family members Src and LYN have been shown to be involved in phosphorylating Y90 (Wang et al. 2012, Liu et al. 2001).
R-HSA-2730884 (Reactome) NTAL and LAT play complementary roles in the positive regulation of FCERI-mediated degranulation. Upon FCERI aggregation NTAL is phosphorylated by LYN, SYK and KIT on different tyrosines. Phosphorylated NTAL likely contributes to the activation of mast cells by providing docking sites for the recruitment of critical signaling molecules into the lipid raft. There are about ten tyrosines in LAT2 of which five tyrosines principally phosphorylated by SYK are recognised as putative GRB2-binding sites, being part of a YXN motif, whereas LYN and KIT phosphorylate both tyrosines contained in the YXN motifs as well as tyrosines outside of the YXN motifs (Iwaki et al. 2008).
R-HSA-2730885 (Reactome) Mast cells express four out of five Tec family members (i.e. BTK, ITK, RLK and TEC) and are activated upon cross-linking of FCERI. They are recruited to the membrane via the interaction of their PH domain with PtdIns(3,4,5)P3 phosphate and their SH2 domain with Y145 of SLP-76 (Kettner et al. 2003). BTK is more important for early response such as phosphorylation of PLC-gamma2 and Ca2+ mobilization, whereas ITK regulates the late responses such as changes in gene expression and cytokine secretion. BTK deficient mice have mild defects in degranulation and severe impairments in the production of proinflammatory cytokines upon FCERI cross-linking (Hata et al. 1998). ITK deficient mice have been reported to have reduced MC degranulation and responses to allergic asthma (Forssell et al. 2005). However, Bone marrow derived mast cells (BMMC) derived from ITK deficient mice display a normal degranulation response but secrete elevated level of cytokines (TNFa and IL-13) (Iyer & August 2008). TEC kinase is also one of the crucial regulators of murine mast cell function. TEC is phosphorylated and activated upon FCERI stimulation. TEC deficient bone marrow derived mast cells did not show any in vitro or in vivo defects in histamine release. However, the generation of the leukotriene LTC4 was severely impaired in the absence of TEC (Schmidt et al. 2009).
R-HSA-2730886 (Reactome) SHC is an adapter protein that has been implicated in Ras activation. Mast cells express two isoforms of 46 and 52 kDa. Both isoforms of SHC have two domains, an N-terminal phosphotyrosine-binding (PTB) domain and a C-terminal SH2 domain that allows Shc to bind to proteins containing phosphorylated tyrosine residues. Following receptor stimulation, SHC is phosphorylated by Src kinases Syk on Y239, Y240 and Y317 (p56 isoform). Both phosphotyrosines Y239 and Y317 creates the binding site for the SH2 domain of GRB2.
R-HSA-2730887 (Reactome) FCERI aggregation has been shown to activate JNK as well as protein kinases upstream of JNK, such as MEKK1 (Mitogen-activated protein kinase/ERK Kinase Kinase-1) and JNK kinase (JNKK). PAK has been shown to be the upstream kinase involved in the activation of MEKK1, however no direct phosphorylation of MEKK1 by PAK is observed. Two threonine residues at positions 1400 and 1412 (analogous to 1381 and 1393 in mouse) in the activation loop of MEKK1 between the kinase subdomains VII and VIII are essential for its catalytic activity. The catalytic domain of MEKK1 is able to autophosphorylate these residues, enhancing its own activity.
R-HSA-2730888 (Reactome) Tyrosine phosphorylation of PLC-gamma enhances its catalytic activity. BTK and SYK are involved in the phosphorylation of PLC-gamma (PLCG). Phosphorylation of tyrosine residues 753, 759, 1197, and 1217 in PLCG2 and 771, 783, and 1254 in PLCG1 have been identified as BTK/SYK-dependent phosphorylation sites.
R-HSA-2730889 (Reactome) PAK1 kinase is a member of serine/threonine protein kinase family and is widely believed as mediator between Cdc42 and Rac1 and the JNK signal transduction pathway. PAK1 is involved in regulating FCERI mediated mast cell degranulation via effects on calcium mobilisation and cytoskeletal changes (Allen et al. 2009). The conventional PAK family contains a N-terminal conserved Cdc42/Rac-interacting binding domain (CRIB) that overlaps a kinase inhibitory (KI) domain and a C-terminal catalytic domain. PAK1 molecules form trans-inhibited homodimers in which the N-terminal kinase inhibitory (KI) domain of one PAK1 molecule in the dimer binds and inhibits the C-terminal catalytic domain of the other. Isoprenylated Rac1/Cdc42-GTP localized to the membrane recruits PAK1 by binding to the N-terminal CRIB domain. Binding of activated Cdc42/Rac1, breaks the PAK1-dimer and removes the trans-inhibition and stimulates serine/threonine kinase activity of that allows autophosphorylation (Lu & Mayer 1999, Parrini et all. 2009, Zhao et al. 2005).
R-HSA-2730892 (Reactome) VAV an activator of RAC-GTPases, is redistributed to plasma membrane and is phosphorylated following engagement of FCERI. Phosphorylated SLP-76 tyrosines Y113 and Y128 (112Y and 128Y in mouse) provide binding sites for the SH2 domains of VAV. The binding of VAV to these phosphotyrosine residues may link SLP-76 to the Jun amino-terminal kinase (JNK) pathway and the actin cytoskeleton (Kettner et al. 2003).
In addition to its known role as guanine nucleotide exchange factor (GEF), VAV also modulates cytokine production in mast cells. VAV1-deficient bone marrow-derived mast cells exhibited reduced degranulation and cytokine production and calcium release in addition of reduced activation of c-Jun NH2-terminal kinase 1 (JNK1), although tyrosine phosphorylation of FCERI, SYK and LAT was normal (Manetz et al. 2001, Arudchandran et al. 2000, Song et al. 1999).
R-HSA-2730894 (Reactome) The released NF-kB transcription factor (p50/p65) with unmasked nuclear localization signal (NLS) then moves in to the nucleus. Once in the nucleus, NF-kB binds DNA and regulate the expression of genes encoding cytokines, cytokine receptors, and apoptotic regulators.
R-HSA-2730896 (Reactome) Activated MEKK1 then phosphorylates and activates SAPK/Erk kinase (SEK1), also known as MKK4 or Jun kinase kinase (JNKK) on serine and threonine residues at positions 257 and 261, respectively.
R-HSA-2730899 (Reactome) BCL10 and MALT1 proteins form high molecular weight oligomers and only these oligomeric forms can activate IKK in vitro (Sun et al. 2004). BCL10 proteins form homo-oligomers through CARD-CARD interactions whereas in MALT1 the tandem Ig-like domains naturally form oligomers with a tendency towards dimers and tetramers (Dong et al. 2006, Quiu & Dhe-Paganon 2011). These CBM oligomers provides the molecular platform, which can facilitate dimerization or serve as scaffolds on which proteases and kinases involved in NF-kB activation are assembled and activated.
R-HSA-2730900 (Reactome) Binding of TAB2 and TAB3 to K63-linked polyubiquitin chains leads to the activation of TAK1 by an uncertain mechanism. Phosphorylation of TAK1 within the activation loop of the kinase is absolutely required for TAK1 activity. TAB1 is known to augment TAK1 catalytic activity by mediating spontaneous oligomerization and induces autophosphorylation of TAK1 (Kishimoto et al. 2000). The binding of TAB2/3 to polyubiquitinated TRAF6 may facilitate polyubiquitination of TAB2/3 by TRAF6 (Ishitani et al. 2003), which might result in conformational changes within the TAK1 complex that leads to the activation of TAK1. Some biochemical studies revealed that free K63 polyubiquitin chains, which are not conjugated to any cellular protein, can directly activate the TAK1 kinase complex (Xia et al. 2009).
R-HSA-2730902 (Reactome) CARMA1 phosphorylation initiates its oligomerization and the coiled-coil (CC) domain of CARMA1 is hypothesized to mediate this clustering (Tanner et al. 2007).
R-HSA-2730903 (Reactome) BCL10-MALT1 oligomers bind to TRAF6 and this in turn promotes the oligomerization of TRAF6 and activates its E3 ligase activity (Sun et al. 2004).
R-HSA-2730904 (Reactome) TRAF6 possesses ubiquitin ligase activity and undergoes K-63-linked auto-ubiquitination after its oligomerization. In the first step, ubiquitin is activated by an E1 ubiquitin activating enzyme. The activated ubiquitin is transferred to a E2 conjugating enzyme (a heterodimer of proteins Ubc13 and Uev1A) forming the E2-Ub thioester. Finally, in the presence of ubiquitin-protein ligase E3 (TRAF6, a RING-domain E3), ubiquitin is attached to the target protein (TRAF6 on residue Lysine 124) through an isopeptide bond between the C-terminus of ubiquitin and the epsilon-amino group of a lysine residue in the target protein. In contrast to K-48-linked ubiquitination that leads to the proteosomal degradation of the target protein, K-63-linked polyubiquitin chains act as a scaffold to assemble protein kinase complexes and mediate their activation through proteosome-independent mechanisms. This K63 polyubiquitinated TRAF6 activates the TAK1 kinase complex.
R-HSA-450292 (Reactome) The bZIP domains of Jun and Fos form an X-shaped -helical structure, which binds to the palindromic AP-1 site (TGAGTCA) (Glover and Harrison, 1995).
R-HSA-450325 (Reactome) The Fos proteins(c-Fos, FosB, Fra1 and Fra2), which cannot homodimerize, form stable heterodimers with Jun proteins and thereby enhance their DNA binding activity.

On activation of the MAPK pathway, Ser-374 of Fos is phosphorylated by ERK1/2 and Ser-362 is phosphorylated by RSK1/2, the latter kinases being activated by ERK1/2. If stimulation of the MAPK pathway is sufficiently sustained, ERK1/2 can dock on an upstream FTYP amino acid motif, called the DEF domain (docking site for ERKs, FXFP), and phosphorylate Thr-331 and Thr-325.

Phosphorylation at specific sites enhances the transactivating potential of several AP-1 proteins, including Jun and Fos, without having any effect on their DNA binding activities. Thus, phosphorylation of Ser-362 and Ser-374 stabilizes c-Fos but has no demonstrated role in the control of transcriptional activity. On the contrary, phosphorylation of Thr-325 and Thr-331 enhances c-Fos transcriptional activity but has no demonstrated effect on protein turnover.

R-HSA-450348 (Reactome) c-Jun NH2 terminal kinase (JNK) plays a role in conveying signals from the cytosol to the nucleus, where they associate and activate their target transcription factors.
R-HSA-5607724 (Reactome) Following ubiquitination Ikappa B-alpha (IKBA) is rapidly degraded by 26S-proteasome, allowing NF-kB to translocate into the nucleus where it activates gene transcription (Spencer et al. 1999).
R-HSA-5607728 (Reactome) Two major signaling steps are required for the removal of IkappaB (IkB) alpha an inhibitor of NF-kB: activation of the IkB kinase (IKK) and degradation of the phosphorylated IkB alpha. IKK activation and IkB degradation involve different ubiquitination modes; the former is mediated by K63-ubiquitination and the later by K48-ubiquitination. Mutational analysis of IkB alpha has indicated that K21 and K22 are the primary sites for addition of multiubiquitination chains while K38 and K47 are the secondary sites. In a transesterification reaction the ubiquitin is transferred from the ubiquitin-activating enzyme (E1) to an E2 ubiquitin-conjugating enzyme, which may, in turn, transfer the ubiquitin to an E3 ubiquitin protein ligase. UBE2D2 (UBC4) or UBE2D1 (UBCH5) or CDC34 (UBC3) acts as the E2 and SCF (SKP1-CUL1-F-box)-beta-TRCP complex acts as the E3 ubiquitin ligase (Strack et al. 2000, Wu et al. 2010). beta-TRCP (beta-transducin repeats-containing protein) is the substrate recognition subunit for the SCF-beta-TRCP E3 ubiquitin ligase. beta-TRCP binds specifically to phosphorylated IkB alpha and recruits it to the SCF complex, allowing the associated E2, such as UBC4 and or UBCH5 to ubiquitinate Ikappa B alpha (Baldi et al. 1996, Rodriguez et al. 1996, Scherer et al. 1995, Alkalay et al. 1995).
R-HSA-74448 (Reactome) Upon increase in calcium concentration, calmodulin (CaM) is activated by binding to four calcium ions.
RAC1:GDPR-HSA-2730840 (Reactome)
RasGRPs:DAG:Ca2+ArrowR-HSA-2730871 (Reactome)
RasGRPsR-HSA-2730871 (Reactome)
SCF-beta-TRCPArrowR-HSA-5607728 (Reactome)
SCF-beta-TRCPR-HSA-5607728 (Reactome)
SCF-beta-TRCPmim-catalysisR-HSA-5607728 (Reactome)
SHC1-2R-HSA-2730886 (Reactome)
SYK/FYNmim-catalysisR-HSA-2730860 (Reactome)
SYKR-HSA-2454240 (Reactome)
TAB1:TAB2,TAB3:TAK1R-HSA-2730861 (Reactome)
TEC,BTK,ITK,(TXK)R-HSA-2730885 (Reactome)
TRAF6R-HSA-2730864 (Reactome)
TRAF6R-HSA-2730903 (Reactome)
UBE2D2,UBE2D1,(CDC34)ArrowR-HSA-5607728 (Reactome)
UBE2D2,UBE2D1,(CDC34)R-HSA-5607728 (Reactome)
UBE2N:UBE2V1ArrowR-HSA-202534 (Reactome)
UBE2N:UBE2V1ArrowR-HSA-2730904 (Reactome)
UBE2N:UBE2V1R-HSA-202534 (Reactome)
UBE2N:UBE2V1R-HSA-2730904 (Reactome)
Ub-TRAF6 trimer

bound to CBM

complex
mim-catalysisR-HSA-202534 (Reactome)
VAV1,2,3R-HSA-2730892 (Reactome)
p-10Y-LAT2ArrowR-HSA-2730884 (Reactome)
p-10Y-LAT2R-HSA-2730837 (Reactome)
p-10Y-NTAL:p-SHC1:GRB2:SOS:GAB2ArrowR-HSA-2730848 (Reactome)
p-10Y-NTAL:p-SHC1:GRB2:SOS:GAB2R-HSA-2730860 (Reactome)
p-10Y-NTAL:p-SHC1:GRB2:SOS:p-3Y-GAB2:PI3KArrowR-HSA-2730842 (Reactome)
p-10Y-NTAL:p-SHC1:GRB2:SOS:p-3Y-GAB2:PI3Kmim-catalysisR-HSA-2730870 (Reactome)
p-10Y-NTAL:p-SHC1:GRB2:SOS:p-3Y-GAB2ArrowR-HSA-2730860 (Reactome)
p-10Y-NTAL:p-SHC1:GRB2:SOS:p-3Y-GAB2R-HSA-2730842 (Reactome)
p-10Y-NTAL:p-SHC1:GRB2:SOSArrowR-HSA-2730837 (Reactome)
p-10Y-NTAL:p-SHC1:GRB2:SOSR-HSA-2730848 (Reactome)
p-2S-cJUN:p-2S,2T-cFOSArrowR-HSA-450292 (Reactome)
p-2Y-PAKArrowR-HSA-2730856 (Reactome)
p-2Y-PAKArrowR-HSA-2730887 (Reactome)
p-5Y-LAT-2ArrowR-HSA-2730843 (Reactome)
p-5Y-LAT-2R-HSA-2396599 (Reactome)
p-5Y-LAT:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:PIP3:p-VAV:RAC1-GTP:PAK dimerArrowR-HSA-2730889 (Reactome)
p-5Y-LAT:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:PIP3:p-VAV:RAC1-GTP:PAK dimerR-HSA-2730856 (Reactome)
p-5Y-LAT:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:PIP3:p-VAV:RAC1-GTP:PAK dimermim-catalysisR-HSA-2730856 (Reactome)
p-5Y-LAT:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:PIP3:p-VAV:RAC1-GTPArrowR-HSA-2730840 (Reactome)
p-5Y-LAT:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:PIP3:p-VAV:RAC1-GTPArrowR-HSA-2730856 (Reactome)
p-5Y-LAT:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:PIP3:p-VAV:RAC1-GTPR-HSA-2730889 (Reactome)
p-5Y-LAT:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:PIP3:p-VAVArrowR-HSA-2730841 (Reactome)
p-5Y-LAT:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:PIP3:p-VAVR-HSA-2730840 (Reactome)
p-5Y-LAT:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:PIP3:p-VAVmim-catalysisR-HSA-2730840 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:SLP76:PLCGArrowR-HSA-2396606 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:SLP76:PLCGR-HSA-2730851 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:SLP76ArrowR-HSA-2396561 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:SLP76R-HSA-2396606 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAV:TEC kinases:PIP3ArrowR-HSA-2730885 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAV:TEC kinases:PIP3R-HSA-2730833 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAV:p-2Y-BTK/p-2Y-ITK:PIP3ArrowR-HSA-2730888 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAV:p-2Y-BTK/p-2Y-ITK:PIP3mim-catalysisR-HSA-2730847 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAV:p-2Y-TEC kinasesArrowR-HSA-2730858 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAV:p-2Y-TEC kinasesR-HSA-2730888 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAV:p-TEC kinases:PIP3ArrowR-HSA-2730833 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAV:p-TEC kinases:PIP3R-HSA-2730858 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAV:p-TEC kinases:PIP3mim-catalysisR-HSA-2730858 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAVArrowR-HSA-2730892 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAVR-HSA-2730841 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAVR-HSA-2730885 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCGArrowR-HSA-2730851 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCGR-HSA-2730892 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1ArrowR-HSA-2396599 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1R-HSA-2396561 (Reactome)
p-5Y-LAT:p-SHC1:GRB2:SOS1mim-catalysisR-HSA-2424477 (Reactome)
p-5Y-PKC-theta:DAGArrowR-HSA-2730835 (Reactome)
p-5Y-PKC-theta:DAGR-HSA-2730863 (Reactome)
p-5Y-PKC-theta:DAGmim-catalysisR-HSA-2730863 (Reactome)
p-MAP2K4/p-MAP2K7mim-catalysisR-HSA-168162 (Reactome)
p-MAPK8/9/10ArrowR-HSA-168162 (Reactome)
p-MAPK8/9/10ArrowR-HSA-450348 (Reactome)
p-MAPK8/9/10R-HSA-450348 (Reactome)
p-MAPK8/9/10mim-catalysisR-HSA-168136 (Reactome)
p-S177,S181-IKKB:IKKA:NEMOArrowR-HSA-2730876 (Reactome)
p-S177,S181-IKKB:IKKA:NEMOR-HSA-202534 (Reactome)
p-S177,S181-IKKB:IKKA:pUb-NEMOArrowR-HSA-202534 (Reactome)
p-S177,S181-IKKB:IKKA:pUb-NEMOmim-catalysisR-HSA-202541 (Reactome)
p-S257,T261-MAP2K4ArrowR-HSA-2730896 (Reactome)
p-S271,T275-MAP2K7ArrowR-HSA-2730868 (Reactome)
p-S32,36-IkB-alpha:NF-kB complexArrowR-HSA-202541 (Reactome)
p-S32,36-IkB-alpha:NF-kB complexR-HSA-5607728 (Reactome)
p-S552,S645-CARD11R-HSA-2730902 (Reactome)
p-S63,S73-JUNArrowR-HSA-168136 (Reactome)
p-S63,S73-JUNR-HSA-450292 (Reactome)
p-SHC1:GRB2:SOSArrowR-HSA-2730844 (Reactome)
p-SHC1:GRB2:SOSR-HSA-2396599 (Reactome)
p-SHC1:GRB2:SOSR-HSA-2730837 (Reactome)
p-SYK/p-BTKmim-catalysisR-HSA-2730888 (Reactome)
p-T,Y MAPK dimersmim-catalysisR-HSA-450325 (Reactome)
p-T325,T331,S362,S374-FOSArrowR-HSA-450325 (Reactome)
p-T325,T331,S362,S374-FOSR-HSA-450292 (Reactome)
p-Y1400,Y1412-MAP3K1ArrowR-HSA-2730887 (Reactome)
p-Y1400,Y1412-MAP3K1mim-catalysisR-HSA-2730868 (Reactome)
p-Y1400,Y1412-MAP3K1mim-catalysisR-HSA-2730896 (Reactome)
p-Y239,Y240,Y317-SHC1-2ArrowR-HSA-2730886 (Reactome)
p-Y239,Y240,Y317-SHC1-2R-HSA-2730844 (Reactome)
p-Y396-LYNArrowR-HSA-2730862 (Reactome)
p-Y396-LYNR-HSA-2454208 (Reactome)
p-Y396-LYNmim-catalysisR-HSA-2454208 (Reactome)
p-Y90-PKC-theta:DAGArrowR-HSA-2730882 (Reactome)
p-Y90-PKC-theta:DAGR-HSA-2730835 (Reactome)
p21 RAS:GDPR-HSA-2424477 (Reactome)
p21 RAS:GTPArrowR-HSA-2424477 (Reactome)
Personal tools