Nonsense-Mediated Decay (NMD) (Homo sapiens)

From WikiPathways

Revision as of 12:46, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
8, 21, 24, 25, 36...3, 9, 14, 16, 27...2, 4, 7, 9, 11...5, 13, 15, 37, 49...6, 9-11, 17...2, 17, 351, 12, 14, 16, 18...cytosolNonsense-mediated Decay Enhanced by the Exon Junction ComplexNonsense-mediated Decay Independent of the Exon Junction ComplexRPL13A RPL10L RPL4 SMG8 RPS7 RPL8 UPF1:eRF3 Complex onTranslated mRNARPS7 RPL18 RPS17 RPS27A(77-156) RPL32 RPL7 RPS20 RPL39 RPL18A RPL41 Translated mRNAComplex withPrematureTermination CodonPreceding ExonJunctionRPL22L1 PhosphorylatedUPF1:SMG5:SMG7:SMG6:PP2A:Translated mRNPRPS27 RPL10A SMG7 RPL23 RPS15 tRNA RPL26L1 SMG6 MAGOHB RPL23 RNPS1 RPL29 RPS19 RPS18 RPL18A RPS8 RPL10A RPL10 RPL34 RPS21 RPL36 RPS27 p-4S-UPF1RPL18 RPL22 RPL37A RPS4Y2 RPS6 RPS18 NCBP1 PPP2CA RPS21 RPS24 RPS3 RPS29 RPL39L 5.8S rRNA RPL27 RPL18 RPL21 RPL22 RPL36AL RPL23A DCP1ARPS21 RPS3 SMG6RPS18 RPL13 mRNA with premature termination codon preceding exon junction RNPS1 RPL36AL RPL27 RPL23A RPL13A RPL37 RPLP2 5' Fragment of Cleaved mRNA EIF4G1 UPF3B RPS12 RPL12 GDP FAU RPS7 ETF1 RPS28 RPL35A RPS7 RPL12 NCBP1 RPL17 RPS26 ETF1 RPL8 RPL39 RPS2 RPS2 28S rRNA CASC3 RPL27A RPL7 RPL30 RPS23 EIF4G1 RPL6 RPL14 RPL23 RPL11 RPS4Y2 RPL36 RPS4Y2 RPL36 RPS17 RPS28 RPL22 RPL10 FAU RPL35 RPL35 RPL21 NCBP2 18S rRNA RPL3L RPL37 RPL39 NCBP2 CASC3 RPL13 RPLP0 5S rRNA RPS4Y2 UPF1 5S rRNA PPP2CA RPL7A RPL28 RPL5 PP2A(Aalpha:B55alpha:Calpha)RPL3L ADPRPS16 5.8S rRNA RPL23 UPF1RPL30 PPP2R2A SMG9 RPL27 MAGOH RPS15A RPLP1 RPS27 RPS6 mRNA Cleaved by SMG6RPS10 RPL31 RPS20 RPS16 RPL17 18S rRNA RPL36A RPL40 RPL39 RPS26 RPS3A EIF4G1 RPS5 RPL28 NCBP1 3' Fragment of Cleaved mRNA RPS26 RPL8 RPS4Y2 RPS3 RPL15 RPS15A RPL7A GSPT2 SMG1 RPL34 RPS28 RPL23A RPL40 RPS13 RPS11 RPL37A RPL31 RPS25 RPL7A RPL32 RPL10A 5.8S rRNA RPS27A(77-156) Cap Binding Complex(CBC)RPS16 RPL4 mRNA with premature termination codon preceding exon junction PPP2R2A RPS14 RPL36 SMG1 RPL26L1 RPL23A EIF4A3 RPS2 RPL23A RPL37 RPS4Y1 RPL22 RPS9 SMG5 RBM8A RPL18 RPS5 RPS20 RPL30 RPL37A RPL9 RPL24 GDP RPL37 RPL39L RPS27L RPL23A RPL6 RPLP2 RPS15 UPF3B UPF2 RPL13 RPL7 RPS16 RPL28 GSPT1 RPS13 RPS29 RPL29 UPF3A RPLP2 UPF3A RPL30 NCBP2 RPS14 RPL36AL 18S rRNA RPS24 RPL26 RPS29 RNPS1 EIF4G1 RPL41 RPS23 RPL34 RPS14 RPS6 RPLP2 RPL18 RPS6 RPL5 RPL19 RPL12 SMG7PABPC1 RPL19 RPL12 UPF3AS-2 RPL41 NCBP1 NCBP2 RPS27A(77-156) RPS24 mRNA with premature termination codon not preceding exon junction RPS27 RBM8A FAU RPS10 GDP RPL8 RPS9 RPS17 RPL3 MAGOH RPL27A RPL38 SMG1:SMG8:SMG9ComplexRPL39 RPS15A RPLP1 RPS28 RPS3A RPL36A RPL19 RPS24 RPS29 RPL13A RPL14 EIF4G1 RPL5 RPLP1 RPL31 SMG8 RPL36AL RPL35A RPS4X RPL27A RPL34 RPL27A RPL7 RPS19 RPL36A RPL35 RPL8 RPS4X FAU RPL39L SMG1:UPF1:EJC:Translated mRNPMAGOH PPP2CA SMG5 RPS11 mRNA with premature termination codon preceding exon junction NCBP2 RPL27 5.8S rRNA RPL4 SMG9 RPL10 RPL35 GDP RPL9 RPL10A RPL28 RPSA EIF4G1 RPL23 RPL40 RPL23 RPL9 5.8S rRNA RPL14 18S rRNA RPSA RPS19 RPS4X RPL36A RPL24 GSPT2 RPL38 GSPT1 RPS15A RPS27A(77-156) RPS16 NCBP2 MAGOHB RPS4Y2 MAGOHB RPL31 RPS3A GSPT2 RPL35A mRNA with premature termination codon not preceding exon junction RPS25 RPS9 RPL9 RPS10 RPL11 RPLP0 RPS15 RPS24 RPL35 RPL17 RPL32 RPL10 RPS19 PABPC1 RPL21 RPL12 RPL10A 5S rRNA RPS12 RPL15 RPS6 RPL40 RPS5 RPL19 RPL10L RPL22L1 RPL36AL p-4S-UPF1 RPS18 RPL35A RPS27L UPF2 RPS4Y1 RPL30 RPL12 NCBP1 RPL17 RPS3 RPL4 RPS21 RPSA RPL22L1 28S rRNA RPS2 RPS5 RPS28 RPS26 MAGOHB RPL11 RPL29 EIF4G1 RPL26 NCBP1 RPL18A RPS25 RPLP2 RPL37A RPL3 RPS20 RPL22L1 MAGOH PABPC1 RPS27L RPL38 RPL11 tRNA RPL10L RPLP0 RPS18 RPS23 RPS11 5S rRNA tRNA p-4S-UPF1 RPS29 ETF1 RPL35 RPL29 RPS14 UPF2 NCBP2 RPS17 FAU RPS29 GSPT2 18S rRNA RPS15A tRNA RPL3L RPL36AL RPLP0 RPS13 RPL10A RPL40 RPSA RPL32 RPS8 RPS10 RPS14 18S rRNA RPL9 RPS13 RPLP0 RPSA RPL22L1 RPLP2 RPL36 5S rRNA UPF1 RPL26 RPL26L1 RPL18A RPL30 RPS15 RPL37A RPL35A RPSA RPL3 CASC3 RPL21 RPL10L SMG8 RPL27 RPL37 GSPT2 RPS25 RPS16 RPS7 RPL4 RPL3 RPL32 RPL10L RPS27L RPLP1 RPS15 RPL3L RPS27L RPL6 RPL27A RPS27 RPS20 RPS26 RPL26L1 RPS4X RPL7A RPL18A PPP2R1A RPL38 RPLP1 PABPC1RPL5 UPF3A EIF4A3 5.8S rRNA EIF4G1RPS6 RPL31 RPL9 p-4S-UPF1 RPL6 RPS9 RPL3L NCBP1 RPL8 RPL28 PABPC1 RPL3L RPL15 RPS8 RPL31 EIF4A3 RPL7A RPL21 SMG6 RPL13 RPS19 RPL26L1 RPL15 GSPT1 RPL10L PABPC1 RPL19 RPS27A(77-156) PABPC1 RPL24 GDP RPS13 RPL32 RPL39L RPS4Y1 RPL24 RPL10 RPS23 RPS5 NCBP2 RPL21 RPL39L RPS14 RPL26 RPS12 RPL7 RPL37A RPS28 RPL11 GSPT2 RPL3 RPS12 RPLP0 PNRC2RPL13 ETF1 SMG1 CASC3 RPS18 SMG5RPL18A RPL38 GSPT1 RPS2 RPL41 RPL27A EIF4A3 RPL5 PPP2R1A 28S rRNA RPS11 RPL4 RPS4Y1 RPL37 RPL11 RPS24 RPL17 RPS26 SMG1:PhosphorylatedUPF1:EJC:TranslatedmRNPRNPS1 RPL34 RPL13A tRNA RPS4Y1 28S rRNA RPL28 RPL27 RPL39L RPS8 RPS20 RPL22L1 RPL13 RPS27 NCBP1 RPL14 UPF3A GSPT1 Translated mRNAComplex withPrematureTermination CodonNot Preceding ExonJunctionRPS27A(77-156) FAU RPL24 RPS9 RPS21 tRNA RPL41 5S rRNA mRNA with premature termination codon preceding exon junction UPF2 RPS9 RPL24 RPL13A RPS17 RPL36A GDP RPS25 RPS10 RPS12 RPL39 RPS8 RPS15A RPL15 UPF3B RPL18 RPLP1 RPL17 RPL13A RPS2 RPL6 RPL7A 28S rRNA RPS15 PABPC1 RPS4X RPL38 PPP2R1A RPL15 RPL14 RPL26 RPL7 RPS12 RPL10 RPS3A SMG9 RPS5 RBM8A RPS21 SMG7 ETF1 RBM8A RPS23 RPS13 ATPRPL22 RPS4Y1 PPP2R2A RPL41 RPL29 RPL5 RPS25 RPS3A RPL29 RPS3 RPS7 RPL36A RPS8 RPL6 RPL36 RPS11 RPL22 RPS3 RPL26L1 RPS11 UPF3B RPS3A ETF1 28S rRNA GSPT1 RPL34 RPS23 RPL40 RPS17 RPL14 RPS10 RPL35A RPL19 RPL26 RPS19 RPL3 RPS27L RPS4X 149, 104953


Description

The Nonsense-Mediated Decay (NMD) pathway activates the destruction of mRNAs containing premature termination codons (PTCs) (reviewed in Isken and Maquat 2007, Chang et al. 2007, Behm-Ansmant et al. 2007, Neu-Yilik and Kulozik 2008, Rebbapragada and Lykke-Andersen 2009, Bhuvanagiri et al. 2010, Nicholson et al. 2010, Durand and Lykke-Andersen 2011). In mammalian cells a termination codon can be recognized as premature if it precedes an exon-exon junction by at least 50-55 nucleotides or if it is followed by an abnormal 3' untranslated region (UTR). While length of the UTR may play a part, the qualifications for being "abnormal" have not been fully elucidated. Also, some termination codons preceding exon junctions are not degraded by NMD so the criteria for triggering NMD are not yet fully known (reviewed in Rebbapragada and Lykke-Andersen 2009). While about 30% of disease-associated mutations in humans activate NMD, about 10% of normal human transcripts are also degraded by NMD (reviewed in Stalder and Muhlemann 2008, Neu-Yilik and Kulozik 2008, Bhuvanagiri et al. 2010, Nicholson et al. 2010). Thus NMD is a normal physiological process controlling mRNA stability in unmutated cells.
Exon junction complexes (EJCs) are deposited on an mRNA during splicing in the nucleus and are displaced by ribosomes during the first round of translation. When a ribosome terminates translation the A site encounters the termination codon and the eRF1 factor enters the empty A site and recruits eRF3. Normally, eRF1 cleaves the translated polypeptide from the tRNA in the P site and eRF3 interacts with Polyadenylate-binding protein (PABP) bound to the polyadenylated tail of the mRNA.
During activation of NMD eRF3 interacts with UPF1 which is contained in a complex with SMG1, SMG8, and SMG9. NMD can arbitrarily be divided into EJC-enhanced and EJC-independent pathways. In EJC-enhanced NMD, an exon junction is located downstream of the PTC and the EJC remains on the mRNA after termination of the pioneer round of translation. The core EJC is associated with UPF2 and UPF3, which interact with UPF1 and stimulate NMD. Once bound near the PTC, UPF1 is phosphorylated by SMG1. The phosphorylation is the rate-limiting step in NMD and causes UPF1 to recruit either SMG6, which is an endoribonuclease, or SMG5 and SMG7, which recruit ribonucleases. SMG6 and SMG5:SMG7 recruit phosphatase PP2A to dephosphorylate UPF1 and allow further rounds of degradation. How EJC-independent NMD is activated remains enigmatic but may involve competition between PABP and UPF1 for eRF3. View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 927802
Reactome-version 
Reactome version: 62
Reactome Author 
Reactome Author: May, Bruce

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Chan WK, Bhalla AD, Le Hir H, Nguyen LS, Huang L, Gécz J, Wilkinson MF.; ''A UPF3-mediated regulatory switch that maintains RNA surveillance.''; PubMed Europe PMC Scholia
  2. Eberle AB, Lykke-Andersen S, Mühlemann O, Jensen TH.; ''SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells.''; PubMed Europe PMC Scholia
  3. Mühlemann O, Lykke-Andersen J.; ''How and where are nonsense mRNAs degraded in mammalian cells?''; PubMed Europe PMC Scholia
  4. Singh G, Rebbapragada I, Lykke-Andersen J.; ''A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  5. Kashima I, Yamashita A, Izumi N, Kataoka N, Morishita R, Hoshino S, Ohno M, Dreyfuss G, Ohno S.; ''Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  6. Clerici M, Mourão A, Gutsche I, Gehring NH, Hentze MW, Kulozik A, Kadlec J, Sattler M, Cusack S.; ''Unusual bipartite mode of interaction between the nonsense-mediated decay factors, UPF1 and UPF2.''; PubMed Europe PMC Scholia
  7. Kashima I, Jonas S, Jayachandran U, Buchwald G, Conti E, Lupas AN, Izaurralde E.; ''SMG6 interacts with the exon junction complex via two conserved EJC-binding motifs (EBMs) required for nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  8. Lejeune F, Li X, Maquat LE.; ''Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities.''; PubMed Europe PMC Scholia
  9. Neu-Yilik G, Kulozik AE.; ''NMD: multitasking between mRNA surveillance and modulation of gene expression.''; PubMed Europe PMC Scholia
  10. Ishigaki Y, Li X, Serin G, Maquat LE.; ''Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20.''; PubMed Europe PMC Scholia
  11. Durand S, Cougot N, Mahuteau-Betzer F, Nguyen CH, Grierson DS, Bertrand E, Tazi J, Lejeune F.; ''Inhibition of nonsense-mediated mRNA decay (NMD) by a new chemical molecule reveals the dynamic of NMD factors in P-bodies.''; PubMed Europe PMC Scholia
  12. Gehring NH, Neu-Yilik G, Schell T, Hentze MW, Kulozik AE.; ''Y14 and hUpf3b form an NMD-activating complex.''; PubMed Europe PMC Scholia
  13. Chamieh H, Ballut L, Bonneau F, Le Hir H.; ''NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity.''; PubMed Europe PMC Scholia
  14. Isken O, Kim YK, Hosoda N, Mayeur GL, Hershey JW, Maquat LE.; ''Upf1 phosphorylation triggers translational repression during nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  15. Lykke-Andersen J.; ''Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay.''; PubMed Europe PMC Scholia
  16. Franks TM, Singh G, Lykke-Andersen J.; ''Upf1 ATPase-dependent mRNP disassembly is required for completion of nonsense- mediated mRNA decay.''; PubMed Europe PMC Scholia
  17. Gehring NH, Kunz JB, Neu-Yilik G, Breit S, Viegas MH, Hentze MW, Kulozik AE.; ''Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements.''; PubMed Europe PMC Scholia
  18. Durand S, Lykke-Andersen J.; ''SnapShot: Nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  19. Unterholzner L, Izaurralde E.; ''SMG7 acts as a molecular link between mRNA surveillance and mRNA decay.''; PubMed Europe PMC Scholia
  20. Chiu SY, Serin G, Ohara O, Maquat LE.; ''Characterization of human Smg5/7a: a protein with similarities to Caenorhabditis elegans SMG5 and SMG7 that functions in the dephosphorylation of Upf1.''; PubMed Europe PMC Scholia
  21. Shibuya T, Tange TØ, Sonenberg N, Moore MJ.; ''eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay.''; PubMed Europe PMC Scholia
  22. Hwang J, Sato H, Tang Y, Matsuda D, Maquat LE.; ''UPF1 association with the cap-binding protein, CBP80, promotes nonsense-mediated mRNA decay at two distinct steps.''; PubMed Europe PMC Scholia
  23. Silva AL, Ribeiro P, Inácio A, Liebhaber SA, Romão L.; ''Proximity of the poly(A)-binding protein to a premature termination codon inhibits mammalian nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  24. Stalder L, Mühlemann O.; ''The meaning of nonsense.''; PubMed Europe PMC Scholia
  25. Singh G, Jakob S, Kleedehn MG, Lykke-Andersen J.; ''Communication with the exon-junction complex and activation of nonsense-mediated decay by human Upf proteins occur in the cytoplasm.''; PubMed Europe PMC Scholia
  26. Fernández IS, Yamashita A, Arias-Palomo E, Bamba Y, Bartolomé RA, Canales MA, Teixidó J, Ohno S, Llorca O.; ''Characterization of SMG-9, an essential component of the nonsense-mediated mRNA decay SMG1C complex.''; PubMed Europe PMC Scholia
  27. Palacios IM, Gatfield D, St Johnston D, Izaurralde E.; ''An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  28. Chen CY, Shyu AB.; ''Rapid deadenylation triggered by a nonsense codon precedes decay of the RNA body in a mammalian cytoplasmic nonsense-mediated decay pathway.''; PubMed Europe PMC Scholia
  29. Chakrabarti S, Jayachandran U, Bonneau F, Fiorini F, Basquin C, Domcke S, Le Hir H, Conti E.; ''Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2.''; PubMed Europe PMC Scholia
  30. Hogg JR, Goff SP.; ''Upf1 senses 3'UTR length to potentiate mRNA decay.''; PubMed Europe PMC Scholia
  31. Denning G, Jamieson L, Maquat LE, Thompson EA, Fields AP.; ''Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein.''; PubMed Europe PMC Scholia
  32. Cho H, Han S, Choe J, Park SG, Choi SS, Kim YK.; ''SMG5-PNRC2 is functionally dominant compared with SMG5-SMG7 in mammalian nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  33. Lai T, Cho H, Liu Z, Bowler MW, Piao S, Parker R, Kim YK, Song H.; ''Structural basis of the PNRC2-mediated link between mrna surveillance and decapping.''; PubMed Europe PMC Scholia
  34. Nicholson P, Yepiskoposyan H, Metze S, Zamudio Orozco R, Kleinschmidt N, Mühlemann O.; ''Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors.''; PubMed Europe PMC Scholia
  35. Yamashita A, Chang TC, Yamashita Y, Zhu W, Zhong Z, Chen CY, Shyu AB.; ''Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover.''; PubMed Europe PMC Scholia
  36. Ohnishi T, Yamashita A, Kashima I, Schell T, Anders KR, Grimson A, Hachiya T, Hentze MW, Anderson P, Ohno S.; ''Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7.''; PubMed Europe PMC Scholia
  37. Chan WK, Huang L, Gudikote JP, Chang YF, Imam JS, MacLean JA, Wilkinson MF.; ''An alternative branch of the nonsense-mediated decay pathway.''; PubMed Europe PMC Scholia
  38. Gehring NH, Lamprinaki S, Hentze MW, Kulozik AE.; ''The hierarchy of exon-junction complex assembly by the spliceosome explains key features of mammalian nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  39. Bühler M, Steiner S, Mohn F, Paillusson A, Mühlemann O.; ''EJC-independent degradation of nonsense immunoglobulin-mu mRNA depends on 3' UTR length.''; PubMed Europe PMC Scholia
  40. Hosoda N, Kim YK, Lejeune F, Maquat LE.; ''CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells.''; PubMed Europe PMC Scholia
  41. Bhuvanagiri M, Schlitter AM, Hentze MW, Kulozik AE.; ''NMD: RNA biology meets human genetic medicine.''; PubMed Europe PMC Scholia
  42. Buchwald G, Ebert J, Basquin C, Sauliere J, Jayachandran U, Bono F, Le Hir H, Conti E.; ''Insights into the recruitment of the NMD machinery from the crystal structure of a core EJC-UPF3b complex.''; PubMed Europe PMC Scholia
  43. Yamashita A, Ohnishi T, Kashima I, Taya Y, Ohno S.; ''Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  44. Isken O, Maquat LE.; ''Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function.''; PubMed Europe PMC Scholia
  45. Yamashita A, Izumi N, Kashima I, Ohnishi T, Saari B, Katsuhata Y, Muramatsu R, Morita T, Iwamatsu A, Hachiya T, Kurata R, Hirano H, Anderson P, Ohno S.; ''SMG-8 and SMG-9, two novel subunits of the SMG-1 complex, regulate remodeling of the mRNA surveillance complex during nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  46. Glavan F, Behm-Ansmant I, Izaurralde E, Conti E.; ''Structures of the PIN domains of SMG6 and SMG5 reveal a nuclease within the mRNA surveillance complex.''; PubMed Europe PMC Scholia
  47. Huntzinger E, Kashima I, Fauser M, Saulière J, Izaurralde E.; ''SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan.''; PubMed Europe PMC Scholia
  48. Couttet P, Grange T.; ''Premature termination codons enhance mRNA decapping in human cells.''; PubMed Europe PMC Scholia
  49. Ivanov PV, Gehring NH, Kunz JB, Hentze MW, Kulozik AE.; ''Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways.''; PubMed Europe PMC Scholia
  50. Cho H, Kim KM, Kim YK.; ''Human proline-rich nuclear receptor coregulatory protein 2 mediates an interaction between mRNA surveillance machinery and decapping complex.''; PubMed Europe PMC Scholia
  51. Kunz JB, Neu-Yilik G, Hentze MW, Kulozik AE, Gehring NH.; ''Functions of hUpf3a and hUpf3b in nonsense-mediated mRNA decay and translation.''; PubMed Europe PMC Scholia
  52. Chang YF, Imam JS, Wilkinson MF.; ''The nonsense-mediated decay RNA surveillance pathway.''; PubMed Europe PMC Scholia
  53. Behm-Ansmant I, Kashima I, Rehwinkel J, Saulière J, Wittkopp N, Izaurralde E.; ''mRNA quality control: an ancient machinery recognizes and degrades mRNAs with nonsense codons.''; PubMed Europe PMC Scholia
  54. Lykke-Andersen J, Shu MD, Steitz JA.; ''Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1.''; PubMed Europe PMC Scholia
  55. Eberle AB, Stalder L, Mathys H, Orozco RZ, Mühlemann O.; ''Posttranscriptional gene regulation by spatial rearrangement of the 3' untranslated region.''; PubMed Europe PMC Scholia
  56. Rebbapragada I, Lykke-Andersen J.; ''Execution of nonsense-mediated mRNA decay: what defines a substrate?''; PubMed Europe PMC Scholia
  57. Maquat LE, Gong C.; ''Gene expression networks: competing mRNA decay pathways in mammalian cells.''; PubMed Europe PMC Scholia
  58. Fukuhara N, Ebert J, Unterholzner L, Lindner D, Izaurralde E, Conti E.; ''SMG7 is a 14-3-3-like adaptor in the nonsense-mediated mRNA decay pathway.''; PubMed Europe PMC Scholia
  59. Le Hir H, Gatfield D, Izaurralde E, Moore MJ.; ''The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  60. Mühlemann O, Eberle AB, Stalder L, Zamudio Orozco R.; ''Recognition and elimination of nonsense mRNA.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114999view16:53, 25 January 2021ReactomeTeamReactome version 75
113443view11:52, 2 November 2020ReactomeTeamReactome version 74
112643view16:02, 9 October 2020ReactomeTeamReactome version 73
101558view11:43, 1 November 2018ReactomeTeamreactome version 66
101094view21:25, 31 October 2018ReactomeTeamreactome version 65
100623view20:00, 31 October 2018ReactomeTeamreactome version 64
100174view16:44, 31 October 2018ReactomeTeamreactome version 63
99724view15:12, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99298view12:46, 31 October 2018ReactomeTeamreactome version 62
93761view13:34, 16 August 2017ReactomeTeamreactome version 61
93285view11:19, 9 August 2017ReactomeTeamreactome version 61
88067view14:29, 25 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86369view09:16, 11 July 2016ReactomeTeamreactome version 56
83339view10:50, 18 November 2015ReactomeTeamVersion54
81759view10:00, 26 August 2015ReactomeTeamVersion53
76924view08:19, 17 July 2014ReactomeTeamFixed remaining interactions
76629view12:00, 16 July 2014ReactomeTeamFixed remaining interactions
75960view10:01, 11 June 2014ReactomeTeamRe-fixing comment source
75662view10:56, 10 June 2014ReactomeTeamReactome 48 Update
75017view13:53, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74661view08:43, 30 April 2014ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
18S rRNA ProteinX03205 (EMBL)
28S rRNA ProteinM11167 (EMBL)
3' Fragment of Cleaved mRNA R-ALL-927738 (Reactome)
5' Fragment of Cleaved mRNA R-ALL-927835 (Reactome)
5.8S rRNA ProteinJ01866 (EMBL)
5S rRNA ProteinV00589 (EMBL)
ADPMetaboliteCHEBI:16761 (ChEBI)
ATPMetaboliteCHEBI:15422 (ChEBI)
CASC3 ProteinO15234 (Uniprot-TrEMBL)
Cap Binding Complex (CBC)ComplexR-HSA-162460 (Reactome)
DCP1AProteinQ9NPI6 (Uniprot-TrEMBL)
EIF4A3 ProteinP38919 (Uniprot-TrEMBL)
EIF4G1 ProteinQ04637 (Uniprot-TrEMBL)
EIF4G1ProteinQ04637 (Uniprot-TrEMBL)
ETF1 ProteinP62495 (Uniprot-TrEMBL)
FAU ProteinP62861 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GSPT1 ProteinP15170 (Uniprot-TrEMBL)
GSPT2 ProteinQ8IYD1 (Uniprot-TrEMBL)
MAGOH ProteinP61326 (Uniprot-TrEMBL)
MAGOHB ProteinQ96A72 (Uniprot-TrEMBL)
NCBP1 ProteinQ09161 (Uniprot-TrEMBL)
NCBP2 ProteinP52298 (Uniprot-TrEMBL)
PABPC1 ProteinP11940 (Uniprot-TrEMBL)
PABPC1ProteinP11940 (Uniprot-TrEMBL)
PNRC2ProteinQ9NPJ4 (Uniprot-TrEMBL)
PP2A (Aalpha:B55alpha:Calpha)ComplexR-HSA-377182 (Reactome)
PPP2CA ProteinP67775 (Uniprot-TrEMBL)
PPP2R1A ProteinP30153 (Uniprot-TrEMBL)
PPP2R2A ProteinP63151 (Uniprot-TrEMBL)
Phosphorylated UPF1:SMG5:SMG7:SMG6:PP2A:Translated mRNPComplexR-HSA-927854 (Reactome)
RBM8A ProteinQ9Y5S9 (Uniprot-TrEMBL)
RNPS1 ProteinQ15287 (Uniprot-TrEMBL)
RPL10 ProteinP27635 (Uniprot-TrEMBL)
RPL10A ProteinP62906 (Uniprot-TrEMBL)
RPL10L ProteinQ96L21 (Uniprot-TrEMBL)
RPL11 ProteinP62913 (Uniprot-TrEMBL)
RPL12 ProteinP30050 (Uniprot-TrEMBL)
RPL13 ProteinP26373 (Uniprot-TrEMBL)
RPL13A ProteinP40429 (Uniprot-TrEMBL)
RPL14 ProteinP50914 (Uniprot-TrEMBL)
RPL15 ProteinP61313 (Uniprot-TrEMBL)
RPL17 ProteinP18621 (Uniprot-TrEMBL)
RPL18 ProteinQ07020 (Uniprot-TrEMBL)
RPL18A ProteinQ02543 (Uniprot-TrEMBL)
RPL19 ProteinP84098 (Uniprot-TrEMBL)
RPL21 ProteinP46778 (Uniprot-TrEMBL)
RPL22 ProteinP35268 (Uniprot-TrEMBL)
RPL22L1 ProteinQ6P5R6 (Uniprot-TrEMBL)
RPL23 ProteinP62829 (Uniprot-TrEMBL)
RPL23A ProteinP62750 (Uniprot-TrEMBL)
RPL24 ProteinP83731 (Uniprot-TrEMBL)
RPL26 ProteinP61254 (Uniprot-TrEMBL)
RPL26L1 ProteinQ9UNX3 (Uniprot-TrEMBL)
RPL27 ProteinP61353 (Uniprot-TrEMBL)
RPL27A ProteinP46776 (Uniprot-TrEMBL)
RPL28 ProteinP46779 (Uniprot-TrEMBL)
RPL29 ProteinP47914 (Uniprot-TrEMBL)
RPL3 ProteinP39023 (Uniprot-TrEMBL)
RPL30 ProteinP62888 (Uniprot-TrEMBL)
RPL31 ProteinP62899 (Uniprot-TrEMBL)
RPL32 ProteinP62910 (Uniprot-TrEMBL)
RPL34 ProteinP49207 (Uniprot-TrEMBL)
RPL35 ProteinP42766 (Uniprot-TrEMBL)
RPL35A ProteinP18077 (Uniprot-TrEMBL)
RPL36 ProteinQ9Y3U8 (Uniprot-TrEMBL)
RPL36A ProteinP83881 (Uniprot-TrEMBL)
RPL36AL ProteinQ969Q0 (Uniprot-TrEMBL)
RPL37 ProteinP61927 (Uniprot-TrEMBL)
RPL37A ProteinP61513 (Uniprot-TrEMBL)
RPL38 ProteinP63173 (Uniprot-TrEMBL)
RPL39 ProteinP62891 (Uniprot-TrEMBL)
RPL39L ProteinQ96EH5 (Uniprot-TrEMBL)
RPL3L ProteinQ92901 (Uniprot-TrEMBL)
RPL4 ProteinP36578 (Uniprot-TrEMBL)
RPL40 ProteinP62987 (Uniprot-TrEMBL)
RPL41 ProteinP62945 (Uniprot-TrEMBL)
RPL5 ProteinP46777 (Uniprot-TrEMBL)
RPL6 ProteinQ02878 (Uniprot-TrEMBL)
RPL7 ProteinP18124 (Uniprot-TrEMBL)
RPL7A ProteinP62424 (Uniprot-TrEMBL)
RPL8 ProteinP62917 (Uniprot-TrEMBL)
RPL9 ProteinP32969 (Uniprot-TrEMBL)
RPLP0 ProteinP05388 (Uniprot-TrEMBL)
RPLP1 ProteinP05386 (Uniprot-TrEMBL)
RPLP2 ProteinP05387 (Uniprot-TrEMBL)
RPS10 ProteinP46783 (Uniprot-TrEMBL)
RPS11 ProteinP62280 (Uniprot-TrEMBL)
RPS12 ProteinP25398 (Uniprot-TrEMBL)
RPS13 ProteinP62277 (Uniprot-TrEMBL)
RPS14 ProteinP62263 (Uniprot-TrEMBL)
RPS15 ProteinP62841 (Uniprot-TrEMBL)
RPS15A ProteinP62244 (Uniprot-TrEMBL)
RPS16 ProteinP62249 (Uniprot-TrEMBL)
RPS17 ProteinP08708 (Uniprot-TrEMBL)
RPS18 ProteinP62269 (Uniprot-TrEMBL)
RPS19 ProteinP39019 (Uniprot-TrEMBL)
RPS2 ProteinP15880 (Uniprot-TrEMBL)
RPS20 ProteinP60866 (Uniprot-TrEMBL)
RPS21 ProteinP63220 (Uniprot-TrEMBL)
RPS23 ProteinP62266 (Uniprot-TrEMBL)
RPS24 ProteinP62847 (Uniprot-TrEMBL)
RPS25 ProteinP62851 (Uniprot-TrEMBL)
RPS26 ProteinP62854 (Uniprot-TrEMBL)
RPS27 ProteinP42677 (Uniprot-TrEMBL)
RPS27A(77-156) ProteinP62979 (Uniprot-TrEMBL)
RPS27L ProteinQ71UM5 (Uniprot-TrEMBL)
RPS28 ProteinP62857 (Uniprot-TrEMBL)
RPS29 ProteinP62273 (Uniprot-TrEMBL)
RPS3 ProteinP23396 (Uniprot-TrEMBL)
RPS3A ProteinP61247 (Uniprot-TrEMBL)
RPS4X ProteinP62701 (Uniprot-TrEMBL)
RPS4Y1 ProteinP22090 (Uniprot-TrEMBL)
RPS4Y2 ProteinQ8TD47 (Uniprot-TrEMBL)
RPS5 ProteinP46782 (Uniprot-TrEMBL)
RPS6 ProteinP62753 (Uniprot-TrEMBL)
RPS7 ProteinP62081 (Uniprot-TrEMBL)
RPS8 ProteinP62241 (Uniprot-TrEMBL)
RPS9 ProteinP46781 (Uniprot-TrEMBL)
RPSA ProteinP08865 (Uniprot-TrEMBL)
SMG1 ProteinQ96Q15 (Uniprot-TrEMBL)
SMG1:Phosphorylated

UPF1:EJC:Translated

mRNP
ComplexR-HSA-927890 (Reactome)
SMG1:SMG8:SMG9 ComplexComplexR-HSA-927853 (Reactome)
SMG1:UPF1:EJC:Translated mRNPComplexR-HSA-927767 (Reactome)
SMG5 ProteinQ9UPR3 (Uniprot-TrEMBL)
SMG5ProteinQ9UPR3 (Uniprot-TrEMBL)
SMG6 ProteinQ86US8 (Uniprot-TrEMBL)
SMG6ProteinQ86US8 (Uniprot-TrEMBL)
SMG7 ProteinQ92540 (Uniprot-TrEMBL)
SMG7ProteinQ92540 (Uniprot-TrEMBL)
SMG8 ProteinQ8ND04 (Uniprot-TrEMBL)
SMG9 ProteinQ9H0W8 (Uniprot-TrEMBL)
Translated mRNA

Complex with Premature Termination Codon Not Preceding Exon

Junction
ComplexR-HSA-927787 (Reactome)
Translated mRNA

Complex with Premature Termination Codon Preceding Exon

Junction
ComplexR-HSA-927773 (Reactome)
UPF1 ProteinQ92900 (Uniprot-TrEMBL)
UPF1:eRF3 Complex on Translated mRNAComplexR-HSA-927762 (Reactome)
UPF1ProteinQ92900 (Uniprot-TrEMBL)
UPF2 ProteinQ9HAU5 (Uniprot-TrEMBL)
UPF3A ProteinQ9H1J1 (Uniprot-TrEMBL)
UPF3AS-2 ProteinQ9H1J1-2 (Uniprot-TrEMBL)
UPF3B ProteinQ9BZI7 (Uniprot-TrEMBL)
mRNA Cleaved by SMG6ComplexR-HSA-927845 (Reactome)
mRNA with premature termination codon not preceding exon junction R-ALL-927733 (Reactome)
mRNA with premature termination codon preceding exon junction R-ALL-927796 (Reactome) This is an mRNA with a premature termination codon which precedes an exon junction. Such mRNAs are subject to nonsense-mediated decay (NMD).
p-4S-UPF1 ProteinQ92900 (Uniprot-TrEMBL)
p-4S-UPF1ProteinQ92900 (Uniprot-TrEMBL)
tRNA R-HSA-141679 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ADPArrowR-HSA-927889 (Reactome)
ATPR-HSA-927889 (Reactome)
Cap Binding Complex (CBC)ArrowR-HSA-927830 (Reactome)
DCP1AR-HSA-927813 (Reactome)
EIF4G1ArrowR-HSA-927830 (Reactome)
PABPC1ArrowR-HSA-927830 (Reactome)
PNRC2R-HSA-927813 (Reactome)
PP2A (Aalpha:B55alpha:Calpha)ArrowR-HSA-927830 (Reactome)
PP2A (Aalpha:B55alpha:Calpha)R-HSA-927813 (Reactome)
PP2A (Aalpha:B55alpha:Calpha)mim-catalysisR-HSA-927830 (Reactome)
Phosphorylated UPF1:SMG5:SMG7:SMG6:PP2A:Translated mRNPArrowR-HSA-927813 (Reactome)
Phosphorylated UPF1:SMG5:SMG7:SMG6:PP2A:Translated mRNPR-HSA-927836 (Reactome)
Phosphorylated UPF1:SMG5:SMG7:SMG6:PP2A:Translated mRNPmim-catalysisR-HSA-927836 (Reactome)
R-HSA-927789 (Reactome) Nonsense-mediated decay of an mRNA can be triggered even if the termination codon does not precede an exon junction (Buhler et al. 2006, Eberle et al. 2008, Silva et al. 2008, Singh et al. 2008, Ivanov et al. 2008). UPF1 and PABP seem to modulate the efficiency of translation termination and PABP in the proximity of a termination codon prevents NMD likely by outcompeting UPF1 for interaction with eRF3 (Singh et al. 2008, Ivanov et al. 2008, Silva et al. 2008). Factors in the competition may be the length and secondary structure of the 3' UTR (Buhler et al. 2006, Eberle et al. 2008). UPF1 preferentially binds some but not all longer UTRs (Hogg and Goff 2010).
Interaction of eRF3 with PABP stimulates ribosome dissociation and initiation of a new round of translation on the mRNA. Interaction of eRF3 with UPF1 appears to promote nonsense-mediated decay. It is possible but not yet demonstrated that all components of the SURF complex (SMG1, UPF1, eRF1, eRF3) are assembled on an mRNA without an exon junction complex and that UPF1 is phosphorylated by SMG1.
R-HSA-927813 (Reactome) SMG6, SMG5 and SMG7 contain 14-3-3 domains which are believed to bind phosphorylated SQ motifs in UPF1 (Chiu et al. 2003, Ohnishi et al. 2003, Unterholzner and Izaurralde 2004, Fukuhara et al. 2005, Durand et al. 2007). SMG7 has been shown to bind UPF1 directly, target UPF1 for dephosphorylation by PP2A, and recruit enzymes that degrade RNA (Ohnishi et al. 2003, Unterholzner and Izaurralde 2004, Fukuhara et al. 2005). UPF3AS (the small isoform of UPF3A) also associates with the complex (Ohnishi et al. 2003). SMG6 is an endoribonuclease that cleaves the mRNA bound by UPF1 and also recruits phosphatase PP2A to dephosphorylate UPF1 (Chiu et al. 2003, Glavan et al. 2006, Eberle et al. 2009). PNRC2 binds both phospo-UPF1 and the decapping enzyme DCP1A, thereby facilitating decapping of the mRNA (Cho et al. 2009, Lai et al. 2012, Cho et al. 2013).
Though immunofluorescence in vivo indicates that SMG5 and SMG7 exist in separate complexes from SMG6 (Unterholzner and Izaurralde 2004) immunoprecipitation shows that SMG6 is present in complexes that also contain SMG5, SMG7, UPF1, UPF2, Y14, Magoh, and PABP (Kashima et al. 2010). SMG5, SMG6, and SMG7 are therefore represented here together in the same RNP complex. It is possible that some complexes contain only SMG6 or SMG5:SMG7 (reviewed in Nicholson et al. 2010, Muhlemann and Lykke-Andersen 2010). Note that "Smg5/7a" in Chiu et al. 2003 actually refers to SMG6.
Phosphorylated UPF1 also inhibits translation initiation by inhibiting conversion of 40S:tRNAmet:mRNA to 80S:tRNAmet:mRNA complexes (Isken et al. 2008)
R-HSA-927830 (Reactome) SMG6 endonucleolytically cleaves an mRNA it is believed that the resulting fragments are degraded by exonucleases, possibly XRN1, a 5'-to-3' nuclease, and the exosome complex, a 3'-to-5' nuclease (Huntzinger et al. 2008, Eberle et al. 2009). Inhibition of XRN1 is observed to cause accumulation of SMG6-cleaved intermediates therefore XRN1 is postulated to act downstream of SMG6 (Huntzinger et al. 2008).
In general, during Nonsense-Mediated Decay mRNAs are observed to be deadenlyated (implicating the PAN2 complex, PARN complex, and CCR4 complex), decapped (implicating the DCP1:DCP2 complex), and exoribonucleolytically digested (implicating the XRN1 5'-to-3' exonuclease and exosome 3'-to-5' exonuclease) (Lykke-Andersen 2002, Chen et al. 2003, Lejeune et al. 2003, Couttet and Grange 2004, Unterholzner and Izaurralde 2004, Yamashita et al. 2005). UPF1 is observed to associate with the decapping enzymes DCP1a and DCP2, however the specific decay reactions that occur after SMG6, SMG5 and SMG7 have associated with an mRNA are unknown (Lykke-Andersen et al. 2002). Likewise, SMG6 may be present in complexes separate from SMG5 and SMG7 and these complexes may have different routes of decay (reviewed in Nicholson et al. 2010, Muhlemann and Lykke-Andersen 2010).
ATPase activity of UPF1 is necessary for NMD and may reflect ATP-dependent helicase activity that disassembles the mRNA-protein complex (Franks et al. 2010). UPF1 must be dephosphorylated by PP2A for NMD to continue (Ohnishi et al. 2003, Chiu et al. 2003). Presumably the dephosphoryation recycles UPF1 for interaction with other mRNA complexes.
R-HSA-927832 (Reactome) The presence of an exon junction complex (EJC) downstream of a termination codon enhances nonsense-mediated decay (NMD) but is not absolutely required for NMD. The EJC is deposited during splicing and remains bound to the mRNA until a ribosome dislodges it during the pioneer round of translation, distinguished by the presence of the cap-binding complex at the 5' end. If translation terminates at least 50-55 nucleotides 5' to an EJC during the pioneer round then termination factors (eRF1 and eRF3) and the EJC recruit UPF1 and other NMD machinery (Lykke-Andersen et al. 2001, Ishigaki et al. 2001, Le Hir et al. 2001, Gehring et al. 2003, Hosoda et al. 2005, Kashima et al. 2006, Singh et al. 2007, Chamieh et al. 2008, Ivanov et al. 2008, Buchwald et al. 2010).
A current model for NMD enhanced by the EJC posits recruitment of UPF1, SMG1, SMG8, and SMG9 to eRF3 at the ribosome to form the SURF complex (Kashima et al. 2006, Chang et al. 2007, Isken et al. 2008, Muhlemann et al. 2008, Stalder and Muhlemann 2008, Chamieh et al. 2009, Maquat and Gong 2009, Rebbapragada and Lykke-Andersen 2009, Hwang et al. 2010, Nicholson et al. 2010). UPF1 and SMG1 then interact with components of the EJC, activating phosphorylation of UPF1 by SMG1.
The model of the NMD mechanism is inferred from known protein interactions:
eRF1 and eRF3 interact with UPF1, the key regulator of NMD which also binds SMG1, UPF2, and UPF3 (UPF3a or UPF3b) to form the SURF complex (Kashima et al.2006, Ivanov et al. 2008, Clerici et al. 2009, Chakrabarti et al. 2011). UPF1 also interacts with CBP80 at the cap of the mRNA (Hwang et al. 2010).
SMG8 and SMG9 associate with SMG1 and the SURF complex and modulate the phosphorylation activity of SMG1 (Yamashita et al. 2009).
UPF2 and UPF3 are peripheral components of the EJC and thus may link the EJC to the SURF complex (Chamieh et al. 2008). UPF3b binds UPF1 and a composite surface formed by the Y14, MAGOH, and eIF4A3 subunits of the core EJC (Gehring et al. 2003, Kunz et al. 2006, Buchwald et al. 2010). SMG1 also interacts with the EJC (Kashima et al. 2006, Yamashita et al. 2009). UPF3a more weakly activates NMD than does UPF3b (Kunz et al. 2006) and UPF3a levels increase in response to loss of UPF3b (Chan et al. 2009).
The binding of UPF1 to translated RNAs may occur in two steps: Binding of the SURF complex to the terminating ribosome followed by transfer of UPF1 and SMG1 to the EJC (Kashima et al. 2006, Hwang et al. 2010).
The core EJC (Y14, MAGOH, eIF4A3, and BTZ) can activate NMD without UPF2, however RNPS1, another EJC subunit, requires UPF2 to activate NMD (Gehring et al. 2005). RNAs show differential dependence on RNPS1-activated NMD (Gehring et al. 2005). Also, NMD of some transcripts requires EJC component eIF4A3 but not UPF3b (Chan et al. 2007) therefore there may be more than one route to activating NMD via the EJC.
R-HSA-927836 (Reactome) SMG6 is an endoribonuclease which cleaves the mRNA bound by UPF1 near the premature termination codon (Glavan et al. 2006, Eberle et al. 2009).
R-HSA-927889 (Reactome) SMG1 phosphorylates UPF1 in vitro and in vivo (Denning et al. 2001, Yamashita et al. 2001, Kashima et al. 2006). Serines 1073, 1078, 1096, and 1116 in isoform 2 (Serines 1084, 1089, 1107, 1127 in isoform 1) are phosphorylated in vitro and phosphorylation at serines 1078 and 1096 has been confirmed in vivo (Yamashita et al. 2001, Ohnishi et al. 2003, Kashima et al. 2006). UPF1 also contains additional serine and threonine residues that could be phosphorylated. SMG8 and SMG9 associate with SMG1 and regulate the kinase activity of SMG1 (Yamashita et al. 2009). The phosphorylation reaction is rate-limiting in nonsense-mediated decay and is therefore regarded as a licensing step (reviewed in Rebbapragada and Lykke-Andersen 2009). Phosphorylation is enhanced by the exon junction complex, which can interact with UPF1 via UPF2 and/or UPF3 (Kashima et al. 2006, Ivanov et al. 2008) or via Y14:Magoh (Ivanov et al. 2008). SMG8 and SMG9 bind SMG1 and regulate its kinase activity (Yamashita et al. 2009, Fernandez et al. 2011).
SMG1:Phosphorylated

UPF1:EJC:Translated

mRNP
ArrowR-HSA-927889 (Reactome)
SMG1:Phosphorylated

UPF1:EJC:Translated

mRNP
R-HSA-927813 (Reactome)
SMG1:SMG8:SMG9 ComplexR-HSA-927832 (Reactome)
SMG1:UPF1:EJC:Translated mRNPArrowR-HSA-927832 (Reactome)
SMG1:UPF1:EJC:Translated mRNPR-HSA-927889 (Reactome)
SMG1:UPF1:EJC:Translated mRNPmim-catalysisR-HSA-927889 (Reactome)
SMG5ArrowR-HSA-927830 (Reactome)
SMG5R-HSA-927813 (Reactome)
SMG6ArrowR-HSA-927830 (Reactome)
SMG6R-HSA-927813 (Reactome)
SMG7ArrowR-HSA-927830 (Reactome)
SMG7R-HSA-927813 (Reactome)
Translated mRNA

Complex with Premature Termination Codon Not Preceding Exon

Junction
R-HSA-927789 (Reactome)
Translated mRNA

Complex with Premature Termination Codon Preceding Exon

Junction
R-HSA-927832 (Reactome)
UPF1:eRF3 Complex on Translated mRNAArrowR-HSA-927789 (Reactome)
UPF1ArrowR-HSA-927830 (Reactome)
UPF1R-HSA-927789 (Reactome)
UPF1R-HSA-927832 (Reactome)
mRNA Cleaved by SMG6ArrowR-HSA-927836 (Reactome)
mRNA Cleaved by SMG6R-HSA-927830 (Reactome)
p-4S-UPF1mim-catalysisR-HSA-927830 (Reactome)
Personal tools