Neurotransmitter receptors and postsynaptic signal transmission (Homo sapiens)

From WikiPathways

Revision as of 14:34, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
354660372644, 616748635213, 5553679, 1770741, 52310, 31, 39, 59, 68...1, 57529, 50144, 25, 28, 784370644, 6172763705815722, 38, 41, 54, 6584912, 33, 6624, 79743366418, 34, 577227616, 19, 2067623, 11, 21, 30, 32...63cytosolnucleoplasmendocytic vesicle membraneCAMK4 ADPCALM1 GRIA2 GTP cAMPNEFL ATPRas:GTPL-GluGABBR1 DAG CALM1 G-protein alpha (i):GTPCHRNA6 GRIN2C Kainatereceptor-glutamate-Gprotein complexp-T286-CAMK2A MYO6GDP ATPPRKACG GRIP2 ADCY6 KCNJ9 PPiGNAL GNGT1 GRIA4 GLRA3 ADCY8 KCNJ16 ADCY5 CAMK4 Mg2+ PICK1Edited GRIK 1 (GluR5) p-T286-CAMK2A CALM1 GNG8 p-S360,S377,T570-RPS6KA2 GNG10 CHRNA2 GNGT2 RasGRF:Ca/calmodulinGABRR pentamer:GABACa permeable AMPAreceptor ligandcomplexGABRB3 GRIA1 Edited KainateReceptor-glutamatecomplexCa2+PiGRIN2D p-T287-CAMK2D GNB3 ADPHRAS GNAI3 CHRNA1 GRIK4 GABBR1 ATPADCY3 ADCY4 GNAT3 GABA GNG3 CHRNA4 Ras:GDPPRKACB-like proteinsATPGABA GRIA1 PLCB1 L-GluCa2+ GRIN2D GRIN2D (Gialpha1:GTP:Adenylate cyclase):(G alpha-olf:GTP)NEFL p-T287-CAMK2G GRIN2A GNAI2 CACNG3 GRIN2C MYO6ADCY3 GNG5 CHRNA4 GNAI3 CHRNB2 p-S363,S380,T573-RPS6KA1 GNAI3 AP2ACaMKIIGRIA4 ADCY3 CHRNA5 GABBR1 GNAI2 GNB3 CHRNA4 GNAI3 NEFL GTP ADCY6 GRIA1 GNG13 CHRND Ca impermeable AMPAreceptorsHTR3 pentamer:5HTGNAT3 Ca2+L-Glu GRIA3 ADCY9 GNG8 Ca2+GNAI1 CHRNE GABRG3 Mg2+CHRNA2 CHRNA6 CACNG8 NPTN CHRNB4 PSD-95 GRIA1 GABBR2 p-S372,S389,T581-RPS6KA6 KCNJ5 Ca impermeable AMPAreceptors (withphospho GluR2 S880)GNG5 CACNG3 GNG11 Na+Gly ADCY3 Edited GRIK2 (GluR6) CHRNA3 p-T286-CAMK2A RRAS p-CAMKK1ADPGTP Ca2+p-T287-CAMK2B GDP ATPGDP CREB1Cl- GRIK3 homomerglutamate complexMg2+ GRIP1/GRIP2GABRB3 p-S360,S377,T570-RPS6KA2 GNAI2 CHRNB4 GRIA4 GDP PICK1 GABRA4 GNG3 Mg2+ GRIK2 CREB1GNAT3 GRIA4 GNG13 Edited GRIK2 (GluR6) GNG2 HRAS ACTN2 p-S363,S380,T573-RPS6KA1 GABRA4 GNG2 PICK1AP2A1 Ca2+GNG12 GNG11 ADPDLG1 GRIN2B GRIA4 GRIN2A NCALD CHRNA6 GABRQ DLG4 CALM1 GNAI1 ADCY7 Ca2+PiCHRNA5 p-T286-CAMK2A GNB5 RPS6KA3 GABRB2 GTP CHRNB2 GRIN2C Phospho(S363,S380,T573)- ribosomal S6 kinaseGRIA4 GLRA1 Edited GRIK 1 (GluR5) Ca permeable AMPAreceptorsK+ADCY7 Cl-ATPMAPK1p-T287-CAMK2B GNG7 Ca2+ PSD-95 Ca2+ADCY9 p-T287-CAMK2B GRIK5 CHRNB2 p-T286-CAMK2A ADPGRIK3 CHRNB3 CHRNA1 MDM2 KCNJ10 NMDA receptor ligandcomplexNMDA receptor ligandcomplexGABRA1 ATPKCNJ12 p-T287-CAMK2B CHRNG CALM1 p-T287-CAMK2G kaiante ReceptorsGRIA4 Cl- RRAS CAMK2 heteromerEdited KainatereceptorsGABRheteropentamers:GABAGRIN2A CHRNA6 CHRNA1 GRIA1 O-acteylcholinebound to calciumpermeablepostsynapticnicotinicacetylcholinereceptorsK+ADCY1 ADCY9 GNAL CHRNG GTP GABBR2 O-Acetylcholinebound toAcetylcholinereceptorGRIK3 GRIA4 NEFL L-GluCa impermeable AMPAreceptor ligandcomplexRPS6KA2 GNAL GABRG3 CACNG2 Na+Cl- PiGABRA3 GNG3 p-T287-CAMK2G Calmodulin:CaMK IVCHRNA3 PLCB2 GRIA2 TARP-PSD95-Mdm2GRIN1 Na+CHRNB4 PRKCG GRIN2C ADCY5 ADPGABRR2 ADCY4 ADCY2 ATPADCY2 L-Glu ADCY9 CaMKIICALM1:4xCa2+GNAT3 CALM1 PSD-95 AP2B1-1 AP2S1-1 GRIA3 Na+Na+GRIA2 GNAT3 p-S369,S386,T573-RPS6KA3 PSD-95 p-S133-CREB1GABRG2 RASGRF2 L-Glu HTR3B CHRNA2 GRIP2 GABRheteropentamers:GABA:NPTNGRIP1 ADCY6 NMDA receptor-MgcomplexGNG4 PSD-95 p-T287-CAMK2D TARP-PSD95-Mdm2p-S232,S372,S389,T581-RPS6KA6 Mg2+ NMDA receptorcomplexADCY3 GABRA2 Ca2+ Gly ARHGEF9 (Gialpha1:GTP:Adenylate cyclase):(G alpha-olf:GDP)GNAI2 L-Glu AKAP9 Na+GABRA5 Phospho(S221,S363,S380,T573)- ribosomal S6 kinaseG alpha-olf:GTPGNB1 AP2A1 GNGT2 GRIA1 ADCY1 p-T286-CAMK2A AKAP5K+p-T287-CAMK2B GNB5 GNG5 GRIA3 CHRNA5 GABBR2 EPB41L1ATPCa2+Highly calciumpermeablepostsynaptic nicotinicacetylcholinereceptorsGABA B receptorG-proteinbeta-gamma and Kir3channel complexGNG4 TSPAN7 G-protein alpha(i):GTP:AdenylatecyclaseATPGABRR3 ADP KCNJ4 Ca2+GRIK3 GABRQ Cl- ADCY4 GNG7 Cl-ADCY4 Ca2+ ADP Ca impermeable AMPAreceptorsADCY2 ADCY7 DLG3 GRIP1 ADCY5 GNAI2 CACNG8 Mg2+ p-T286-CAMK2A GNGT2 AKAP5ACTN2 GRIN1 Mg2+ ATPp-T287-CAMK2D GNAI3 p-T287-CAMK2G Ca permeable AMPAreceptorsHTR3A CHRNB2 Gly GRIK1 GABAB receptorCa impermeable AMPAreceptorsp-S218,S360,S377,T570-RPS6KA2 G alpha-olf:GDPcomplexBRAF PSD-95 GABRR1 ARHGEF9 GRIK4 CHRNA3 p-T286-CAMK2A CHRNA3 GRIN2D GRIA3 ADCY2 CACNG4 ADCY1 PSD-95 ADCY9 p-S880-GRIA2 GNAI2 p-T287-CAMK2D GRIA3 p-T287-CAMK2B GNB1 GLRA4 GNB3 AcCho GNAL CALM1Gly GABRA3 ADCY8 GRIA2 p-T287-CAMK2G GNB4 CHRNA3 CHRNB4 CAMKK1EPB41L1GRIN1 GRIK5 PRKCA G-protein alpha(i):GDPGRIK3 p-S221,S363,S380,T573-RPS6KA1 p-T287-CAMK2B CHRNA4 Phosphatidylserine Ca2+ADCY2 GTP DLG1RPS6KA1 ATPGLRA2 GRIN1 ATPCl- CHRNB2 GRIA2 AKAP9 Highly sodiumpermeable nicotinicacetylcholinereceptorsp-S369,S386,T573-RPS6KA3 GRIN2B ADCY6 GABRB2 ACTN2 GLRA:GLRB:Glyp-S372,S389,T581-RPS6KA6 L-Glu GRIN2A CHRNA9 ADPCa2+Ribosomal S6 kinaseGNAI3 GNAI1 p-S227,S369,S386,T573-RPS6KA3 GNAI1 KCNJ6 GNG12 ADCY6 ADCY8 CHRNA7 L-Glup-T286-CAMK2A PDPK1Ca2+ ADPCHRNE AKAP9 p-T287-CAMK2D CHRNB4 AKAP9 PLCB3 p-T286-CAMK2A CALM1 CHRNA1 GABA Calmodulin:CaMK IVGTP CaMKIIPRKACA GNG10 AKAP9 GRIN1 Cl- NCALD GABRB1 GRIN2C GNGT1 K+p-T287-CAMK2B ACTN2 (Gialpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP)ADCY4 GRIA4 CHRNA7 KCNJ15 Activated B-rafcomplexGRIN2A GNG10 p-T287-CAMK2D Ca2+GNAT3 p-T287-CAMK2D CAMK2heteromer:CALM:4xCa2+AcCho GRIK2 CACNG2 ADCY8 ADCY8 RasGTP-B raf compexCa2+ HTR3C GNB2 CaMKIICHRNA9 GNG7 NEFL DLG1 GNG2 Ca/calmodulinactivated AdenylateCyclaseRASGRF2 GRIA1 5HT CHRNB3 p-T287-CAMK2G PiADCY5 KCNJ3 CHRNA4 CHRNA5 ADCY7 Activatedconventionalprotein kinase CPRKCB L-Glu GNB2 L-Glu p-T287-CAMK2G GRIA3 ADCY5 GABRA2 p-S338-BRAF GABA HTR3E p-T287-CAMK2G ADPGABRA1 GRIA3 CHRNA4 p-T287-CAMK2D p-T287-CAMK2G p-S338-RAF1GRIN2B Phospho(S363,S380,T573)-ribosomal S6 kinaseDLG1KCNJ2 GLRB GNB2 ADCY1 AP2A2-3 GRIK3 CHRND GABRG2 CHRNB2 RasGRFGNG8 ADCY7 GRIN2B RPS6KA6 GRIA1 GRIN2B GABAGNAI1 ADPGRIP1/GRIP2AP2A2-3 GNB1 p-T287-CAMK2D GNG4 p-T287-CAMK2B CAMK4GABRA6 p-T287-CAMK2G Ca impermeable AMPAreceptorsGRIK 3 homomerPLCB3 GABRA6 GNAI1 MDM2 AcCho L-Glu CHRNB3 NPTNGRIP1 GABAB receptor:GABARASGRF1 CHRNB3 CHRNA3 L-Glu TSPAN7:PICK1Cl- PLCB1 p-T286-CAMK2A CACNG4 GRIK1 ADCY1 AP2M1-2 PICK1CHRNB4 GDP PiRASGRF1 GNG12 Kainatereceptor-glutamatecomplexp-T287-CAMK2D p-T287-CAMK2G GlyHighly calciumpermeable nicotinicacetylcholinereceptors0-acteylcholinebound to calciumpermeable nictonicacteylcholinereceptor complexAcChoGRIP1/GRIP2GRIA3 DLG3 ADCY3 ADPp-T287-CAMK2D Ca2+PLCB2 Na+ADPp-T287-CAMK2B GABA ADCY8 Na+phospho-CaMKIV:CalmodulinPRKACB L-GluNSFAP2 complexGRIA1 GTP GABRB1 Adenylate cyclase(Mg2+ cofactor)GRIP2 G-proteinbeta-gamma:PLC beta1/2/3CALM1 Ca2+ p-T287-CAMK2B ADCY1 ACTN2 ATPGRIN2D GNAL p-T185,Y187-MAPK1CHRNA2 GNB4 HTR3D GABRA5 Na+GNGT1 PSD-95 p-S12,S13-CAMK4 GDP ADPGRIA3 455126


Description

The neurotransmitter in the synaptic cleft released by the pre-synaptic neuron binds specific receptors located on the post-synaptic terminal. These receptors are either ion channels or G protein coupled receptors that function to transmit the signals from the post-synaptic membrane to the cell body. View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 112314
Reactome-version 
Reactome version: 62
Reactome Author 
Reactome Author: Mahajan, SS

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Hardingham GE, Bading H.; ''Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders.''; PubMed Europe PMC Scholia
  2. Bettler B, Kaupmann K, Mosbacher J, Gassmann M.; ''Molecular structure and physiological functions of GABA(B) receptors.''; PubMed Europe PMC Scholia
  3. Steinlein OK, Bertrand D.; ''Neuronal nicotinic acetylcholine receptors: from the genetic analysis to neurological diseases.''; PubMed Europe PMC Scholia
  4. Kessels HW, Malinow R.; ''Synaptic AMPA receptor plasticity and behavior.''; PubMed Europe PMC Scholia
  5. Jane DE, Lodge D, Collingridge GL.; ''Kainate receptors: pharmacology, function and therapeutic potential.''; PubMed Europe PMC Scholia
  6. Gotti C, Clementi F, Fornari A, Gaimarri A, Guiducci S, Manfredi I, Moretti M, Pedrazzi P, Pucci L, Zoli M.; ''Structural and functional diversity of native brain neuronal nicotinic receptors.''; PubMed Europe PMC Scholia
  7. Niesler B, Walstab J, Combrink S, Möller D, Kapeller J, Rietdorf J, Bönisch H, Göthert M, Rappold G, Brüss M.; ''Characterization of the novel human serotonin receptor subunits 5-HT3C,5-HT3D, and 5-HT3E.''; PubMed Europe PMC Scholia
  8. Barnes NM, Hales TG, Lummis SC, Peters JA.; ''The 5-HT3 receptor--the relationship between structure and function.''; PubMed Europe PMC Scholia
  9. Wu ZS, Cheng H, Jiang Y, Melcher K, Xu HE.; ''Ion channels gated by acetylcholine and serotonin: structures, biology, and drug discovery.''; PubMed Europe PMC Scholia
  10. Miyake A, Mochizuki S, Takemoto Y, Akuzawa S.; ''Molecular cloning of human 5-hydroxytryptamine3 receptor: heterogeneity in distribution and function among species.''; PubMed Europe PMC Scholia
  11. Albuquerque EX, Pereira EF, Alkondon M, Rogers SW.; ''Mammalian nicotinic acetylcholine receptors: from structure to function.''; PubMed Europe PMC Scholia
  12. Pinard A, Seddik R, Bettler B.; ''GABAB receptors: physiological functions and mechanisms of diversity.''; PubMed Europe PMC Scholia
  13. Michels G, Moss SJ.; ''GABAA receptors: properties and trafficking.''; PubMed Europe PMC Scholia
  14. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R.; ''Glutamate receptor ion channels: structure, regulation, and function.''; PubMed Europe PMC Scholia
  15. Cull-Candy S, Kelly L, Farrant M.; ''Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond.''; PubMed Europe PMC Scholia
  16. Itier V, Bertrand D.; ''Neuronal nicotinic receptors: from protein structure to function.''; PubMed Europe PMC Scholia
  17. Padgett CL, Slesinger PA.; ''GABAB receptor coupling to G-proteins and ion channels.''; PubMed Europe PMC Scholia
  18. Handford CA, Lynch JW, Baker E, Webb GC, Ford JH, Sutherland GR, Schofield PR.; ''The human glycine receptor beta subunit: primary structure, functional characterisation and chromosomal localisation of the human and murine genes.''; PubMed Europe PMC Scholia
  19. Paoletti P, Bellone C, Zhou Q.; ''NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease.''; PubMed Europe PMC Scholia
  20. Davies PA, Pistis M, Hanna MC, Peters JA, Lambert JJ, Hales TG, Kirkness EF.; ''The 5-HT3B subunit is a major determinant of serotonin-receptor function.''; PubMed Europe PMC Scholia
  21. Cohen S, Greenberg ME.; ''Communication between the synapse and the nucleus in neuronal development, plasticity, and disease.''; PubMed Europe PMC Scholia
  22. Barrera NP, Herbert P, Henderson RM, Martin IL, Edwardson JM.; ''Atomic force microscopy reveals the stoichiometry and subunit arrangement of 5-HT3 receptors.''; PubMed Europe PMC Scholia
  23. Grenningloh G, Schmieden V, Schofield PR, Seeburg PH, Siddique T, Mohandas TK, Becker CM, Betz H.; ''Alpha subunit variants of the human glycine receptor: primary structures, functional expression and chromosomal localization of the corresponding genes.''; PubMed Europe PMC Scholia
  24. Moss SJ, Smart TG.; ''Constructing inhibitory synapses.''; PubMed Europe PMC Scholia
  25. Nikolic Z, Laube B, Weber RG, Lichter P, Kioschis P, Poustka A, Mülhardt C, Becker CM.; ''The human glycine receptor subunit alpha3. Glra3 gene structure, chromosomal localization, and functional characterization of alternative transcripts.''; PubMed Europe PMC Scholia
  26. Lee HK.; ''Synaptic plasticity and phosphorylation.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
118519view10:04, 28 May 2021EweitzOntology Term : 'neuron-to-neuron signaling pathway via the chemical synapse' added !
114633view16:09, 25 January 2021ReactomeTeamReactome version 75
113081view11:14, 2 November 2020ReactomeTeamReactome version 74
112315view15:23, 9 October 2020ReactomeTeamReactome version 73
101214view11:11, 1 November 2018ReactomeTeamreactome version 66
100752view20:36, 31 October 2018ReactomeTeamreactome version 65
100296view19:13, 31 October 2018ReactomeTeamreactome version 64
99842view15:57, 31 October 2018ReactomeTeamreactome version 63
99399view14:34, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
94502view09:18, 14 September 2017Mkutmonreactome version 61
86651view09:23, 11 July 2016ReactomeTeamreactome version 56
83166view10:15, 18 November 2015ReactomeTeamVersion54
81530view13:04, 21 August 2015ReactomeTeamVersion53
77001view08:29, 17 July 2014ReactomeTeamFixed remaining interactions
76706view12:07, 16 July 2014ReactomeTeamFixed remaining interactions
76032view10:09, 11 June 2014ReactomeTeamRe-fixing comment source
75741view11:22, 10 June 2014ReactomeTeamReactome 48 Update
75091view14:04, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74738view08:49, 30 April 2014ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP)ComplexR-HSA-170656 (Reactome)
(Gi alpha1:GTP:Adenylate cyclase):(G alpha-olf:GDP)ComplexR-HSA-170659 (Reactome)
(Gi alpha1:GTP:Adenylate cyclase):(G alpha-olf:GTP)ComplexR-HSA-170683 (Reactome)
0-acteylcholine

bound to calcium permeable nictonic acteylcholine

receptor complex
ComplexR-HSA-629600 (Reactome)
5HT MetaboliteCHEBI:28790 (ChEBI)
ACTN2 ProteinP35609 (Uniprot-TrEMBL)
ADCY1 ProteinQ08828 (Uniprot-TrEMBL)
ADCY2 ProteinQ08462 (Uniprot-TrEMBL)
ADCY3 ProteinO60266 (Uniprot-TrEMBL)
ADCY4 ProteinQ8NFM4 (Uniprot-TrEMBL)
ADCY5 ProteinO95622 (Uniprot-TrEMBL)
ADCY6 ProteinO43306 (Uniprot-TrEMBL)
ADCY7 ProteinP51828 (Uniprot-TrEMBL)
ADCY8 ProteinP40145 (Uniprot-TrEMBL)
ADCY9 ProteinO60503 (Uniprot-TrEMBL)
ADP MetaboliteCHEBI:16761 (ChEBI)
ADPMetaboliteCHEBI:16761 (ChEBI)
AKAP5ProteinP24588 (Uniprot-TrEMBL)
AKAP9 ProteinQ99996 (Uniprot-TrEMBL)
AP2 complexComplexR-HSA-416629 (Reactome)
AP2A1 ProteinO95782 (Uniprot-TrEMBL)
AP2A2-3 ProteinO94973-3 (Uniprot-TrEMBL)
AP2AComplexR-HSA-416640 (Reactome)
AP2B1-1 ProteinP63010-1 (Uniprot-TrEMBL)
AP2M1-2 ProteinQ96CW1-2 (Uniprot-TrEMBL)
AP2S1-1 ProteinP53680-1 (Uniprot-TrEMBL)
ARHGEF9 ProteinO43307 (Uniprot-TrEMBL)
ATPMetaboliteCHEBI:15422 (ChEBI)
AcCho MetaboliteCHEBI:15355 (ChEBI)
AcChoMetaboliteCHEBI:15355 (ChEBI)
Activated

conventional

protein kinase C
ComplexR-HSA-139830 (Reactome)
Activated B-raf complexComplexR-HSA-1063697 (Reactome)
Adenylate cyclase (Mg2+ cofactor)ComplexR-HSA-170665 (Reactome)
BRAF ProteinP15056 (Uniprot-TrEMBL)
CACNG2 ProteinQ9Y698 (Uniprot-TrEMBL)
CACNG3 ProteinO60359 (Uniprot-TrEMBL)
CACNG4 ProteinQ9UBN1 (Uniprot-TrEMBL)
CACNG8 ProteinQ8WXS5 (Uniprot-TrEMBL)
CALM1 ProteinP0DP23 (Uniprot-TrEMBL)
CALM1:4xCa2+ComplexR-HSA-74294 (Reactome)
CALM1ProteinP0DP23 (Uniprot-TrEMBL)
CAMK2 heteromer:CALM:4xCa2+ComplexR-HSA-444601 (Reactome)
CAMK2 heteromerComplexR-HSA-432792 (Reactome) CaMKII is composed of a homo or hetero dodecamer of four subunits apha, beta, delta and gamma. In a heteromultimer the ratio of alpha to beta may vary from 6;1, 3:1 or 1:1.
CAMK4 ProteinQ16566 (Uniprot-TrEMBL)
CAMK4ProteinQ16566 (Uniprot-TrEMBL)
CAMKK1ProteinQ8N5S9 (Uniprot-TrEMBL)
CHRNA1 ProteinP02708 (Uniprot-TrEMBL)
CHRNA2 ProteinQ15822 (Uniprot-TrEMBL)
CHRNA3 ProteinP32297 (Uniprot-TrEMBL)
CHRNA4 ProteinP43681 (Uniprot-TrEMBL)
CHRNA5 ProteinP30532 (Uniprot-TrEMBL)
CHRNA6 ProteinQ15825 (Uniprot-TrEMBL)
CHRNA7 ProteinP36544 (Uniprot-TrEMBL)
CHRNA9 ProteinQ9UGM1 (Uniprot-TrEMBL)
CHRNB2 ProteinP17787 (Uniprot-TrEMBL)
CHRNB3 ProteinQ05901 (Uniprot-TrEMBL)
CHRNB4 ProteinP30926 (Uniprot-TrEMBL)
CHRND ProteinQ07001 (Uniprot-TrEMBL)
CHRNE ProteinQ04844 (Uniprot-TrEMBL)
CHRNG ProteinP07510 (Uniprot-TrEMBL)
CREB1ProteinP16220 (Uniprot-TrEMBL)
Ca impermeable AMPA

receptor ligand

complex
ComplexR-HSA-420974 (Reactome)
Ca impermeable AMPA

receptors (with

phospho GluR2 S880)
ComplexR-HSA-421001 (Reactome)
Ca impermeable AMPA receptorsComplexR-HSA-399713 (Reactome)
Ca impermeable AMPA receptorsComplexR-HSA-416323 (Reactome)
Ca permeable AMPA

receptor ligand

complex
ComplexR-HSA-420976 (Reactome)
Ca permeable AMPA receptorsComplexR-HSA-399714 (Reactome)
Ca permeable AMPA receptorsComplexR-HSA-416325 (Reactome)
Ca/calmodulin

activated Adenylate

Cyclase
ComplexR-HSA-443461 (Reactome)
Ca2+ MetaboliteCHEBI:29108 (ChEBI)
Ca2+MetaboliteCHEBI:29108 (ChEBI)
CaMKIIComplexR-HSA-417004 (Reactome) CaMKII is composed of a homo or hetero dodecamer of four subunits apha, beta, delta and gamma. In a heteromultimer the ratio of alpha to beta may vary from 6;1, 3:1 or 1:1.
CaMKIIComplexR-HSA-444796 (Reactome)
CaMKIIComplexR-HSA-445374 (Reactome)
Calmodulin:CaMK IVComplexR-HSA-111900 (Reactome)
Calmodulin:CaMK IVComplexR-HSA-112281 (Reactome)
Cl- MetaboliteCHEBI:17996 (ChEBI)
Cl-MetaboliteCHEBI:17996 (ChEBI)
DAG MetaboliteCHEBI:17815 (ChEBI)
DLG1 ProteinQ12959 (Uniprot-TrEMBL)
DLG1ProteinQ12959 (Uniprot-TrEMBL)
DLG3 ProteinQ92796 (Uniprot-TrEMBL)
DLG4 ProteinP78352 (Uniprot-TrEMBL)
EPB41L1ProteinQ9H4G0 (Uniprot-TrEMBL)
Edited GRIK 1 (GluR5) ProteinP39086 (Uniprot-TrEMBL) Glutamine at position 636 is replaced by arginine in an editing step which occurs posttranscriptionally.
Edited GRIK2 (GluR6) ProteinQ13002 (Uniprot-TrEMBL) GRIK2 is edited at the Q/R site at 621 where the glutamine is edited to arginine. GRIK2 is also edited at 571 (Y/C) where a tyrosine residue is changed to cysteine and 567 (I/V) where an isoleucine is changed to valine. All three sites are edited postranscriptionally. A fully edited GRIK2 at all three sites is totally impermeable to calcium ions.
Edited Kainate

Receptor-glutamate

complex
ComplexR-HSA-451304 (Reactome)
Edited Kainate receptorsComplexR-HSA-451279 (Reactome) Kainate receptors are formed by the assembly of four subunits. GluR5-7 (GRIK, glutamate receptor, ionotropic Kainate 1-3) form functional homomers whereas, KA1 and KA2 or GRIK4,5 form functional heteromers with GRIK1/2/3. Kainate receptor subunits bind Cl- ion in the anion binding site in the ligand binding domain. The dimer is stabilized by the presence of one Cl- ion which binds within the dimer interface.
G alpha-olf:GDP complexComplexR-HSA-170669 (Reactome)
G alpha-olf:GTPComplexR-HSA-170661 (Reactome)
G-protein

beta-gamma:PLC beta

1/2/3
ComplexR-HSA-398037 (Reactome)
G-protein alpha (i):GDPComplexR-HSA-392164 (Reactome)
G-protein alpha

(i):GTP:Adenylate

cyclase
ComplexR-HSA-396910 (Reactome)
G-protein alpha (i): GTPComplexR-HSA-392161 (Reactome)
GABA B receptor

G-protein beta-gamma and Kir3

channel complex
ComplexR-HSA-1013011 (Reactome)
GABA MetaboliteCHEBI:59888 (ChEBI)
GABAB receptor:GABAComplexR-HSA-420698 (Reactome)
GABAB receptorComplexR-HSA-420748 (Reactome)
GABAMetaboliteCHEBI:59888 (ChEBI)
GABBR1 ProteinQ9UBS5 (Uniprot-TrEMBL)
GABBR2 ProteinO75899 (Uniprot-TrEMBL)
GABR heteropentamers:GABA:NPTNComplexR-HSA-8856431 (Reactome)
GABR heteropentamers:GABAComplexR-HSA-975268 (Reactome)
GABRA1 ProteinP14867 (Uniprot-TrEMBL)
GABRA2 ProteinP47869 (Uniprot-TrEMBL)
GABRA3 ProteinP34903 (Uniprot-TrEMBL)
GABRA4 ProteinP48169 (Uniprot-TrEMBL)
GABRA5 ProteinP31644 (Uniprot-TrEMBL)
GABRA6 ProteinQ16445 (Uniprot-TrEMBL)
GABRB1 ProteinP18505 (Uniprot-TrEMBL)
GABRB2 ProteinP47870 (Uniprot-TrEMBL)
GABRB3 ProteinP28472 (Uniprot-TrEMBL)
GABRG2 ProteinP18507 (Uniprot-TrEMBL)
GABRG3 ProteinQ99928 (Uniprot-TrEMBL)
GABRQ ProteinQ9UN88 (Uniprot-TrEMBL)
GABRR pentamer:GABAComplexR-HSA-975448 (Reactome)
GABRR1 ProteinP24046 (Uniprot-TrEMBL)
GABRR2 ProteinP28476 (Uniprot-TrEMBL)
GABRR3 ProteinA8MPY1 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GLRA1 ProteinP23415 (Uniprot-TrEMBL)
GLRA2 ProteinP23416 (Uniprot-TrEMBL)
GLRA3 ProteinO75311 (Uniprot-TrEMBL)
GLRA4 ProteinQ5JXX5 (Uniprot-TrEMBL)
GLRA:GLRB:GlyComplexR-HSA-975385 (Reactome)
GLRB ProteinP48167 (Uniprot-TrEMBL)
GNAI1 ProteinP63096 (Uniprot-TrEMBL)
GNAI2 ProteinP04899 (Uniprot-TrEMBL)
GNAI3 ProteinP08754 (Uniprot-TrEMBL)
GNAL ProteinP38405 (Uniprot-TrEMBL)
GNAT3 ProteinA8MTJ3 (Uniprot-TrEMBL)
GNB1 ProteinP62873 (Uniprot-TrEMBL)
GNB2 ProteinP62879 (Uniprot-TrEMBL)
GNB3 ProteinP16520 (Uniprot-TrEMBL)
GNB4 ProteinQ9HAV0 (Uniprot-TrEMBL)
GNB5 ProteinO14775 (Uniprot-TrEMBL)
GNG10 ProteinP50151 (Uniprot-TrEMBL)
GNG11 ProteinP61952 (Uniprot-TrEMBL)
GNG12 ProteinQ9UBI6 (Uniprot-TrEMBL)
GNG13 ProteinQ9P2W3 (Uniprot-TrEMBL)
GNG2 ProteinP59768 (Uniprot-TrEMBL)
GNG3 ProteinP63215 (Uniprot-TrEMBL)
GNG4 ProteinP50150 (Uniprot-TrEMBL)
GNG5 ProteinP63218 (Uniprot-TrEMBL)
GNG7 ProteinO60262 (Uniprot-TrEMBL)
GNG8 ProteinQ9UK08 (Uniprot-TrEMBL)
GNGT1 ProteinP63211 (Uniprot-TrEMBL)
GNGT2 ProteinO14610 (Uniprot-TrEMBL)
GRIA1 ProteinP42261 (Uniprot-TrEMBL)
GRIA2 ProteinP42262 (Uniprot-TrEMBL)
GRIA3 ProteinP42263 (Uniprot-TrEMBL)
GRIA4 ProteinP48058 (Uniprot-TrEMBL)
GRIK 3 homomerComplexR-HSA-450196 (Reactome)
GRIK1 ProteinP39086 (Uniprot-TrEMBL)
GRIK2 ProteinQ13002 (Uniprot-TrEMBL)
GRIK3 ProteinQ13003 (Uniprot-TrEMBL)
GRIK3 homomer glutamate complexComplexR-HSA-500705 (Reactome)
GRIK4 ProteinQ16099 (Uniprot-TrEMBL)
GRIK5 ProteinQ16478 (Uniprot-TrEMBL)
GRIN1 ProteinQ05586 (Uniprot-TrEMBL)
GRIN2A ProteinQ12879 (Uniprot-TrEMBL)
GRIN2B ProteinQ13224 (Uniprot-TrEMBL)
GRIN2C ProteinQ14957 (Uniprot-TrEMBL)
GRIN2D ProteinO15399 (Uniprot-TrEMBL)
GRIP1 ProteinQ9Y3R0 (Uniprot-TrEMBL)
GRIP1/GRIP2ComplexR-HSA-416631 (Reactome)
GRIP1/GRIP2ComplexR-HSA-416636 (Reactome)
GRIP2 ProteinQ9C0E4 (Uniprot-TrEMBL)
GTP MetaboliteCHEBI:15996 (ChEBI)
Gly MetaboliteCHEBI:57305 (ChEBI)
GlyMetaboliteCHEBI:57305 (ChEBI)
HRAS ProteinP01112 (Uniprot-TrEMBL)
HTR3 pentamer:5HTComplexR-HSA-975348 (Reactome)
HTR3A ProteinP46098 (Uniprot-TrEMBL)
HTR3B ProteinO95264 (Uniprot-TrEMBL)
HTR3C ProteinQ8WXA8 (Uniprot-TrEMBL)
HTR3D ProteinQ70Z44 (Uniprot-TrEMBL)
HTR3E ProteinA5X5Y0 (Uniprot-TrEMBL)
Highly calcium

permeable postsynaptic nicotinic acetylcholine

receptors
ComplexR-HSA-629581 (Reactome)
Highly calcium

permeable nicotinic acetylcholine

receptors
ComplexR-HSA-629586 (Reactome)
Highly sodium

permeable nicotinic acetylcholine

receptors
ComplexR-HSA-629576 (Reactome)
K+MetaboliteCHEBI:29103 (ChEBI)
KCNJ10 ProteinP78508 (Uniprot-TrEMBL)
KCNJ12 ProteinQ14500 (Uniprot-TrEMBL)
KCNJ15 ProteinQ99712 (Uniprot-TrEMBL)
KCNJ16 ProteinQ9NPI9 (Uniprot-TrEMBL)
KCNJ2 ProteinP63252 (Uniprot-TrEMBL)
KCNJ3 ProteinP48549 (Uniprot-TrEMBL)
KCNJ4 ProteinP48050 (Uniprot-TrEMBL)
KCNJ5 ProteinP48544 (Uniprot-TrEMBL)
KCNJ6 ProteinP48051 (Uniprot-TrEMBL)
KCNJ9 ProteinQ92806 (Uniprot-TrEMBL)
Kainate

receptor-glutamate

complex
ComplexR-HSA-451281 (Reactome)
Kainate receptor-glutamate-Gprotein complexComplexR-HSA-500703 (Reactome)
L-Glu MetaboliteCHEBI:29985 (ChEBI)
L-GluMetaboliteCHEBI:29985 (ChEBI)
MAPK1ProteinP28482 (Uniprot-TrEMBL)
MDM2 ProteinQ00987 (Uniprot-TrEMBL)
MYO6ProteinQ9UM54 (Uniprot-TrEMBL)
Mg2+ MetaboliteCHEBI:18420 (ChEBI)
Mg2+MetaboliteCHEBI:18420 (ChEBI)
NCALD ProteinP61601 (Uniprot-TrEMBL)
NEFL ProteinP07196 (Uniprot-TrEMBL)
NMDA receptor complexComplexR-HSA-419566 (Reactome) NMDAR complex consists of two NR1 subunits and two NR2 subunits. Each subunit has extensive C terminal tail that is modified by series of protein kinases and protein phosphatases. The NR1 subunits binds co-agonist glycine while the NR2 subunit binds glutamate. Hence the activation of NR1/NR2 containing NMDA receptor complexes are activated upon depolarization of the membrane and binding of both glycine and glutamate. The dual requirement of membrane depolarization and agonist binding facilitate coincidence detection by NMDA receptors that ensures activation of both pre-synaptic and post-synaptic cell. NR1/NR2 containing NMDA receptors are highly Ca2+ permeable and subjected to a voltage dependent Mg2+ block.
NMDA receptor ligand complexComplexR-HSA-432783 (Reactome)
NMDA receptor-Mg complexComplexR-HSA-438039 (Reactome)
NPTN ProteinQ9Y639 (Uniprot-TrEMBL)
NPTNProteinQ9Y639 (Uniprot-TrEMBL)
NSFProteinP46459 (Uniprot-TrEMBL)
Na+MetaboliteCHEBI:29101 (ChEBI)
O-Acetylcholine

bound to Acetylcholine

receptor
ComplexR-HSA-629590 (Reactome)
O-acteylcholine

bound to calcium permeable postsynaptic nicotinic acetylcholine

receptors
ComplexR-HSA-629592 (Reactome)
PDPK1ProteinO15530 (Uniprot-TrEMBL)
PICK1 ProteinQ9NRD5 (Uniprot-TrEMBL)
PICK1ProteinQ9NRD5 (Uniprot-TrEMBL)
PLCB1 ProteinQ9NQ66 (Uniprot-TrEMBL)
PLCB2 ProteinQ00722 (Uniprot-TrEMBL)
PLCB3 ProteinQ01970 (Uniprot-TrEMBL)
PPiMetaboliteCHEBI:29888 (ChEBI)
PRKACA ProteinP17612 (Uniprot-TrEMBL)
PRKACB ProteinP22694 (Uniprot-TrEMBL)
PRKACB-like proteinsComplexR-HSA-4127466 (Reactome) This CandidateSet contains sequences identified by William Pearson's analysis of Reactome catalyst entities. Catalyst entity sequences were used to identify analagous sequences that shared overall homology and active site homology. Sequences in this Candidate set were identified in an April 24, 2012 analysis.
PRKACG ProteinP22612 (Uniprot-TrEMBL)
PRKCA ProteinP17252 (Uniprot-TrEMBL)
PRKCB ProteinP05771 (Uniprot-TrEMBL)
PRKCG ProteinP05129 (Uniprot-TrEMBL)
PSD-95 ProteinP78352 (Uniprot-TrEMBL)
Phosphatidylserine MetaboliteCHEBI:18303 (ChEBI)
Phospho(S221,S363,S380,T573)- ribosomal S6 kinaseComplexR-HSA-444291 (Reactome)
Phospho(S363,S380,T573)- ribosomal S6 kinaseComplexR-HSA-444261 (Reactome)
Phospho(S363,S380,T573)-ribosomal S6 kinaseComplexR-HSA-445403 (Reactome)
PiMetaboliteCHEBI:18367 (ChEBI)
RASGRF1 ProteinQ13972 (Uniprot-TrEMBL)
RASGRF2 ProteinO14827 (Uniprot-TrEMBL)
RPS6KA1 ProteinQ15418 (Uniprot-TrEMBL)
RPS6KA2 ProteinQ15349 (Uniprot-TrEMBL)
RPS6KA3 ProteinP51812 (Uniprot-TrEMBL)
RPS6KA6 ProteinQ9UK32 (Uniprot-TrEMBL)
RRAS ProteinP10301 (Uniprot-TrEMBL)
Ras:GDPComplexR-HSA-206896 (Reactome)
Ras:GTPComplexR-HSA-206946 (Reactome)
RasGRF:Ca/calmodulinComplexR-HSA-442735 (Reactome)
RasGRFComplexR-HSA-442734 (Reactome)
RasGTP-B raf compexComplexR-HSA-1063687 (Reactome)
Ribosomal S6 kinaseComplexR-HSA-444247 (Reactome)
TARP-PSD95-Mdm2ComplexR-HSA-416329 (Reactome)
TARP-PSD95-Mdm2ComplexR-HSA-416851 (Reactome)
TSPAN7 ProteinP41732 (Uniprot-TrEMBL)
TSPAN7:PICK1ComplexR-HSA-8858433 (Reactome)
cAMPMetaboliteCHEBI:17489 (ChEBI)
kaiante ReceptorsComplexR-HSA-450885 (Reactome) Kainate receptors are formed by the assembly of four subunits. GluR5-7 (GRIK, glutamate receptor, ionotropic Kainate 1-3) form functional homomers whereas, KA1 and KA2 or GRIK4,5 form functional heteromers with GRIK1/2/3. Kainate receptor subunits bind Cl- ion in the anion binding site in the ligand binding domain. The dimer is stabilized by the presence of one Cl- ion which binds within the dimer interface.
p-CAMKK1ProteinQ8N5S9 (Uniprot-TrEMBL)
p-S12,S13-CAMK4 ProteinQ16566 (Uniprot-TrEMBL)
p-S133-CREB1ProteinP16220 (Uniprot-TrEMBL)
p-S218,S360,S377,T570-RPS6KA2 ProteinQ15349 (Uniprot-TrEMBL)
p-S221,S363,S380,T573-RPS6KA1 ProteinQ15418 (Uniprot-TrEMBL)
p-S227,S369,S386,T573-RPS6KA3 ProteinP51812 (Uniprot-TrEMBL)
p-S232,S372,S389,T581-RPS6KA6 ProteinQ9UK32 (Uniprot-TrEMBL)
p-S338-BRAF ProteinP15056 (Uniprot-TrEMBL)
p-S338-RAF1ProteinP04049 (Uniprot-TrEMBL)
p-S360,S377,T570-RPS6KA2 ProteinQ15349 (Uniprot-TrEMBL)
p-S363,S380,T573-RPS6KA1 ProteinQ15418 (Uniprot-TrEMBL)
p-S369,S386,T573-RPS6KA3 ProteinP51812 (Uniprot-TrEMBL)
p-S372,S389,T581-RPS6KA6 ProteinQ9UK32 (Uniprot-TrEMBL)
p-S880-GRIA2 ProteinP42262 (Uniprot-TrEMBL)
p-T185,Y187-MAPK1ProteinP28482 (Uniprot-TrEMBL)
p-T286-CAMK2A ProteinQ9UQM7 (Uniprot-TrEMBL)
p-T287-CAMK2B ProteinQ13554 (Uniprot-TrEMBL)
p-T287-CAMK2D ProteinQ13557 (Uniprot-TrEMBL)
p-T287-CAMK2G ProteinQ13555 (Uniprot-TrEMBL)
phospho-CaMK IV:CalmodulinComplexR-HSA-111904 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP)ArrowR-HSA-170686 (Reactome)
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP)R-HSA-170674 (Reactome)
(Gi alpha1:GTP:Adenylate cyclase):(G alpha-olf:GDP)ArrowR-HSA-170666 (Reactome)
(Gi alpha1:GTP:Adenylate cyclase):(G alpha-olf:GTP)ArrowR-HSA-170671 (Reactome)
(Gi alpha1:GTP:Adenylate cyclase):(G alpha-olf:GTP)R-HSA-170666 (Reactome)
(Gi alpha1:GTP:Adenylate cyclase):(G alpha-olf:GTP)R-HSA-170686 (Reactome)
(Gi alpha1:GTP:Adenylate cyclase):(G alpha-olf:GTP)mim-catalysisR-HSA-170666 (Reactome)
(Gi alpha1:GTP:Adenylate cyclase):(G alpha-olf:GTP)mim-catalysisR-HSA-170686 (Reactome)
0-acteylcholine

bound to calcium permeable nictonic acteylcholine

receptor complex
ArrowR-HSA-629599 (Reactome)
ADPArrowR-HSA-111915 (Reactome)
ADPArrowR-HSA-416320 (Reactome)
ADPArrowR-HSA-416639 (Reactome)
ADPArrowR-HSA-416985 (Reactome)
ADPArrowR-HSA-421007 (Reactome)
ADPArrowR-HSA-442724 (Reactome)
ADPArrowR-HSA-442726 (Reactome)
ADPArrowR-HSA-442737 (Reactome)
ADPArrowR-HSA-442739 (Reactome)
ADPArrowR-HSA-442749 (Reactome)
ADPArrowR-HSA-443474 (Reactome)
ADPArrowR-HSA-443475 (Reactome)
ADPArrowR-HSA-443480 (Reactome)
ADPArrowR-HSA-444253 (Reactome)
AKAP5ArrowR-HSA-416320 (Reactome)
AKAP5R-HSA-416320 (Reactome)
AP2 complexArrowR-HSA-416639 (Reactome)
AP2 complexR-HSA-416639 (Reactome)
AP2AArrowR-HSA-421007 (Reactome)
AP2AR-HSA-421007 (Reactome)
ATPR-HSA-111915 (Reactome)
ATPR-HSA-416320 (Reactome)
ATPR-HSA-416639 (Reactome)
ATPR-HSA-416985 (Reactome)
ATPR-HSA-421007 (Reactome)
ATPR-HSA-442715 (Reactome)
ATPR-HSA-442724 (Reactome)
ATPR-HSA-442726 (Reactome)
ATPR-HSA-442737 (Reactome)
ATPR-HSA-442739 (Reactome)
ATPR-HSA-442749 (Reactome)
ATPR-HSA-443474 (Reactome)
ATPR-HSA-443475 (Reactome)
ATPR-HSA-443480 (Reactome)
ATPR-HSA-444253 (Reactome)
AcChoR-HSA-629588 (Reactome)
AcChoR-HSA-629596 (Reactome)
AcChoR-HSA-629599 (Reactome)
Activated

conventional

protein kinase C
mim-catalysisR-HSA-416639 (Reactome)
Activated

conventional

protein kinase C
mim-catalysisR-HSA-421007 (Reactome)
Activated B-raf complexArrowR-HSA-442726 (Reactome)
Adenylate cyclase (Mg2+ cofactor)ArrowR-HSA-170674 (Reactome)
Adenylate cyclase (Mg2+ cofactor)R-HSA-392206 (Reactome)
CALM1:4xCa2+R-HSA-111913 (Reactome)
CALM1:4xCa2+R-HSA-442725 (Reactome)
CALM1R-HSA-442760 (Reactome)
CAMK2 heteromer:CALM:4xCa2+ArrowR-HSA-442725 (Reactome)
CAMK2 heteromerR-HSA-442725 (Reactome)
CAMK2 heteromerR-HSA-445367 (Reactome)
CAMK4R-HSA-111913 (Reactome)
CAMKK1R-HSA-442749 (Reactome)
CAMKK1mim-catalysisR-HSA-442749 (Reactome)
CREB1R-HSA-442724 (Reactome)
CREB1R-HSA-443474 (Reactome)
CREB1R-HSA-443475 (Reactome)
CREB1R-HSA-443480 (Reactome)
Ca impermeable AMPA

receptor ligand

complex
ArrowR-HSA-420975 (Reactome)
Ca impermeable AMPA

receptor ligand

complex
R-HSA-399711 (Reactome)
Ca impermeable AMPA

receptors (with

phospho GluR2 S880)
R-HSA-421007 (Reactome)
Ca impermeable AMPA receptorsArrowR-HSA-399711 (Reactome)
Ca impermeable AMPA receptorsArrowR-HSA-416639 (Reactome)
Ca impermeable AMPA receptorsArrowR-HSA-416985 (Reactome)
Ca impermeable AMPA receptorsArrowR-HSA-421007 (Reactome)
Ca impermeable AMPA receptorsArrowR-HSA-438037 (Reactome)
Ca impermeable AMPA receptorsR-HSA-416639 (Reactome)
Ca impermeable AMPA receptorsR-HSA-416985 (Reactome)
Ca impermeable AMPA receptorsR-HSA-420975 (Reactome)
Ca impermeable AMPA receptorsR-HSA-438037 (Reactome)
Ca impermeable AMPA receptorsmim-catalysisR-HSA-399711 (Reactome)
Ca impermeable AMPA receptorsmim-catalysisR-HSA-432162 (Reactome)
Ca impermeable AMPA receptorsmim-catalysisR-HSA-438037 (Reactome)
Ca permeable AMPA

receptor ligand

complex
ArrowR-HSA-420977 (Reactome)
Ca permeable AMPA

receptor ligand

complex
R-HSA-399712 (Reactome)
Ca permeable AMPA

receptor ligand

complex
R-HSA-420980 (Reactome)
Ca permeable AMPA receptorsArrowR-HSA-399712 (Reactome)
Ca permeable AMPA receptorsArrowR-HSA-416320 (Reactome)
Ca permeable AMPA receptorsArrowR-HSA-420980 (Reactome)
Ca permeable AMPA receptorsR-HSA-416320 (Reactome)
Ca permeable AMPA receptorsR-HSA-420977 (Reactome)
Ca permeable AMPA receptorsmim-catalysisR-HSA-399712 (Reactome)
Ca permeable AMPA receptorsmim-catalysisR-HSA-420980 (Reactome)
Ca/calmodulin

activated Adenylate

Cyclase
mim-catalysisR-HSA-442715 (Reactome)
Ca2+ArrowR-HSA-399712 (Reactome)
Ca2+ArrowR-HSA-432164 (Reactome)
Ca2+ArrowR-HSA-442715 (Reactome)
Ca2+ArrowR-HSA-451311 (Reactome)
Ca2+ArrowR-HSA-622326 (Reactome)
Ca2+ArrowR-HSA-629595 (Reactome)
Ca2+ArrowR-HSA-975311 (Reactome)
Ca2+R-HSA-399712 (Reactome)
Ca2+R-HSA-432164 (Reactome)
Ca2+R-HSA-442715 (Reactome)
Ca2+R-HSA-442760 (Reactome)
Ca2+R-HSA-451311 (Reactome)
Ca2+R-HSA-622326 (Reactome)
Ca2+R-HSA-629595 (Reactome)
Ca2+R-HSA-975311 (Reactome)
CaMKIIArrowR-HSA-444792 (Reactome)
CaMKIIArrowR-HSA-445367 (Reactome)
CaMKIIR-HSA-444792 (Reactome)
CaMKIImim-catalysisR-HSA-416320 (Reactome)
CaMKIImim-catalysisR-HSA-442725 (Reactome)
CaMKIImim-catalysisR-HSA-442726 (Reactome)
CaMKIImim-catalysisR-HSA-443475 (Reactome)
Calmodulin:CaMK IVArrowR-HSA-111913 (Reactome)
Calmodulin:CaMK IVArrowR-HSA-112282 (Reactome)
Calmodulin:CaMK IVR-HSA-111915 (Reactome)
Calmodulin:CaMK IVR-HSA-112282 (Reactome)
Calmodulin:CaMK IVmim-catalysisR-HSA-111915 (Reactome)
Calmodulin:CaMK IVmim-catalysisR-HSA-443480 (Reactome)
Cl-ArrowR-HSA-975340 (Reactome)
Cl-ArrowR-HSA-975389 (Reactome)
Cl-ArrowR-HSA-975449 (Reactome)
Cl-R-HSA-975340 (Reactome)
Cl-R-HSA-975389 (Reactome)
Cl-R-HSA-975449 (Reactome)
DLG1ArrowR-HSA-416320 (Reactome)
DLG1R-HSA-416320 (Reactome)
EPB41L1ArrowR-HSA-416320 (Reactome)
EPB41L1R-HSA-416320 (Reactome)
Edited Kainate

Receptor-glutamate

complex
ArrowR-HSA-451309 (Reactome)
Edited Kainate

Receptor-glutamate

complex
R-HSA-451310 (Reactome)
Edited Kainate receptorsArrowR-HSA-451310 (Reactome)
Edited Kainate receptorsR-HSA-451309 (Reactome)
Edited Kainate receptorsmim-catalysisR-HSA-451310 (Reactome)
G alpha-olf:GDP complexArrowR-HSA-170674 (Reactome)
G alpha-olf:GTPR-HSA-170671 (Reactome)
G-protein

beta-gamma:PLC beta

1/2/3
R-HSA-500717 (Reactome)
G-protein alpha (i):GDPArrowR-HSA-170674 (Reactome)
G-protein alpha

(i):GTP:Adenylate

cyclase
ArrowR-HSA-392206 (Reactome)
G-protein alpha

(i):GTP:Adenylate

cyclase
R-HSA-170671 (Reactome)
G-protein alpha (i): GTPR-HSA-392206 (Reactome)
GABA B receptor

G-protein beta-gamma and Kir3

channel complex
mim-catalysisR-HSA-1013020 (Reactome)
GABAB receptor:GABAArrowR-HSA-420688 (Reactome)
GABAB receptorR-HSA-420688 (Reactome)
GABAR-HSA-420688 (Reactome)
GABR heteropentamers:GABA:NPTNArrowR-HSA-8856398 (Reactome)
GABR heteropentamers:GABAR-HSA-8856398 (Reactome)
GABR heteropentamers:GABAmim-catalysisR-HSA-975340 (Reactome)
GABRR pentamer:GABAmim-catalysisR-HSA-975449 (Reactome)
GLRA:GLRB:Glymim-catalysisR-HSA-975389 (Reactome)
GRIK 3 homomerR-HSA-500708 (Reactome)
GRIK3 homomer glutamate complexArrowR-HSA-500708 (Reactome)
GRIK3 homomer glutamate complexR-HSA-500717 (Reactome)
GRIK3 homomer glutamate complexmim-catalysisR-HSA-500717 (Reactome)
GRIP1/GRIP2ArrowR-HSA-416639 (Reactome)
GRIP1/GRIP2ArrowR-HSA-416985 (Reactome)
GRIP1/GRIP2ArrowR-HSA-421007 (Reactome)
GRIP1/GRIP2R-HSA-416639 (Reactome)
GRIP1/GRIP2R-HSA-416985 (Reactome)
GRIP1/GRIP2R-HSA-421007 (Reactome)
GlyR-HSA-432172 (Reactome)
HTR3 pentamer:5HTmim-catalysisR-HSA-975311 (Reactome)
Highly calcium

permeable postsynaptic nicotinic acetylcholine

receptors
ArrowR-HSA-629595 (Reactome)
Highly calcium

permeable postsynaptic nicotinic acetylcholine

receptors
R-HSA-629595 (Reactome)
Highly calcium

permeable postsynaptic nicotinic acetylcholine

receptors
R-HSA-629596 (Reactome)
Highly calcium

permeable postsynaptic nicotinic acetylcholine

receptors
mim-catalysisR-HSA-629595 (Reactome)
Highly calcium

permeable nicotinic acetylcholine

receptors
ArrowR-HSA-622326 (Reactome)
Highly calcium

permeable nicotinic acetylcholine

receptors
R-HSA-622326 (Reactome)
Highly calcium

permeable nicotinic acetylcholine

receptors
R-HSA-629599 (Reactome)
Highly calcium

permeable nicotinic acetylcholine

receptors
mim-catalysisR-HSA-622326 (Reactome)
Highly sodium

permeable nicotinic acetylcholine

receptors
ArrowR-HSA-622325 (Reactome)
Highly sodium

permeable nicotinic acetylcholine

receptors
R-HSA-622325 (Reactome)
Highly sodium

permeable nicotinic acetylcholine

receptors
R-HSA-629588 (Reactome)
Highly sodium

permeable nicotinic acetylcholine

receptors
mim-catalysisR-HSA-622325 (Reactome)
K+ArrowR-HSA-1013020 (Reactome)
K+ArrowR-HSA-975311 (Reactome)
K+R-HSA-1013020 (Reactome)
K+R-HSA-975311 (Reactome)
Kainate

receptor-glutamate

complex
ArrowR-HSA-451283 (Reactome)
Kainate

receptor-glutamate

complex
R-HSA-451311 (Reactome)
Kainate receptor-glutamate-Gprotein complexArrowR-HSA-500717 (Reactome)
L-GluArrowR-HSA-399711 (Reactome)
L-GluArrowR-HSA-399712 (Reactome)
L-GluArrowR-HSA-420980 (Reactome)
L-GluArrowR-HSA-451310 (Reactome)
L-GluArrowR-HSA-451311 (Reactome)
L-GluR-HSA-420975 (Reactome)
L-GluR-HSA-420977 (Reactome)
L-GluR-HSA-432172 (Reactome)
L-GluR-HSA-451283 (Reactome)
L-GluR-HSA-451309 (Reactome)
L-GluR-HSA-500708 (Reactome)
MAPK1R-HSA-442737 (Reactome)
MYO6ArrowR-HSA-416320 (Reactome)
MYO6R-HSA-416320 (Reactome)
Mg2+ArrowR-HSA-432162 (Reactome)
NMDA receptor complexArrowR-HSA-432162 (Reactome)
NMDA receptor complexR-HSA-432172 (Reactome)
NMDA receptor ligand complexArrowR-HSA-432172 (Reactome)
NMDA receptor ligand complexR-HSA-442760 (Reactome)
NMDA receptor ligand complexmim-catalysisR-HSA-432164 (Reactome)
NMDA receptor ligand complexmim-catalysisR-HSA-442760 (Reactome)
NMDA receptor ligand complexmim-catalysisR-HSA-445367 (Reactome)
NMDA receptor-Mg complexR-HSA-432162 (Reactome)
NPTNR-HSA-8856398 (Reactome)
NSFmim-catalysisR-HSA-416985 (Reactome)
Na+ArrowR-HSA-399711 (Reactome)
Na+ArrowR-HSA-420980 (Reactome)
Na+ArrowR-HSA-432162 (Reactome)
Na+ArrowR-HSA-438037 (Reactome)
Na+ArrowR-HSA-451310 (Reactome)
Na+ArrowR-HSA-622325 (Reactome)
Na+ArrowR-HSA-975311 (Reactome)
Na+R-HSA-399711 (Reactome)
Na+R-HSA-420980 (Reactome)
Na+R-HSA-438037 (Reactome)
Na+R-HSA-451310 (Reactome)
Na+R-HSA-622325 (Reactome)
Na+R-HSA-975311 (Reactome)
O-Acetylcholine

bound to Acetylcholine

receptor
ArrowR-HSA-629588 (Reactome)
O-acteylcholine

bound to calcium permeable postsynaptic nicotinic acetylcholine

receptors
ArrowR-HSA-629596 (Reactome)
PDPK1mim-catalysisR-HSA-442739 (Reactome)
PICK1ArrowR-HSA-416639 (Reactome)
PICK1ArrowR-HSA-416985 (Reactome)
PICK1ArrowR-HSA-421007 (Reactome)
PICK1R-HSA-416639 (Reactome)
PICK1R-HSA-416985 (Reactome)
PICK1R-HSA-421007 (Reactome)
PPiArrowR-HSA-442715 (Reactome)
PRKACB-like proteinsmim-catalysisR-HSA-443474 (Reactome)
Phospho(S221,S363,S380,T573)- ribosomal S6 kinaseArrowR-HSA-442739 (Reactome)
Phospho(S221,S363,S380,T573)- ribosomal S6 kinasemim-catalysisR-HSA-442724 (Reactome)
Phospho(S363,S380,T573)- ribosomal S6 kinaseR-HSA-442739 (Reactome)
Phospho(S363,S380,T573)-ribosomal S6 kinaseArrowR-HSA-444253 (Reactome)
PiArrowR-HSA-170666 (Reactome)
PiArrowR-HSA-170686 (Reactome)
PiArrowR-HSA-416320 (Reactome)
PiArrowR-HSA-416639 (Reactome)
PiArrowR-HSA-421007 (Reactome)
PiR-HSA-416985 (Reactome)
R-HSA-1013020 (Reactome) Binding of G beta gamma activates the GIRK/Kir3 channels that allow the efflux of K+ out of the cell resulting in a hyperpolarized membrane potential. This negative membrane potential prevents the activation of voltage dependent Ca2+ channels.
R-HSA-111913 (Reactome) CaMKIV becomes fully activated after a three-step mechanism: Upon a transient increase in intracellular calcium, calcium-bound calmodulin (Ca2+/CaM) binds to its autoregulatory domain, which relieves intersteric inhibition. An activating protein kinase, calcium/calmodulin-dependent protein kinase kinase (CaMKK), binds to the Ca2+/CaM:CaMKIV complex and phosphorylates CaMKIV on a threonine residue in the activation loop. After full activation by the three-step mechanism mentioned above, the activity of CaMKIV becomes autonomous and no longer requires bound Ca2+/CaM. This activity is required for CaMKIV-mediated transcriptional regulation. The CaMKIV-associated PP2A then dephosphorylates CaMKIV, thereby terminating autonomous activity and CaMKIV-mediated gene transcription.
R-HSA-111915 (Reactome) Autophosphorylation of the N-terminus Ser12-Ser13 is required for full activation after Ca2+/calmodulin binding and phosphorylation of the Ca2+/calmodulin-bound enzyme on Thr200 by a Ca2+/calmodulin-dependent protein kinase kinase.
R-HSA-112282 (Reactome) The calmodulin:CaMK IV complex enters the nucleus.
R-HSA-170666 (Reactome) G proteins can deactivate themselves via their intrinsic GTPase activity, which hydrolyzes GTP to GDP. Effectors such as adenylate cyclase can increase the G protein GTPase rate, acting like GTPase-activating proteins (GAPs).
R-HSA-170671 (Reactome) The chronic activation of mu-opioid receptors, which, when coupled to pertussis toxin-sensitive Galpha-i/o proteins, inhibit adenylyl cyclase (AC).
R-HSA-170674 (Reactome) Once the intrinsic GTPase hydrolyzes GTP to GDP, Galpha-i dissociates from adenylate cyclase, allowing it to re-associate with G-beta-gamma and starting a new cycle.
R-HSA-170686 (Reactome) G proteins can deactivate themselves via their intrinsic GTPase activity, which hydrolyzes GTP to GDP. Effectors such as adenylate cyclase can increase the G protein GTPase rate, acting like GTPase-activating proteins (GAPs).
R-HSA-392206 (Reactome) G-proteins in the Gi class inhibit adenylate cyclase activity, decreasing the production of cAMP from ATP, which has many consequences but classically results in decreased activity of Protein Kinase A (PKA). cAMP also activates the cyclic nucleotide-gated ion channels, a process that is particularly important in olfactory cells.
R-HSA-399711 (Reactome) Each AMPA receptor subunit binds one glutamate molecule in the ligand binding site in the N terminus. Each receptor is capable of binding four glutamate molecules however, channel opens when two sites are occupied by the ligand and the current increases with increased ligand binding. Ca impermeable AMPA receptors containing GluR2 subunit conduct Na currents upon activation by either glutamate binding or agonist, AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) binding. The Na currents mainly lead to depolarization of the membrane leading to activation of voltage gated channels such as NMDA receptors that require both agonist binding and depolarization for their activation.
R-HSA-399712 (Reactome) Each AMPA receptor subunit binds one glutamate molecule in the ligand binding site in the N terminus. Each receptor is capable of binding four glutamate molecule, however, channel opens when two sites are occupied by the ligand and the current increases with increased ligand binding. Ca permeable AMPA receptors containing homomers of GluR1 or heteromers containing GluR1, GluR3 and GluR4 conduct Ca upon glutamate or agonist namely AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) binding. Calcium permeable AMPA receptors conduct Ca and other cations such as Na. The inonic flux leads to Ca or Na currents that leads to either increase in the intracellular Ca concentration leading to further Ca-dependent signaling or increase in depolarization that opens voltage gated channels such as NMDA receptors that require both membrane depolarization and glutamate binding for activation.
R-HSA-416320 (Reactome) GluR1-containing AMPA receptors are delivered to the synapses in an activity dependent manner. GluR1 trafficking is controlled by protein- protein interactions with 4.1N/G protein, SAP97 and by intricate regulation of phosphorylation of GluR1 at several phosphorylation sites in the C tail. GluR1 has four phosphorylation sites; serine 818 (S818) is phosphorylated by PKC, necessary for LTP, serine 831 (S831) is phosphorylated by CaMKII and increases the delivery of receptors to the synapse and also increases their single channel conductance, Threonine (T840) is implicated in LTP and serine 845 (S845) phosphorylated by PKA regulates open channel probability and also by cGKII, a cyclic GMP activated kinase, that increases the surface expression of GluR1. GluR1 insertion into synapse by CaMKII may induce LTP. CaMKII is a Ca/calmodulin dependent kinase that is activated upon increases in the Ca ion concentration during postsynaptic activity through NMDA receptors. The increase in GluR1-containing AMPA receptor population at the synapse results in enhancement of excitatory post synaptic potential (EPSC) which forms the basis of Long term potentiation (LTP). LTP is one form of synaptic plasticity that is involved in memory and learning. The increase in the GluR1 containing AMPA receptors and their activity leads to rise in intracellular Ca which induces signaling pathways that in turn promote switch in the type of AMPA receptors (Ca impermeable) thereby limiting the Ca increase and preventing cell death.
R-HSA-416639 (Reactome) GluR2 containing AMPA receptors are trafficked to the plasmamembrane by the activation of Ca activated PKC that binds PICK.The PICK interaction delivers GluR2 containing AMPA receptors to the Plasmamembrane. This reaction is a part of constitutive recycling of AMPA receptor that delivers the AMPA receptors from the endosome to the plasmamembrane and back to endosome from the plasmamembrane.
R-HSA-416985 (Reactome) Constitutively recycling GluR2 containing AMPA receptors in the plasmamembrane are stabilized by the action of NSF ATPase activity which disassociates PICK from GluR2 thereby retaining AMPA receptors in the plasmamembrane.
R-HSA-420688 (Reactome) Gamma-aminobutyric acid (GABA) is the chief inhibitory neurotransmitter in the mammalian central nervous system. GABA exerts its effects through two ligand-gated channels and a the GPCR GABAB (Kaupmann K et al, 1998), which acts through G proteins to regulate potassium and calcium channels. GABAB can only bind GABA once it forms a heterodimer composed of the GABABR1 and GABABR2 receptors (White JH et al, 1998). The effects of this dimer are mediated by coupling to the G protein alpha i subunit, which inhibits adenylyl cyclase.
R-HSA-420975 (Reactome) AMPA receptors bind glutamate, released in the synaptic cleft by the presynaptic cell, in the ligand binding region in the N terminal domain.
R-HSA-420977 (Reactome) AMPA receptors bind glutamate, released in the synaptic cleft by the presynaptic cell, in the ligand binding region in the N terminal domain.
R-HSA-420980 (Reactome) Each AMPA receptor subunit binds one glutamate molecule in the ligand binding site in the N terminus. Each receptor is capable of binding four glutamate molecule, however, channel opens when two sites are occupied by the ligand and the current increases with increased ligand binding. Ca permeable AMPA receptors containing homomers of GluR1 or heteromers containing GluR1, GluR3 and GluR4 conduct Ca upon glutamate or agonist namely AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) binding. Calcium permeable AMPA receptors conduct Ca and other cations such as Na. The inonic flux leads to Ca or Na currents that leads to either increase in the intracellular Ca concentration leading to further Ca-dependent signaling or increase in depolarization that opens voltage gated channels such as NMDA receptors that require both membrane depolarization and glutamate binding for activation.
R-HSA-421007 (Reactome) GluR2 containing AMPA receptors are constitutively recycled between the endosome membrane and the plasma membrane. GRIP and PICK compete for the binding to the C tail of GluR2. Once the GluR2 containing AMPA receptors are in the plasmamembrane, phosphorylation of GluR2 at S880 by PKC causes disruption of GRIP interaction, but not PICK interaction which facilitates internalization of GluR2 containing AMPA receptors into endosomes.
R-HSA-432162 (Reactome) NMDA receptors are activated in a two step mechanism; first by the removal of the voltage dependent Mg2+ block and then by the ligand dependent activation of the unblocked NMDA receptor. At resting membrane potential NMDA receptors can not be activated by ligand alone due to the presence of Mg2+ ion in the pore of the channel. Due to the activation of other membrane resident channels that allow the influx of Na+ the membrane is depolarized which triggers the removal of Mg2+ form the NMDA receptor pore. Once the Mg2+ is expelled NMDA receptors are ready to be activated by the agonist (glutamate) and the co-agonist (glycine).
R-HSA-432164 (Reactome) NMDA receptors are activated upon binding of two ligands, glutamate and glycine.
The activation leads to Ca2+ influx into the post-synaptic cell. The local rise in the Ca2+ ion concentration further leads to activation of several Ca2+ dependent pathways leading to long term changes in the synapse.
R-HSA-432172 (Reactome) NMDA receptors require binding of two ligands; the agonist, glutamate and co-agonist, glycine. The N terminal extracellular ligand binding domain in NR1 subunits binds co-agonist glycine and the N terminal extracellular ligand binding domain in NR2 binds glutamate.
R-HSA-438037 (Reactome) Membrane depolarization occurs due to glutamate dependent activation of Ca-impermeable AMPA receptors, which permit the influx of Na+ ions. The depolarization triggers the removal of Mg2+ from the NMDA receptor pore to facilitate its activation. Therefore activation of AMPA receptors by glutamate precedes activation of NMDA receptors.
R-HSA-442715 (Reactome) Ca2+ fluxes through NMDA receptors in the post-synaptic neuron facilitate binding of Ca2+/Calmodulin to adenylate cyclase type 1, 3 or 8, resulting in its activation. Once activated, cAMP is produced which further activates PKA.
R-HSA-442724 (Reactome) CREB is phosphorylated at serine 133 by any of the four isoforms of ribosomal S6 kinase.
R-HSA-442725 (Reactome) CaMKII is fully activated upon Ca2+/Calmodulin binding. In addition to Ca2+/Calmodulin activation, CaMKII undergoes multiple autophosphorylation events leading Ca2+/Calmodulin independent activity of the enzyme.
R-HSA-442726 (Reactome) Raf is a downstream effector of ras. Raf is activated upon phosphorylation at S338, oligomerization and membrane localization. Membrane localization is facilitated by ras. Interaction of ras with raf is a necessary step but not sufficient for raf activation. Other unknown protein partner interactions are required for raf activation. Raf further activates MAP kinase.
R-HSA-442732 (Reactome) Binding of RasGRF to Ca2+/Calmodulin in the presence of high Ca2+ leads to the activation of Ras. Activation of Ras involves the exchange of GDP for GTP.
R-HSA-442737 (Reactome) MAPK/ERK is phosphorylated at threonine 185 and tyrosine 187 by membrane associated activated raf kianse leading to the activation of MAPK/ERK kinase. The activated MAPK/ERK in turn activates ribosomal S6 kinase.
R-HSA-442739 (Reactome) PDK1 activates ribosomal S6 kinase (RSK) by phosphorylating S221. The binding site for PDK1 on RSK is available after RSK phosphorylation by MAPK/ERK. PDK1 is present in the activated form at the plasma membrane where the phosphorylation occurs. The activation of RSK occurs in the cytoplasm, plasma membrane and in the nucleus where it finally activates CREB by phosphorylation.
R-HSA-442749 (Reactome) CaMKK is fully activated upon binding Ca2+/Calmodulin after intracellular Ca2+ levels increase. Once CaMKK binds Ca2+/Calmodulin it autophosphorylates, resulting in activation. CaMKK is negatively regulated by phosphorylation of S74 and T108 by PKA. Once activated CaMKK phosphorylates CaMKIV in a Ca2+/Calmodulin dependent manner.
R-HSA-442760 (Reactome) RASGRF is activated upon binding of Ca2+/Calmodulin after Ca2+ influx through the NMDA receptor.
R-HSA-443474 (Reactome) Protein kinase A has two regulatory subunits and two catalytic subunits which are held together to form the holoenzyme and is activated upon binding of cAMP within the regulatory subunits. Once cAMP binds the regulatory subunits, the catalytic subunits are released to carry out phosphorylation of CREB at serine133.
R-HSA-443475 (Reactome) CaMKII is an important regulator of neuronal plasticity. CaMKII shows distinct subcellular localization and acts quickly in a spatio-temporal manner. CaMKII shows fast synaptic localization upon synaptic activity and also nuclear localization, where it phosphorylates CREB at serine 133 to activate transcription of set of genes that results in long lasting structural changes at the synapse.
R-HSA-443480 (Reactome) Activated CaMKIV phosphorylates CREB at S133 thereby initiating the transcription of CREB regulated set of genes leading to protein synthesis and long lasting changes that underlie synaptic plasticity.
R-HSA-444253 (Reactome) Activated MAPK/ERK activates RSK in its C terminal kinase domain by sequentially phosphorylating T573, S363 and 380.
R-HSA-444792 (Reactome) Nuclear targeting of CaMKII depends on several factors including the phosphorylation in the regulatory domain of CaMKII and induction of other signal transduction pathways.
R-HSA-445367 (Reactome) CaMKII gets activated upon Ca2+ influx through the NMDA receptor and moves from plasma membrane to cytoplasm and then nucleus where it phosphorylates CREB at serine 133.
R-HSA-451283 (Reactome) Kainate receptors bind glutamate in the ligand binding domain in the extracellular, N terminal region.
R-HSA-451309 (Reactome) Kainate receptors bind glutamate in the ligand binding domain in the extracellular, N terminal region.
R-HSA-451310 (Reactome) The activation of Kainate receptors by glutamate in the postsynaptic neuron leads to influx of Na+ ions resulting in depolarization of the postsynaptic membrane.
R-HSA-451311 (Reactome) Kainate receptors that are assembled with subunits GRIK1-5, are Ca2+ permeable if GRIK1 and GRIK2 are not edited at the Q/R or other sites.
These channels permit Ca2+ upon activation by glutamate or other agonists.
R-HSA-500708 (Reactome) Kainate receptors bind glutamate in the ligand binding domain in the extracellular, N terminal region.
R-HSA-500717 (Reactome) Kainate receptor activation activates G protein coupled receptors involving the release of Ca2+ from the intracellular stores. This activity of Kainate receptors is independent of ionic influx and regulates both glutamate release by the pyramidal neurons and gama-aminobutyric acid release by the internuerons.
R-HSA-622325 (Reactome) Nicotinic acetylcholine receptors containing aplha4(2) beta2 (3) and alpha3(2) beta4(3) are selectively highly Na+ permeable upon activation of these receptors by acetylcholine.
R-HSA-622326 (Reactome) Nicotinic acetylcholine receptors are activated upon ligand binding which opens the acetylcholine channels and permits Ca2+ and Na+ ion influx depending on the subunit composition and stoichiometry of the subunits. The ratio of Ca2+ to Na+ ion influx varies making the receptors either highly Na+ permeable or Ca2+ permeable.
R-HSA-629588 (Reactome) Nicotinic acetylcholine receptors bind two molecules of ligand, acetylcholine, in the alpha beta interface in receptors containing heteromeric subunits or in the interface of 2 aplha subunits in receptors containing homomeric subunits.
R-HSA-629595 (Reactome) Acetylcholine binding activates postsynaptic acetylchloine receptors that show Ca2+ currents which facilitate the process of long term potentiation (LTP).
R-HSA-629596 (Reactome) Nicotinic acetylcholine receptors bind two molecules of ligand, acetylcholine, in the alpha beta interface in receptors containing heteromeric subunits or in the interface of 2 aplha subunits in receptors containing homomeric subunits.
R-HSA-629599 (Reactome) Nicotinic acetylcholine receptors bind two molecules of ligand, acetylcholine, in the alpha beta interface in receptors containing heteromeric subunits or in the interface of 2 aplha subunits in receptors containing homomeric subunits.
R-HSA-8856398 (Reactome) Neuroplastin (NPTN) is a glycoprotein that belongs to the immunoglobulin (Ig) superfamily of cell adhesion molecules (CAMs). Together with basigin/CD147 and embigin, NPTN comprises the CD147 family (Iacono et al. 2007).

NPTN isoform p65 binds GABAA receptor subunits, co-localizing with alpha1 and alpha2, but not alpha3 subunits at GABAergic synapses and alpha5 subunits at extrasynaptic sites in cultures (Sarto-Jackson et al. 2012). GABAA receptors containing alpha1, 2 or 3 subunits are localized mainly at synaptic sites and interact with the scaffolding protein Gephyrin (GPHN), which anchors the receptor to the underlying postsynaptic complex and prevents their lateral diffusion (Kneussel & Loebrich 2007, Tretter et al. 2012). Receptors containing the alpha5 subunit are mainly extrasynaptic and link to the actin cytoskeleton via Radixin (Loebrich et al. 2006). NPTN p65 co-localization can be at several synaptic sites along the same dendrite, while absent from others. NPTN p65 shRNA caused diffuse alpha2 subunit staining which did not co-localize with vesicular inhibitory aa transporter, a presynaptic marker of GABAergic synapses (Sarto-Jackson et al. 2012). This suggests a functional role for NPTN p65 in regulating the composition and localization of GABAA receptors (Beesley et al. 2014). The absence of NPTN p65 causes early-onset sensorineural hearing loss and prevents normal synaptogenesis in cochleal inner hair cells (IHCs) (Carrott et al. 2016).
R-HSA-975311 (Reactome) The 5-hydroxytryptamine receptor (HTR3) family are members of the superfamily of ligand-gated ion channels (LGICs). Five receptors (HTR3A-E) can form a homopentamer (HTR3A) or heteropentamers (HTR3A with B, C, D or E) (Barrera et al. 2005, Niesler et al. 2007; reviews - Barnes et al. 2009, Wu et al. 2015) Although heterpentamer composition can vary between the two receptors binding, the example 2xHTR3A:3xHTR3(B-E) is shown here. Binding of the neurotransmitter 5-hydroxytryptamine (5HT, serotonin) to the HTR3 complex opens the channel, which in turn, leads to an excitatory response in neurons and is permeable to sodium, potassium, and calcium ions (Miyake et al. 1995, Davies et al. 1999).
R-HSA-975340 (Reactome) The GABA(A) receptor (GABR) family belongs to the ligand-gated ion channel superfamily (LGIC). Its endogenous ligand is gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system. There are six alpha subunits (GABRA) (Garrett et al. 1988, Schofield et al. 1989, Hadingham et al. 1993, Edenberg et al. 2004, Hadingham et al. 1993, Yang et al. 1995, Wingrove et al. 1992, Hadingham et al. 1996), three beta subunits (GABRB) (Schofield et al. 1989, Hadingham et al. 1993, Wagstaff et al. 1991), 2 gamma subunits (GABRG) (Khan et al. 1993, Hadingham et al. 1995) and a theta subunit (Bonnert et al. 1999) characterised to date. GABA(A) functions as a heteropentamer, the most common structure being 2 alpha subunits, 2 beta subunits and a gamma subunit (2GABRA:2GABRB:GABRG). An alternative heteropentamer with much less affinity for GABA is 2GABRA:GABRB:GABRG:GABRQ (Bonnert et al. 1999). Upon binding of GABA, both GABR complexes conduct chloride ions through their pore, resulting in hyperpolarisation of the neuron. This causes an inhibitory effect on neurotransmission by reducing the chances of a successful action potential occurring.
R-HSA-975389 (Reactome) The glycine receptor (GLR) is a ligand-gated ion channel. It is functional as a heteropentamer, consisting of alpha (GLRA) and beta (GLRB) subunits. With no ligand bound, the receptor complex is closed to chloride ions. Binding of the inhibitory neurotransmitter glycine (Gly) to this receptor complex increases chloride conductance into neurons and thus produces hyperpolarization (inhibition of neuronal firing) (Grenningloh et al. 1990, Nikolic et al. 1998, Handford et al. 1996).
R-HSA-975449 (Reactome) The GABA(A)-rho receptor (GABRR) is expressed in many areas of the brain, but in contrast to other GABA(A) receptors, has especially high expression in the retina. It is functional as a homopentamer and is permeable to chloride ions when GABA binds to it (Cutting et al. 1991, Cutting et al. 1992, Bailey et al. 1990).
Ras:GDPR-HSA-442732 (Reactome)
Ras:GTPArrowR-HSA-442732 (Reactome)
RasGRF:Ca/calmodulinArrowR-HSA-442760 (Reactome)
RasGRF:Ca/calmodulinmim-catalysisR-HSA-442732 (Reactome)
RasGRFR-HSA-442760 (Reactome)
RasGTP-B raf compexR-HSA-442726 (Reactome)
Ribosomal S6 kinaseR-HSA-444253 (Reactome)
TARP-PSD95-Mdm2ArrowR-HSA-416320 (Reactome)
TARP-PSD95-Mdm2R-HSA-416320 (Reactome)
TSPAN7:PICK1TBarR-HSA-416985 (Reactome)
cAMPArrowR-HSA-442715 (Reactome)
kaiante ReceptorsArrowR-HSA-451311 (Reactome)
kaiante ReceptorsR-HSA-451283 (Reactome)
kaiante Receptorsmim-catalysisR-HSA-451311 (Reactome)
p-CAMKK1ArrowR-HSA-442749 (Reactome)
p-S133-CREB1ArrowR-HSA-442724 (Reactome)
p-S133-CREB1ArrowR-HSA-443474 (Reactome)
p-S133-CREB1ArrowR-HSA-443475 (Reactome)
p-S133-CREB1ArrowR-HSA-443480 (Reactome)
p-S338-RAF1mim-catalysisR-HSA-442737 (Reactome)
p-T185,Y187-MAPK1ArrowR-HSA-442737 (Reactome)
p-T185,Y187-MAPK1mim-catalysisR-HSA-444253 (Reactome)
phospho-CaMK IV:CalmodulinArrowR-HSA-111915 (Reactome)
Personal tools