Intra-Golgi and retrograde Golgi-to-ER traffic (Homo sapiens)

From WikiPathways

Revision as of 14:40, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
5, 43, 48, 55, 56, 80...10612, 26, 10711, 33, 69, 145, 149...29, 71, 81, 119, 123...14, 30, 43, 47, 102...43, 73, 103, 120, 17510684, 107, 154119, 14413, 19, 32, 56, 59...70, 119, 126, 2103, 9, 38, 60, 79...31, 40, 62, 75, 94...22, 37, 67, 80, 128...93, 115, 203104, 145, 19551, 56, 90, 95, 18620, 105, 118, 139, 16743, 73, 100, 103, 142...105, 16729, 71, 81, 119, 123...1, 24, 85, 86, 91...13, 23, 56, 59, 133...7, 8, 14, 16, 18...21, 35, 53, 58, 80...3, 9, 19, 56, 147...63, 66, 88, 166, 19541, 43, 44, 54, 57...4, 22, 31, 45, 49...17, 30, 31, 40, 50...70, 119, 126, 21031, 1243, 45, 106, 10832, 46, 169, 177, 180...24, 55, 62, 64, 83...91, 10670, 119, 126, 21015, 18, 25, 27, 31...2, 4, 6, 10, 15...43, 100, 142, 159, 181...6, 28, 105, 118, 127...92, 114, 1413, 9, 14745, 106, 10829, 71, 81, 119, 123...119, 144119, 14457, 98, 116, 190transport vesicleendoplasmic reticulum lumentrans-Golgi network membranetransport vesiclecytosoltransport vesicleGolgi lumentransport vesicletransport vesicleRGP1 DYNLL1 ARF3 GOSR2 RAB6A TMED9 GTP DYNLL1 VPS54 COPB2 AcM-ARFRP1 TMED7 CYTH4 fatty acidSTX16 GTP GDP ALPP DCTN5 SURF4 KIF11 BNIP1 ARF1 ARFGAP3 ALPP NAPB MAN2A2 RACGAP1 GTPARF1 STX16 KIF26A Kinesin-3 dimers VAMP4RAB1B STX18TRIP11:cargoKIF20B CoA-SHKIF18A BNIP1 COPI-independentGolgi-to-ER cargoVAMP4 KIF1B RAB1:GTP:coatomer:p24 dimers:SEC22B:cargoPAFAH1B1 COPG2 VAMP4 STX10:STX16:VTI1A:VAMP3AcM-ARFRP1 M6PR RAB6A PAFAH1B1 pS-RABEPK PAFAH1B3 GDP GALNT1(1-559) COPB1 SNAPsRAB1A PLIN3 CUX1 dimerMAN1A2 NAPB STX18 BET1L GOLGA4 COG2 CUX1 STX16GALNT1(1-559) GCC2 GDPNSF ARCN1 COPZ1 RAB43 TMED2 KIF6 DCTN4 STX16TMED2 VPS45 NAPG ARF5 GOLGA1 VPS54 STX5:PalmC-YKT6:BET1L:GOSR1:NSF hexamer:3xSNAPsRAB6B DCTN4 ARF4 RAB3GAP2 GOLIM4 RIC1 KIF11 GTP RAB1B RAB9A SURF4 Kinesin-13 dimers COPZ1 GTP KIF20B STX6 GTP PalmC-YKT6CAPZA3 RAB39A GDP DCTN4 TMED2 USP6NLSTX5:PalmC-YKT6:BET1LDYNC1H1 IGF2R COG8 DCTN6 CYTH1 KDELR1 ARFIP2VPS52 intra-Golgicargo:GOLGA5dimer:GOSR1KIFC1 COPG2 SNAPsKIF28P SCOCARF4 ARF5 TMED7 KIF9 ARF1 SNAP29 BICD1 RAB36 TMED3 KLC3 RAB1:GTP:GBF1:ARF:GDPCOG1 CYTH4 GTP ZW10 RAB1B KLC2 COPB1 KIF21A DYNC1I2 RAB9A p24 dimersRINT1 COPE RAB6B RAB1B CUX1 TMED2 RAB1A RAB1:GTP:coatomer:p24 dimers:SEC22B:cargo:NBAS:RINT1:ZW10:STX18:USE1L:BNIP1CYTH3 TMED3 RHOBTB3:ATPRHOBTB3:ADPTGOLN2 STX10 NBAS:RINT1:ZW10VTI1A MAN2A1 RAB1A DYNC1LI2 COPE COG3 GDP TMED2 IGF2R COPZ2 GCC1 ADPMAN2A1 KDELR1 ATPCOG7 GALNT2(1-571) GTP TMED10 VTI1A KIF3B KDELR1 KIF21A BNIP1 DCTN3 GALNT1(1-559) KIF12 STX6SURF4 MAN1C1 Ac-CoAGARP complexSTX6 ATPCOPB2 ARFGAP3 VPS54 RAB6A RAB3GAP1:RAB3GAP2GTP ARF:GDPGTP RAB9B RINT1 Microtubule protofilament SEC22B GDP STX5 GTP Dynein:Dynactin:microtubuleGolgi-to-ER cargoCOPG1 BNIP1VTI1A MAN2A2 RAB1B GTP pS-RABEPK COG complex:GolgisnaresRACGAP1 DYNC1LI1 TMED3 MAN2A1 MyrG-ARL1:GTPVTI1A VTI1A NBAS SEC22B RAB1:GTP:GBF1:ARF:GTP:coatomerTRIP11 GTPRAB9:GTP:PLIN3:p-RABEPK:late-endosome-to-TGN cargo:VAMP3GDP ARF1 NSF RAB6B COG complexRAB43 COPA RAB6B NAPA ADPCOG6 TMED3 KIF27 DYNC1I2 VAMP4:earlyendosome-to-TGNcargoKDELR3 DCTN6 KIF26B COPE GTP GOLGA5 STX18 BET1L STX16 SURF4 ARFGAP1 GALNT1(1-559) KIF20A TMED3 KIF19 GTP COG8 KIF23 VPS51 PalmC-YKT6 CAPZA2 H2ORAB36 AcG-ARFRP1:GTP:SYS1:MyrG-ARL1:GTP:TGN Golgin dimersCOPB2 NAPB COPZ2 DYNLL2 BNIP1 RAB6A earlyendosome-to-TGNcargoCYTH1,2,3,4COPG1 ARFIP2:MyrG-ARL1:GTPDYNLL2 KIF5A NSF VAMP3 TMED10 STX5GCC2 MyrG-ARL1 COPB2 TMED9 GTP RAB6B RAB6:GDP:RIC1:RGP1STX5 TMED3 RAB1B RAB18 SURF4 RAB33B:GTPGDP CYTH2 GOLGA5 RAB9:GDPRAB9:GTP:PLIN3:p-RABEPK:late-endosome-to-TGN cargo:VAMP3:RHOBTB3:ATPRGP1 VPS51 RAB6:GTP:BICDdimer:COPI-independent retrograde cargo:Dynein:Dynactin:microtubulesMicrotubule protofilament KIF5A ATPCOPZ2 RAB6B RAB9:GTP:p-RABEPK:VAMP3:late endosome-to-TGN cargoCENPE COG5 KIF18A RIC1 CAPZB RAB1B NAPB STX10 RAB30 RAB1:GTP:GBF1:ARF:GTP:coatomer:p24 dimers:ARFGAPs:SEC22B:cargoVTI1A 2-lysophosphatidylcholineKinesin-13 dimers TMED10 RHOBTB3 KDELR3 KLC4 COG7 DYNLL1 KIFC2 RAB6:GTP:RIC1:RGP1PCSTX16 COPB1 RAB9:GTP:p-RABEPK:VAMP3:STX16:STX10:VTI1A:GARP complex:GCC2 dimer:late-endosome-to-TGN cargoGOSR1 NAA30:NAA35:NAA38COPG1 ARF4 COGcomplex:CUX1dimer:GOLGA5dimer:STX5:PalmC-YKT6:BET1L:GOSR1:intra-Golgi retrograde cargoBICD2 KIFAP3 KIF1A RAB6A GTP Kinesins:microtubuleCOPZ2 RGP1 COG6 KLC3 RAB1B VPS51 DYNC1I2 TMED10 STX10 GOLIM4 PalmC-YKT6 VAMP3AcM-ARFRP1 PalmC-YKT6 GTP ADPGTP COPG1 STX18 GCC2 NAPG KIF16B STX18:USE1L:BNIP1DYNC1LI2 TMED9 GTP GTP RAB43 TRIP11 ARF1:GTP:CYTH1,2,3,4SCOC GDPZW10 KIF3A STX5 TMED9 RAB3GAP2 SYS1 KDELR3 TMED9 RAB18 AcM-ARFRP1:GTP:SYS1:MyrG-ARL1:GTPKDELR2 USP6NL ARCN1 GTP ACTR1A GTP GTP DCTN5 RAB1A KIF28P GOSR1 TMED9 COG1 COG2 RAB1A CAPZA1 COG4 COG5 CAPZB TMED9 MAN1A2 VAMP3 COG1 STX6 MAN1A1 ARF1 COPG2 p24 dimersMAN1C1 VPS52 COPZ2 USE1 TMED10 SYS1ARF3 COG4 KLC1 TMED7 COG3 GTP COPZ1 VAMP3 NAPA KIFC1 SEC22BSTX16 VTI1A RAB6:GTP:COPI-independent retrograde Golgi-to-ER cargoCOPB1 COG6 ATP TMED10 ARCN1 GBF1 ARF5 COG4 ARF1 SEC22BTMED2 Chromokinesin dimers AcM-ARFRP1:GTP:SYS1BET1LUSE1 SNAPsACTR10 ARCN1 RAB41 KIF15 GCC2 M6PR STX5 ACTR10 KIF3B GOSR1ARFGAP1 ARF5 NSF COG8 NAPG COG5 GOSR2 COG3 DYNC1LI1 COPZ1 TMED7 RAB6B ADP Microtubule protofilament DYNC1H1 VAMP3 NSF GDPARFGAP1,2,3GCC1 COG4 RHOBTB3 STX10:STX16:VTI1A:VAMP3:NSF hexamer:SNAPsGBF1 NAPA KIFAP3 MyrG-ARL1 COG5 GALNT2(1-571) NAPG ARF3 GGC-RAB33B STX5 ARF1:GDP:CYTH1,2,3,4RAB18 COG8 MyrG-ARL1 GCC1 COG1 CAPZA1 M6PR GALNT2(1-571) VPS53 SYS1 NAPB GTP RIC1 COG complexRAB6B ARF1 COPA RAB41 COG5 TGN Golgin dimersRAB18:GDPKIF15 CAPZB STX6 DCTN2 COG2 STX6:STX16:VTI1AKIF5B NAPG COG8 KDELR1 COG3 late-endosome-to-TGNcargoCOPG1 KIF1C PLA2G6 COPE CAPZA2 KDELR2 KIF25 VAMP4 COG6 AA-CoASTX10:STX16:VTI1AKIF3A NSF KIF27 PAFAH1B1AcM-ARFRP1 Chromokinesin dimers KIF23 DYNC1LI1 RIC1:RGP1CYTH4 COPE NSF RAB9B PLIN3 RAB6:GTP:RIC1:RGP1:GARP complex:COG complex:AcM-ARFRP1:GTP:SYS1:MyrG-ARL1:GTP:Golgin dimers:STX6:STX16:VTI1A:VAMP4:early endosome-to-TGN cargoCOPA GTP DCTN3 KIF3C GDP GBF1GDP KIF20A KIF21B intra-Golgi cargoSURF4 KIF13B STX:PalmC-YKT6:BET1L:GOSR1COPB2 USP6NL SEC22B:STX18:USE1L:BNIP1DCTN1 STX18 BICD1 TMED9 TMED10 STX6:STX16:VTI1A:VAMP4RIC1:RGP1NAPB KDELR2 COPZ1 RAB43:GTPCYTH2 GTP RAB1:GTP:GBF1:ARF:GTPUSE1 ARF3 IGF2R CYTH3 GTP VTI1A IGF2R KIF1B CoA-SHACTR10 RAB9B GTP RAB9A COG7 KIFC2 AcM-ARFRP1 MyrG-ARL1 COPB2 RAB6:GTPcPLA2sCOPE RHOBTB3 GCC2 BICD2 SEC22B RAB3GAP1 GTP RAB9A STX16 RIC1 DYNC1I1 STX16 MAN1A2 COPA RAB33B:GTP:RIC1:RGP1RAB1A RIC1 GOLGA4 NAPA COG8 coatomerKLC1 DYNC1LI2 pS-RABEPK CAPZA3 Microtubule protofilament STX6 GTPSEC22B DYNLL2 VAMP3 STX10 COG2 KIF1C RAB9A COPZ2 GTP COG3 COPA GBF1 VTI1AUSE1 RABEPKPLIN3MAN1A1 ATPGOLGA5 dimerRAB6A VAMP3 ARF1 ARCN1 RAB43:GTP:USP6NLCOPG2 GOLGA5 COG complex:RABsCOG1 ACTR1A Microtubule protofilament USE1ARF1:GTP:TRIP11:cargoGTP ARFRP1 KLC2 GOLGA4 RAB1B RAB3GAP1:RAB3GAP2:RAB18:GTPNAPA M6PR DCTN6 CYTH2 COG2 RAB1A KIF26A GOSR1 MyrG-ARL1 SYS1 RAB1A Golgi-to-ER cargoCAPZA2 COG5 pS-RABEPK VPS53 CAPZA1 TMED7 TMED2 DCTN1 ARFRP1:GTPRAB6A KIF26B KIF5B GBF1 VPS53 ARFGAP2 ADPCOG3 RAB6:GDPDYNC1I1 otherCOG-interactingRABsGTP NBAS ARF3 MAN1A1 KIF3C TMED7 COG6 NAPG KIF25 RAB6:GTP:BICDdimer:COPI-independent retrograde cargoSNAP29 GOLGA1 ARFGAP2 KDELR3 ARF1:GTPCOG2 KDELR1 GCC2 dimerSTX10RAB30 KIF12 RAB1:GTP:coatomer:p24 dimers:SEC22B:kinesins:microtubulesKDELR2 KIF9 RAB1A RAB3GAP2 CENPE VAMP4 COPG2 NAPA NSF hexamerSTX16 GOLIM4 STX16 COG4 NSF hexamerPAFAH1B2 TMED10 ARF1 CYTH1 NSF hexamerRAB6A GTP ARCN1 RAB3GAP1:RAB3GAP2:RAB18:GDPRGP1 AcM-ARFRP1:GTPARF4 GGC-RAB33B COPB1 DYNC1H1 VTI1A KIF18B RAB3GAP1 STX16 GTP KDELR2 COPG2 KIF18B KIF1A COG7 MAN1C1 BET1L RAB3GAP1 MyrG-ARL1 COG6 BET1L Kinesin-3 dimers AGPAT3BET1L ARFIP2 STX6 KDELR2 COPZ1 BICD dimerNAA38 ACTR1A CYTH1 RIC1 RAB1B SCOC:MyrG-ARL1:GTPKIF19 COG7 ARF5 KIF6 RAB1:GTP:GBF1GALNT2(1-571) PLA2G4A NAA30 TMED2 DCTN2 KLC4 RAB1A NAA35 GTP RAB1:GDPPiCOG7 TGOLN2 GDP IGF2R COPA MAN2A2 TMF1 GTP NAPA ATP VTI1ASYS1 GTP DCTN3 COG1 BET1L NAPB Dynein:Dynactin:microtubules:PAFAH1B1NAPG SEC22B CYTH3 TGOLN2 M6PR other COGinteracting snaresGBF1 KIF16B KDELR1 KIF13B GOSR1 STX6:STX16:VTI1A:VAMP4:NSF hexamer:3xSNAPsKIF21B BICD2 SEC22B DCTN1 VTI1A COG4 DCTN5 DCTN2 PalmC-YKT6 BICD1 ARF4 KDELR3 VPS52 ATPTMF1 STX5 COPG1 VPS45 RGP1 RAB39A GOLGA1 COPB1 CAPZA3 RGP1 RAB43:GDP:USP6NLKDELR3 TMF1 GOSR1 RAB9B DYNC1I1 GOSR1 SEC22B:STX18:USE1:BNIP1L:3xSNAPs:NSF hexamerRAB1:GTPRAB9B 107809119510749, 16731, 4031


Description

The mammalian Golgi complex, a central hub of both anterograde and retrograde trafficking, is a ribbon of stacked cisterna with biochemically distinct compartments (reviewed in Glick and Nakano, 2009; Szul and Sztul, 2011). Anterograde cargo from the ERGIC and ER is received at the cis-Golgi, trafficked through the medial- and trans-Golgi and released through the trans-Golgi network (TGN) to the endolysosomal system and the plasma membrane. Although still under debate, current models of Golgi trafficking favour the cisternal maturation model, where anterograde cargo remain associated with their original lipid membrane during transit through the Golgi and are exposed to sequential waves of processing enzymes by the retrograde movement of Golgi resident proteins. In this way, cis-cisterna mature to medial- and trans-cisterna as the early acting Golgi enzymes are replaced by later acting ones (reviewed in Pelham, 2001; Storrie, 2005; Glick and Nakano, 2009; Szul and Sztul, 2011). More recently. a kiss-and-run (KAR) model for intra-Golgi trafficking has been proposed, which marries aspects of the cisternal maturation model with a diffusion model of transport (reviewed in Mironov et al, 2103).
Like the anterograde ERGIC-to Golgi transport step, intra-Golgi trafficking between the cisterna appears to be COPI-dependent (Storrie and Nilsson, 2002; Szul and Sztul, 2011). Numerous snares and tethering complexes contribute to the targeting and fusion events that are required to maintain the specificity and directionality of these trafficking events (reviewed in Chia and Gleeson, 2014). Golgi tethers include long coiled coiled proteins like the Golgins, as well as multisubunit tethers like the COG complex. These tethers make numerous interactions with other components of the secretory system including RABs, SNAREs, motor and coat proteins as well as components of the cytoskeleton (reviewed in Munro, 2011; Willet et al, 2013).
Retrograde traffic from the cis-Golgi back to the ERGIC and ER depends on both the COPI-dependent pathway, which appears to be important for recyling of KDEL receptors, and a more recently described COPI-independent pathway that relies on RAB6 (reviewed in Szul and Sztul, 2011; Heffernan and Simpson, 2014). RAB6 and RAB9 also play roles at the TGN side of the Golgi, where they are implicated in the docking of vesicles derived from the endolysosomal system and the plasma membrane (reviewed in Pfeffer, 2011) View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 6811442
Reactome-version 
Reactome version: 62
Reactome Author 
Reactome Author: Rothfels, Karen

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Whiteheart SW, Matveeva EA.; ''Multiple binding proteins suggest diverse functions for the N-ethylmaleimide sensitive factor.''; PubMed Europe PMC Scholia
  2. Martinez O, Antony C, Pehau-Arnaudet G, Berger EG, Salamero J, Goud B.; ''GTP-bound forms of rab6 induce the redistribution of Golgi proteins into the endoplasmic reticulum.''; PubMed Europe PMC Scholia
  3. Bonnon C, Wendeler MW, Paccaud JP, Hauri HP.; ''Selective export of human GPI-anchored proteins from the endoplasmic reticulum.''; PubMed Europe PMC Scholia
  4. Haas AK, Yoshimura S, Stephens DJ, Preisinger C, Fuchs E, Barr FA.; ''Analysis of GTPase-activating proteins: Rab1 and Rab43 are key Rabs required to maintain a functional Golgi complex in human cells.''; PubMed Europe PMC Scholia
  5. Frigerio G, Grimsey N, Dale M, Majoul I, Duden R.; ''Two human ARFGAPs associated with COP-I-coated vesicles.''; PubMed Europe PMC Scholia
  6. Mironov AA, Sesorova IV, Beznoussenko GV.; ''Golgi's way: a long path toward the new paradigm of the intra-Golgi transport.''; PubMed Europe PMC Scholia
  7. Serafini T, Orci L, Amherdt M, Brunner M, Kahn RA, Rothman JE.; ''ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein.''; PubMed Europe PMC Scholia
  8. Riederer MA, Soldati T, Shapiro AD, Lin J, Pfeffer SR.; ''Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the trans-Golgi network.''; PubMed Europe PMC Scholia
  9. Liu S, Storrie B.; ''Are Rab proteins the link between Golgi organization and membrane trafficking?''; PubMed Europe PMC Scholia
  10. Ren Y, Yip CK, Tripathi A, Huie D, Jeffrey PD, Walz T, Hughson FM.; ''A structure-based mechanism for vesicle capture by the multisubunit tethering complex Dsl1.''; PubMed Europe PMC Scholia
  11. Popoff V, Adolf F, Brügger B, Wieland F.; ''COPI budding within the Golgi stack.''; PubMed Europe PMC Scholia
  12. Willett R, Ungar D, Lupashin V.; ''The Golgi puppet master: COG complex at center stage of membrane trafficking interactions.''; PubMed Europe PMC Scholia
  13. Civril F, Wehenkel A, Giorgi FM, Santaguida S, Di Fonzo A, Grigorean G, Ciccarelli FD, Musacchio A.; ''Structural analysis of the RZZ complex reveals common ancestry with multisubunit vesicle tethering machinery.''; PubMed Europe PMC Scholia
  14. Munro S.; ''The Arf-like GTPase Arl1 and its role in membrane traffic.''; PubMed Europe PMC Scholia
  15. Aoki T, Ichimura S, Itoh A, Kuramoto M, Shinkawa T, Isobe T, Tagaya M.; ''Identification of the neuroblastoma-amplified gene product as a component of the syntaxin 18 complex implicated in Golgi-to-endoplasmic reticulum retrograde transport.''; PubMed Europe PMC Scholia
  16. Storrie B, Micaroni M, Morgan GP, Jones N, Kamykowski JA, Wilkins N, Pan TH, Marsh BJ.; ''Electron tomography reveals Rab6 is essential to the trafficking of trans-Golgi clathrin and COPI-coated vesicles and the maintenance of Golgi cisternal number.''; PubMed Europe PMC Scholia
  17. Díaz E, Pfeffer SR.; ''TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking.''; PubMed Europe PMC Scholia
  18. Sohda M, Misumi Y, Yamamoto A, Nakamura N, Ogata S, Sakisaka S, Hirose S, Ikehara Y, Oda K.; ''Interaction of Golgin-84 with the COG complex mediates the intra-Golgi retrograde transport.''; PubMed Europe PMC Scholia
  19. Jackson CL, Casanova JE.; ''Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors.''; PubMed Europe PMC Scholia
  20. Tanigawa G, Orci L, Amherdt M, Ravazzola M, Helms JB, Rothman JE.; ''Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles.''; PubMed Europe PMC Scholia
  21. Mitrovic S, Ben-Tekaya H, Koegler E, Gruenberg J, Hauri HP.; ''The cargo receptors Surf4, endoplasmic reticulum-Golgi intermediate compartment (ERGIC)-53, and p25 are required to maintain the architecture of ERGIC and Golgi.''; PubMed Europe PMC Scholia
  22. Moelleken J, Malsam J, Betts MJ, Movafeghi A, Reckmann I, Meissner I, Hellwig A, Russell RB, Russell RB, Söllner T, Brügger B, Wieland FT.; ''Differential localization of coatomer complex isoforms within the Golgi apparatus.''; PubMed Europe PMC Scholia
  23. Fukui K, Sasaki T, Imazumi K, Matsuura Y, Nakanishi H, Takai Y.; ''Isolation and characterization of a GTPase activating protein specific for the Rab3 subfamily of small G proteins.''; PubMed Europe PMC Scholia
  24. Beck R, Rawet M, Wieland FT, Cassel D.; ''The COPI system: molecular mechanisms and function.''; PubMed Europe PMC Scholia
  25. Franco M, Boretto J, Robineau S, Monier S, Goud B, Chardin P, Chavrier P.; ''ARNO3, a Sec7-domain guanine nucleotide exchange factor for ADP ribosylation factor 1, is involved in the control of Golgi structure and function.''; PubMed Europe PMC Scholia
  26. Miller VJ, Sharma P, Kudlyk TA, Frost L, Rofe AP, Watson IJ, Duden R, Lowe M, Lupashin VV, Ungar D.; ''Molecular insights into vesicle tethering at the Golgi by the conserved oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF).''; PubMed Europe PMC Scholia
  27. Van Aelst L, Joneson T, Bar-Sagi D.; ''Identification of a novel Rac1-interacting protein involved in membrane ruffling.''; PubMed Europe PMC Scholia
  28. Darchen F, Goud B.; ''Multiple aspects of Rab protein action in the secretory pathway: focus on Rab3 and Rab6.''; PubMed Europe PMC Scholia
  29. Díaz E, Schimmöller F, Pfeffer SR.; ''A novel Rab9 effector required for endosome-to-TGN transport.''; PubMed Europe PMC Scholia
  30. Harter C, Wieland FT.; ''A single binding site for dilysine retrieval motifs and p23 within the gamma subunit of coatomer.''; PubMed Europe PMC Scholia
  31. Young J, Stauber T, del Nery E, Vernos I, Pepperkok R, Nilsson T.; ''Regulation of microtubule-dependent recycling at the trans-Golgi network by Rab6A and Rab6A'.''; PubMed Europe PMC Scholia
  32. Volpicelli-Daley LA, Li Y, Zhang CJ, Kahn RA.; ''Isoform-selective effects of the depletion of ADP-ribosylation factors 1-5 on membrane traffic.''; PubMed Europe PMC Scholia
  33. San Pietro E, Capestrano M, Polishchuk EV, DiPentima A, Trucco A, Zizza P, Mariggiò S, Pulvirenti T, Sallese M, Tete S, Mironov AA, Leslie CC, Corda D, Luini A, Polishchuk RS.; ''Group IV phospholipase A(2)alpha controls the formation of inter-cisternal continuities involved in intra-Golgi transport.''; PubMed Europe PMC Scholia
  34. Szul T, Garcia-Mata R, Brandon E, Shestopal S, Alvarez C, Sztul E.; ''Dissection of membrane dynamics of the ARF-guanine nucleotide exchange factor GBF1.''; PubMed Europe PMC Scholia
  35. Jiang S, Storrie B.; ''Cisternal rab proteins regulate Golgi apparatus redistribution in response to hypotonic stress.''; PubMed Europe PMC Scholia
  36. Drecktrah D, Chambers K, Racoosin EL, Cluett EB, Gucwa A, Jackson B, Brown WJ.; ''Inhibition of a Golgi complex lysophospholipid acyltransferase induces membrane tubule formation and retrograde trafficking.''; PubMed Europe PMC Scholia
  37. East MP, Kahn RA.; ''Models for the functions of Arf GAPs.''; PubMed Europe PMC Scholia
  38. Six DA, Dennis EA.; ''The expanding superfamily of phospholipase A(2) enzymes: classification and characterization.''; PubMed Europe PMC Scholia
  39. Matanis T, Akhmanova A, Wulf P, Del Nery E, Weide T, Stepanova T, Galjart N, Grosveld F, Goud B, De Zeeuw CI, Barnekow A, Hoogenraad CC.; ''Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex.''; PubMed Europe PMC Scholia
  40. Van Valkenburgh H, Shern JF, Sharer JD, Zhu X, Kahn RA.; ''ADP-ribosylation factors (ARFs) and ARF-like 1 (ARL1) have both specific and shared effectors: characterizing ARL1-binding proteins.''; PubMed Europe PMC Scholia
  41. Kliouchnikov L, Bigay J, Mesmin B, Parnis A, Rawet M, Goldfeder N, Antonny B, Cassel D.; ''Discrete determinants in ArfGAP2/3 conferring Golgi localization and regulation by the COPI coat.''; PubMed Europe PMC Scholia
  42. Valsdottir R, Hashimoto H, Ashman K, Koda T, Storrie B, Nilsson T.; ''Identification of rabaptin-5, rabex-5, and GM130 as putative effectors of rab33b, a regulator of retrograde traffic between the Golgi apparatus and ER.''; PubMed Europe PMC Scholia
  43. Zink S, Wenzel D, Wurm CA, Schmitt HD.; ''A link between ER tethering and COP-I vesicle uncoating.''; PubMed Europe PMC Scholia
  44. Siniossoglou S, Peak-Chew SY, Pelham HR.; ''Ric1p and Rgp1p form a complex that catalyses nucleotide exchange on Ypt6p.''; PubMed Europe PMC Scholia
  45. Fukuda M, Kanno E, Ishibashi K, Itoh T.; ''Large scale screening for novel rab effectors reveals unexpected broad Rab binding specificity.''; PubMed Europe PMC Scholia
  46. Tomás M, Martínez-Alonso E, Ballesta J, Martínez-Menárguez JA.; ''Regulation of ER-Golgi intermediate compartment tubulation and mobility by COPI coats, motor proteins and microtubules.''; PubMed Europe PMC Scholia
  47. Hong W, Lev S.; ''Tethering the assembly of SNARE complexes.''; PubMed Europe PMC Scholia
  48. Tagaya M, Arasaki K, Inoue H, Kimura H.; ''Moonlighting functions of the NRZ (mammalian Dsl1) complex.''; PubMed Europe PMC Scholia
  49. Pérez-Victoria FJ, Schindler C, Magadán JG, Mardones GA, Delevoye C, Romao M, Raposo G, Bonifacino JS.; ''Ang2/fat-free is a conserved subunit of the Golgi-associated retrograde protein complex.''; PubMed Europe PMC Scholia
  50. Micaroni M, Stanley AC, Khromykh T, Venturato J, Wong CX, Lim JP, Marsh BJ, Storrie B, Gleeson PA, Stow JL.; ''Rab6a/a' are important Golgi regulators of pro-inflammatory TNF secretion in macrophages.''; PubMed Europe PMC Scholia
  51. Weimer C, Beck R, Eckert P, Reckmann I, Moelleken J, Brügger B, Wieland F.; ''Differential roles of ArfGAP1, ArfGAP2, and ArfGAP3 in COPI trafficking.''; PubMed Europe PMC Scholia
  52. Monetta P, Slavin I, Romero N, Alvarez C.; ''Rab1b interacts with GBF1 and modulates both ARF1 dynamics and COPI association.''; PubMed Europe PMC Scholia
  53. Sohda M, Misumi Y, Yoshimura S, Nakamura N, Fusano T, Ogata S, Sakisaka S, Ikehara Y.; ''The interaction of two tethering factors, p115 and COG complex, is required for Golgi integrity.''; PubMed Europe PMC Scholia
  54. Januschke J, Nicolas E, Compagnon J, Formstecher E, Goud B, Guichet A.; ''Rab6 and the secretory pathway affect oocyte polarity in Drosophila.''; PubMed Europe PMC Scholia
  55. Südhof TC, Rothman JE.; ''Membrane fusion: grappling with SNARE and SM proteins.''; PubMed Europe PMC Scholia
  56. White J, Johannes L, Mallard F, Girod A, Grill S, Reinsch S, Keller P, Tzschaschel B, Echard A, Goud B, Stelzer EH.; ''Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells.''; PubMed Europe PMC Scholia
  57. Gronemeyer T, Wiese S, Grinhagens S, Schollenberger L, Satyagraha A, Huber LA, Meyer HE, Warscheid B, Just WW.; ''Localization of Rab proteins to peroxisomes: a proteomics and immunofluorescence study.''; PubMed Europe PMC Scholia
  58. Bonifacino JS, Hierro A.; ''Transport according to GARP: receiving retrograde cargo at the trans-Golgi network.''; PubMed Europe PMC Scholia
  59. Buechling T, Chaudhary V, Spirohn K, Weiss M, Boutros M.; ''p24 proteins are required for secretion of Wnt ligands.''; PubMed Europe PMC Scholia
  60. Prasad SS, Garg A, Agarwal AK.; ''Enzymatic activities of the human AGPAT isoform 3 and isoform 5: localization of AGPAT5 to mitochondria.''; PubMed Europe PMC Scholia
  61. Micaroni M, Perinetti G, Di Giandomenico D, Bianchi K, Spaar A, Mironov AA.; ''Synchronous intra-Golgi transport induces the release of Ca2+ from the Golgi apparatus.''; PubMed Europe PMC Scholia
  62. Yamada M, Kumamoto K, Mikuni S, Arai Y, Kinjo M, Nagai T, Tsukasaki Y, Watanabe TM, Fukui M, Jin M, Toba S, Hirotsune S.; ''Rab6a releases LIS1 from a dynein idling complex and activates dynein for retrograde movement.''; PubMed Europe PMC Scholia
  63. Bonifacino JS, Rojas R.; ''Retrograde transport from endosomes to the trans-Golgi network.''; PubMed Europe PMC Scholia
  64. Chardin P, Paris S, Antonny B, Robineau S, Béraud-Dufour S, Jackson CL, Chabre M.; ''A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains.''; PubMed Europe PMC Scholia
  65. Ha KD, Clarke BA, Brown WJ.; ''Regulation of the Golgi complex by phospholipid remodeling enzymes.''; PubMed Europe PMC Scholia
  66. Sun Z, Anderl F, Fröhlich K, Zhao L, Hanke S, Brügger B, Wieland F, Béthune J.; ''Multiple and stepwise interactions between coatomer and ADP-ribosylation factor-1 (Arf1)-GTP.''; PubMed Europe PMC Scholia
  67. Lanoix J, Ouwendijk J, Stark A, Szafer E, Cassel D, Dejgaard K, Weiss M, Nilsson T.; ''Sorting of Golgi resident proteins into different subpopulations of COPI vesicles: a role for ArfGAP1.''; PubMed Europe PMC Scholia
  68. Betz SF, Schnuchel A, Wang H, Olejniczak ET, Meadows RP, Lipsky BP, Harris EA, Staunton DE, Fesik SW.; ''Solution structure of the cytohesin-1 (B2-1) Sec7 domain and its interaction with the GTPase ADP ribosylation factor 1.''; PubMed Europe PMC Scholia
  69. Suvorova ES, Duden R, Lupashin VV.; ''The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins.''; PubMed Europe PMC Scholia
  70. Ogasawara M, Kim SC, Adamik R, Togawa A, Ferrans VJ, Takeda K, Kirby M, Moss J, Vaughan M.; ''Similarities in function and gene structure of cytohesin-4 and cytohesin-1, guanine nucleotide-exchange proteins for ADP-ribosylation factors.''; PubMed Europe PMC Scholia
  71. Hayes GL, Brown FC, Haas AK, Nottingham RM, Barr FA, Pfeffer SR.; ''Multiple Rab GTPase binding sites in GCC185 suggest a model for vesicle tethering at the trans-Golgi.''; PubMed Europe PMC Scholia
  72. Shestakova A, Suvorova E, Pavliv O, Khaidakova G, Lupashin V.; ''Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability.''; PubMed Europe PMC Scholia
  73. Zhao L, Helms JB, Brunner J, Wieland FT.; ''GTP-dependent binding of ADP-ribosylation factor to coatomer in close proximity to the binding site for dilysine retrieval motifs and p23.''; PubMed Europe PMC Scholia
  74. Andag U, Schmitt HD.; ''Dsl1p, an essential component of the Golgi-endoplasmic reticulum retrieval system in yeast, uses the same sequence motif to interact with different subunits of the COPI vesicle coat.''; PubMed Europe PMC Scholia
  75. Cosson P, Letourneur F.; ''Coatomer interaction with di-lysine endoplasmic reticulum retention motifs.''; PubMed Europe PMC Scholia
  76. Reinhard C, Harter C, Bremser M, Brügger B, Sohn K, Helms JB, Wieland F.; ''Receptor-induced polymerization of coatomer.''; PubMed Europe PMC Scholia
  77. Kahn RA, Bruford E, Inoue H, Logsdon JM, Nie Z, Premont RT, Randazzo PA, Satake M, Theibert AB, Zapp ML, Cassel D.; ''Consensus nomenclature for the human ArfGAP domain-containing proteins.''; PubMed Europe PMC Scholia
  78. Nagano F, Sasaki T, Fukui K, Asakura T, Imazumi K, Takai Y.; ''Molecular cloning and characterization of the noncatalytic subunit of the Rab3 subfamily-specific GTPase-activating protein.''; PubMed Europe PMC Scholia
  79. Infante C, Ramos-Morales F, Fedriani C, Bornens M, Rios RM.; ''GMAP-210, A cis-Golgi network-associated protein, is a minus end microtubule-binding protein.''; PubMed Europe PMC Scholia
  80. Malaby AW, van den Berg B, Lambright DG.; ''Structural basis for membrane recruitment and allosteric activation of cytohesin family Arf GTPase exchange factors.''; PubMed Europe PMC Scholia
  81. Shin HW, Kobayashi H, Kitamura M, Waguri S, Suganuma T, Uchiyama Y, Nakayama K.; ''Roles of ARFRP1 (ADP-ribosylation factor-related protein 1) in post-Golgi membrane trafficking.''; PubMed Europe PMC Scholia
  82. Arasaki K, Taniguchi M, Tani K, Tagaya M.; ''RINT-1 regulates the localization and entry of ZW10 to the syntaxin 18 complex.''; PubMed Europe PMC Scholia
  83. Palmer DJ, Helms JB, Beckers CJ, Orci L, Rothman JE.; ''Binding of coatomer to Golgi membranes requires ADP-ribosylation factor.''; PubMed Europe PMC Scholia
  84. Bremser M, Nickel W, Schweikert M, Ravazzola M, Amherdt M, Hughes CA, Söllner TH, Rothman JE, Wieland FT.; ''Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors.''; PubMed Europe PMC Scholia
  85. Hara-Kuge S, Kuge O, Orci L, Amherdt M, Ravazzola M, Wieland FT, Rothman JE.; ''En bloc incorporation of coatomer subunits during the assembly of COP-coated vesicles.''; PubMed Europe PMC Scholia
  86. de Figueiredo P, Drecktrah D, Katzenellenbogen JA, Strang M, Brown WJ.; ''Evidence that phospholipase A2 activity is required for Golgi complex and trans Golgi network membrane tubulation.''; PubMed Europe PMC Scholia
  87. Aoe T, Cukierman E, Lee A, Cassel D, Peters PJ, Hsu VW.; ''The KDEL receptor, ERD2, regulates intracellular traffic by recruiting a GTPase-activating protein for ARF1.''; PubMed Europe PMC Scholia
  88. Laufman O, Hong W, Lev S.; ''The COG complex interacts with multiple Golgi SNAREs and enhances fusogenic assembly of SNARE complexes.''; PubMed Europe PMC Scholia
  89. Cherfils J, Ménétrey J, Mathieu M, Le Bras G, Robineau S, Béraud-Dufour S, Antonny B, Chardin P.; ''Structure of the Sec7 domain of the Arf exchange factor ARNO.''; PubMed Europe PMC Scholia
  90. Pusapati GV, Luchetti G, Pfeffer SR.; ''Ric1-Rgp1 complex is a guanine nucleotide exchange factor for the late Golgi Rab6A GTPase and an effector of the medial Golgi Rab33B GTPase.''; PubMed Europe PMC Scholia
  91. Glick BS, Nakano A.; ''Membrane traffic within the Golgi apparatus.''; PubMed Europe PMC Scholia
  92. Lombardi D, Soldati T, Riederer MA, Goda Y, Zerial M, Pfeffer SR.; ''Rab9 functions in transport between late endosomes and the trans Golgi network.''; PubMed Europe PMC Scholia
  93. Burguete AS, Fenn TD, Brunger AT, Pfeffer SR.; ''Rab and Arl GTPase family members cooperate in the localization of the golgin GCC185.''; PubMed Europe PMC Scholia
  94. Szul T, Sztul E.; ''COPII and COPI traffic at the ER-Golgi interface.''; PubMed Europe PMC Scholia
  95. Yu X, Breitman M, Goldberg J.; ''A structure-based mechanism for Arf1-dependent recruitment of coatomer to membranes.''; PubMed Europe PMC Scholia
  96. Bigay J, Gounon P, Robineau S, Antonny B.; ''Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature.''; PubMed Europe PMC Scholia
  97. Müller JM, Rabouille C, Newman R, Shorter J, Freemont P, Schiavo G, Warren G, Shima DT.; ''An NSF function distinct from ATPase-dependent SNARE disassembly is essential for Golgi membrane fusion.''; PubMed Europe PMC Scholia
  98. Waters MG, Serafini T, Rothman JE.; '''Coatomer': a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles.''; PubMed Europe PMC Scholia
  99. Zhao L, Helms JB, Brügger B, Harter C, Martoglio B, Graf R, Brunner J, Wieland FT.; ''Direct and GTP-dependent interaction of ADP ribosylation factor 1 with coatomer subunit beta.''; PubMed Europe PMC Scholia
  100. Schuiki I, Volchuk A.; ''Diverse roles for the p24 family of proteins in eukaryotic cells.''; PubMed Europe PMC Scholia
  101. Pérez-Victoria FJ, Mardones GA, Bonifacino JS.; ''Requirement of the human GARP complex for mannose 6-phosphate-receptor-dependent sorting of cathepsin D to lysosomes.''; PubMed Europe PMC Scholia
  102. Willett R, Kudlyk T, Pokrovskaya I, Schönherr R, Ungar D, Duden R, Lupashin V.; ''COG complexes form spatial landmarks for distinct SNARE complexes.''; PubMed Europe PMC Scholia
  103. Majoul I, Straub M, Hell SW, Duden R, Söling HD.; ''KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: measurements in living cells using FRET.''; PubMed Europe PMC Scholia
  104. Barlowe CK, Miller EA.; ''Secretory protein biogenesis and traffic in the early secretory pathway.''; PubMed Europe PMC Scholia
  105. Gillingham AK, Tong AH, Boone C, Munro S.; ''The GTPase Arf1p and the ER to Golgi cargo receptor Erv14p cooperate to recruit the golgin Rud3p to the cis-Golgi.''; PubMed Europe PMC Scholia
  106. Schmidt JA, Brown WJ.; ''Lysophosphatidic acid acyltransferase 3 regulates Golgi complex structure and function.''; PubMed Europe PMC Scholia
  107. Fuchs E, Haas AK, Spooner RA, Yoshimura S, Lord JM, Barr FA.; ''Specific Rab GTPase-activating proteins define the Shiga toxin and epidermal growth factor uptake pathways.''; PubMed Europe PMC Scholia
  108. Bascom RA, Srinivasan S, Nussbaum RL.; ''Identification and characterization of golgin-84, a novel Golgi integral membrane protein with a cytoplasmic coiled-coil domain.''; PubMed Europe PMC Scholia
  109. Hoogenraad CC, Akhmanova A, Howell SA, Dortland BR, De Zeeuw CI, Willemsen R, Visser P, Grosveld F, Galjart N.; ''Mammalian Golgi-associated Bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes.''; PubMed Europe PMC Scholia
  110. Zolov SN, Lupashin VV.; ''Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells.''; PubMed Europe PMC Scholia
  111. Barr FA.; ''A novel Rab6-interacting domain defines a family of Golgi-targeted coiled-coil proteins.''; PubMed Europe PMC Scholia
  112. Carroll KS, Hanna J, Simon I, Krise J, Barbero P, Pfeffer SR.; ''Role of Rab9 GTPase in facilitating receptor recruitment by TIP47.''; PubMed Europe PMC Scholia
  113. Yamane J, Kubo A, Nakayama K, Yuba-Kubo A, Katsuno T, Tsukita S, Tsukita S.; ''Functional involvement of TMF/ARA160 in Rab6-dependent retrograde membrane traffic.''; PubMed Europe PMC Scholia
  114. Niu TK, Pfeifer AC, Lippincott-Schwartz J, Jackson CL.; ''Dynamics of GBF1, a Brefeldin A-sensitive Arf1 exchange factor at the Golgi.''; PubMed Europe PMC Scholia
  115. Takida S, Maeda Y, Kinoshita T.; ''Mammalian GPI-anchored proteins require p24 proteins for their efficient transport from the ER to the plasma membrane.''; PubMed Europe PMC Scholia
  116. Pfeffer SR.; ''Entry at the trans-face of the Golgi.''; PubMed Europe PMC Scholia
  117. Lu L, Tai G, Hong W.; ''Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-golgi network.''; PubMed Europe PMC Scholia
  118. Lippincott-Schwartz J, Cole NB, Marotta A, Conrad PA, Bloom GS.; ''Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic.''; PubMed Europe PMC Scholia
  119. Jahn R, Scheller RH.; ''SNAREs--engines for membrane fusion.''; PubMed Europe PMC Scholia
  120. Liu X, Zhang C, Xing G, Chen Q, He F.; ''Functional characterization of novel human ARFGAP3.''; PubMed Europe PMC Scholia
  121. Mayer A, Wickner W, Haas A.; ''Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles.''; PubMed Europe PMC Scholia
  122. Presley JF, Cole NB, Schroer TA, Hirschberg K, Zaal KJ, Lippincott-Schwartz J.; ''ER-to-Golgi transport visualized in living cells.''; PubMed Europe PMC Scholia
  123. Kudo I, Murakami M.; ''Phospholipase A2 enzymes.''; PubMed Europe PMC Scholia
  124. Yu RC, Jahn R, Brunger AT.; ''NSF N-terminal domain crystal structure: models of NSF function.''; PubMed Europe PMC Scholia
  125. Manolea F, Chun J, Chen DW, Clarke I, Summerfeldt N, Dacks JB, Melançon P.; ''Arf3 is activated uniquely at the trans-Golgi network by brefeldin A-inhibited guanine nucleotide exchange factors.''; PubMed Europe PMC Scholia
  126. Fridmann-Sirkis Y, Siniossoglou S, Pelham HR.; ''TMF is a golgin that binds Rab6 and influences Golgi morphology.''; PubMed Europe PMC Scholia
  127. Mallard F, Tang BL, Galli T, Tenza D, Saint-Pol A, Yue X, Antony C, Hong W, Goud B, Johannes L.; ''Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform.''; PubMed Europe PMC Scholia
  128. Reddy JV, Burguete AS, Sridevi K, Ganley IG, Nottingham RM, Pfeffer SR.; ''A functional role for the GCC185 golgin in mannose 6-phosphate receptor recycling.''; PubMed Europe PMC Scholia
  129. Eugster A, Frigerio G, Dale M, Duden R.; ''COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP.''; PubMed Europe PMC Scholia
  130. Reilly BA, Kraynack BA, VanRheenen SM, Waters MG.; ''Golgi-to-endoplasmic reticulum (ER) retrograde traffic in yeast requires Dsl1p, a component of the ER target site that interacts with a COPI coat subunit.''; PubMed Europe PMC Scholia
  131. Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T.; ''Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane.''; PubMed Europe PMC Scholia
  132. Malsam J, Satoh A, Pelletier L, Warren G.; ''Golgin tethers define subpopulations of COPI vesicles.''; PubMed Europe PMC Scholia
  133. Derby MC, Lieu ZZ, Brown D, Stow JL, Goud B, Gleeson PA.; ''The trans-Golgi network golgin, GCC185, is required for endosome-to-Golgi transport and maintenance of Golgi structure.''; PubMed Europe PMC Scholia
  134. Simpson JC, Nilsson T, Pepperkok R.; ''Biogenesis of tubular ER-to-Golgi transport intermediates.''; PubMed Europe PMC Scholia
  135. Joachim J, Wirth M, McKnight NC, Tooze SA.; ''Coiling up with SCOC and WAC: two new regulators of starvation-induced autophagy.''; PubMed Europe PMC Scholia
  136. Muller JM, Shorter J, Newman R, Deinhardt K, Sagiv Y, Elazar Z, Warren G, Shima DT.; ''Sequential SNARE disassembly and GATE-16-GOS-28 complex assembly mediated by distinct NSF activities drives Golgi membrane fusion.''; PubMed Europe PMC Scholia
  137. Vazquez-Martinez R, Cruz-Garcia D, Duran-Prado M, Peinado JR, Castaño JP, Malagon MM.; ''Rab18 inhibits secretory activity in neuroendocrine cells by interacting with secretory granules.''; PubMed Europe PMC Scholia
  138. Langer JD, Roth CM, Béthune J, Stoops EH, Brügger B, Herten DP, Wieland FT.; ''A conformational change in the alpha-subunit of coatomer induced by ligand binding to gamma-COP revealed by single-pair FRET.''; PubMed Europe PMC Scholia
  139. Panic B, Perisic O, Veprintsev DB, Williams RL, Munro S.; ''Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus.''; PubMed Europe PMC Scholia
  140. Shah N, Colbert KN, Enos MD, Herschlag D, Weis WI.; ''Three αSNAP and 10 ATP molecules are used in SNARE complex disassembly by N-ethylmaleimide-sensitive factor (NSF).''; PubMed Europe PMC Scholia
  141. Pernet-Gallay K, Antony C, Johannes L, Bornens M, Goud B, Rios RM.; ''The overexpression of GMAP-210 blocks anterograde and retrograde transport between the ER and the Golgi apparatus.''; PubMed Europe PMC Scholia
  142. Gillingham AK, Sinka R, Torres IL, Lilley KS, Munro S.; ''Toward a comprehensive map of the effectors of rab GTPases.''; PubMed Europe PMC Scholia
  143. Meiringer CT, Rethmeier R, Auffarth K, Wilson J, Perz A, Barlowe C, Schmitt HD, Ungermann C.; ''The Dsl1 protein tethering complex is a resident endoplasmic reticulum complex, which interacts with five soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptors (SNAREs): implications for fusion and fusion regulation.''; PubMed Europe PMC Scholia
  144. Starr T, Sun Y, Wilkins N, Storrie B.; ''Rab33b and Rab6 are functionally overlapping regulators of Golgi homeostasis and trafficking.''; PubMed Europe PMC Scholia
  145. Dejgaard SY, Murshid A, Erman A, Kizilay O, Verbich D, Lodge R, Dejgaard K, Ly-Hartig TB, Pepperkok R, Simpson JC, Presley JF.; ''Rab18 and Rab43 have key roles in ER-Golgi trafficking.''; PubMed Europe PMC Scholia
  146. Szul T, Grabski R, Lyons S, Morohashi Y, Shestopal S, Lowe M, Sztul E.; ''Dissecting the role of the ARF guanine nucleotide exchange factor GBF1 in Golgi biogenesis and protein trafficking.''; PubMed Europe PMC Scholia
  147. Conibear E, Stevens TH.; ''Vps52p, Vps53p, and Vps54p form a novel multisubunit complex required for protein sorting at the yeast late Golgi.''; PubMed Europe PMC Scholia
  148. Gillingham AK, Pfeifer AC, Munro S.; ''CASP, the alternatively spliced product of the gene encoding the CCAAT-displacement protein transcription factor, is a Golgi membrane protein related to giantin.''; PubMed Europe PMC Scholia
  149. Girod A, Storrie B, Simpson JC, Johannes L, Goud B, Roberts LM, Lord JM, Nilsson T, Pepperkok R.; ''Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum.''; PubMed Europe PMC Scholia
  150. Béthune J, Kol M, Hoffmann J, Reckmann I, Brügger B, Wieland F.; ''Coatomer, the coat protein of COPI transport vesicles, discriminates endoplasmic reticulum residents from p24 proteins.''; PubMed Europe PMC Scholia
  151. de Figueiredo P, Polizotto RS, Drecktrah D, Brown WJ.; ''Membrane tubule-mediated reassembly and maintenance of the Golgi complex is disrupted by phospholipase A2 antagonists.''; PubMed Europe PMC Scholia
  152. Tarricone C, Xiao B, Justin N, Walker PA, Rittinger K, Gamblin SJ, Smerdon SJ.; ''The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways.''; PubMed Europe PMC Scholia
  153. Bechler ME, de Figueiredo P, Brown WJ.; ''A PLA1-2 punch regulates the Golgi complex.''; PubMed Europe PMC Scholia
  154. Donaldson JG, Cassel D, Kahn RA, Klausner RD.; ''ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes.''; PubMed Europe PMC Scholia
  155. Yoshino A, Setty SR, Poynton C, Whiteman EL, Saint-Pol A, Burd CG, Johannes L, Holzbaur EL, Koval M, McCaffery JM, Marks MS.; ''tGolgin-1 (p230, golgin-245) modulates Shiga-toxin transport to the Golgi and Golgi motility towards the microtubule-organizing centre.''; PubMed Europe PMC Scholia
  156. Cardenas J, Rivero S, Goud B, Bornens M, Rios RM.; ''Golgi localisation of GMAP210 requires two distinct cis-membrane binding mechanisms.''; PubMed Europe PMC Scholia
  157. Barbero P, Bittova L, Pfeffer SR.; ''Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells.''; PubMed Europe PMC Scholia
  158. Zhao X, Claude A, Chun J, Shields DJ, Presley JF, Melançon P.; ''GBF1, a cis-Golgi and VTCs-localized ARF-GEF, is implicated in ER-to-Golgi protein traffic.''; PubMed Europe PMC Scholia
  159. Liu S, Storrie B.; ''How Rab proteins determine Golgi structure.''; PubMed Europe PMC Scholia
  160. Tripathi A, Ren Y, Jeffrey PD, Hughson FM.; ''Structural characterization of Tip20p and Dsl1p, subunits of the Dsl1p vesicle tethering complex.''; PubMed Europe PMC Scholia
  161. Panic B, Whyte JR, Munro S.; ''The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus.''; PubMed Europe PMC Scholia
  162. Heffernan LF, Simpson JC.; ''The trials and tubule-ations of Rab6 involvement in Golgi-to-ER retrograde transport.''; PubMed Europe PMC Scholia
  163. Setty SR, Shin ME, Yoshino A, Marks MS, Burd CG.; ''Golgi recruitment of GRIP domain proteins by Arf-like GTPase 1 is regulated by Arf-like GTPase 3.''; PubMed Europe PMC Scholia
  164. Munro S.; ''The golgin coiled-coil proteins of the Golgi apparatus.''; PubMed Europe PMC Scholia
  165. Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE.; ''A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion.''; PubMed Europe PMC Scholia
  166. Laufman O, Hong W, Lev S.; ''The COG complex interacts directly with Syntaxin 6 and positively regulates endosome-to-TGN retrograde transport.''; PubMed Europe PMC Scholia
  167. Liewen H, Meinhold-Heerlein I, Oliveira V, Schwarzenbacher R, Luo G, Wadle A, Jung M, Pfreundschuh M, Stenner-Liewen F.; ''Characterization of the human GARP (Golgi associated retrograde protein) complex.''; PubMed Europe PMC Scholia
  168. Nakajima K, Hirose H, Taniguchi M, Kurashina H, Arasaki K, Nagahama M, Tani K, Yamamoto A, Tagaya M.; ''Involvement of BNIP1 in apoptosis and endoplasmic reticulum membrane fusion.''; PubMed Europe PMC Scholia
  169. Mossessova E, Gulbis JM, Goldberg J.; ''Structure of the guanine nucleotide exchange factor Sec7 domain of human arno and analysis of the interaction with ARF GTPase.''; PubMed Europe PMC Scholia
  170. Storrie B.; ''Maintenance of Golgi apparatus structure in the face of continuous protein recycling to the endoplasmic reticulum: making ends meet.''; PubMed Europe PMC Scholia
  171. Hirose H, Arasaki K, Dohmae N, Takio K, Hatsuzawa K, Nagahama M, Tani K, Yamamoto A, Tohyama M, Tagaya M.; ''Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi.''; PubMed Europe PMC Scholia
  172. Gommel DU, Memon AR, Heiss A, Lottspeich F, Pfannstiel J, Lechner J, Reinhard C, Helms JB, Nickel W, Wieland FT.; ''Recruitment to Golgi membranes of ADP-ribosylation factor 1 is mediated by the cytoplasmic domain of p23.''; PubMed Europe PMC Scholia
  173. Siniossoglou S, Pelham HR.; ''Vps51p links the VFT complex to the SNARE Tlg1p.''; PubMed Europe PMC Scholia
  174. Kelly EE, Giordano F, Giordano F, Horgan CP, Jollivet F, Raposo G, McCaffrey MW.; ''Rab30 is required for the morphological integrity of the Golgi apparatus.''; PubMed Europe PMC Scholia
  175. Chun J, Shapovalova Z, Dejgaard SY, Presley JF, Melançon P.; ''Characterization of class I and II ADP-ribosylation factors (Arfs) in live cells: GDP-bound class II Arfs associate with the ER-Golgi intermediate compartment independently of GBF1.''; PubMed Europe PMC Scholia
  176. Martin S, Driessen K, Nixon SJ, Zerial M, Parton RG.; ''Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism.''; PubMed Europe PMC Scholia
  177. Letourneur F, Gaynor EC, Hennecke S, Démollière C, Duden R, Emr SD, Riezman H, Cosson P.; ''Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum.''; PubMed Europe PMC Scholia
  178. Pérez-Victoria FJ, Bonifacino JS.; ''Dual roles of the mammalian GARP complex in tethering and SNARE complex assembly at the trans-golgi network.''; PubMed Europe PMC Scholia
  179. Wu M, Lu L, Hong W, Song H.; ''Structural basis for recruitment of GRIP domain golgin-245 by small GTPase Arl1.''; PubMed Europe PMC Scholia
  180. Otto H, Hanson PI, Jahn R.; ''Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles.''; PubMed Europe PMC Scholia
  181. Zhao C, Smith EC, Whiteheart SW.; ''Requirements for the catalytic cycle of the N-ethylmaleimide-Sensitive Factor (NSF).''; PubMed Europe PMC Scholia
  182. Ben-Tekaya H, Miura K, Pepperkok R, Hauri HP.; ''Live imaging of bidirectional traffic from the ERGIC.''; PubMed Europe PMC Scholia
  183. D'Souza-Schorey C, Chavrier P.; ''ARF proteins: roles in membrane traffic and beyond.''; PubMed Europe PMC Scholia
  184. Drin G, Morello V, Casella JF, Gounon P, Antonny B.; ''Asymmetric tethering of flat and curved lipid membranes by a golgin.''; PubMed Europe PMC Scholia
  185. Wang H, Kazanietz MG.; ''Chimaerins, novel non-protein kinase C phorbol ester receptors, associate with Tmp21-I (p23): evidence for a novel anchoring mechanism involving the chimaerin C1 domain.''; PubMed Europe PMC Scholia
  186. Donaldson JG, Kahn RA, Lippincott-Schwartz J, Klausner RD.; ''Binding of ARF and beta-COP to Golgi membranes: possible regulation by a trimeric G protein.''; PubMed Europe PMC Scholia
  187. Pelham HR.; ''Traffic through the Golgi apparatus.''; PubMed Europe PMC Scholia
  188. Stauber T, Simpson JC, Pepperkok R, Vernos I.; ''A role for kinesin-2 in COPI-dependent recycling between the ER and the Golgi complex.''; PubMed Europe PMC Scholia
  189. Ferraro F, Kriston-Vizi J, Metcalf DJ, Martin-Martin B, Freeman J, Burden JJ, Westmoreland D, Dyer CE, Knight AE, Ketteler R, Cutler DF.; ''A two-tier Golgi-based control of organelle size underpins the functional plasticity of endothelial cells.''; PubMed Europe PMC Scholia
  190. Gerondopoulos A, Bastos RN, Yoshimura S, Anderson R, Carpanini S, Aligianis I, Handley MT, Barr FA.; ''Rab18 and a Rab18 GEF complex are required for normal ER structure.''; PubMed Europe PMC Scholia
  191. Storrie B, Nilsson T.; ''The Golgi apparatus: balancing new with old.''; PubMed Europe PMC Scholia
  192. Nagahama M, Orci L, Ravazzola M, Amherdt M, Lacomis L, Tempst P, Rothman JE, Söllner TH.; ''A v-SNARE implicated in intra-Golgi transport.''; PubMed Europe PMC Scholia
  193. Short B, Preisinger C, Schaletzky J, Kopajtich R, Barr FA.; ''The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membranes.''; PubMed Europe PMC Scholia
  194. Liu S, Hunt L, Storrie B.; ''Rab41 is a novel regulator of Golgi apparatus organization that is needed for ER-to-Golgi trafficking and cell growth.''; PubMed Europe PMC Scholia
  195. Andag U, Neumann T, Schmitt HD.; ''The coatomer-interacting protein Dsl1p is required for Golgi-to-endoplasmic reticulum retrieval in yeast.''; PubMed Europe PMC Scholia
  196. Laufman O, Kedan A, Hong W, Lev S.; ''Direct interaction between the COG complex and the SM protein, Sly1, is required for Golgi SNARE pairing.''; PubMed Europe PMC Scholia
  197. Orci L, Stamnes M, Ravazzola M, Amherdt M, Perrelet A, Söllner TH, Rothman JE.; ''Bidirectional transport by distinct populations of COPI-coated vesicles.''; PubMed Europe PMC Scholia
  198. Goldberg J.; ''Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex.''; PubMed Europe PMC Scholia
  199. Setty SR, Strochlic TI, Tong AH, Boone C, Burd CG.; ''Golgi targeting of ARF-like GTPase Arl3p requires its Nalpha-acetylation and the integral membrane protein Sys1p.''; PubMed Europe PMC Scholia
  200. Pulvirenti T, Giannotta M, Capestrano M, Capitani M, Pisanu A, Polishchuk RS, San Pietro E, Beznoussenko GV, Mironov AA, Turacchio G, Hsu VW, Sallese M, Luini A.; ''A traffic-activated Golgi-based signalling circuit coordinates the secretory pathway.''; PubMed Europe PMC Scholia
  201. Ganley IG, Espinosa E, Pfeffer SR.; ''A syntaxin 10-SNARE complex distinguishes two distinct transport routes from endosomes to the trans-Golgi in human cells.''; PubMed Europe PMC Scholia
  202. Luo W, Wang Y, Reiser G.; ''Proteinase-activated receptors, nucleotide P2Y receptors, and μ-opioid receptor-1B are under the control of the type I transmembrane proteins p23 and p24A in post-Golgi trafficking.''; PubMed Europe PMC Scholia
  203. McKnight NC, Jefferies HB, Alemu EA, Saunders RE, Howell M, Johansen T, Tooze SA.; ''Genome-wide siRNA screen reveals amino acid starvation-induced autophagy requires SCOC and WAC.''; PubMed Europe PMC Scholia
  204. Kawamoto K, Yoshida Y, Tamaki H, Torii S, Shinotsuka C, Yamashina S, Nakayama K.; ''GBF1, a guanine nucleotide exchange factor for ADP-ribosylation factors, is localized to the cis-Golgi and involved in membrane association of the COPI coat.''; PubMed Europe PMC Scholia
  205. Siniossoglou S, Pelham HR.; ''An effector of Ypt6p binds the SNARE Tlg1p and mediates selective fusion of vesicles with late Golgi membranes.''; PubMed Europe PMC Scholia
  206. Luke MR, Houghton F, Perugini MA, Gleeson PA.; ''The trans-Golgi network GRIP-domain proteins form alpha-helical homodimers.''; PubMed Europe PMC Scholia
  207. Hsia KC, Hoelz A.; ''Crystal structure of alpha-COP in complex with epsilon-COP provides insight into the architecture of the COPI vesicular coat.''; PubMed Europe PMC Scholia
  208. Behnia R, Panic B, Whyte JR, Munro S.; ''Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p.''; PubMed Europe PMC Scholia
  209. Mesmin B, Drin G, Levi S, Rawet M, Cassel D, Bigay J, Antonny B.; ''Two lipid-packing sensor motifs contribute to the sensitivity of ArfGAP1 to membrane curvature.''; PubMed Europe PMC Scholia
  210. Espinosa EJ, Calero M, Sridevi K, Pfeffer SR.; ''RhoBTB3: a Rho GTPase-family ATPase required for endosome to Golgi transport.''; PubMed Europe PMC Scholia
  211. Chia PZ, Gleeson PA.; ''Membrane tethering.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114725view16:20, 25 January 2021ReactomeTeamReactome version 75
113169view11:23, 2 November 2020ReactomeTeamReactome version 74
112397view15:33, 9 October 2020ReactomeTeamReactome version 73
101301view11:19, 1 November 2018ReactomeTeamreactome version 66
100838view20:50, 31 October 2018ReactomeTeamreactome version 65
100379view19:24, 31 October 2018ReactomeTeamreactome version 64
99926view16:08, 31 October 2018ReactomeTeamreactome version 63
99481view14:40, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
94056view13:54, 16 August 2017ReactomeTeamreactome version 61
93685view11:31, 9 August 2017ReactomeTeamreactome version 61
87865view12:07, 25 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86808view09:27, 11 July 2016ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
2-lysophosphatidylcholineMetaboliteCHEBI:17504 (ChEBI)
AA-CoAMetaboliteCHEBI:15514 (ChEBI)
ACTR10 ProteinQ9NZ32 (Uniprot-TrEMBL)
ACTR1A ProteinP61163 (Uniprot-TrEMBL)
ADP MetaboliteCHEBI:16761 (ChEBI)
ADPMetaboliteCHEBI:16761 (ChEBI)
AGPAT3ProteinQ9NRZ7 (Uniprot-TrEMBL)
ALPP ProteinP05187 (Uniprot-TrEMBL)
ARCN1 ProteinP48444 (Uniprot-TrEMBL)
ARF1 ProteinP84077 (Uniprot-TrEMBL)
ARF1:GDP:CYTH1,2,3,4ComplexR-HSA-8847870 (Reactome)
ARF1:GTP:CYTH1,2,3,4ComplexR-HSA-8847867 (Reactome)
ARF1:GTP:TRIP11:cargoComplexR-HSA-8847866 (Reactome)
ARF1:GTPComplexR-HSA-1806286 (Reactome)
ARF3 ProteinP61204 (Uniprot-TrEMBL)
ARF4 ProteinP18085 (Uniprot-TrEMBL)
ARF5 ProteinP84085 (Uniprot-TrEMBL)
ARF:GDPComplexR-HSA-6807786 (Reactome)
ARFGAP1 ProteinQ8N6T3 (Uniprot-TrEMBL)
ARFGAP1,2,3ComplexR-HSA-6807832 (Reactome)
ARFGAP2 ProteinQ8N6H7 (Uniprot-TrEMBL)
ARFGAP3 ProteinQ9NP61 (Uniprot-TrEMBL)
ARFIP2 ProteinP53365 (Uniprot-TrEMBL)
ARFIP2:MyrG-ARL1:GTPComplexR-HSA-6814066 (Reactome)
ARFIP2ProteinP53365 (Uniprot-TrEMBL)
ARFRP1 ProteinQ13795 (Uniprot-TrEMBL)
ARFRP1:GTPComplexR-HSA-6814067 (Reactome)
ATP MetaboliteCHEBI:15422 (ChEBI)
ATPMetaboliteCHEBI:15422 (ChEBI)
Ac-CoAMetaboliteCHEBI:15351 (ChEBI)
AcG-ARFRP1:GTP:SYS1:MyrG-ARL1:GTP:TGN Golgin dimersComplexR-HSA-6814069 (Reactome)
AcM-ARFRP1 ProteinQ13795 (Uniprot-TrEMBL)
AcM-ARFRP1:GTP:SYS1:MyrG-ARL1:GTPComplexR-HSA-6814071 (Reactome)
AcM-ARFRP1:GTP:SYS1ComplexR-HSA-6814070 (Reactome)
AcM-ARFRP1:GTPComplexR-HSA-6814076 (Reactome)
BET1L ProteinQ9NYM9 (Uniprot-TrEMBL)
BET1LProteinQ9NYM9 (Uniprot-TrEMBL)
BICD dimerComplexR-HSA-8849243 (Reactome)
BICD1 ProteinQ96G01 (Uniprot-TrEMBL)
BICD2 ProteinQ8TD16 (Uniprot-TrEMBL)
BNIP1 ProteinQ12981 (Uniprot-TrEMBL)
BNIP1ProteinQ12981 (Uniprot-TrEMBL)
CAPZA1 ProteinP52907 (Uniprot-TrEMBL)
CAPZA2 ProteinP47755 (Uniprot-TrEMBL)
CAPZA3 ProteinQ96KX2 (Uniprot-TrEMBL)
CAPZB ProteinP47756 (Uniprot-TrEMBL)
CENPE ProteinQ02224 (Uniprot-TrEMBL)
COG

complex:CUX1 dimer:GOLGA5

dimer:STX5:PalmC-YKT6:BET1L:GOSR1:intra-Golgi retrograde cargo
ComplexR-HSA-8847548 (Reactome)
COG complex:Golgi snaresComplexR-HSA-6811360 (Reactome)
COG complex:RABsComplexR-HSA-8849739 (Reactome)
COG complexComplexR-HSA-6808819 (Reactome)
COG complexComplexR-HSA-6814058 (Reactome)
COG1 ProteinQ8WTW3 (Uniprot-TrEMBL)
COG2 ProteinQ14746 (Uniprot-TrEMBL)
COG3 ProteinQ96JB2 (Uniprot-TrEMBL)
COG4 ProteinQ9H9E3 (Uniprot-TrEMBL)
COG5 ProteinQ9UP83 (Uniprot-TrEMBL)
COG6 ProteinQ9Y2V7 (Uniprot-TrEMBL)
COG7 ProteinP83436 (Uniprot-TrEMBL)
COG8 ProteinQ96MW5 (Uniprot-TrEMBL)
COPA ProteinP53621 (Uniprot-TrEMBL)
COPB1 ProteinP53618 (Uniprot-TrEMBL)
COPB2 ProteinP35606 (Uniprot-TrEMBL)
COPE ProteinO14579 (Uniprot-TrEMBL)
COPG1 ProteinQ9Y678 (Uniprot-TrEMBL)
COPG2 ProteinQ9UBF2 (Uniprot-TrEMBL)
COPI-independent Golgi-to-ER cargoComplexR-HSA-8849329 (Reactome)
COPZ1 ProteinP61923 (Uniprot-TrEMBL)
COPZ2 ProteinQ9P299 (Uniprot-TrEMBL)
CUX1 ProteinQ13948 (Uniprot-TrEMBL)
CUX1 dimerComplexR-HSA-8847512 (Reactome)
CYTH1 ProteinQ15438 (Uniprot-TrEMBL)
CYTH1,2,3,4ComplexR-HSA-8847857 (Reactome)
CYTH2 ProteinQ99418 (Uniprot-TrEMBL)
CYTH3 ProteinO43739 (Uniprot-TrEMBL)
CYTH4 ProteinQ9UIA0 (Uniprot-TrEMBL)
Chromokinesin dimers R-HSA-984722 (Reactome)
CoA-SHMetaboliteCHEBI:15346 (ChEBI)
DCTN1 ProteinQ14203 (Uniprot-TrEMBL)
DCTN2 ProteinQ13561 (Uniprot-TrEMBL)
DCTN3 ProteinO75935 (Uniprot-TrEMBL)
DCTN4 ProteinQ9UJW0 (Uniprot-TrEMBL)
DCTN5 ProteinQ9BTE1 (Uniprot-TrEMBL)
DCTN6 ProteinO00399 (Uniprot-TrEMBL)
DYNC1H1 ProteinQ14204 (Uniprot-TrEMBL)
DYNC1I1 ProteinO14576 (Uniprot-TrEMBL)
DYNC1I2 ProteinQ13409 (Uniprot-TrEMBL)
DYNC1LI1 ProteinQ9Y6G9 (Uniprot-TrEMBL)
DYNC1LI2 ProteinO43237 (Uniprot-TrEMBL)
DYNLL1 ProteinP63167 (Uniprot-TrEMBL)
DYNLL2 ProteinQ96FJ2 (Uniprot-TrEMBL)
Dynein:Dynactin:microtubuleComplexR-HSA-2029135 (Reactome)
Dynein:Dynactin:microtubules:PAFAH1B1ComplexR-HSA-8849246 (Reactome)
GALNT1(1-559) ProteinQ10472 (Uniprot-TrEMBL)
GALNT2(1-571) ProteinQ10471 (Uniprot-TrEMBL)
GARP complexComplexR-HSA-6811301 (Reactome)
GBF1 ProteinQ92538 (Uniprot-TrEMBL)
GBF1ProteinQ92538 (Uniprot-TrEMBL)
GCC1 ProteinQ96CN9 (Uniprot-TrEMBL)
GCC2 ProteinQ8IWJ2 (Uniprot-TrEMBL)
GCC2 dimerComplexR-HSA-6814043 (Reactome)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GGC-RAB33B ProteinQ9H082 (Uniprot-TrEMBL)
GOLGA1 ProteinQ92805 (Uniprot-TrEMBL)
GOLGA4 ProteinQ13439 (Uniprot-TrEMBL)
GOLGA5 ProteinQ8TBA6 (Uniprot-TrEMBL)
GOLGA5 dimerComplexR-HSA-8847519 (Reactome)
GOLIM4 ProteinO00461 (Uniprot-TrEMBL)
GOSR1 ProteinO95249 (Uniprot-TrEMBL)
GOSR1ProteinO95249 (Uniprot-TrEMBL)
GOSR2 ProteinO14653 (Uniprot-TrEMBL)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Golgi-to-ER cargoComplexR-HSA-6814051 (Reactome)
Golgi-to-ER cargoComplexR-HSA-6814053 (Reactome)
H2OMetaboliteCHEBI:15377 (ChEBI)
IGF2R ProteinP11717 (Uniprot-TrEMBL)
KDELR1 ProteinP24390 (Uniprot-TrEMBL)
KDELR2 ProteinP33947 (Uniprot-TrEMBL)
KDELR3 ProteinO43731 (Uniprot-TrEMBL)
KIF11 ProteinP52732 (Uniprot-TrEMBL)
KIF12 ProteinQ96FN5 (Uniprot-TrEMBL)
KIF13B ProteinQ9NQT8 (Uniprot-TrEMBL)
KIF15 ProteinQ9NS87 (Uniprot-TrEMBL)
KIF16B ProteinQ96L93 (Uniprot-TrEMBL)
KIF18A ProteinQ8NI77 (Uniprot-TrEMBL)
KIF18B ProteinQ86Y91 (Uniprot-TrEMBL)
KIF19 ProteinQ2TAC6 (Uniprot-TrEMBL)
KIF1A ProteinQ12756 (Uniprot-TrEMBL)
KIF1B ProteinO60333 (Uniprot-TrEMBL)
KIF1C ProteinO43896 (Uniprot-TrEMBL)
KIF20A ProteinO95235 (Uniprot-TrEMBL)
KIF20B ProteinQ96Q89 (Uniprot-TrEMBL)
KIF21A ProteinQ7Z4S6 (Uniprot-TrEMBL)
KIF21B ProteinO75037 (Uniprot-TrEMBL)
KIF23 ProteinQ02241 (Uniprot-TrEMBL)
KIF25 ProteinQ9UIL4 (Uniprot-TrEMBL)
KIF26A ProteinQ9ULI4 (Uniprot-TrEMBL) KIF26A is atypical as it lacks ATPase activity.
KIF26B ProteinQ2KJY2 (Uniprot-TrEMBL)
KIF27 ProteinQ86VH2 (Uniprot-TrEMBL)
KIF28P ProteinB7ZC32 (Uniprot-TrEMBL)
KIF3A ProteinQ9Y496 (Uniprot-TrEMBL)
KIF3B ProteinO15066 (Uniprot-TrEMBL)
KIF3C ProteinO14782 (Uniprot-TrEMBL)
KIF5A ProteinQ12840 (Uniprot-TrEMBL)
KIF5B ProteinP33176 (Uniprot-TrEMBL)
KIF6 ProteinQ6ZMV9 (Uniprot-TrEMBL)
KIF9 ProteinQ9HAQ2 (Uniprot-TrEMBL)
KIFAP3 ProteinQ92845 (Uniprot-TrEMBL)
KIFC1 ProteinQ9BW19 (Uniprot-TrEMBL)
KIFC2 ProteinQ96AC6 (Uniprot-TrEMBL)
KLC1 ProteinQ07866 (Uniprot-TrEMBL)
KLC2 ProteinQ9H0B6 (Uniprot-TrEMBL)
KLC3 ProteinQ6P597 (Uniprot-TrEMBL)
KLC4 ProteinQ9NSK0 (Uniprot-TrEMBL)
Kinesin-13 dimers R-HSA-990485 (Reactome)
Kinesin-3 dimers R-HSA-984608 (Reactome)
Kinesins:microtubuleComplexR-HSA-983245 (Reactome)
M6PR ProteinP20645 (Uniprot-TrEMBL)
MAN1A1 ProteinP33908 (Uniprot-TrEMBL)
MAN1A2 ProteinO60476 (Uniprot-TrEMBL)
MAN1C1 ProteinQ9NR34 (Uniprot-TrEMBL)
MAN2A1 ProteinQ16706 (Uniprot-TrEMBL)
MAN2A2 ProteinP49641 (Uniprot-TrEMBL)
Microtubule protofilament R-HSA-8982424 (Reactome)
MyrG-ARL1 ProteinP40616 (Uniprot-TrEMBL)
MyrG-ARL1:GTPComplexR-HSA-6814064 (Reactome)
NAA30 ProteinQ147X3 (Uniprot-TrEMBL)
NAA30:NAA35:NAA38ComplexR-HSA-1183123 (Reactome)
NAA35 ProteinQ5VZE5 (Uniprot-TrEMBL)
NAA38 ProteinQ9BRA0 (Uniprot-TrEMBL)
NAPA ProteinP54920 (Uniprot-TrEMBL)
NAPB ProteinQ9H115 (Uniprot-TrEMBL)
NAPG ProteinQ99747 (Uniprot-TrEMBL)
NBAS ProteinA2RRP1 (Uniprot-TrEMBL)
NBAS:RINT1:ZW10ComplexR-HSA-6811358 (Reactome)
NSF ProteinP46459 (Uniprot-TrEMBL)
NSF hexamerComplexR-HSA-2193131 (Reactome)
PAFAH1B1 ProteinP43034 (Uniprot-TrEMBL)
PAFAH1B1ProteinP43034 (Uniprot-TrEMBL)
PAFAH1B2 ProteinP68402 (Uniprot-TrEMBL)
PAFAH1B3 ProteinQ15102 (Uniprot-TrEMBL)
PCMetaboliteCHEBI:16110 (ChEBI)
PLA2G4A ProteinP47712 (Uniprot-TrEMBL)
PLA2G6 ProteinO60733 (Uniprot-TrEMBL)
PLIN3 ProteinO60664 (Uniprot-TrEMBL)
PLIN3ProteinO60664 (Uniprot-TrEMBL)
PalmC-YKT6 ProteinO15498 (Uniprot-TrEMBL)
PalmC-YKT6ProteinO15498 (Uniprot-TrEMBL)
PiMetaboliteCHEBI:18367 (ChEBI)
RAB18 ProteinQ9NP72 (Uniprot-TrEMBL)
RAB18:GDPComplexR-HSA-8850024 (Reactome)
RAB1:GDPComplexR-HSA-5694296 (Reactome)
RAB1:GTP:GBF1:ARF:GDPComplexR-HSA-6811369 (Reactome)
RAB1:GTP:GBF1:ARF:GTP:coatomer:p24 dimers:ARFGAPs:SEC22B:cargoComplexR-HSA-6811375 (Reactome)
RAB1:GTP:GBF1:ARF:GTP:coatomerComplexR-HSA-6811372 (Reactome)
RAB1:GTP:GBF1:ARF:GTPComplexR-HSA-6811371 (Reactome)
RAB1:GTP:GBF1ComplexR-HSA-6811366 (Reactome)
RAB1:GTP:coatomer:p24 dimers:SEC22B:cargo:NBAS:RINT1:ZW10:STX18:USE1L:BNIP1ComplexR-HSA-6811379 (Reactome)
RAB1:GTP:coatomer:p24 dimers:SEC22B:cargoComplexR-HSA-6811377 (Reactome)
RAB1:GTP:coatomer:p24 dimers:SEC22B:kinesins:microtubulesComplexR-HSA-6811381 (Reactome)
RAB1:GTPComplexR-HSA-6808823 (Reactome)
RAB1A ProteinP62820 (Uniprot-TrEMBL)
RAB1B ProteinQ9H0U4 (Uniprot-TrEMBL)
RAB30 ProteinQ15771 (Uniprot-TrEMBL)
RAB33B:GTP:RIC1:RGP1ComplexR-HSA-8847863 (Reactome)
RAB33B:GTPComplexR-HSA-8847628 (Reactome)
RAB36 ProteinO95755 (Uniprot-TrEMBL)
RAB39A ProteinQ14964 (Uniprot-TrEMBL)
RAB3GAP1 ProteinQ15042 (Uniprot-TrEMBL)
RAB3GAP1:RAB3GAP2:RAB18:GDPComplexR-HSA-8850030 (Reactome)
RAB3GAP1:RAB3GAP2:RAB18:GTPComplexR-HSA-8850032 (Reactome)
RAB3GAP1:RAB3GAP2ComplexR-HSA-8850028 (Reactome)
RAB3GAP2 ProteinQ9H2M9 (Uniprot-TrEMBL)
RAB41 ProteinQ5JT25 (Uniprot-TrEMBL)
RAB43 ProteinQ86YS6 (Uniprot-TrEMBL)
RAB43:GDP:USP6NLComplexR-HSA-8847533 (Reactome)
RAB43:GTP:USP6NLComplexR-HSA-8847526 (Reactome)
RAB43:GTPComplexR-HSA-8847528 (Reactome)
RAB6:GDP:RIC1:RGP1ComplexR-HSA-6811355 (Reactome)
RAB6:GDPComplexR-HSA-6811310 (Reactome)
RAB6:GTP:BICD dimer:COPI-independent retrograde cargo:Dynein:Dynactin:microtubulesComplexR-HSA-8849336 (Reactome)
RAB6:GTP:BICD dimer:COPI-independent retrograde cargoComplexR-HSA-8849334 (Reactome)
RAB6:GTP:COPI-independent retrograde Golgi-to-ER cargoComplexR-HSA-8849338 (Reactome)
RAB6:GTP:RIC1:RGP1:GARP complex:COG complex:AcM-ARFRP1:GTP:SYS1:MyrG-ARL1:GTP:Golgin dimers:STX6:STX16:VTI1A:VAMP4:early endosome-to-TGN cargoComplexR-HSA-6811357 (Reactome)
RAB6:GTP:RIC1:RGP1ComplexR-HSA-6811353 (Reactome)
RAB6:GTPComplexR-HSA-8849251 (Reactome)
RAB6A ProteinP20340 (Uniprot-TrEMBL)
RAB6B ProteinQ9NRW1 (Uniprot-TrEMBL)
RAB9:GDPComplexR-HSA-6814641 (Reactome)
RAB9:GTP:PLIN3:p-RABEPK:late-endosome-to-TGN cargo:VAMP3:RHOBTB3:ATPComplexR-HSA-6814669 (Reactome)
RAB9:GTP:PLIN3:p-RABEPK:late-endosome-to-TGN cargo:VAMP3ComplexR-HSA-6814666 (Reactome)
RAB9:GTP:p-RABEPK:VAMP3:STX16:STX10:VTI1A:GARP complex:GCC2 dimer:late-endosome-to-TGN cargoComplexR-HSA-6814664 (Reactome)
RAB9:GTP:p-RABEPK:VAMP3:late endosome-to-TGN cargoComplexR-HSA-6814662 (Reactome)
RAB9A ProteinP51151 (Uniprot-TrEMBL)
RAB9B ProteinQ9NP90 (Uniprot-TrEMBL)
RABEPKProteinQ7Z6M1 (Uniprot-TrEMBL)
RACGAP1 ProteinQ9H0H5 (Uniprot-TrEMBL)
RGP1 ProteinQ92546 (Uniprot-TrEMBL)
RHOBTB3 ProteinO94955 (Uniprot-TrEMBL)
RHOBTB3:ADPComplexR-HSA-6814647 (Reactome)
RHOBTB3:ATPComplexR-HSA-6814649 (Reactome)
RIC1 ProteinQ4ADV7 (Uniprot-TrEMBL)
RIC1:RGP1ComplexR-HSA-6811347 (Reactome)
RIC1:RGP1ComplexR-HSA-8847862 (Reactome)
RINT1 ProteinQ6NUQ1 (Uniprot-TrEMBL)
SCOC ProteinQ9UIL1 (Uniprot-TrEMBL)
SCOC:MyrG-ARL1:GTPComplexR-HSA-6814081 (Reactome)
SCOCProteinQ9UIL1 (Uniprot-TrEMBL)
SEC22B ProteinO75396 (Uniprot-TrEMBL)
SEC22B:STX18:USE1:BNIP1L:3xSNAPs:NSF hexamerComplexR-HSA-6811344 (Reactome)
SEC22B:STX18:USE1L:BNIP1ComplexR-HSA-6811343 (Reactome)
SEC22BProteinO75396 (Uniprot-TrEMBL)
SNAP29 ProteinO95721 (Uniprot-TrEMBL)
SNAPsComplexR-HSA-5694313 (Reactome)
STX10 ProteinO60499 (Uniprot-TrEMBL)
STX10:STX16:VTI1A:VAMP3:NSF hexamer:SNAPsComplexR-HSA-6814654 (Reactome)
STX10:STX16:VTI1A:VAMP3ComplexR-HSA-6814652 (Reactome)
STX10:STX16:VTI1AComplexR-HSA-6814651 (Reactome)
STX10ProteinO60499 (Uniprot-TrEMBL)
STX16 ProteinO14662 (Uniprot-TrEMBL)
STX16ProteinO14662 (Uniprot-TrEMBL)
STX18 ProteinQ9P2W9 (Uniprot-TrEMBL)
STX18:USE1L:BNIP1ComplexR-HSA-6811340 (Reactome)
STX18ProteinQ9P2W9 (Uniprot-TrEMBL)
STX5 ProteinQ13190 (Uniprot-TrEMBL)
STX5:PalmC-YKT6:BET1L:GOSR1:NSF hexamer:3xSNAPsComplexR-HSA-8847640 (Reactome)
STX5:PalmC-YKT6:BET1LComplexR-HSA-8847633 (Reactome)
STX5ProteinQ13190 (Uniprot-TrEMBL)
STX6 ProteinO43752 (Uniprot-TrEMBL)
STX6:STX16:VTI1A:VAMP4:NSF hexamer:3xSNAPsComplexR-HSA-6814660 (Reactome)
STX6:STX16:VTI1A:VAMP4ComplexR-HSA-6814656 (Reactome)
STX6:STX16:VTI1AComplexR-HSA-6811339 (Reactome)
STX6ProteinO43752 (Uniprot-TrEMBL)
STX:PalmC-YKT6:BET1L:GOSR1ComplexR-HSA-8847639 (Reactome)
SURF4 ProteinO15260 (Uniprot-TrEMBL)
SYS1 ProteinQ8N2H4 (Uniprot-TrEMBL)
SYS1ProteinQ8N2H4 (Uniprot-TrEMBL)
TGN Golgin dimersComplexR-HSA-6814047 (Reactome)
TGOLN2 ProteinO43493 (Uniprot-TrEMBL)
TMED10 ProteinP49755 (Uniprot-TrEMBL)
TMED2 ProteinQ15363 (Uniprot-TrEMBL)
TMED3 ProteinQ9Y3Q3 (Uniprot-TrEMBL)
TMED7 ProteinQ9Y3B3 (Uniprot-TrEMBL)
TMED9 ProteinQ9BVK6 (Uniprot-TrEMBL)
TMF1 ProteinP82094 (Uniprot-TrEMBL)
TRIP11 ProteinQ15643 (Uniprot-TrEMBL)
TRIP11:cargoComplexR-HSA-8847860 (Reactome)
USE1 ProteinQ9NZ43 (Uniprot-TrEMBL)
USE1ProteinQ9NZ43 (Uniprot-TrEMBL)
USP6NL ProteinQ92738 (Uniprot-TrEMBL)
USP6NLProteinQ92738 (Uniprot-TrEMBL)
VAMP3 ProteinQ15836 (Uniprot-TrEMBL)
VAMP3ProteinQ15836 (Uniprot-TrEMBL)
VAMP4 ProteinO75379 (Uniprot-TrEMBL)
VAMP4:early

endosome-to-TGN

cargo
ComplexR-HSA-6811333 (Reactome)
VAMP4ProteinO75379 (Uniprot-TrEMBL)
VPS45 ProteinQ9NRW7 (Uniprot-TrEMBL)
VPS51 ProteinQ9UID3 (Uniprot-TrEMBL)
VPS52 ProteinQ8N1B4 (Uniprot-TrEMBL)
VPS53 ProteinQ5VIR6 (Uniprot-TrEMBL)
VPS54 ProteinQ9P1Q0 (Uniprot-TrEMBL)
VTI1A ProteinQ96AJ9 (Uniprot-TrEMBL)
VTI1AProteinQ96AJ9 (Uniprot-TrEMBL)
ZW10 ProteinO43264 (Uniprot-TrEMBL)
cPLA2sComplexR-HSA-8848479 (Reactome)
coatomerComplexR-HSA-6807805 (Reactome)
early

endosome-to-TGN

cargo
ComplexR-HSA-6811330 (Reactome)
fatty acidMetaboliteCHEBI:35366 (ChEBI)
intra-Golgi

cargo:GOLGA5

dimer:GOSR1
ComplexR-HSA-8847543 (Reactome)
intra-Golgi cargoComplexR-HSA-8847546 (Reactome)
late-endosome-to-TGN cargoComplexR-HSA-6814632 (Reactome)
other

COG-interacting

RABs
ComplexR-HSA-8849736 (Reactome)
other COG interacting snaresComplexR-HSA-6811306 (Reactome)
p24 dimersComplexR-HSA-6808871 (Reactome)
p24 dimersComplexR-HSA-6811326 (Reactome)
pS-RABEPK ProteinQ7Z6M1 (Uniprot-TrEMBL)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
2-lysophosphatidylcholineArrowR-HSA-8848484 (Reactome)
2-lysophosphatidylcholineArrowR-HSA-8849353 (Reactome)
2-lysophosphatidylcholineR-HSA-8849345 (Reactome)
AA-CoAR-HSA-8849345 (Reactome)
ADPArrowR-HSA-6814678 (Reactome)
ADPArrowR-HSA-6814683 (Reactome)
ADPArrowR-HSA-8847638 (Reactome)
ADPArrowR-HSA-8849353 (Reactome)
AGPAT3mim-catalysisR-HSA-8849345 (Reactome)
ARF1:GDP:CYTH1,2,3,4ArrowR-HSA-8847883 (Reactome)
ARF1:GTP:CYTH1,2,3,4ArrowR-HSA-8847880 (Reactome)
ARF1:GTP:CYTH1,2,3,4R-HSA-8847883 (Reactome)
ARF1:GTP:CYTH1,2,3,4mim-catalysisR-HSA-8847883 (Reactome)
ARF1:GTP:TRIP11:cargoArrowR-HSA-8847875 (Reactome)
ARF1:GTPR-HSA-8847875 (Reactome)
ARF1:GTPR-HSA-8847880 (Reactome)
ARF:GDPArrowR-HSA-6811418 (Reactome)
ARF:GDPR-HSA-6811411 (Reactome)
ARFGAP1,2,3ArrowR-HSA-6811418 (Reactome)
ARFGAP1,2,3R-HSA-6811417 (Reactome)
ARFIP2:MyrG-ARL1:GTPArrowR-HSA-6814094 (Reactome)
ARFIP2R-HSA-6814094 (Reactome)
ARFRP1:GTPR-HSA-6814090 (Reactome)
ATPR-HSA-6811422 (Reactome)
ATPR-HSA-6814678 (Reactome)
ATPR-HSA-6814683 (Reactome)
ATPR-HSA-8847638 (Reactome)
ATPR-HSA-8849353 (Reactome)
Ac-CoAR-HSA-6814090 (Reactome)
AcG-ARFRP1:GTP:SYS1:MyrG-ARL1:GTP:TGN Golgin dimersArrowR-HSA-6814091 (Reactome)
AcG-ARFRP1:GTP:SYS1:MyrG-ARL1:GTP:TGN Golgin dimersArrowR-HSA-6814682 (Reactome)
AcG-ARFRP1:GTP:SYS1:MyrG-ARL1:GTP:TGN Golgin dimersR-HSA-6811431 (Reactome)
AcM-ARFRP1:GTP:SYS1:MyrG-ARL1:GTPArrowR-HSA-6814086 (Reactome)
AcM-ARFRP1:GTP:SYS1:MyrG-ARL1:GTPR-HSA-6814091 (Reactome)
AcM-ARFRP1:GTP:SYS1ArrowR-HSA-6814088 (Reactome)
AcM-ARFRP1:GTP:SYS1R-HSA-6814086 (Reactome)
AcM-ARFRP1:GTPArrowR-HSA-6814090 (Reactome)
AcM-ARFRP1:GTPR-HSA-6814088 (Reactome)
ArrowR-HSA-8849353 (Reactome)
BET1LArrowR-HSA-8847638 (Reactome)
BICD dimerArrowR-HSA-8849353 (Reactome)
BICD dimerR-HSA-8849348 (Reactome)
BNIP1ArrowR-HSA-6811422 (Reactome)
COG

complex:CUX1 dimer:GOLGA5

dimer:STX5:PalmC-YKT6:BET1L:GOSR1:intra-Golgi retrograde cargo
ArrowR-HSA-8847544 (Reactome)
COG

complex:CUX1 dimer:GOLGA5

dimer:STX5:PalmC-YKT6:BET1L:GOSR1:intra-Golgi retrograde cargo
R-HSA-8847635 (Reactome)
COG complex:Golgi snaresArrowR-HSA-6811433 (Reactome)
COG complex:RABsArrowR-HSA-8849748 (Reactome)
COG complexArrowR-HSA-6814682 (Reactome)
COG complexArrowR-HSA-8847635 (Reactome)
COG complexR-HSA-6811431 (Reactome)
COG complexR-HSA-6811433 (Reactome)
COG complexR-HSA-8847544 (Reactome)
COG complexR-HSA-8849748 (Reactome)
COPI-independent Golgi-to-ER cargoR-HSA-8849348 (Reactome)
CUX1 dimerArrowR-HSA-8847635 (Reactome)
CUX1 dimerR-HSA-8847544 (Reactome)
CYTH1,2,3,4R-HSA-8847880 (Reactome)
CoA-SHArrowR-HSA-6814090 (Reactome)
CoA-SHArrowR-HSA-8849345 (Reactome)
Dynein:Dynactin:microtubuleArrowR-HSA-8849353 (Reactome)
Dynein:Dynactin:microtubules:PAFAH1B1R-HSA-8849350 (Reactome)
GARP complexArrowR-HSA-6814671 (Reactome)
GARP complexArrowR-HSA-6814682 (Reactome)
GARP complexR-HSA-6811431 (Reactome)
GARP complexR-HSA-6814674 (Reactome)
GBF1ArrowR-HSA-6811418 (Reactome)
GBF1R-HSA-6811415 (Reactome)
GCC2 dimerArrowR-HSA-6814671 (Reactome)
GCC2 dimerR-HSA-6814674 (Reactome)
GDPArrowR-HSA-6811414 (Reactome)
GDPArrowR-HSA-6811429 (Reactome)
GDPArrowR-HSA-8850041 (Reactome)
GOLGA5 dimerArrowR-HSA-8847635 (Reactome)
GOSR1ArrowR-HSA-8847638 (Reactome)
GTPR-HSA-6811414 (Reactome)
GTPR-HSA-6811429 (Reactome)
GTPR-HSA-8850041 (Reactome)
Golgi-to-ER cargoArrowR-HSA-6811427 (Reactome)
Golgi-to-ER cargoR-HSA-6811417 (Reactome)
H2OR-HSA-8848484 (Reactome)
Kinesins:microtubuleArrowR-HSA-6811423 (Reactome)
Kinesins:microtubuleR-HSA-6811426 (Reactome)
MyrG-ARL1:GTPR-HSA-6814086 (Reactome)
MyrG-ARL1:GTPR-HSA-6814094 (Reactome)
MyrG-ARL1:GTPR-HSA-6814096 (Reactome)
NAA30:NAA35:NAA38mim-catalysisR-HSA-6814090 (Reactome)
NBAS:RINT1:ZW10R-HSA-6811423 (Reactome)
NSF hexamerArrowR-HSA-6811422 (Reactome)
NSF hexamerArrowR-HSA-6814678 (Reactome)
NSF hexamerArrowR-HSA-6814683 (Reactome)
NSF hexamerArrowR-HSA-8847638 (Reactome)
NSF hexamerR-HSA-6811425 (Reactome)
NSF hexamerR-HSA-6814676 (Reactome)
NSF hexamerR-HSA-6814684 (Reactome)
NSF hexamerR-HSA-8847637 (Reactome)
PAFAH1B1ArrowR-HSA-8849350 (Reactome)
PCArrowR-HSA-8849345 (Reactome)
PCR-HSA-8848484 (Reactome)
PLIN3ArrowR-HSA-6814670 (Reactome)
PalmC-YKT6ArrowR-HSA-8847638 (Reactome)
PiArrowR-HSA-6811422 (Reactome)
R-HSA-6811411 (Reactome) GBF1 recruits inactive ARF:GDP complexes to the Golgi (Monetta et al, 2007). There are 5 known ARFs in the human cell. Class I members ARF1 and ARF 3 are expressed at high levels and broadly distributed through the secretory system, while Class II members ARF4 and 5 are expressed at lower levels. ARF6, the single Class III ARF, appears to function more specifically in endocytosis and actin dynamics (Chun et al, 2008; reviewed in D'Souza-Schorey and Chavrier, 2006; Szul and Sztul, 2011). GBF1 has been shown to activate ARF1, 4, and 5, but not ARF3, while single and pairwise knockdown of ARF1, 3, 4 and 5 suggests that no single ARF is responsible for any given step in the secretory pathway (Manolea et al, 2010; Volpicelli-Daley et al, 2005).
R-HSA-6811412 (Reactome) Activation of ARF is tightly correlated to recruitment of the COPI coat (Donaldson et al, 1991; Serafini et al, 1991; Donaldson et el, 1992; Palmer et al, 1993; reveiwed in Szul and Sztul, 2011). Studies in yeast and in mammalian cells support a direct interaction between the GTPase and components of the COPI coat (Zhao et al, 1997; Zhao et al, 1999; Zhao et al, 2006; Eugster et al, 2000; Sun et al, 2007; Yu et al, 2012; Harter and Wieland, 1998; Bethune et al, 2006; reviewed in Popoff et al, 2011). The COPI coat consists of 7 subunits arranged in 2 subcomplexes. The inner coat is made up of a tetrameric complex consisting of the beta, gamma, zeta and delta COPI subunits, while the outer coat is a trimer consisting of the alpha, beta prime and epsilon subunits (Eugster et al, 2000; Waters et al, 1991). Both of the zeta and gamma subunits have 2 isoforms with different subcellular locations, suggesting that different COPI coats may mediate different steps of the secretory pathway (Moelleken et al, 2007). Unlike the case for COPII or clathrin coats, all components of the COPI coat are recruited simultaneously as a preformed heptameric complex (Hara-Kuge et al, 1994).
R-HSA-6811414 (Reactome) GBF1 facilitates the exchange of GDP for GTP, activating ARF (Niu et al, 2005; Szul et al, 2005; Szul et al, 2007; Kawamoto et al, 2002; reviewed in Szul and Sztul, 2011).
R-HSA-6811415 (Reactome) In its GTP-bound active state, RAB1 recruits the ARF GEF GBF1 to the Golgi (Monetta et al, 2007). GBF is the only ARF activator required for the formation of COPI coats, and therefore it has roles in the anterograde ERGIC-to-cis-Golgi as well as in COPI-mediated retrograd transport within the Golgi and back to the ERGIC and ER (Kawamoto et al, 2002; Szul et al, 2005; Zhao et al, 2006; Szul et al, 2007; reviewed in Szul and Sztul, 2011). GBR1 activates ARF1, 2, 3 and 5 which play overlapping roles in the secretory pathway (Volpicelli-Daley et al, 2005; Chun et al, 2008; reviewed in D'Souza-Schorey and Chavrier, 2006).
R-HSA-6811417 (Reactome) Binding and polymerization of coatomer is coordinated with the incorporation of cargo proteins and Golgi-targeting snares, as well as with recruitment of ARFGAP proteins (Letourneur et al, 1994; Nagahama et al,1996; Bremser et al, 1999).
Typical cargo for COPI-mediated retrograde traffic includes the KDEL receptors, which bind and recycle ER-resident proteins, as well as other cycling proteins such as SURF4 that interacts with p24 proteins and contributes to Golgi maintenance (Cosson and Letourner, 1994; Ben-Tekaya et al, 2005; Majoul et al, 2001; Orci et al, 1997, Bremser et al, 1999; Presley et al, 1997; Mitrovic et al, 2008; reviewed in Beck et al, 2009).
Other protein components of the COPI vesicle include the p24 family of proteins, which serve diverse roles in the early secretory pathway (reviewed in Schuiki and Volchuk, 2012). Oligomeric p24 proteins interact with ADP-bound ARF and components of the COPI coat, contributing to coatomer recruitment and oligomerization (Gommel et al, 2001; Majoul et al, 2001; Bethune et al, 2006; Harter and Wieland, 1998; Langer et al, 2008; Reinhard et al, 1999). p24 proteins also act as cargo receptors for various proteins destined for packaging in COPI vesicles; these include GPI-anchored transmembrane proteins, WNT ligands and some G-protein coupled receptors, among others (Takida et al, 2008; Bonnon et al, 2010; Luo et al, 2011; Beuchling et al, 2011; Wang and Kazanietz, 2002; reviewed in Schuiki and Volchuk, 2012). p24 proteins also contribute to COPI coat disassembly by restricting ARF GTPase activity until cargo has been loaded (Goldberg, 2000; Lanoix et al, 2001).
ARFGAPs are recruited to the budding vesicle through direct interaction with active ARF, the cytoplasmic tails of cargo proteins and with components of the COPI coat (Goldberg, 2000; Majoul et al, 2001; Aoe et al, 1997; Kliouchnikov et al, 2009; Luo et al, 2009). Stimulation of ARF GTPase activity is coordinated with cargo recruitment to ensure that only cargo-loaded vesicles are produced (Goldberg, 2000; Luo et al, 2009).
Mammalian cells have 3 ARFGAPs that appear to be involved in COPI-mediated traffic, ARFGAP1,2 and 3 (Frigerio et al, 2007; Liu et al, 2001; Kahn et al, 2008). ARFGAP1 has a ALPS domain that recognizes membrane curvature and that is required for the GTPase stimulating activity of the protein, suggesting a mechanism for coordinating ARF1-mediated GTP hydrolysis with vesicle formation (Bigay et al, 2003; Mesmin et al, 2007). ARFGAP 2 and 3 do not contain this motif, and their activity is dependent upon interaction with coatomer (Weimar et al 2008; Kliouchnikov et al, 2009; Luo et al, 2009).
R-HSA-6811418 (Reactome) The ARFGAP proteins stimulates ARF GTPase activity, promoting the release of the nascent COPI vesicle from the membrane and release of ARF:ADP (Tanigawa et al, 1993; reviewed in Beck et al, 2009; East and Kahn, 2011). Although this reaction shows their dissociation, it is not clear whether ARFGAPs persist on the COPI vesicle after GTP hydrolysis, nor is it known when GBF is released from the nascent COPI vesicle.

R-HSA-6811422 (Reactome) NSF-dependent hydrolysis of ATP is required to disassociate the cis-SNARE complex, releasing the SNAREs for further rounds of membrane fusion (Mayer et al, 1996; Muller et al, 1999; Muller et al, 2002; Otto et al, 1997; Whiteheart et al, 2004; Yu et al, 1999; Zhao et al, 2012; Shah et al, 2015; reviewed in Sudhof and Rothman, 2009).
R-HSA-6811423 (Reactome) Retrograde COPI vesicles destined for fusion with the ER are tethered to the ER membrane by interactions with the ER t-SNARE proteins and with the CATCHR ('complexes associated with tethering containing helical rods') complex NRZ (reviewed in Szul and Sztul, 2011; Tagaya et al, 2014). The trimeric NRZ complex, known as Dsl in yeast, is composed of NBAS, RINT1 and ZW10 and is recruited to the ER through association with the ER t-SNAREs USE1L, STX18 and BNIP1 (Hirose et al, 2004; Aoki et al, 2004; Nakajima et al, 2004; Arasaki et al, 2006; Ren et al, 2009; Civril et al, 2010; reviewed in Tagaya et al, 2014). Evidence in yeast suggests components of the Dsl complex also interact with the coatomer coat; these interactions contribute to vesicle fusion both by aiding in the recruitment of the vesicle to the ER membrane and also to the depolymerization of coatomer and thus vesicle uncoating Interactions (Andag et al, 2001; Andag et al, 2003; Reilly et al, 2001; Hsia and Hoelz, 2010; Meiringer et al, 2011; Zink et al, 2009). Note that although this pathway shows COPI vesicles from the Golgi being 'received' exclusively at the ER, vesicles are also tethered and fused at the ERGIC. The SNAREs and tethering complexes that mediate this fusion are not identified.
R-HSA-6811425 (Reactome) After membrane fusion, the 4-membered cis-SNARE complex is dissociated in an ATP-dependent manner by SNAP and NSF (Mayer et al, 1996; Sollner et al, 1993; reviewed in Jahn and Scheller, 2006; Sudhof and Rothman, 2009).
R-HSA-6811426 (Reactome) COPI-mediated retrograde traffic is dependent on microtubules and the plus-end motor kinsesin. Although it is not shown in this reaction, vesicle translocation along the microtubules by kinesin depends on ATP hydrolysis (Lippincott-Scwartz et al, 1995; Stauber et al, 2006; Tomas et al, 2010)
R-HSA-6811427 (Reactome) While the details of COPI vesicle uncoating are not fully established, interactions between components of the NRZ tethering complex and coatomer may contribute to coat depolymerization and release (Zink et al, 2009; Ren et al, 2009; Tripathi et al, 2009; reviewed in Barlowe and Fink, 2013).
R-HSA-6811428 (Reactome) RAB proteins are required for the RINT-1/ZW10 and COG-dependent organization of the Golgi ribbon stack, and for the trafficking of proteins through the Golgi. Indeed, cargo traffic through the Golgi depends on the maintenance of the Golgi stacks (Hirose et al, 2004; Arasaki et al, 2006; Sun et al, 2007; reviewed in Liu and Storrie, 2015). RAB6 is the primary RAB protein involved in intra-Golgi trafficking; it also has roles in COPI-independent retrograde traffic from the Golgi to the ER. RAB6A is a widely expressed isoform, while RAB6B is restricted to neuronal tissue (Darchen and Goud, 2000). RAB6 is localized to the trans-Golgi network (TGN), and a GTP-locked constitutively active form induces concentration of Golgi enzymes into the ER (Ferrano et al, 2104; Jiang and Storrie, 2005; Martinex et al, 1997; Micaroni et al, 2013; Storrie et al, 2012; Sun et al, 2007; Young et al, 2005). Inactive RAB6:GDP is recruited to the TGN through interaction with the RIC1:RGP1 complex, which also acts as a guanine nucleotide exchange factor (GEF) for RAB6 (Pusapati et al, 2012; Siniossoglou et al, 2000; Siniossoglou et al, 2001).
R-HSA-6811429 (Reactome) The RIC1:RGP1 complex stimulates nucleotide exchange on trans-Golgi network (TGN)-localized RAB6, activating it (Pusapati et al, 2012; Siniossoglou et al 2001; Siniossoglou et al, 2000). Acitvated RAB6 nucleates a tethering complex at the TGN that is required for fusion of endosome-derived vesicles arriving at the late Golgi (Siniossoglou et al, 2001; Liewen et al, 2005; Perez-Victoria et al, 2008; Perez-Victoria et al, 2009; reviewed in Bonaficino and Hierro, 2011).
R-HSA-6811431 (Reactome) Active RAB6 contributes to the recruitment of the Golgi-associated retrograde protein (GARP) tethering complex to the TGN, where it aids in the capture of retrograde vesicles from the early endosome (Liewen et al, 2005; reviewed in Bonifacino and Hierro, 2011). Typical cargo of these vesicles includes resident TGN proteins such as TGOLN2 (also known as TGN46) and internalized Shiga toxin subunit B (STx-B) and cholera toxin (Perez-Victoria et al, 2008; Ganley et al 2008; Pusapati et al, 2012; reviewed in Pfeffer, 2011; Liu and Storrie, 2012). Two studies have identifed RAB43 and its associated GAP USP6NL as being required for the retrograde traffic of Shiga toxin, however the details of this remain to be worked out (Haas et al, 2007; Fuchs et al, 2007).
The human GARP complex consists of VPS54, VPS53, VPS52 and VPS51 and has been shown to interact with GTP-bound RAB6, with the TGN SNAREs STX10 and STX16 and with a vesicle fraction containing the v-SNARE VAMP4 (Connibear et al, 2000; Liewen et al, 2005; Perez-Victoria et al, 2009; Perez-Victoria et al, 2010; Siniossoglou and Pelham, 2002; reviewed in Bonafacino and Hierro, 2011).

Like the GARP complex, the conserved oligomeric Golgi (COG) complex has also been implicated in retrograde traffic of TGOLN2 and STx-B in a STX6:STX16:VTI1A and VAMP4-dependent manner, and COG has been shown to interact directly with RAB6 (Mallard et al, 2002; Fukuda et al, 2008; Laufman et al, 2011; reviewed in Pfeffer, 2011). Despite the representation in this reaction, however, there is not yet evidence that the GARP and the COG complexes act together to facilitate the capture of a single early endosome-derived vesicle.
In addition to the multisubunit tethering complexes COG and GARP, the long coiled-coil TGN-associated Golgins also contribute to tethering of vesicles derived from the early endosome (Luke et al, 2005; Derby et al, 2007; Reddy et al, 2006; Lu et al, 2004; Yoshino et al, 2005; Hayes et al, 2009; reviewed in Munro, 2011).
R-HSA-6811433 (Reactome) Octameric COG (Conserved Oligomeric Golgi) is a Golgi localized tethering complex that aids in the capture of vesicles during intra-Golgi traffic as well as the capture of retrograde vesicles from the endosome at the trans-Golgi network (Zolov and Lupashin, 2005; reviewed in Willet et al, 2013a). Consistent with this, the COG complex interacts with many of the proteins involved in vesicle targeting, including SNAREs, coat proteins and RABs, among others. At the Golgi, COG has been shown to interact with Golgi SNAREs STX6, STX6, STX16, GOSR1, GOSR2, BET1L, SNAP29, VPS45 and VTI1A, but not other Golgi SNAREs and not ERGIC-resident SNAREs (Suvorora et al, 2002; Laufman et al, 2009; Laufman et al, 2011; Laufman et al, 2013; Shestakova et al, 2007; Willet et al, 2013b). The function of each of these COG-Golgi SNARE interactions has not yet been characterized in full detail (reviewed in Willet et al, 2013a).
R-HSA-6814086 (Reactome) ARFRP1 regulates Golgi localization of ARL1, another ARF-like GTPase that itself recruits a number of Golgin-tethering factors to the TGN. Knockout strains of ARL3, the yeast homologue of ARFRP1, abrogates Golgi localization of both yeast Arl1p and the four yeast Golgin homologues, suggesting a cascade of ARL proteins is contributes to retrograde trafficking at the TGN (Setty et al, 2003; Setty et al, 2004; Behnia et al, 2004; Panic et al, 2003; reviewed in Munro, 2005; Bonafacino and Rojas, 2006). GEF and GAP proteins that regulate ARFRP1 and ARL1 activity have not yet been identified (reviewed in Munro, 2005).
R-HSA-6814088 (Reactome) Acetylation of the N-terminal methionine of ARFRP1 contributes to its interaction with the Golgi-localized membrane protein SYS1. ARFRP1 is part of an ARF cascade at the late or trans-Golgi, where it plays a role in retrograde traffic by recruiting ARL1, which in turn interacts with a number of Golgin tethering factors required for vesicle docking at the TGN (Behnia et al, 2004; Setty et al, 2004; Shin et al, 2005; reviewed in Bonifacino and Rojas, 2006; Munro, 2011).
R-HSA-6814090 (Reactome) ARFRP1 is an ARF family member GTPase that recruits ARL1 to the trans-Golgi network to play roles in retrograde trafficking of proteins from the endolysosomal system. ARFRP1 is an atypical ARF family member in that it is not myristolated, but is instead acetylated at the amino-terminal methionine by the NatC complex. Acetylation is required for the interaction of ARFRP1 with SYS1, which contributes to its targeting to its TGN (Behnia et al, 2004; Setty et al, 2004).
R-HSA-6814091 (Reactome) GTP-bound ARL1, in conjunction with RAB6 and/or RAB9, is responsible for the recruitment of the 4 trans-Golgi network associated Golgin tethering factors, GOLGA4 (also known as Golgin245), GOLGA1 (also known as Golgin97), GCC1 (also known as GCC88) and GCC2 (also known as GCC185) (Barr et al, 1999; van Valkenburgh et al, 2001; Panic et al, 2003a; Panic et al, 2003b; Wu et al, 2004; Setty et al, 2003; reviewed in Munro et al, 2011). These coiled-coil tethering factors act as homodimers and participate in the recruitment of early endolysosomal-derived vesicles to the TGN by virtue of interacting with SNAREs and RAB proteins (Luke et al 2005; Lieu et al, 2007; Burguette et al, 2008; Ganley et al, 2008; Hayes et al, 2009; reviewed in Munro et al, 2011; Pfeffer, 2011). Evidence suggests that the Golgin tethering proteins show specificity for different retrograde cargos. For instance, retrograde transport of Shiga toxin requires both GOLGA1 and GOLGA4, while GOLGA1 is dispensible for transport of mannose-6-phosphate receptors (Lu et al, 2004; Yoshino et al, 2005; Reddy et al, 2006). Similarly, GCC1, but not GCC2, is required for TGN46 retrograde transport (Lieu et al, 2007; Derby et al, 2007). A fifth TGN-localized Golgin, TMF1, may also function similarly in retrograde transport from the early endosomes as it has been shown to interact with RAB6 and to be required for retrograde transport of Shiga toxin (Fridmann-Sirkis et al, 2004; Yamane et al, 2007).

R-HSA-6814094 (Reactome) Two hybrid screening with human ARL1 as bait identified ARFIP2 as a novel ARL1:GTP-interacting partner (Van Valkenburgh et al, 2001). Interaction between ARFIP2 and ARL1 increases the amount of ARL1:GTP four-fold , although the significance of this is not clear (Van Vlakenburgh et al, 2001). ARFIP2 is also known to interact with RAC1 and to influence membrane ruffling (van Aelst et al, 1996; Tarricone et al, 2001)
R-HSA-6814096 (Reactome) Two hybrid screening with human ARL1 as bait identified SCOC as a novel ARL1:GTP-interacting partner (Van Valkenburgh et al, 2001). SCOC (short coiled coil) shares 26% identity and 51% homology with GOLGA2, binds ARL1:GTPagamma S as assessed by affinity chromatography and shows extensive colocalization wtih beta-COP and ARL1 at the Golgi, however the role of this complex is not known (Van Valkenbrugh et al, 2001). SCOC is also known to play roles in autophagy, as part of a complex with FEZ1 (McKnight et al, 2012; reviewed in Joachim et al, 2012).
R-HSA-6814670 (Reactome) ATP hydrolysis by RHOBTB is thought to promote uncoating of the late endosome-derived vesicle, releasing PLIN3/TIP47 in preparation for vesicle fusion (Espinosa et al, 2009; reviewed in Pfeffer, 2011).
R-HSA-6814671 (Reactome) After capture at the trans-Golgi network by SNAREs and tethering factors, late endosome-derived vesicles undergo membrane fusion, delivering cargo and the cis-SNARE complex to the TGN membrane. The details of this fusion event are not fully established (reviewed in Pfeffer, 2011).
R-HSA-6814674 (Reactome) RAB9 positive vesicles from the late endosomes are tethered at the trans-Golgi network (TGN) through interaction with the GARP complex, the TGN-specific Golgin GCC2 and a t-SNARE complex consisting of STX10, STX16 and VTI1A (Hayes et al, 2009; Derby et al, 2007; Reddy et al, 2006; Ganley et al, 2008; Perez-Victoria et al, 2009; Lombardi et al, 1993; Lieu et al, 2007; reviewed in Chia and Gleeson, 2014)
R-HSA-6814675 (Reactome) Retrograde traffic of mannose-6-phosphate receptors (M6PRs) from the late endosome depends on RAB9 (Lombardi et al, 1993; Riederer et al, 1994; Barbero et al, 2002; reviewed in Pfeffer, 2011). Cargo recognition at the late endosome is mediated by the RAB9-interacting protein PLIN3/TIP47, which concentrates retrograde cargo into VAMP3 RAB9 positive vesicles (Diaz et al, 1998; Carroll et al, 2001; Reddy et al, 2006; Ganley et al, 2008). RABEPK is another RAB9:GTP interacting protein that is required for retrograde transport of M6PR to the TGN (Diaz et al, 1997). At the trans-Golgi network, RAB9 and PILN3 interact with the atypical RHO GTPase related protein RHOBTB3. This interaction is required for the TGN-localization of RAB9 M6PR positive vesicles. Interaction of RAB9 with the C-terminal domain of RHOBTB3 relieves an inhibitory intramolecular interaction in RHOBTB3, allowing the N-terminal domain to achieve maximal ATP hydrolysis, which is thought to promote the release of PLIN3/TIP47 as a precursor to vesicle fusion at the TGN (Espinosa et al, 2009)
R-HSA-6814676 (Reactome) After membrane fusion, the 4-membered cis-SNARE complex is dissociated in an ATP-dependent manner by SNAP and NSF (Mayer et al, 1996; Sollner et al, 1993; reviewed in Jahn and Scheller, 2006; Sudhof and Rothman, 2009).
R-HSA-6814678 (Reactome) NSF-dependent hydrolysis of ATP is required to disassociate the cis-SNARE complex, releasing the SNAREs for further rounds of membrane fusion (Mayer et al, 1996; Muller et al, 1999; Muller et al, 2002; Otto et al, 1997; Whiteheart et al, 2004; Yu et al, 1999; Zhao et al, 2012; Shah et al, 2015; reviewed in Sudhof and Rothman, 2009).
R-HSA-6814682 (Reactome) After capture at the trans-Golgi network by SNAREs and tethering factors, early endosome-derived vesicles undergo membrane fusion, delivering cargo and the cis-SNARE complex to the TGN membrane. The details of this fusion event are not fully established (reviewed in Pfeffer, 2011).
R-HSA-6814683 (Reactome) NSF-dependent hydrolysis of ATP is required to disassociate the cis-SNARE complex, releasing the SNAREs for further rounds of membrane fusion (Mayer et al, 1996; Muller et al, 1999; Muller et al, 2002; Otto et al, 1997; Whiteheart et al, 2004; Yu et al, 1999; Zhao et al, 2012; Shah et al, 2015; reviewed in Sudhof and Rothman, 2009).
R-HSA-6814684 (Reactome) After membrane fusion, the 4-membered cis-SNARE complex is dissociated in an ATP-dependent manner by SNAP and NSF (Mayer et al, 1996; Sollner et al, 1993; reviewed in Jahn and Scheller, 2006; Sudhof and Rothman, 2009).
R-HSA-8847534 (Reactome) RAB GAP USP6NL stimulates the GTPase activity of RAB43, promoting hydrolysis of GTP. Both RAB43 and USP6NL have been identifed as contributing to the retrograde transport of Shiga toxin to the Golgi, however the details of their roles remain to be elucidated (Fuchs et al, 2007; Haas et al, 2007; reviewed in Pfeffer, 2011).
R-HSA-8847537 (Reactome) RAB43 contributes to the maintenance of Golgi structure and is required for the RAB6-dependent retrograde trafficking of Shiga toxin (Fuchs et al, 2007; Haas et al, 2007). RAB43 appears to be localized to the cis side of the Golgi, so the details of how and when it affects Shiga transport remain to be clarified (Dejgaard et al, 2007). Screens of human cells identified USP6NL as a RAB43-specific GTPase activating (GAP) protein that is also implicated in Shiga trafficking (Fuchs et al, 2007; Haas et al, 2007; reviewed in Pfeffer, 2011).
R-HSA-8847544 (Reactome) Dimeric medial Golgins CUX1 (also known as CASP) and GOLGA5 (also known as Golgin-84) act in conjunction with the COG complex to tether retrograde vesicles moving within the Golgi stacks (Bascom et al, 1999; Gillingham et al, 2002; Malsam et al, 2005; Sohda et al, 2007; Sohda et al, 2010; reviewedin Szul and Sztul, 2011). Intra-Golgi vesicles are COPI-dependent, but distinct from anterograde ERGIC-to-Golgi COPI vesicles by virtue of their cargo (generally returning Golgi and ER-resident enzymes to their appropriate location in the secretory pathway, and notably lacking p24 family members; other intra Golgi cargo includes toxins such as Shiga) and the SNARE complexes they interact with (Orci et al, 1997; Lanoix et al, 2001; Malsam et al, 2005). The yeast homologue of GOLGA5, COY1, shows a genetic interaction with yeast SNARE GOS1 (human GOSR1), suggesting the intra-Golgi vesicles may rely on a GOSR1:STX5:BET1L and YKT6 SNARE complex, though the identity of the t-SNARE complex remains to be substantiated (Gillingham et al, 2002; Sohda et al, 2010). Removal of the COPI-coat is required prior to CUX1- and GOLGA5-mediated vesicle tethering (Malsam et al, 2005). Intra-Golgi transport also depends on medial RAB protein RAB33b (Jiang et al, 2005; Valsdottir et al, 2001; Pusapati et al, 2012; Starr et al, 2010). Disruption of RAB33b abolishes retrograde traffic of Shiga toxin from the trans- to cis-Golgi, and abolishes the RAB6-dependent relocalization of Golgi resident enzymes. This suggests that RAB6 and RAB33b may form sequentially acting RAB cascade that mediates intra-Golgi traffic (Starr et al, 2010; Pusapati et al, 2012). RAB33b has also been shown to interact with the RAB6 GEF RIC1:RGP1, although the significance of this interaction is unclear. In addition, RAB33b interacts by co-immunoprecipitation with endosomal proteins RABEP1 (also known as Rabaptin-5), RABGEF1 (Rabex5) and KIF20A (Rabkinesin 6); the relevance of these interactions is likewise unknown (Valsdottir et al, 2001).
R-HSA-8847635 (Reactome) Formation of the cis-SNARE complex accompanies membrane fusion, releasing the intra-Golgi cargo into the subsequent Golgi stack and allowing tethering factors to be recycled for subsequent rounds of docking (reviewed in Sudhof and Rothman 2009; Hong and Lev, 2014).
R-HSA-8847637 (Reactome) The cis-SNARE complex of STX5:PalmC-YKT6:BET1L:GOSR1 binds the NSF hexamer and alpha-SNAPs prior to the energy dependent disassembly for reuse (reviewed in Sudhof and Rothman, 2009; Hong and Lev, 2014).
R-HSA-8847638 (Reactome) NSF-mediated ATP hydrolysis promotes disassembly of the cis-SNARE complex, allowing the SNAREs to be reused in subsequent rounds of vesicle fusion (reviewed in Sudhof and Rothman, 2009; Hong and Lev, 2014).
R-HSA-8847875 (Reactome) TRIP11, also known as GMAP210, is a cis-Golgi localized coiled coil Golgin with roles in anterograde and retrograde intra-Golgi trafficking (Infante et al, 1999; Pernet-Gallay et al, 2002). TRIP11 has an N-terminal amphipathic lipid packing sensor (ALPS) domain which binds preferentially to highly curved membranes such as those on veiscles, and a GRIP-related ARF binding (GRAB) domain at its C-terminus that binds to ARF1:GTP. This asymmetric binding allows TRIP11 to tether vesicles to the Golgi membrane. This asymmetric binding of TRIP11 is maintained in part by the fact that ARFGAP1 also contains an ALPS domain and therefore stimulates the GTPase activity of any ARF1:GTP that is present in the vesicular membrane (Drin et al, 2008; Cardenas et al, 2009; Gillingham et al, 2004).
R-HSA-8847880 (Reactome) Cytohesin (CYTH) proteins 1, 2, 3 and 4 are ARF guanine nucleotide exchange factors (GEFs) for ARF1 as well as other ARFs. Recruitment to the membrane is mediated by direct interaction with ARF1:GTP as well as an interaction between the CYTH plexstrin homology (PH) domain and the lipid membrane (Chardin et al, 1996; Betz et al, 1998; Mossessova et al, 1998; Cherfils et al, 1998; Franco et al, 1998; Osagawara et al, 2000; Malaby et al, 2013).
R-HSA-8847883 (Reactome) CYTH proteins stimulate the GTPase activity of ARF1, promoting the exchange of GTP for GDP and thereby inactivating ARF1 (Franco et al, 1998; Drin et al, 2008; reviewed in Jackson and Casanova, 2000).
R-HSA-8847887 (Reactome) Medial Golgi protein RAB33B binds to both components of the RAB6 GEF complex RIC1:RGP1, and interacts with the RIC1 subunit at a site that is distinct from the RAB6-interacting site. Activated RAB33B does not change the RAB6-directed GEF activity of the RIC1:RGP1 complex, nor does it affect RAB6 binding, however overexpression of RAB33B leads to loss of RAB6 from the Golgi (Starr et al, 2010; Pusapati et al, 2012). The significance of the interaction between RAB33B and the RIC1:RGP1 complex remains to be elucidated, however it is possible that RAB6 and RAB33B form a sequential RAB cascade that contributes to COPI-dependent retrograde traffic from the trans- to medial- Golgi.
R-HSA-8848484 (Reactome) Phospholipase A (PLA2) hydrolyzes the sn-2 position of phospholipids, releasing a fatty acid and a lysophospholipid (reviewed in Six and Dennis, 2000; Kudo and Murakami, 2002). A number studies have highlighted roles for a number of PLA2s in the maintenance of Golgi function and structure (de Figueiredo et al, 1998; de Figueiredo et al, 1999). PLAs may generate phospholipid and fatty acid products that recruit effectors of Golgi function and trafficking to the membrane or that affect downstream signaling pathways. Alternately, PLA2s may contribute directly to tubule formation at the Golgi through the production of the membrane-curvature inducing lysophospholipid (reviewed in Bechler et al, 2012). PLA2s may be recruited to the Golgi in response to changes in Ca2+ and/or cargo concentration that occur as a result of secretory traffic (Micaroni et al, 2010; San Pietro et al, 2009; Pulvirenti et al, 2008).
R-HSA-8849345 (Reactome) AGPAT3 is an acyltransferase that can act on lysophosphatidylcholine to generate phosphatidylcholine (Prasad et al, 2011; Echard at al, 1998). This activity may counter the membrane tubule-inducing activity of Golgi PLA2 enzymes, thus favouring COPI-dependent vesicle formation over COPI-indendent retrograde traffic. While many lysophospholipid acyltransferases are ER-localized, AGPAT3 has been shown to also be present at the Golgi membrane, making it well situated to counter PLA2 activity during membrane tubule formation (Drecktah et al, 2003; Schmidt et al, 2009; reviewed in Ha et al, 2012; Heffernan and Simpson, 2014).
R-HSA-8849348 (Reactome) COPI-independent retrograde traffic from the Golgi to the ER depends on RAB6 and involves formation of membrane tubules instead of classical transport vesicles. COPI-dependent and COPI-independent retrograde transport appear to have distinct cargo, as anti-COPI antibodies inhibit the traffic of KDEL-containing receptors, but not that of Shiga or Shiga-like toxins, or of Golgi-resident glycosylation enzymes (White et al, 1999; Girod et al, 1999). It is not yet clear how membrane tubules formation is initiated, however cargo type and concentration, as well as lipid composition may contribute (Martinez et al, 1997; Simpson et al, 2006; de Figueiredo et al, 1998; de Figueiredo et al, 1999; reviewed in Heffernan and Simpson 2014). The presence of sn2-lysophospholipids in the Golgi membrane generates curved membranes that are thought to favour tubule formation. Lysophospholipids are generated by the activity of phopholipase A2 enzymes that hydrolyze the fatty acid at the sn-2 position; this activity is counteracted by the activity of lysophospholipid acyltransferases (LPATs). The balance of these two activities at the Golgi membrane is thought to play a role in determining whether COPI-dependent or -independent transport is favoured (de Figueiredo et al, 1998; de Figueiredo et al, 1999; Schmidt et al, 2009; reviewed in Heffernan and Simpson, 2014). Recent studies have also implicated the coiled coil homodimer Bicaudal-D (BICD) proteins in COPI-independent retrograde traffic. BICD proteins bind RAB6:GTP with their C-terminal ends and the dynein:dynactin motor complex with their N-terminal ends and in this way are thought to facilitate the recruitment of motor proteins to the RAB6 retrograde pathway (Hoogenraad et al, 2001; Matanis et al, 2002; Young et al, 2005; Januschke et al, 2007).
R-HSA-8849350 (Reactome) Retrograde tubule formation may depend on the minus-end directed dynein-dynactin motor complex, which is recruited to the Golgi through interaction with both RAB6 and BICD (Short et al, 2002; Hoogenraad et al, 2001; Matanis et al, 2002; Young et al, 2005; Januschke et al, 2007). Interaction of dynein:dynactin with RAB6:GTP activates the motor protein by displacing the PAFAH1B1 protein, which otherwise keeps the motor "idling" (Yamada et al, 2013; reviewed in Heffernan and Simpson, 2014).
R-HSA-8849353 (Reactome) The RAB6 pathway moves select retrograde cargo from the Golgi to the ER in a motor-dependent manner, although the precise details of this translocation remain to be worked out (Girod et al, 1999; White et al, 1999; reviewed in Heffernan and Simpson, 2014). Active RAB18 at the ER membrane may contribute to targeting and fusion of COPI-independent retrograde carriers through interaction with ER-localized tethering factors (Dejgaard et al, 2008; Gerondopoulos et al, 2014; Gillingham et al, 2014)
R-HSA-8849748 (Reactome) Large scale screens have identified numerous RAB proteins that interact with components of the COG complex (Fukuda et al, 2008; Miller et al, 2013; reviewed in Willet et al, 2013). Although RAB proteins are known to play key roles in trafficking and Golgi structure and function, the significance of some of these interactions is not yet clear (Kelly et al, 2012; Liu et al, 2013; reviewed in Liu and Storrie, 2015).
R-HSA-8850040 (Reactome) RAB18 is a highly conserved RAB GTPase with roles in Golgi to ER trafficking, lipid droplet formation and the regulation of secretory granules and peroxisomes (Dejgaard et al, 2008; Gerondopoulos et al, 2014; Martin et al, 2005; Ozeki et al, 2005; Vazquez-Martinez et al, 2007; Gronemeyer et al, 2013). RAB18 is recruited to the ER membrane by the RAB18 GEF complex RAB3GAP1:RAB3GAP2, a complex that was initially identified and characterized for its GAP activity towards RAB3 (Gerondopoulos et al, 2013; Fukui et al, 1997; Nagano et al, 1998).
R-HSA-8850041 (Reactome) The RAB3GAP1:RAB3GAP2 complex promotes nucleotide exchange of RAB18 at the ER membrane, activating it (Gerondopoulos et al, 2014). How active RAB18 contributes to COPI-independent retrograde Golgi-to-ER traffic remains to be worked out, however a role in tubule tethering is postulated based on the interaction of RAB18 with components of the ER localized NRZ tethering factor (Dejgaard et al, 2008; Gerondopoulos et al, 2014; Gillingham et al, 2014).
RAB18:GDPR-HSA-8850040 (Reactome)
RAB1:GDPArrowR-HSA-6811427 (Reactome)
RAB1:GTP:GBF1:ARF:GDPArrowR-HSA-6811411 (Reactome)
RAB1:GTP:GBF1:ARF:GDPR-HSA-6811414 (Reactome)
RAB1:GTP:GBF1:ARF:GDPmim-catalysisR-HSA-6811414 (Reactome)
RAB1:GTP:GBF1:ARF:GTP:coatomer:p24 dimers:ARFGAPs:SEC22B:cargoArrowR-HSA-6811417 (Reactome)
RAB1:GTP:GBF1:ARF:GTP:coatomer:p24 dimers:ARFGAPs:SEC22B:cargoR-HSA-6811418 (Reactome)
RAB1:GTP:GBF1:ARF:GTP:coatomer:p24 dimers:ARFGAPs:SEC22B:cargomim-catalysisR-HSA-6811418 (Reactome)
RAB1:GTP:GBF1:ARF:GTP:coatomerArrowR-HSA-6811412 (Reactome)
RAB1:GTP:GBF1:ARF:GTP:coatomerR-HSA-6811417 (Reactome)
RAB1:GTP:GBF1:ARF:GTPArrowR-HSA-6811414 (Reactome)
RAB1:GTP:GBF1:ARF:GTPR-HSA-6811412 (Reactome)
RAB1:GTP:GBF1ArrowR-HSA-6811415 (Reactome)
RAB1:GTP:GBF1R-HSA-6811411 (Reactome)
RAB1:GTP:coatomer:p24 dimers:SEC22B:cargo:NBAS:RINT1:ZW10:STX18:USE1L:BNIP1ArrowR-HSA-6811423 (Reactome)
RAB1:GTP:coatomer:p24 dimers:SEC22B:cargo:NBAS:RINT1:ZW10:STX18:USE1L:BNIP1R-HSA-6811427 (Reactome)
RAB1:GTP:coatomer:p24 dimers:SEC22B:cargoArrowR-HSA-6811418 (Reactome)
RAB1:GTP:coatomer:p24 dimers:SEC22B:cargoR-HSA-6811426 (Reactome)
RAB1:GTP:coatomer:p24 dimers:SEC22B:kinesins:microtubulesArrowR-HSA-6811426 (Reactome)
RAB1:GTP:coatomer:p24 dimers:SEC22B:kinesins:microtubulesR-HSA-6811423 (Reactome)
RAB1:GTPR-HSA-6811415 (Reactome)
RAB33B:GTP:RIC1:RGP1ArrowR-HSA-8847887 (Reactome)
RAB33B:GTPArrowR-HSA-8847544 (Reactome)
RAB33B:GTPR-HSA-8847887 (Reactome)
RAB3GAP1:RAB3GAP2:RAB18:GDPArrowR-HSA-8850040 (Reactome)
RAB3GAP1:RAB3GAP2:RAB18:GDPR-HSA-8850041 (Reactome)
RAB3GAP1:RAB3GAP2:RAB18:GDPmim-catalysisR-HSA-8850041 (Reactome)
RAB3GAP1:RAB3GAP2:RAB18:GTPArrowR-HSA-8850041 (Reactome)
RAB3GAP1:RAB3GAP2R-HSA-8850040 (Reactome)
RAB43:GDP:USP6NLArrowR-HSA-8847534 (Reactome)
RAB43:GTP:USP6NLArrowR-HSA-8847537 (Reactome)
RAB43:GTP:USP6NLR-HSA-8847534 (Reactome)
RAB43:GTP:USP6NLmim-catalysisR-HSA-8847534 (Reactome)
RAB43:GTPArrowR-HSA-6811431 (Reactome)
RAB43:GTPR-HSA-8847537 (Reactome)
RAB6:GDP:RIC1:RGP1ArrowR-HSA-6811428 (Reactome)
RAB6:GDP:RIC1:RGP1R-HSA-6811429 (Reactome)
RAB6:GDP:RIC1:RGP1mim-catalysisR-HSA-6811429 (Reactome)
RAB6:GDPArrowR-HSA-6814682 (Reactome)
RAB6:GDPR-HSA-6811428 (Reactome)
RAB6:GTP:BICD dimer:COPI-independent retrograde cargo:Dynein:Dynactin:microtubulesArrowR-HSA-8849350 (Reactome)
RAB6:GTP:BICD dimer:COPI-independent retrograde cargo:Dynein:Dynactin:microtubulesR-HSA-8849353 (Reactome)
RAB6:GTP:BICD dimer:COPI-independent retrograde cargoArrowR-HSA-8849348 (Reactome)
RAB6:GTP:BICD dimer:COPI-independent retrograde cargoR-HSA-8849350 (Reactome)
RAB6:GTP:COPI-independent retrograde Golgi-to-ER cargoArrowR-HSA-8849353 (Reactome)
RAB6:GTP:RIC1:RGP1:GARP complex:COG complex:AcM-ARFRP1:GTP:SYS1:MyrG-ARL1:GTP:Golgin dimers:STX6:STX16:VTI1A:VAMP4:early endosome-to-TGN cargoArrowR-HSA-6811431 (Reactome)
RAB6:GTP:RIC1:RGP1:GARP complex:COG complex:AcM-ARFRP1:GTP:SYS1:MyrG-ARL1:GTP:Golgin dimers:STX6:STX16:VTI1A:VAMP4:early endosome-to-TGN cargoR-HSA-6814682 (Reactome)
RAB6:GTP:RIC1:RGP1ArrowR-HSA-6811429 (Reactome)
RAB6:GTP:RIC1:RGP1R-HSA-6811431 (Reactome)
RAB6:GTPR-HSA-8849348 (Reactome)
RAB9:GDPArrowR-HSA-6814671 (Reactome)
RAB9:GTP:PLIN3:p-RABEPK:late-endosome-to-TGN cargo:VAMP3:RHOBTB3:ATPArrowR-HSA-6814675 (Reactome)
RAB9:GTP:PLIN3:p-RABEPK:late-endosome-to-TGN cargo:VAMP3:RHOBTB3:ATPR-HSA-6814670 (Reactome)
RAB9:GTP:PLIN3:p-RABEPK:late-endosome-to-TGN cargo:VAMP3:RHOBTB3:ATPmim-catalysisR-HSA-6814670 (Reactome)
RAB9:GTP:PLIN3:p-RABEPK:late-endosome-to-TGN cargo:VAMP3R-HSA-6814675 (Reactome)
RAB9:GTP:p-RABEPK:VAMP3:STX16:STX10:VTI1A:GARP complex:GCC2 dimer:late-endosome-to-TGN cargoArrowR-HSA-6814674 (Reactome)
RAB9:GTP:p-RABEPK:VAMP3:STX16:STX10:VTI1A:GARP complex:GCC2 dimer:late-endosome-to-TGN cargoR-HSA-6814671 (Reactome)
RAB9:GTP:p-RABEPK:VAMP3:late endosome-to-TGN cargoArrowR-HSA-6814670 (Reactome)
RAB9:GTP:p-RABEPK:VAMP3:late endosome-to-TGN cargoR-HSA-6814674 (Reactome)
RABEPKArrowR-HSA-6814671 (Reactome)
RHOBTB3:ADPArrowR-HSA-6814670 (Reactome)
RHOBTB3:ATPR-HSA-6814675 (Reactome)
RIC1:RGP1ArrowR-HSA-6814682 (Reactome)
RIC1:RGP1R-HSA-6811428 (Reactome)
RIC1:RGP1R-HSA-8847887 (Reactome)
SCOC:MyrG-ARL1:GTPArrowR-HSA-6814096 (Reactome)
SCOCR-HSA-6814096 (Reactome)
SEC22B:STX18:USE1:BNIP1L:3xSNAPs:NSF hexamerArrowR-HSA-6811425 (Reactome)
SEC22B:STX18:USE1:BNIP1L:3xSNAPs:NSF hexamerR-HSA-6811422 (Reactome)
SEC22B:STX18:USE1:BNIP1L:3xSNAPs:NSF hexamermim-catalysisR-HSA-6811422 (Reactome)
SEC22B:STX18:USE1L:BNIP1ArrowR-HSA-6811427 (Reactome)
SEC22B:STX18:USE1L:BNIP1R-HSA-6811425 (Reactome)
SEC22BArrowR-HSA-6811422 (Reactome)
SEC22BR-HSA-6811417 (Reactome)
SNAPsArrowR-HSA-6811422 (Reactome)
SNAPsArrowR-HSA-6814678 (Reactome)
SNAPsArrowR-HSA-6814683 (Reactome)
SNAPsArrowR-HSA-8847638 (Reactome)
SNAPsR-HSA-6811425 (Reactome)
SNAPsR-HSA-6814676 (Reactome)
SNAPsR-HSA-6814684 (Reactome)
SNAPsR-HSA-8847637 (Reactome)
STX10:STX16:VTI1A:VAMP3:NSF hexamer:SNAPsArrowR-HSA-6814676 (Reactome)
STX10:STX16:VTI1A:VAMP3:NSF hexamer:SNAPsR-HSA-6814678 (Reactome)
STX10:STX16:VTI1A:VAMP3:NSF hexamer:SNAPsmim-catalysisR-HSA-6814678 (Reactome)
STX10:STX16:VTI1A:VAMP3ArrowR-HSA-6814671 (Reactome)
STX10:STX16:VTI1A:VAMP3R-HSA-6814676 (Reactome)
STX10:STX16:VTI1AR-HSA-6814674 (Reactome)
STX10ArrowR-HSA-6814678 (Reactome)
STX16ArrowR-HSA-6814678 (Reactome)
STX16ArrowR-HSA-6814683 (Reactome)
STX18:USE1L:BNIP1R-HSA-6811423 (Reactome)
STX18ArrowR-HSA-6811422 (Reactome)
STX5:PalmC-YKT6:BET1L:GOSR1:NSF hexamer:3xSNAPsArrowR-HSA-8847637 (Reactome)
STX5:PalmC-YKT6:BET1L:GOSR1:NSF hexamer:3xSNAPsR-HSA-8847638 (Reactome)
STX5:PalmC-YKT6:BET1L:GOSR1:NSF hexamer:3xSNAPsmim-catalysisR-HSA-8847638 (Reactome)
STX5:PalmC-YKT6:BET1LR-HSA-8847544 (Reactome)
STX5ArrowR-HSA-8847638 (Reactome)
STX6:STX16:VTI1A:VAMP4:NSF hexamer:3xSNAPsArrowR-HSA-6814684 (Reactome)
STX6:STX16:VTI1A:VAMP4:NSF hexamer:3xSNAPsR-HSA-6814683 (Reactome)
STX6:STX16:VTI1A:VAMP4:NSF hexamer:3xSNAPsmim-catalysisR-HSA-6814683 (Reactome)
STX6:STX16:VTI1A:VAMP4ArrowR-HSA-6814682 (Reactome)
STX6:STX16:VTI1A:VAMP4R-HSA-6814684 (Reactome)
STX6:STX16:VTI1AR-HSA-6811431 (Reactome)
STX6ArrowR-HSA-6814683 (Reactome)
STX:PalmC-YKT6:BET1L:GOSR1ArrowR-HSA-8847635 (Reactome)
STX:PalmC-YKT6:BET1L:GOSR1R-HSA-8847637 (Reactome)
SYS1R-HSA-6814088 (Reactome)
TGN Golgin dimersR-HSA-6814091 (Reactome)
TRIP11:cargoR-HSA-8847875 (Reactome)
USE1ArrowR-HSA-6811422 (Reactome)
USP6NLR-HSA-8847537 (Reactome)
VAMP3ArrowR-HSA-6814678 (Reactome)
VAMP4:early

endosome-to-TGN

cargo
R-HSA-6811431 (Reactome)
VAMP4ArrowR-HSA-6814683 (Reactome)
VTI1AArrowR-HSA-6814678 (Reactome)
VTI1AArrowR-HSA-6814683 (Reactome)
cPLA2smim-catalysisR-HSA-8848484 (Reactome)
coatomerArrowR-HSA-6811427 (Reactome)
coatomerR-HSA-6811412 (Reactome)
early

endosome-to-TGN

cargo
ArrowR-HSA-6814682 (Reactome)
fatty acidArrowR-HSA-8848484 (Reactome)
intra-Golgi

cargo:GOLGA5

dimer:GOSR1
R-HSA-8847544 (Reactome)
intra-Golgi cargoArrowR-HSA-8847635 (Reactome)
late-endosome-to-TGN cargoArrowR-HSA-6814671 (Reactome)
other

COG-interacting

RABs
R-HSA-8849748 (Reactome)
other COG interacting snaresR-HSA-6811433 (Reactome)
p24 dimersArrowR-HSA-6811427 (Reactome)
p24 dimersR-HSA-6811417 (Reactome)
Personal tools