Mitochondrial translation (Homo sapiens)

From WikiPathways

Revision as of 14:44, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
2, 5, 7, 12, 13, 15...206, 8, 11, 19, 24...1, 1538, 10, 19, 21, 32153228151, 4, 15mitochondrial matrixMRPL16 MRPL1 MRPS5 MRPS12 GTP MRPL42 MRPS34 MRPL2 MRPL24 MRPL4 MRPL48 MRPL20 tRNA(Pro) MRPS9 MRPS18B MRPL37 MRPS7 MRPL28 MRPS14 MRPL14 MRPL42 MRPS18C tRNA(Ala) MRPL43 Gly-tRNA(Gly) MRPL16 MRPS25 MRPS9 MRPL9 MRPL36 MRPS27 MRPL12 MRPL34 MRPL35 TUFM GTPMRPS21 MRPL33 MRPS31 MRPS12 MRPS26 MRPS28 MRPL46 MRPL41 MRPL46 ICT1 MRPL44 Asp-tRNA(Asp) GADD45GIP1 MRPL17 MRPS21 MRPL9 MRPS11 Met-tRNA(Met) MRPS26 Ser-tRNA(Ser) MRPS10 MRPS5 MRPL33 MRPS6 fMet-tRNA(fMet) MRPS7 tRNA(Thr) MRPL43 MRPL12 MRPL47 MRPS26 MRPL57 mRNA MRPL11 MRPL24 Gln-tRNA(Gln) tRNA(Gly) MRPL57 MRPS18A MRPS18B MRPL15 MRPS5 MRPL40 39S ribosomalsubunitLys-tRNA(Lys) tRNA(Ala) MRPS25 MRPS24 MRPS21 THFMRPL22 MRPL10 Mitochondrial 16S rRNA MRPS33 MRPL27 MRPS21 MRPL42 ERAL1 MRPL45 MRPS25 MRPS35 tRNA(Glu) MRPL19 MRPS28 MRPS33 MRPL28 MRPL49 MRPL35 MRPL57 tRNA(Ser) MRPL42 MRPL28 GFM2 ERAL1 Gly-tRNA(Gly) AURKAIP1 MT-TV MRPL36 MRPS35 MRPL39 tRNA(Val) MRPS15 MRPL44 tRNA(Gln) MRPL45 MRPL17 MRPL55 tRNA(Arg) ICT1 MRPL21 aminoacyl-tRNAMRPS12 MRPL10 tRNA(Phe) MRPS27 MRPS31 MRPL46 ICT1 MRPS23 MRPL4 MRPL14 MRPS25 PTCD3 MRPL32 MRPS28 MRPL43 MRPL27 MRPL10 MRPS18A MRPL34 Trp-tRNA(Trp) MRPL35 TSFM MRPL4 Mitochondrial 16S rRNA MRPL2 MRPS24 MRPS26 tRNA(Thr) Asn-tRNA(Asn) MRPL47 MRPL48 MRPL27 MRPL33 MRPL57 Asp-tRNA(Asp) MRPS16 MRPS36 PiMRPS27 DAP3 MRPL4 MRPS22 MRPL21 MRPL22 His-tRNA(His) MRPS12 MRPL37 mRNA MRPS24 MRPS17 MRPL43 MRPS14 MRPS11 Tyr-tRNA(Tyr) MRPS35 MRPL15 MRPL48 MRPS17 MRPL50 MRPL43 fMet-tRNA(fMet) MRPL9 tRNA(Asn) MRPS18B MRPL52 MRPL39 MRPL32 MRPL36 MRPL11 His-tRNA(His) PTCD3 CHCHD1 MRPL57 Leu-tRNA(Leu) MRPL43 MRPL38 MRPS34 MRPS30 MRPL4 TUFM tRNA(Thr) MRPL35 MRPS2 MRPS10 MRPS18C PiMRPS18C MRPL20 Mitochondrial 12S rRNA tRNA(His) MRPL34 MRPL33 MRPL17 MRPS26 MRPL12 GDP MRPS36 MRPS24 MRPS16 MRPS33 Lys-tRNA(Lys) MRPL36 ERAL1 MRPS11 MRPL40 MRPL39 MRPL20 TUFM Mitochondrial 12S rRNA MT-TV MRPL10 MRPS10 MRPS16 Val-tRNA(Val) TUFM MRPL42 MRPL4 CHCHD1 MRPS23 MRPS17 MRPL36 MRPS9 MRPS22 MRPS12 MRPL49 MRPS7 MRPS26 Asn-tRNA(Asn) MRPS16 MRPL9 AURKAIP1 MRPS14 TUFM:GTPMRPS27 MT-TV Mitochondrial 12S rRNA GADD45GIP1 GTP MRPL16 MRPS33 AURKAIP1 MRPL17 MRPS36 MRPS11 MRPL47 MRPL54 MRPS15 MRPL43 MRPS2 MRPL49 MRPS2 Mitochondrial 12S rRNA 55Sribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPMRPL12 MRPS24 mRNA MRPL11 MRPS5 MRPL53 MRPL57 MRPS18B MRPS18C MRPS36 MRPL14 GFM1 MRPL22 MRPL27 Gly-tRNA(Gly) MRPL3 MRPL22 MRPL55 MRPL12 MRPL2 MRPS14 tRNA(His) Asp-tRNA(Asp) MRPS21 MRPS27 mRNA ICT1 MRPS6 MRPL41 MRPL15 MRPL9 MRPL52 MRPL11 Mitochondrial 16S rRNA ICT1 MRPL42 tRNA(Ser) MRPL3 MRPL51 MRPS34 MRPL3 tRNA(Pro) TUFM:TSFMtRNA(Leu) MRPS17 MRPS15 MRPL30 55Sribosome:mRNA:fMet-tRNAMRPL28 MRPS18C MRPS2 MRPS18B MRPL37 MRPS12 MRPS9 MRPL40 MRPS6 AURKAIP1 MRPL51 MRPL57 DAP3 MRPS33 MRPS36 MRPL30 MRPL55 MRPL45 MRPL40 MRPS23 MRPS30 MRPL16 CHCHD1 MRPL43 MRPL52 MRPS10 MRPL55 MRPS11 MRPL32 Arg-tRNA(Arg) MRPS6 ERAL1 MRRF MRPS2 MRPL24 MRPS15 MRPS17 MRPL47 Met-tRNA(Met)PTCD3 DAP3 MRPL36 MRPS11 MRPL13 MRPL37 MRPL27 tRNA(Ile) 28S ribosomalsubunit:MTIF3MRPL12 MRPL48 MRPL37 MRPS17 MRPS9 MRPL10 Ser-tRNA(Ser) MRPS30 MRPS7 MRPL13 MRPL48 ICT1 peptidyl-tRNA with elongated peptide mRNA MRPL46 MRPL24 GADD45GIP1 MRPL1 MRPL35 MRPL15 MRPS26 MRPL15 MRPL51 MRPS2 MRPS33 MRPL9 MRPL34 MTIF3 MRPL24 tRNA(Trp) MRPS31 MRPS36 MT-TV MRPS35 MRPS30 MRPS15 MRPL3 MRPL14 MRPS28 MRPL34 MRPL49 MRPS15 tRNA(Lys) MRPS14 Arg-tRNA(Arg) MRPS30 MRPS25 ERAL1 MRPL11 Ile-tRNA(Ile) MRPL52 MRPL54 MRPL51 MRPS31 MRPL21 MRPL23 MRPS18A Pro-tRNA(Pro) MRPS12 MRPL13 MRPL21 MRPL2 AURKAIP1 MRPL39 GADD45GIP1 MRPS34 tRNA(Leu) MRPL49 MRPS15 MRPS21 MRPL9 MRPS14 MRPL51 MT-TV MRPL15 Glu-tRNA(Glu) 55Sribosome:mRNA:tRNAMRPS34 MRPS15 MRPL22 MRPS25 MRPS14 MRPS36 ICT1 MRPL53 Lys-tRNA(Lys) MRPL32 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNAMRPL51 MRPL48 MRPL30 Thr-tRNA(Thr) MRPL10 MRPL16 MRPS22 MRPS7 MRPS11 MRPL2 MRPL41 MRPL13 MRPL32 MRPL1 GTP MRPL20 MRPS22 MRPL15 MRPS25 MRPS18C MRPL35 Mitochondrial 16S rRNA MRPL14 MRPL45 GTP GTP 55Sribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPMRPS18B MRPS23 MRPL46 MRPL54 MRPL32 tRNA(Gly) TUFM:GTP:aminoacyl-tRNAtRNA(Phe) MRPL45 MRPS18C Tyr-tRNA(Tyr) Leu-tRNA(Leu) MRPL21 MRPS6 MRPL23 MRPL48 MRPL27 MRPL18 fMet-tRNA(fMet) MRPL27 MRPS15 MT-TV DAP3 GADD45GIP1 MRPL37 AURKAIP1 PTCD3 MRPS9 MRPS30 MRPS12 MRPL4 MRPS33 MRPL55 MTFMTERAL1 MRPL23 MRPL50 MRPL19 Phe-tRNA(Phe) MRPS11 MRPL54 MRPS23 MRPS34 MRPL23 ERAL1 GFM1 MRPL19 ICT1 MRPL20 MRPS23 MRPL19 MRPL33 MRPL38 MRPL38 MRPL16 MRPL13 MTRF1L CHCHD1 MRPL10 MRPL45 MRPS16 MRPL41 CHCHD1 MRPL24 Trp-tRNA(Trp) tRNA(Lys) MRPL40 MRPS17 MRPS6 PTCD3 MRPS31 GFM2 MRPS22 MRPS24 MRPL35 MRPL30 MRPL9 MRPL39 PTCD3 MRPS21 MRPL36 MRPL30 MRPL33 Mitochondrial 16S rRNA MRPS17 MRPS30 MRPL35 tRNA(Val) MRPS14 MRPS6 MRPS5 MRPL15 MRPS22 MRPS18C MRPS9 tRNA(Phe) MRPL57 MRPS15 MRPL28 MRPL19 MRPS22 MRPL1 ICT1 MRPL12 MRPL40 MRPL15 MRPL37 GDPCHCHD1 DAP3 MRPL18 tRNA(Leu) MRPS30 MRPL38 MRPL19 peptidyl-tRNA with elongated peptide MRPL40 MRPS23 MRPS12 MRPL52 MRPL33 MRPL22 Gln-tRNA(Gln) MRPL39 GFM2 MRPS21 GADD45GIP1 MRPL55 MRPS35 DAP3 MRPL22 tRNA(Arg) tRNA(Arg) MRPL20 Leu-tRNA(Leu) MRPL39 MRPL12 ICT1 GTP His-tRNA(His) MRPS35 MRPS18A MRPS10 Mitochondrial 12S rRNA MRPL38 MRPL23 PiMRPL3 Glu-tRNA(Glu) MRPS23 Pro-tRNA(Pro) MRPL48 MRPL24 Mitochondrial 12S rRNA MRPS18A MRPS31 MRPS31 MRPL2 MRPL53 tRNA(Val) PTCD3 CHCHD1 MRPS34 ERAL1 MRPL21 MRPL23 MRPS31 MRPL49 MRPS23 Arg-tRNA(Arg) MRPL22 MRPL46 MRPL52 MRPL36 MRPL38 MRPL53 Tyr-tRNA(Tyr) ERAL1 MRPS18B MT-TV MRPS18A MRPS10 MRPL49 Glu-tRNA(Glu) MRPS18B Cys-tRNA(Cys) MRPL34 MRPL36 MRPS18A MRPL19 MRPL23 MRPS7 MRPL45 MRPS21 MRPL11 MRPL1 MRPL10 28Sribosomalsubunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNAMRPL2 MRPL46 MTIF2 MTRF1L, ICT1DAP3 MRPS21 MRPL43 MRPL34 MRPS12 MRPS23 MRPL17 tRNA(Met) MRPL47 MRPL22 MRPS25 PTCD3 MRPL45 MRPL40 MRPL37 MRPS34 Ser-tRNA(Ser) MRPL3 GDP 10-formyl-THFMRPL46 MRPL16 MRPS18B MRPS18B MRPL45 GADD45GIP1 MRPS6 MTIF3 MRPL55 MRPS30 MRPL52 MRPL52 MRPS7 MRPL13 Val-tRNA(Val) MRPS7 mRNA 55Sribosome:mRNA:tRNA:peptidyl-tRNA at A-siteERAL1 MRPL48 MRPS23 peptidyl-tRNA with elongated peptide MRPS31 MRPS15 MRPL2 fMet-tRNA(fMet) MRPL46 MRPL44 Mitochondrial 16S rRNA MRPL14 CHCHD1 MRPL47 ICT1 MRPL28 MRPS36 MRPL57 MRPL17 Mitochondrial 12S rRNA MRPL13 PTCD3 MRPL9 MTIF2:GTPMRPS33 MRPS30 MRPS14 MRPL3 MRPS31 MRPL35 MRPL53 MRPS24 MRPS7 mRNA MRPS2 MRPL50 MRPS11 MRPS10 CHCHD1 MRPS33 AURKAIP1 MRPS22 MRPS10 MRPS14 MRPS36 MRPS30 MRPS25 MRPL51 MRPL13 MRPL2 MRPL32 AURKAIP1 GFM2:GTPtRNA(Tyr) MRPL44 MRPS11 MRPL3 MRPL32 MRPL57 MRPS24 GTP DAP3 MRPS5 MRPL54 55Sribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPMRPS2 MRPS26 AURKAIP1 MRPS11 MRPL18 MRPS28 mRNA MRPS31 GTP tRNA(Cys) MRPS16 MRPS18A MRPL49 GFM1:GTPMRPL49 MRPS9 MT-TV MRPS6 MRPL19 MRPS16 MRPL22 MRPL40 MRPS28 GTP MRPL46 tRNA(Glu) tRNA(Glu) MRPL13 MRPL35 MRPL42 MRPL4 MRPS17 MRPL19 MRPS26 MRPL50 CHCHD1 Val-tRNA(Val) MRPS7 MRPL50 MRPS5 55Sribosome:mRNA:peptidyl-tRNA at P-sitetRNA(Gln) MRPL50 MRPS22 tRNA(Asn) MRPS33 MRPS7 MRPL53 Val-tRNA(Val) MRPL47 MRPL50 MRPL24 Asp-tRNA(Asp) CHCHD1 MRPL49 MRPL33 MRPS10 MRPS18C MRPL42 MRPL4 AURKAIP1 MRPS27 MRPS36 Gln-tRNA(Gln) MRPL34 MRPL47 Lys-tRNA(Lys) tRNA(Met)MRPS2 MRPL14 Asn-tRNA(Asn) tRNA(Ile) MRPL38 MRPS2 Phe-tRNA(Phe) tRNA(Cys) MRPS28 MRPL41 PTCD3 MRPL17 Ala-tRNA(Ala) Cys-tRNA(Cys) ERAL1 MRPL45 MRPL30 MRPL54 Mitochondrial 12S rRNA His-tRNA(His) MRPS18A Cys-tRNA(Cys) MRPL13 MRPS35 MRPS2 MRPL44 MRPL18 MRPS27 MRRFMRPL38 MRPL36 MRPS15 MRPL42 PTCD3 PTCD3 MRPS28 MRPS10 MRPS12 MRPS6 MRPL33 MRPL28 MRPL53 GFM1 MRPL41 TSFMMRPS5 MRPL11 MRPL1 MRPL53 Glu-tRNA(Glu) MRPL32 MRPL16 MRPL9 MRPL24 CHCHD1 MRPL52 Mitochondrial 12S rRNA MRPL43 Ala-tRNA(Ala) MRPL23 MRPS35 MRPL18 MRPL4 tRNA(Ala) MRPS28 Mitochondrial 16S rRNA MTRF1L MTIF2MRPS6 MRPS6 MRPS23 MRPS35 MRPL28 MRPL55 mRNADAP3 MRPL32 MRPL55 MRPS23 MRPL50 polypeptideMRPS22 MRPS33 MRPL9 MRPS21 MRPL23 MRPS18A Mitochondrial 12S rRNA MRPS12 MRPL41 MRPS18A tRNA(Tyr) peptidyl-tRNA with elongated peptide tRNA(Asp) MRPS17 Gly-tRNA(Gly) Mitochondrial 12S rRNA MRPS17 Asn-tRNA(Asn) MRPL39 MRPL44 mRNA MRPL41 MRPL18 MRPL53 TUFM:GDPMRPS2 Ile-tRNA(Ile) MRPL53 MRPL18 MRPL54 MRPL33 MRPL38 MRPS7 MRPL14 MRPS31 MRPL34 MRPL48 MRPS22 MRPL18 MRPL32 MRPL41 MRPL11 MRPL40 MRPS14 MRPL53 GDPMRPL30 GDP MRPL18 MRPS6 MRPL20 MRPS18C MRPL1 MRPS26 Mitochondrial 12S rRNA Ile-tRNA(Ile) Thr-tRNA(Thr) MRPS24 tRNA(Pro) MRPL50 Ile-tRNA(Ile) MRPL10 MRPS34 MRPL15 MRPL3 MRPL22 MRPS12 DAP3 MRPS18C MRPL17 MRPL21 MRPL48 mRNA Mitochondrial 12S rRNA Phe-tRNA(Phe) Cys-tRNA(Cys) MRPL18 MRPS14 MRPS27 MRPS9 MRPL20 MRPL41 MRPS9 MRPS28 MRPS36 Tyr-tRNA(Tyr) GDPMRPS18B DAP3 MRPS16 MRPS36 TUFM MRPS10 MRPL12 MRPL11 MRPL30 MRPL24 MRPL39 MRPS25 tRNA(Asp) MRPL11 ICT1 MRPL44 Ser-tRNA(Ser) MRPS16 MRPL19 MRPS24 55Sribosome:MRRF:GFM2:GTPMRPL50 tRNA(Ile) MRPS24 MRPL13 tRNA(Met) tRNA(Lys) GFM1:GDPMRPL52 MRPS34 MRPS18A MRPS9 MRPL10 MRPL21 Mitochondrial 16S rRNA MRPL44 tRNAMRPL54 MRPS21 MRPL15 MRPL55 tRNA(Gly) MRPS22 MRPS35 MRPL40 MT-TV MRPL17 MRPL17 MRPS25 MRPS16 MRPL1 PiGADD45GIP1 Met-tRNA(Met) MRPS9 MRPL47 MRPS5 MRPS18C MRPS21 MRPL23 MRPS22 MRPL43 MRPS27 MRPL47 MRPL39 MRPL16 MRPS11 MRPL14 MRRF MRPS18C Mitochondrial 16S rRNA MRPL51 Thr-tRNA(Thr) PiMRPL51 MRPL17 MRPS28 MRPS16 tRNA(Ser) MRPL20 MRPL44 MRPL49 MRPL27 MRPL21 MRPL54 MRPL4 tRNA(Tyr) MRPS18B MRPL28 MRPL1 Thr-tRNA(Thr) fMet-tRNA(fMet) AURKAIP1 fMet-tRNA(fMet) MRPL11 MRPL42 MRPS2 Met-tRNA(Met) MRPS18A GADD45GIP1 MRPL2 tRNA(Gln) MRPS35 Trp-tRNA(Trp) Arg-tRNA(Arg) MRPL57 MRPL33 MRPL28 MRPL14 Gln-tRNA(Gln) Ala-tRNA(Ala) MRPS33 MRPS34 MRPL20 MRPS15 MRPL23 Pro-tRNA(Pro) MRPS10 MRPL41 MRPL45 MRPL16 MRPL18 GTPMRPS26 MTIF3DAP3 MRPL47 MTIF2 MRPS5 tRNA(Trp) MRPL44 MRPL37 Pro-tRNA(Pro) MRPS9 MRPL19 MT-TV DAP3 MRPS28 MRPL12 MRPS30 MRPL1 PTCD3 MRPS24 MRPL2 AURKAIP1 MRPL54 MRPL44 MRPS25 Mitochondrial 16S rRNA MRPS34 MRPL35 MRPS14 ERAL1 MRPS28 55Sribosome:mRNA:tRNA:MRRFtRNA(Met) MRPL27 MRPL37 MT-TV fMet-tRNA(fMet)MRPL10 tRNA(His) GTP ERAL1 MRPL34 MRPL38 MRPS27 MRPL3 MRPL39 MRPS27 MRPL55 MRPL50 GFM2:GDPMRPL3 MRPS35 Met-tRNA(Met) MRPL51 GADD45GIP1 MRPL54 MRPS27 ICT1 MRPS16 MRPS16 Leu-tRNA(Leu) MRPS11 MRPL38 MRPS33 MRPL42 MRPS25 MRPS17 tRNA(Cys) MRPS5 MRPL51 Mitochondrial 16S rRNA MRPS26 MRPS5 MRPS35 MRPL20 Phe-tRNA(Phe) MRPS26 Ala-tRNA(Ala) MRPL28 MRPL1 GADD45GIP1 MRPS36 MRPL46 MRPS18B MRPL12 MRPS10 MRPL52 MRPL27 MRPL21 MRPL14 28S ribosomalsubunitAURKAIP1 MRPS24 tRNA(Asn) MRPL37 Trp-tRNA(Trp) MRPL30 MRPL21 MRPL36 MRPL30 tRNA(Trp) MRPS31 MRPL30 MRPS7 MRPS17 MRPS34 MRPL24 MRPS27 CHCHD1 tRNA(Asp) MRPL16 MRPS30 MRPS5 MRPL34 MRPL27 14, 1614, 1614, 1614, 169, 14, 16, 3414, 1614, 1622, 29, 3410, 24, 3514, 1614, 1614, 1614, 1614, 1614, 1614, 16


Description

Of the roughly 1000 human mitochondrial proteins only 13 proteins, all of them hydrophobic inner membrane proteins that are components of the oxidative phosphorylation apparatus, are encoded in the mitochondrial genome and translated by mitoribosomes at the matrix face of the inner membrane (reviewed in Herrmann et al. 2012, Hallberg and Larsson 2014, Lightowlers et al. 2014). The remainder, including all proteins of the mitochondrial translation system, are encoded in the nucleus and imported from the cytosol into the mitochondrion. Translation in the mitochondrion reflects both the bacterial origin of the organelle and subsequent divergent evolution during symbiosis (reviewed in Huot et al. 2014, Richman et al. 2014). Human mitochondrial ribosomes have a low sedimentation coefficient of only 55S, but at 2.71 MDa they retain a similar mass to E. coli 70S particles. The 55S particles are protein-rich compared to both cytosolic ribosomes and eubacterial ribosomes. This is due to shorter mt-rRNAs, mitochondria-specific proteins, and numerous rearrangements in individual protein positions within the two ribosome subunits (inferred from bovine ribosomes in Sharma et al. 2003, Greber et al. 2014, Kaushal et al. 2014, reviewed in Agrawal and Sharma 2012).
Mitochondrial mRNAs have either no untranslated leader or short leaders of 1-3 nucleotides, with the exception of the 2 bicistronic transcripts, RNA7 and RNA14, which have overlapping orfs that encode ND4L/ND4 and ATP8/ATP6 respectively. Translation is believed to initiate with the mRNA binding the 28S subunit:MTIF3 (28S subunit:IF-3Mt, 28S subunit:IF2mt) complex together with MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP) at the matrix face of the inner membrane (reviewed in Christian and Spremulli 2012). MTIF3 can dissociate 55S particles in preparation for initiation, enhances formation of initiation complexes, and inhibits N-formylmethionine-tRNA (fMet-tRNA) binding to 28S subunits in the absence of mRNA. Binding of fMet-tRNA to the start codon of the mRNA results in a stable complex while absence of a start codon at the 5' end of the mRNA causes eventual dissociation of the mRNA from the 28S subunit. After recognition of a start codon, the 39S subunit then binds the stable complex, GTP is hydrolyzed, and the initiation factors MTIF3 and MTIF2:GDP dissociate.
Translation elongation then proceeds by cycles of aminoacyl-tRNAs binding, peptide bond formation, and displacement of deacylated tRNAs. In each cycle an aminoacyl-tRNA in a complex with TUFM:GTP (EF-Tu:GTP) binds at the A-site of the ribosome, GTP is hydrolyzed, and TUFM:GDP dissociates. The elongating polypeptide bonded to the tRNA at the P-site is transferred to the aminoacyl group at the A-site by peptide bond formation at the peptidyl transferase center, leaving a deacylated tRNA at the P-site and the elongating polypeptide attached to the tRNA at the A-site. The polypeptide is co-translationally inserted into the inner mitochondrial membrane via an interaction with OXA1L (Haque et al. 2010, reviewed in Ott and Hermann 2010). After peptide bond formation, GFM1:GTP (EF-Gmt:GTP) then binds the ribosome complex, GTP is hydrolyzed, GFM1:GDP dissociates, and the ribosome translocates 3 nucleotides in the 3' direction along the mRNA, relocating the polypeptide-tRNA to the P-site and allowing another cycle to begin. TUFM:GDP is regenerated to TUFM:GTP by the guanine nucleotide exchange factor TSFM (EF-Ts, EF-TsMt).
Translation is terminated when MTRF1L:GTP (MTRF1a:GTP) recognizes an UAA or UAG termination codon at the A-site of the ribosome (Tsuboi et al. 2009). GTP hydrolysis does not appear to be required. The tRNA-aminoacyl bond between the translated polypeptide and the final tRNA at the P-site is hydrolyzed by the 39S subunit, facilitating release of the polypeptide. MRRF (RRF) and GFM2:GTP (EF-G2mt:GTP) then act to release the remaining tRNA and mRNA from the ribosome and dissociate the 55S ribosome into 28S and 39S subunits.
Mutations have been identified in genes encoding mitochondrial ribosomal proteins and translation factors. These have been shown to be pathogenic, causing neurological and other diseases (reviewed in Koopman et al. 2013, Pearce et al. 2013). View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 5368287
Reactome-version 
Reactome version: 62
Reactome Author 
Reactome Author: May, Bruce

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Soleimanpour-Lichaei HR, Kühl I, Gaisne M, Passos JF, Wydro M, Rorbach J, Temperley R, Bonnefoy N, Tate W, Lightowlers R, Chrzanowska-Lightowlers Z.; ''mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  2. Richter R, Rorbach J, Pajak A, Smith PM, Wessels HJ, Huynen MA, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome.''; PubMed Europe PMC Scholia
  3. Lightowlers RN, Rozanska A, Chrzanowska-Lightowlers ZM.; ''Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation.''; PubMed Europe PMC Scholia
  4. Zhang Y, Spremulli LL.; ''Identification and cloning of human mitochondrial translational release factor 1 and the ribosome recycling factor.''; PubMed Europe PMC Scholia
  5. Valente L, Shigi N, Suzuki T, Zeviani M.; ''The R336Q mutation in human mitochondrial EFTu prevents the formation of an active mt-EFTu.GTP.aa-tRNA ternary complex.''; PubMed Europe PMC Scholia
  6. Hällberg BM, Larsson NG.; ''Making proteins in the powerhouse.''; PubMed Europe PMC Scholia
  7. Herrmann JM, Longen S, Weckbecker D, Depuydt M.; ''Biogenesis of mitochondrial proteins.''; PubMed Europe PMC Scholia
  8. Rackham O, Filipovska A.; ''Supernumerary proteins of mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  9. Dennerlein S, Rozanska A, Wydro M, Chrzanowska-Lightowlers ZM, Lightowlers RN.; ''Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit.''; PubMed Europe PMC Scholia
  10. Koopman WJ, Distelmaier F, Smeitink JA, Willems PH.; ''OXPHOS mutations and neurodegeneration.''; PubMed Europe PMC Scholia
  11. Koc EC, Cimen H, Kumcuoglu B, Abu N, Akpinar G, Haque ME, Spremulli LL, Koc H.; ''Identification and characterization of CHCHD1, AURKAIP1, and CRIF1 as new members of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  12. Rorbach J, Richter R, Wessels HJ, Wydro M, Pekalski M, Farhoud M, Kühl I, Gaisne M, Bonnefoy N, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''The human mitochondrial ribosome recycling factor is essential for cell viability.''; PubMed Europe PMC Scholia
  13. Christian BE, Spremulli LL.; ''Mechanism of protein biosynthesis in mammalian mitochondria.''; PubMed Europe PMC Scholia
  14. Tucker EJ, Hershman SG, Köhrer C, Belcher-Timme CA, Patel J, Goldberger OA, Christodoulou J, Silberstein JM, McKenzie M, Ryan MT, Compton AG, Jaffe JD, Carr SA, Calvo SE, RajBhandary UL, Thorburn DR, Mootha VK.; ''Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation.''; PubMed Europe PMC Scholia
  15. Huynen MA, Duarte I, Chrzanowska-Lightowlers ZM, Nabuurs SB.; ''Structure based hypothesis of a mitochondrial ribosome rescue mechanism.''; PubMed Europe PMC Scholia
  16. Agrawal RK, Sharma MR.; ''Structural aspects of mitochondrial translational apparatus.''; PubMed Europe PMC Scholia
  17. Nozaki Y, Matsunaga N, Ishizawa T, Ueda T, Takeuchi N.; ''HMRF1L is a human mitochondrial translation release factor involved in the decoding of the termination codons UAA and UAG.''; PubMed Europe PMC Scholia
  18. Cavdar Koc E, Burkhart W, Blackburn K, Moseley A, Spremulli LL.; ''The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  19. Akabane S, Ueda T, Nierhaus KH, Takeuchi N.; ''Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria.''; PubMed Europe PMC Scholia
  20. Temperley R, Richter R, Dennerlein S, Lightowlers RN, Chrzanowska-Lightowlers ZM.; ''Hungry codons promote frameshifting in human mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  21. Lind C, Sund J, Aqvist J.; ''Codon-reading specificities of mitochondrial release factors and translation termination at non-standard stop codons.''; PubMed Europe PMC Scholia
  22. Uchiumi T, Ohgaki K, Yagi M, Aoki Y, Sakai A, Matsumoto S, Kang D.; ''ERAL1 is associated with mitochondrial ribosome and elimination of ERAL1 leads to mitochondrial dysfunction and growth retardation.''; PubMed Europe PMC Scholia
  23. Bhargava K, Templeton P, Spremulli LL.; ''Expression and characterization of isoform 1 of human mitochondrial elongation factor G.''; PubMed Europe PMC Scholia
  24. Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM, Moseley A, Spremulli LL.; ''The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present.''; PubMed Europe PMC Scholia
  25. Huot JL, Enkler L, Megel C, Karim L, Laporte D, Becker HD, Duchêne AM, Sissler M, Maréchal-Drouard L.; ''Idiosyncrasies in decoding mitochondrial genomes.''; PubMed Europe PMC Scholia
  26. Richman TR, Rackham O, Filipovska A.; ''Mitochondria: Unusual features of the mammalian mitoribosome.''; PubMed Europe PMC Scholia
  27. Chung HK, Spremulli LL.; ''Purification and characterization of elongation factor G from bovine liver mitochondria.''; PubMed Europe PMC Scholia
  28. Ott M, Herrmann JM.; ''Co-translational membrane insertion of mitochondrially encoded proteins.''; PubMed Europe PMC Scholia
  29. Young DJ, Edgar CD, Murphy J, Fredebohm J, Poole ES, Tate WP.; ''Bioinformatic, structural, and functional analyses support release factor-like MTRF1 as a protein able to decode nonstandard stop codons beginning with adenine in vertebrate mitochondria.''; PubMed Europe PMC Scholia
  30. Haque ME, Elmore KB, Tripathy A, Koc H, Koc EC, Spremulli LL.; ''Properties of the C-terminal tail of human mitochondrial inner membrane protein Oxa1L and its interactions with mammalian mitochondrial ribosomes.''; PubMed Europe PMC Scholia
  31. Kaushal PS, Sharma MR, Booth TM, Haque EM, Tung CS, Sanbonmatsu KY, Spremulli LL, Agrawal RK.; ''Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia
  32. Pearce S, Nezich CL, Spinazzola A.; ''Mitochondrial diseases: translation matters.''; PubMed Europe PMC Scholia
  33. Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SHW, Ramakrishnan V.; ''Structure of the large ribosomal subunit from human mitochondria.''; PubMed Europe PMC Scholia
  34. Tsuboi M, Morita H, Nozaki Y, Akama K, Ueda T, Ito K, Nierhaus KH, Takeuchi N.; ''EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis.''; PubMed Europe PMC Scholia
  35. Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F, Erzberger JP, Leibundgut M, Aebersold R, Ban N.; ''Architecture of the large subunit of the mammalian mitochondrial ribosome.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114740view16:22, 25 January 2021ReactomeTeamReactome version 75
113184view11:25, 2 November 2020ReactomeTeamReactome version 74
112412view15:35, 9 October 2020ReactomeTeamReactome version 73
101316view11:20, 1 November 2018ReactomeTeamreactome version 66
100853view20:52, 31 October 2018ReactomeTeamreactome version 65
100394view19:26, 31 October 2018ReactomeTeamreactome version 64
99942view16:11, 31 October 2018ReactomeTeamreactome version 63
99498view14:44, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99147view12:41, 31 October 2018ReactomeTeamreactome version 62
93746view13:33, 16 August 2017ReactomeTeamreactome version 61
93261view11:18, 9 August 2017ReactomeTeamreactome version 61
87964view13:13, 25 July 2016RyanmillerOntology Term : 'translation pathway' added !
87963view13:13, 25 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86341view09:15, 11 July 2016ReactomeTeamreactome version 56
83252view10:32, 18 November 2015ReactomeTeamVersion54
81361view12:53, 21 August 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
10-formyl-THFMetaboliteCHEBI:15637 (ChEBI)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ComplexR-HSA-5368280 (Reactome)
28S ribosomal subunit:MTIF3ComplexR-HSA-5368269 (Reactome)
28S ribosomal subunitComplexR-HSA-5368239 (Reactome)
39S ribosomal subunitComplexR-HSA-5368233 (Reactome)
55S ribosome:MRRF:GFM2:GTPComplexR-HSA-5419282 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPComplexR-HSA-5389851 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAComplexR-HSA-5389838 (Reactome)
55S ribosome:mRNA:fMet-tRNAComplexR-HSA-5368273 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteComplexR-HSA-5419272 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPComplexR-HSA-5419280 (Reactome)
55S ribosome:mRNA:tRNA:MRRFComplexR-HSA-5419275 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteComplexR-HSA-5389843 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPComplexR-HSA-5419267 (Reactome)
55S ribosome:mRNA:tRNAComplexR-HSA-5419262 (Reactome)
AURKAIP1 ProteinQ9NWT8 (Uniprot-TrEMBL)
Ala-tRNA(Ala) R-HSA-379730 (Reactome)
Arg-tRNA(Arg) R-HSA-379708 (Reactome)
Asn-tRNA(Asn) R-HSA-379718 (Reactome)
Asp-tRNA(Asp) R-HSA-379698 (Reactome)
CHCHD1 ProteinQ96BP2 (Uniprot-TrEMBL)
Cys-tRNA(Cys) R-HSA-379713 (Reactome)
DAP3 ProteinP51398 (Uniprot-TrEMBL)
ERAL1 ProteinO75616 (Uniprot-TrEMBL)
GADD45GIP1 ProteinQ8TAE8 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GFM1 ProteinQ96RP9 (Uniprot-TrEMBL)
GFM1:GDPComplexR-HSA-5419260 (Reactome)
GFM1:GTPComplexR-HSA-5419274 (Reactome)
GFM2 ProteinQ969S9 (Uniprot-TrEMBL)
GFM2:GDPComplexR-HSA-5419266 (Reactome)
GFM2:GTPComplexR-HSA-5419270 (Reactome)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Gln-tRNA(Gln) R-HSA-379753 (Reactome)
Glu-tRNA(Glu) R-HSA-379744 (Reactome)
Gly-tRNA(Gly) R-HSA-379781 (Reactome)
His-tRNA(His) R-HSA-379764 (Reactome)
ICT1 ProteinQ14197 (Uniprot-TrEMBL)
Ile-tRNA(Ile) R-HSA-379769 (Reactome)
Leu-tRNA(Leu) R-HSA-379773 (Reactome)
Lys-tRNA(Lys) R-HSA-379795 (Reactome)
MRPL1 ProteinQ9BYD6 (Uniprot-TrEMBL)
MRPL10 ProteinQ7Z7H8 (Uniprot-TrEMBL)
MRPL11 ProteinQ9Y3B7 (Uniprot-TrEMBL)
MRPL12 ProteinP52815 (Uniprot-TrEMBL)
MRPL13 ProteinQ9BYD1 (Uniprot-TrEMBL)
MRPL14 ProteinQ6P1L8 (Uniprot-TrEMBL)
MRPL15 ProteinQ9P015 (Uniprot-TrEMBL)
MRPL16 ProteinQ9NX20 (Uniprot-TrEMBL)
MRPL17 ProteinQ9NRX2 (Uniprot-TrEMBL)
MRPL18 ProteinQ9H0U6 (Uniprot-TrEMBL)
MRPL19 ProteinP49406 (Uniprot-TrEMBL)
MRPL2 ProteinQ5T653 (Uniprot-TrEMBL)
MRPL20 ProteinQ9BYC9 (Uniprot-TrEMBL)
MRPL21 ProteinQ7Z2W9 (Uniprot-TrEMBL)
MRPL22 ProteinQ9NWU5 (Uniprot-TrEMBL)
MRPL23 ProteinQ16540 (Uniprot-TrEMBL)
MRPL24 ProteinQ96A35 (Uniprot-TrEMBL)
MRPL27 ProteinQ9P0M9 (Uniprot-TrEMBL)
MRPL28 ProteinQ13084 (Uniprot-TrEMBL)
MRPL3 ProteinP09001 (Uniprot-TrEMBL)
MRPL30 ProteinQ8TCC3 (Uniprot-TrEMBL)
MRPL32 ProteinQ9BYC8 (Uniprot-TrEMBL)
MRPL33 ProteinO75394 (Uniprot-TrEMBL)
MRPL34 ProteinQ9BQ48 (Uniprot-TrEMBL)
MRPL35 ProteinQ9NZE8 (Uniprot-TrEMBL)
MRPL36 ProteinQ9P0J6 (Uniprot-TrEMBL)
MRPL37 ProteinQ9BZE1 (Uniprot-TrEMBL)
MRPL38 ProteinQ96DV4 (Uniprot-TrEMBL)
MRPL39 ProteinQ9NYK5 (Uniprot-TrEMBL)
MRPL4 ProteinQ9BYD3 (Uniprot-TrEMBL)
MRPL40 ProteinQ9NQ50 (Uniprot-TrEMBL)
MRPL41 ProteinQ8IXM3 (Uniprot-TrEMBL)
MRPL42 ProteinQ9Y6G3 (Uniprot-TrEMBL)
MRPL43 ProteinQ8N983 (Uniprot-TrEMBL)
MRPL44 ProteinQ9H9J2 (Uniprot-TrEMBL)
MRPL45 ProteinQ9BRJ2 (Uniprot-TrEMBL)
MRPL46 ProteinQ9H2W6 (Uniprot-TrEMBL)
MRPL47 ProteinQ9HD33 (Uniprot-TrEMBL)
MRPL48 ProteinQ96GC5 (Uniprot-TrEMBL)
MRPL49 ProteinQ13405 (Uniprot-TrEMBL)
MRPL50 ProteinQ8N5N7 (Uniprot-TrEMBL)
MRPL51 ProteinQ4U2R6 (Uniprot-TrEMBL)
MRPL52 ProteinQ86TS9 (Uniprot-TrEMBL)
MRPL53 ProteinQ96EL3 (Uniprot-TrEMBL)
MRPL54 ProteinQ6P161 (Uniprot-TrEMBL)
MRPL55 ProteinQ7Z7F7 (Uniprot-TrEMBL)
MRPL57 ProteinQ9BQC6 (Uniprot-TrEMBL)
MRPL9 ProteinQ9BYD2 (Uniprot-TrEMBL)
MRPS10 ProteinP82664 (Uniprot-TrEMBL)
MRPS11 ProteinP82912 (Uniprot-TrEMBL)
MRPS12 ProteinO15235 (Uniprot-TrEMBL)
MRPS14 ProteinO60783 (Uniprot-TrEMBL)
MRPS15 ProteinP82914 (Uniprot-TrEMBL)
MRPS16 ProteinQ9Y3D3 (Uniprot-TrEMBL)
MRPS17 ProteinQ9Y2R5 (Uniprot-TrEMBL)
MRPS18A ProteinQ9NVS2 (Uniprot-TrEMBL)
MRPS18B ProteinQ9Y676 (Uniprot-TrEMBL)
MRPS18C ProteinQ9Y3D5 (Uniprot-TrEMBL)
MRPS2 ProteinQ9Y399 (Uniprot-TrEMBL)
MRPS21 ProteinP82921 (Uniprot-TrEMBL)
MRPS22 ProteinP82650 (Uniprot-TrEMBL)
MRPS23 ProteinQ9Y3D9 (Uniprot-TrEMBL)
MRPS24 ProteinQ96EL2 (Uniprot-TrEMBL)
MRPS25 ProteinP82663 (Uniprot-TrEMBL)
MRPS26 ProteinQ9BYN8 (Uniprot-TrEMBL)
MRPS27 ProteinQ92552 (Uniprot-TrEMBL)
MRPS28 ProteinQ9Y2Q9 (Uniprot-TrEMBL)
MRPS30 ProteinQ9NP92 (Uniprot-TrEMBL)
MRPS31 ProteinQ92665 (Uniprot-TrEMBL)
MRPS33 ProteinQ9Y291 (Uniprot-TrEMBL)
MRPS34 ProteinP82930 (Uniprot-TrEMBL)
MRPS35 ProteinP82673 (Uniprot-TrEMBL)
MRPS36 ProteinP82909 (Uniprot-TrEMBL)
MRPS5 ProteinP82675 (Uniprot-TrEMBL)
MRPS6 ProteinP82932 (Uniprot-TrEMBL)
MRPS7 ProteinQ9Y2R9 (Uniprot-TrEMBL)
MRPS9 ProteinP82933 (Uniprot-TrEMBL)
MRRF ProteinQ96E11 (Uniprot-TrEMBL)
MRRFProteinQ96E11 (Uniprot-TrEMBL)
MT-TV ProteinENST00000387342 (Ensembl)
MTFMTProteinQ96DP5 (Uniprot-TrEMBL)
MTIF2 ProteinP46199 (Uniprot-TrEMBL)
MTIF2:GTPComplexR-HSA-5368285 (Reactome)
MTIF2ProteinP46199 (Uniprot-TrEMBL)
MTIF3 ProteinQ9H2K0 (Uniprot-TrEMBL)
MTIF3ProteinQ9H2K0 (Uniprot-TrEMBL)
MTRF1L ProteinQ9UGC7 (Uniprot-TrEMBL)
MTRF1L, ICT1ComplexR-HSA-5432633 (Reactome) Both MTRF1L and ICT1 can bind a standard stop codon in the A-site of the ribosome and cause release of the polypeptide. ICT1 can also cause release of ribosomes stalled in non-standard conformations (e.g. non-standard stop codons, mRNA lacking a stop codon) (inferred from pig mitoribosomes in Akabane et al. 2014).
Met-tRNA(Met) R-HSA-379780 (Reactome)
Met-tRNA(Met)R-HSA-379780 (Reactome)
Mitochondrial 12S rRNA ProteinENST00000389680 (Ensembl)
Mitochondrial 16S rRNA ProteinENST00000387347 (Ensembl)
PTCD3 ProteinQ96EY7 (Uniprot-TrEMBL)
Phe-tRNA(Phe) R-HSA-379789 (Reactome)
PiMetaboliteCHEBI:18367 (ChEBI)
Pro-tRNA(Pro) R-HSA-379745 (Reactome)
Ser-tRNA(Ser) R-HSA-379777 (Reactome)
THFMetaboliteCHEBI:15635 (ChEBI)
TSFM ProteinP43897 (Uniprot-TrEMBL)
TSFMProteinP43897 (Uniprot-TrEMBL)
TUFM ProteinP49411 (Uniprot-TrEMBL)
TUFM:GDPComplexR-HSA-5389856 (Reactome)
TUFM:GTP:aminoacyl-tRNAComplexR-HSA-5389855 (Reactome)
TUFM:GTPComplexR-HSA-5389853 (Reactome)
TUFM:TSFMComplexR-HSA-5419263 (Reactome)
Thr-tRNA(Thr) R-HSA-379779 (Reactome)
Trp-tRNA(Trp) R-HSA-379759 (Reactome)
Tyr-tRNA(Tyr) R-HSA-379755 (Reactome)
Val-tRNA(Val) R-HSA-379782 (Reactome)
aminoacyl-tRNAComplexR-HSA-5389847 (Reactome)
fMet-tRNA(fMet) R-HSA-5368270 (Reactome)
fMet-tRNA(fMet)R-HSA-5368270 (Reactome)
mRNA R-ALL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
mRNAR-ALL-5368267 (Reactome) Mitochondrial mRNAs are characterized by lacking or having very short (1-3 nucleotide) untranslated leaders and no introns. The mitochondrial genome of humans encodes only 13 polypeptides.
peptidyl-tRNA with elongated peptide R-ALL-5389836 (Reactome)
polypeptideR-ALL-5419287 (Reactome)
tRNA(Ala) R-HSA-379729 (Reactome)
tRNA(Arg) R-HSA-379727 (Reactome)
tRNA(Asn) R-HSA-379699 (Reactome)
tRNA(Asp) R-HSA-379715 (Reactome)
tRNA(Cys) R-HSA-379714 (Reactome)
tRNA(Gln) R-HSA-379740 (Reactome)
tRNA(Glu) R-HSA-379754 (Reactome)
tRNA(Gly) R-HSA-379770 (Reactome)
tRNA(His) R-HSA-379752 (Reactome)
tRNA(Ile) R-HSA-379750 (Reactome)
tRNA(Leu) R-HSA-379788 (Reactome)
tRNA(Lys) R-HSA-379747 (Reactome)
tRNA(Met) R-HSA-379741 (Reactome)
tRNA(Met)R-HSA-379741 (Reactome)
tRNA(Phe) R-HSA-379760 (Reactome)
tRNA(Pro) R-HSA-379775 (Reactome)
tRNA(Ser) R-HSA-379761 (Reactome)
tRNA(Thr) R-HSA-379791 (Reactome)
tRNA(Trp) R-HSA-379774 (Reactome)
tRNA(Tyr) R-HSA-379756 (Reactome)
tRNA(Val) R-HSA-379735 (Reactome)
tRNAComplexR-HSA-5389844 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
10-formyl-THFR-HSA-5389841 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
ArrowR-HSA-5389849 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
R-HSA-5389839 (Reactome)
28S

ribosomal

subunit:MTIF3:MTIF2:GTP:mRNA:fMet-tRNA
mim-catalysisR-HSA-5389839 (Reactome)
28S ribosomal subunit:MTIF3ArrowR-HSA-5368279 (Reactome)
28S ribosomal subunit:MTIF3R-HSA-5389849 (Reactome)
28S ribosomal subunitArrowR-HSA-5419273 (Reactome)
28S ribosomal subunitR-HSA-5368279 (Reactome)
39S ribosomal subunitArrowR-HSA-5419273 (Reactome)
39S ribosomal subunitR-HSA-5389839 (Reactome)
55S ribosome:MRRF:GFM2:GTPArrowR-HSA-5419277 (Reactome)
55S ribosome:MRRF:GFM2:GTPR-HSA-5419273 (Reactome)
55S ribosome:MRRF:GFM2:GTPmim-catalysisR-HSA-5419273 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPArrowR-HSA-5389848 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNA:TUFM:GTPmim-catalysisR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAArrowR-HSA-5389842 (Reactome)
55S ribosome:mRNA:fMet-tRNA:aminoacyl-tRNAR-HSA-5389857 (Reactome)
55S ribosome:mRNA:fMet-tRNAArrowR-HSA-5389839 (Reactome)
55S ribosome:mRNA:fMet-tRNAR-HSA-5389848 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteArrowR-HSA-5419279 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA at P-siteR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPArrowR-HSA-5419264 (Reactome)
55S ribosome:mRNA:peptidyl-tRNA:MTRF1L:GTPR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNA:MRRFArrowR-HSA-5419281 (Reactome)
55S ribosome:mRNA:tRNA:MRRFR-HSA-5419277 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteArrowR-HSA-5389857 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA at A-siteR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPArrowR-HSA-5419261 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNA:peptidyl-tRNA:GFM1:GTPmim-catalysisR-HSA-5419279 (Reactome)
55S ribosome:mRNA:tRNAArrowR-HSA-5419271 (Reactome)
55S ribosome:mRNA:tRNAR-HSA-5419281 (Reactome)
GDPArrowR-HSA-5389839 (Reactome)
GDPArrowR-HSA-5419269 (Reactome)
GDPArrowR-HSA-5419271 (Reactome)
GFM1:GDPArrowR-HSA-5419279 (Reactome)
GFM1:GTPR-HSA-5419261 (Reactome)
GFM2:GDPArrowR-HSA-5419273 (Reactome)
GFM2:GTPR-HSA-5419277 (Reactome)
GTPR-HSA-5419264 (Reactome)
GTPR-HSA-5419268 (Reactome)
MRRFArrowR-HSA-5419273 (Reactome)
MRRFR-HSA-5419281 (Reactome)
MTFMTmim-catalysisR-HSA-5389841 (Reactome)
MTIF2:GTPR-HSA-5389849 (Reactome)
MTIF2ArrowR-HSA-5389839 (Reactome)
MTIF3ArrowR-HSA-5389839 (Reactome)
MTIF3R-HSA-5368279 (Reactome)
MTRF1L, ICT1ArrowR-HSA-5419271 (Reactome)
MTRF1L, ICT1R-HSA-5419264 (Reactome)
Met-tRNA(Met)R-HSA-5389841 (Reactome)
PiArrowR-HSA-5389839 (Reactome)
PiArrowR-HSA-5389842 (Reactome)
PiArrowR-HSA-5419271 (Reactome)
PiArrowR-HSA-5419273 (Reactome)
PiArrowR-HSA-5419279 (Reactome)
R-HSA-5368279 (Reactome) As inferred from bovine mitochondrial homologs, MTIF3 (IF-3Mt, IF3mt) binds the 28S ribosomal subunit in preparation for binding mRNA and initiating translation. MTIF3 also dissociates 55S particles that have not already been dissociated by GFM2 plus MRRF and displaces N-formylmethionyl-tRNA from the 28S subunit in the absence of mRNA but cannot displace mRNA from the 28S subunit. The activity of MTIF3 is necessary for translation initiation.. The 28S subunit associates with the matrix-side face of the inner mitochondrial membrane and translation products are inserted directly into the membrane.
R-HSA-5389839 (Reactome) As inferred from bovine homologs, the 39S ribosomal subunit binds the 28S subunit:mRNA:N-formylmethionyl-tRNA complex, MTIF2 hydrolyzes GTP, then MTIF2, GDP, and MTIF3 dissociate. (MTIF2 has a very low affinity for GDP so it is unclear whether MTIF2 and GDP remain associated after hydrolysis of GTP.) The 28S subunit, 39S subunit, and 55S holoribosome associate with the inner mitochondrial membrane during translation and in the absence of translation.
R-HSA-5389841 (Reactome) Like bacteria, mitochondria initiate translation with N-formylmethionine. Unlike bacteria, mammalian mitochondria do not have a tRNA dedicated to N-formylmethionine. Instead, the mitochondrial enzyme MTFMT (methionyl-tRNA formyltransferase, FMT, FMT1) transfers a formyl group from 10-formyltetrahydrofolate (10-formyl-THF) to the amino group of methionyl-tRNA in a portion of the methionyl-tRNAs in the matrix.
R-HSA-5389842 (Reactome) As inferred from bovine homologs, interaction of the cognate aminoacyl-tRNA in the A-site with the codon in the mRNA causes TUFM (EF-Tu) to hydrolyze GTP. TUFM:GDP then dissociates from the ribosome.
R-HSA-5389845 (Reactome) As inferred from bovine homologs, TUFM:GTP (EF-Tu:GTP) binds an aminoacyl-tRNA to form the ternary complex.
R-HSA-5389848 (Reactome) As inferred from bovine homologs, the ternary complex containing TUFM:GTP (EF-Tu:GTP) and aminoacyl-tRNA enters the A-site of the 55S ribosome (reviewed in Christian and Spremulli 2012).
R-HSA-5389849 (Reactome) As inferred from bovine homologs, the 28S ribosomal subunit in a complex with MTIF3 (IF-3Mt, IF3mt) binds mRNA and, at some point, MTIF2:GTP (IF-2Mt:GTP, IF2mt:GTP). If an initiation codon is present at the 5' end of the mRNA then MTIF2:GTP assists the binding of N-formylmethionyl-tRNA and a stable, productive initiation complex results. If no initiation codon is present, the mRNA slides through the 28S subunit and then dissociates.
R-HSA-5389857 (Reactome) As inferred from bovine homologs, the ribosome catalyzes formation of a peptide bond between the aminoacyl group of the aminoacyl-tRNA at the A-site and the peptidyl-tRNA at the P-site. The result is a polypeptide, longer by one amino acid, attached to the tRNA at the A-site by an ester bond. A deacylated tRNA remains at the P-site. 55S ribosomes associate with the inner mitochondrial membrane and the translation products are cotranslationally inserted into the inner membrane.
R-HSA-5419261 (Reactome) GFMT1:GTP (EF-G1mt:GTP) binds ribosomes possessing a peptidyl-tRNA at the A site and an empty P site (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419264 (Reactome) MTRF1L (mtRF1a) binds the stop codons UAA and UAG of the mRNA when they are in the A site of the ribosome (Soleimanpour-Lichaei 2007, Nozaki et al. 2008). (The UGA codon is recognized by the tryptophan tRNA in mitochondrial translation.) ICT1 can also bind standard stop codons in the A-site (inferred from pig mitochondrial ribosomes in Akabane et al. 2014). MTRF1 was also thought to play a role in translation termination by recognizing the unconventional termination codons AGA and AGG (Zhang and Spremulli 1998, Young et al. 2010) but frameshifting is now confirmed in the termination mechanism of these codons (Temperley et al. 2010). Structural features of MTRF1 have been reported suggesting it could recognize an empty A-site (Huynen et al. 2012) or UAA and UAG codons (Lind et al. 2013) however there is no direct experimental data to confirm these last two postulates.
R-HSA-5419268 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor for TUFM (EF-Tu). In the second step of the process TUFM in the TUFM:TSFM complex binds GTP and TSFM is released, yielding TUFM:GTP and TSFM.
R-HSA-5419269 (Reactome) As inferred from bovine homologs, TSFM (EF-Ts, EF-TsMt) acts as a guanine nucleotide exchange factor to regenerate TUFM:GTP (EF-Tu:GTP) from TUFM:GDP. In the first step of the process TSFM binds TUFM:GDP and displaces GDP, yielding a TSFM:TUFM complex and GDP.
R-HSA-5419271 (Reactome) Binding of the MTRF1L (MTRF1a) termination factor triggers hydrolysis of the peptidyl-tRNA bond by the 39S subunit of the ribosome and release of the translated polypeptide (Soleimanpour-Lichaei et al. 2007, Nozaki et al. 2008, reviewed in Christian and Spremulli 2012). MTRF1L hydrolyzes GTP during the reaction. Stalled ribosomes are rescued by binding of an ICT1 protein in addition to the ICT1 subunit integrated in the 39S subunit (Richter et al. 2010, Akabane et al. 2014).
R-HSA-5419273 (Reactome) When complexed with ribosomes GFM2 (EF-G2mt) hydrolyzes GTP and, together with MRRF, acts as a ribosome releasing factor by splitting 55S ribosomes into 28S and 39S subunits (Tsuboi et al. 2009). Though GTP is hydrolyzed during the reaction, hydrolysis is not necessary for splitting the 55S ribosome into 39S and 28S subunits, but is necessary for dissociation of GFM2 (as GFM2:GDP) and MRRF from the large ribosomal subunit after splitting (Tsuboi et al. 2009).
R-HSA-5419277 (Reactome) GFM2:GTP (EF-G2mt:GTP) joins MRRF at the A site of the ribosome after translation has been terminated by MTRF1L (MTRF1a) at a stop codon.
R-HSA-5419279 (Reactome) GFM1 (EF-Gmt, EF-G1mt) of the GFM1:GTP complex hydrolyzes GTP, yielding GFM1:GDP (Tsuboi et al. 2009). The hydrolysis of GTP drives translocation of the peptidyl-tRNA from the A-site to the P-site with consequent ejection of the deacylated tRNA from the P-site and translocation of the ribosome in the 3' direction along the mRNA (Bhargava et al. 2004, Tsuboi et al. 2009, inferred from bovine homologs in Chung and Spremulli 1990).
R-HSA-5419281 (Reactome) The mitochondrial ribosome releasing factor MRRF (RRF) binds the 55S ribosome at the A-site after translation has been terminated by MTRF1L (MTRF1a) at a stop codon and the translated polypeptide has been hydrolyzed from the last tRNA, which remains in the P-site (Rorbach et al. 2008).
THFArrowR-HSA-5389841 (Reactome)
TSFMArrowR-HSA-5419268 (Reactome)
TSFMR-HSA-5419269 (Reactome)
TUFM:GDPArrowR-HSA-5389842 (Reactome)
TUFM:GDPR-HSA-5419269 (Reactome)
TUFM:GTP:aminoacyl-tRNAArrowR-HSA-5389845 (Reactome)
TUFM:GTP:aminoacyl-tRNAR-HSA-5389848 (Reactome)
TUFM:GTPArrowR-HSA-5419268 (Reactome)
TUFM:GTPR-HSA-5389845 (Reactome)
TUFM:TSFMArrowR-HSA-5419269 (Reactome)
TUFM:TSFMR-HSA-5419268 (Reactome)
aminoacyl-tRNAR-HSA-5389845 (Reactome)
fMet-tRNA(fMet)ArrowR-HSA-5389841 (Reactome)
fMet-tRNA(fMet)R-HSA-5389849 (Reactome)
mRNAArrowR-HSA-5419277 (Reactome)
mRNAR-HSA-5389849 (Reactome)
polypeptideArrowR-HSA-5419271 (Reactome)
tRNA(Met)ArrowR-HSA-5419279 (Reactome)
tRNAArrowR-HSA-5419277 (Reactome)
Personal tools