Nonsense-Mediated Decay (NMD) (Homo sapiens)

From WikiPathways

Revision as of 15:12, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
2, 11, 20, 28, 31...4, 9, 18, 28, 32...3, 7, 18, 19, 23...3, 6, 7, 16, 18...3, 19, 381, 2, 8, 10, 12...5, 8, 15, 17, 27...Nonsense-mediated Decay Independent of the Exon Junction ComplexcytosolNonsense-mediated Decay Enhanced by the Exon Junction ComplexRPL22 RPS29 RPS4Y2 RPL3 tRNA tRNA 5S rRNA GSPT1 RPL10 RNPS1 RPL24 RPL38 RPL27 RPL21 RPL35A EIF4A3 RPL35A 5S rRNA RPSA RPS27L RPS12 GDP RPL19 GDP RPL21 CASC3 MAGOH p-4S-UPF1RPL37A RPL23A RPS24 RPL37A RPS4Y1 RPS19 RPS21 RBM8A RPL39 RPLP1 RPL3 RPL13 RPL18A RPLP2 RPL12 RBM8A GSPT1 RPL35 RPS27L RPL26L1 EIF4A3 RPL26 RPS18 RPS10 RPS25 RPL19 RPS17 RPS19 RPL10L RPL32 RPS20 tRNA RPS15A RPL24 RPL30 PPP2CA RPL26L1 RPS5 RPS28 RPS7 UPF2 RPS15A RPL23 RPS28 RPL28 RPL23 RPS25 RPL7 SMG8 RPL37A RPL41 RPS3 NCBP1 RPL41 GSPT1 RPLP2 RPL7A RPS13 RPL41 RPL40 UPF1 RPS14 RPS27A(77-156) RPLP1 PABPC1 RPS2 RPL10L RPS4Y2 SMG1 RBM8A mRNA with premature termination codon preceding exon junction GSPT2 RPL15 RPS15 RPS14 RPL11 RPS21 RPL22 RPL22 RPS10 RPL29 RPS12 RPL36AL RPS15 RPL10L RPL38 RPS13 RPS24 RPL27A RPL37 RPS4Y1 RPL36 SMG8 EIF4G1 5.8S rRNA RPS5 RPS27 RPL4 RPL39 PPP2R1A RPS21 RPL29 RPS13 GSPT1 RPL24 RPLP2 EIF4G1 RPLP0 RPL36A SMG1:UPF1:EJC:Translated mRNPRPS8 RPL22L1 RPL18A FAU ATPRPS4X RPS27L RPS27L RPS24 RPL26L1 RPL22L1 RPS12 RPS16 NCBP1 RPS8 RPSA RPL6 RPL18A RPS15 RPS5 RPL40 FAU RPS4X UPF3A RPL40 RPL10A RPL17 RPS6 RPS27L 5.8S rRNA RPS4Y2 RPL19 RPLP1 18S rRNA RPL8 RPL13 RPS9 RPL7 UPF3B RPS7 RPL22L1 RPS27 CASC3 RPL6 RPL27 RPL13A RPL40 RPS24 RPL9 RPL38 RPL39 RPS3 NCBP2 RPL29 RPL35A RPL9 RPS15 RPS20 RPS16 RPS3A RPL36AL RPL3L RPS15A RPL9 SMG6 RPS15 RPL34 SMG1 RPL37 CASC3 RPL40 ETF1 PABPC1 RPL21 RPL23 RPL5 RPS15 Cap Binding Complex(CBC)ETF1 RPL7A RPL11 MAGOHB RPL32 PABPC1 RPL13A 5.8S rRNA RPS4Y2 RPS14 RPL10A RPL6 RPS29 RPL22 28S rRNA tRNA RPL35 RPL27A RPL12 RPL5 RPS29 RPL5 RPL23A mRNA with premature termination codon not preceding exon junction RPL35 FAU RPS4X RPL29 RPL15 RPS7 SMG1:SMG8:SMG9ComplexRPL38 RPS18 RPS23 RPL39 p-4S-UPF1 RPL36A RPS8 RPS21 GSPT2 RPS4Y1 RPS6 RPL12 UPF2 RPL18 UPF1:eRF3 Complex onTranslated mRNARPL36AL RPL17 RPL36AL RPL3L p-4S-UPF1 RPS13 RPL10A RPS16 MAGOH RPL10 RPS13 UPF1 UPF3B RPL4 UPF3B tRNA RPS25 GDP RPL21 RPS5 RPS17 RPL39L RPS25 RPL36A RPL39 RPS7 RPL29 RPL10A RPL17 RPL17 RPS26 RPL6 ETF1 RPL39L RPL23A RPL41 RPL12 SMG8 RPS26 RPL18 RPS27L RPL8 RPS4Y2 GDP RPSA RPL34 RPLP1 RPL26L1 5S rRNA GSPT2 RPL8 5' Fragment of Cleaved mRNA RPL7A RPL13 NCBP2 RPL23 RPS4Y2 RPS5 Translated mRNAComplex withPrematureTermination CodonNot Preceding ExonJunctionRPL19 RPS3A RPL27A RPS20 UPF3A 5S rRNA RPL39L RPL37 RPLP0 RPL35 RPL3L RPL13A RPL21 NCBP2 RPS28 RPL14 EIF4G1EIF4G1 MAGOHB RPL26 RPL10 RPL26L1 RPS6 RPS29 RPL23 RPS7 RPL35A RPS8 NCBP2 EIF4G1 RPL40 RPL7 RPS26 ETF1 tRNA 5.8S rRNA RPL32 RPS25 RPL27A PABPC1 RPL27 RPL18 RPL37 RPL19 RPS23 RPLP1 NCBP2 RPS16 RNPS1 RPS10 RPL18 RPS19 RPL12 PhosphorylatedUPF1:SMG5:SMG7:SMG6:PP2A:Translated mRNPRPS28 RPL18 RPS27A(77-156) RPLP2 EIF4G1 RPS16 RPL23A FAU RPL4 RPSA Translated mRNAComplex withPrematureTermination CodonPreceding ExonJunctionRPL28 RPL5 RPL26 RPS12 RPS3A mRNA with premature termination codon preceding exon junction SMG1 RPS6 GSPT2 RPL39L RPL41 RPS18 RPL10L RPL27 RPS4X RPS20 RPL32 RPL5 RPL4 5.8S rRNA PABPC1 RPS26 RPS10 RPL30 RPL14 RPS27 RPL36AL RPS8 RPLP0 SMG7 RPL24 RPL24 RPL35 RPL14 RPL28 RNPS1 mRNA with premature termination codon preceding exon junction RPL32 PNRC2RPLP0 RPS11 RPL15 RPLP1 RPS17 RPS27A(77-156) RPL15 RPS11 RPL4 RPL12 RPS19 RPL11 RPS21 RPS7 RPL22 RPL3L RPL22L1 RPL39L RPL34 RPL36 RPLP0 SMG9 RPL36 UPF3AS-2 mRNA with premature termination codon preceding exon junction RPL36A RPS27A(77-156) RPS16 RPL10 GDP RPLP2 RPL18A 28S rRNA UPF2 RPL15 RPL27 RPS17 PABPC1RPS11 RPL13 RPL36 RPS27A(77-156) UPF1PABPC1 RPL14 RPL19 RPL27A RPL13A EIF4A3 RPL14 RPS3 RPS12 RPL3 PPP2R2A RPL29 RPS3 RPL3L PPP2CA RPL13 MAGOHB RPS18 RPL22L1 RPS2 18S rRNA RPL35 RPL41 RPL28 RPL9 RPS25 RPL31 RPS3 PPP2CA RPL8 RPS11 RPL13A RPS17 MAGOHB MAGOH RPL7 RPL26 RPS9 RPS23 RPS29 SMG9 RPS9 ADP18S rRNA RPL11 RPL26L1 RPL3 RPL36A RPLP0 UPF3B RPL37A RPL7A NCBP1 RPS15A RPL7 RPS6 ETF1 RPS4X SMG1:PhosphorylatedUPF1:EJC:TranslatedmRNPRPL37 RPL36 RPL11 NCBP1 RPL18 RPS18 RPL13A NCBP2 28S rRNA RPS8 RPS17 PPP2R1A PPP2R1A RPS14 RPS26 RPL23A RPS4X 3' Fragment of Cleaved mRNA RPL30 RPL30 RPL37 RPL6 28S rRNA RPS11 RPL24 RPS29 RPS6 PPP2R2A RPS3A RPS2 RPL27 RPL27A RPS3A RPS19 CASC3 RPL32 RPL39L RPL9 5S rRNA RPL31 RPL15 RPL17 RPS12 RPS4Y1 RPL31 18S rRNA GSPT2 RPL8 RPL11 RPL3 RPL23A mRNA Cleaved by SMG6GSPT1 SMG7 RPL10A RPS23 RPL3L ETF1 RPSA UPF2 NCBP1 RPL39 EIF4A3 18S rRNA RPL7 DCP1ARPL13 RPL37A RPL9 SMG6 SMG5 RPS20 RPS10 RPS24 RPL14 GSPT2 RPL18A RPL30 28S rRNA RBM8A RPS24 RPL28 28S rRNA RPS23 RPL26 RPS14 SMG6PP2A(Aalpha:B55alpha:Calpha)RPS11 RPS9 RPS21 RPS28 RPL34 RPS27 mRNA with premature termination codon not preceding exon junction RPL21 RPS3 RPL38 RPL10A FAU RPL34 RPS2 RPL34 RPS27 RPS4Y1 RPL23 RPS18 UPF3A PPP2R2A SMG7EIF4G1 RPL4 RPS9 NCBP1 RPS2 RPL31 18S rRNA 5S rRNA RPL22 RPL37A GSPT1 EIF4G1 RPS27 UPF3A p-4S-UPF1 SMG9 RPL10 NCBP2 RPL35A 5.8S rRNA RPL8 RPS15A RPS9 SMG5 RPS13 RPS3A RPS15A NCBP2 RPS20 RPL38 NCBP1 RPL17 RPS10 RPSA RPLP2 RPL5 RPS26 RPL28 GDP FAU RPS4Y1 RPL10 RPL10L RPS19 RPL10L RPS5 RPL7A RPL36AL RPL18A RPL36A RPL6 RPL30 RPL7A RPS14 RPS2 RNPS1 SMG5PABPC1 MAGOH RPS28 RPL35A RPL31 NCBP1 RPL26 RPL22L1 RPL31 RPS27A(77-156) RPS23 RPL3 RPL36 7173218, 37


Description

The Nonsense-Mediated Decay (NMD) pathway activates the destruction of mRNAs containing premature termination codons (PTCs) (reviewed in Isken and Maquat 2007, Chang et al. 2007, Behm-Ansmant et al. 2007, Neu-Yilik and Kulozik 2008, Rebbapragada and Lykke-Andersen 2009, Bhuvanagiri et al. 2010, Nicholson et al. 2010, Durand and Lykke-Andersen 2011). In mammalian cells a termination codon can be recognized as premature if it precedes an exon-exon junction by at least 50-55 nucleotides or if it is followed by an abnormal 3' untranslated region (UTR). While length of the UTR may play a part, the qualifications for being "abnormal" have not been fully elucidated. Also, some termination codons preceding exon junctions are not degraded by NMD so the criteria for triggering NMD are not yet fully known (reviewed in Rebbapragada and Lykke-Andersen 2009). While about 30% of disease-associated mutations in humans activate NMD, about 10% of normal human transcripts are also degraded by NMD (reviewed in Stalder and Muhlemann 2008, Neu-Yilik and Kulozik 2008, Bhuvanagiri et al. 2010, Nicholson et al. 2010). Thus NMD is a normal physiological process controlling mRNA stability in unmutated cells.
Exon junction complexes (EJCs) are deposited on an mRNA during splicing in the nucleus and are displaced by ribosomes during the first round of translation. When a ribosome terminates translation the A site encounters the termination codon and the eRF1 factor enters the empty A site and recruits eRF3. Normally, eRF1 cleaves the translated polypeptide from the tRNA in the P site and eRF3 interacts with Polyadenylate-binding protein (PABP) bound to the polyadenylated tail of the mRNA.
During activation of NMD eRF3 interacts with UPF1 which is contained in a complex with SMG1, SMG8, and SMG9. NMD can arbitrarily be divided into EJC-enhanced and EJC-independent pathways. In EJC-enhanced NMD, an exon junction is located downstream of the PTC and the EJC remains on the mRNA after termination of the pioneer round of translation. The core EJC is associated with UPF2 and UPF3, which interact with UPF1 and stimulate NMD. Once bound near the PTC, UPF1 is phosphorylated by SMG1. The phosphorylation is the rate-limiting step in NMD and causes UPF1 to recruit either SMG6, which is an endoribonuclease, or SMG5 and SMG7, which recruit ribonucleases. SMG6 and SMG5:SMG7 recruit phosphatase PP2A to dephosphorylate UPF1 and allow further rounds of degradation. How EJC-independent NMD is activated remains enigmatic but may involve competition between PABP and UPF1 for eRF3. View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 927802
Reactome-version 
Reactome version: 62
Reactome Author 
Reactome Author: May, Bruce

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Chan WK, Bhalla AD, Le Hir H, Nguyen LS, Huang L, Gécz J, Wilkinson MF.; ''A UPF3-mediated regulatory switch that maintains RNA surveillance.''; PubMed Europe PMC Scholia
  2. Eberle AB, Lykke-Andersen S, Mühlemann O, Jensen TH.; ''SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells.''; PubMed Europe PMC Scholia
  3. Mühlemann O, Lykke-Andersen J.; ''How and where are nonsense mRNAs degraded in mammalian cells?''; PubMed Europe PMC Scholia
  4. Singh G, Rebbapragada I, Lykke-Andersen J.; ''A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  5. Kashima I, Yamashita A, Izumi N, Kataoka N, Morishita R, Hoshino S, Ohno M, Dreyfuss G, Ohno S.; ''Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  6. Clerici M, Mourão A, Gutsche I, Gehring NH, Hentze MW, Kulozik A, Kadlec J, Sattler M, Cusack S.; ''Unusual bipartite mode of interaction between the nonsense-mediated decay factors, UPF1 and UPF2.''; PubMed Europe PMC Scholia
  7. Kashima I, Jonas S, Jayachandran U, Buchwald G, Conti E, Lupas AN, Izaurralde E.; ''SMG6 interacts with the exon junction complex via two conserved EJC-binding motifs (EBMs) required for nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  8. Lejeune F, Li X, Maquat LE.; ''Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities.''; PubMed Europe PMC Scholia
  9. Neu-Yilik G, Kulozik AE.; ''NMD: multitasking between mRNA surveillance and modulation of gene expression.''; PubMed Europe PMC Scholia
  10. Ishigaki Y, Li X, Serin G, Maquat LE.; ''Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20.''; PubMed Europe PMC Scholia
  11. Durand S, Cougot N, Mahuteau-Betzer F, Nguyen CH, Grierson DS, Bertrand E, Tazi J, Lejeune F.; ''Inhibition of nonsense-mediated mRNA decay (NMD) by a new chemical molecule reveals the dynamic of NMD factors in P-bodies.''; PubMed Europe PMC Scholia
  12. Gehring NH, Neu-Yilik G, Schell T, Hentze MW, Kulozik AE.; ''Y14 and hUpf3b form an NMD-activating complex.''; PubMed Europe PMC Scholia
  13. Chamieh H, Ballut L, Bonneau F, Le Hir H.; ''NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity.''; PubMed Europe PMC Scholia
  14. Isken O, Kim YK, Hosoda N, Mayeur GL, Hershey JW, Maquat LE.; ''Upf1 phosphorylation triggers translational repression during nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  15. Lykke-Andersen J.; ''Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay.''; PubMed Europe PMC Scholia
  16. Franks TM, Singh G, Lykke-Andersen J.; ''Upf1 ATPase-dependent mRNP disassembly is required for completion of nonsense- mediated mRNA decay.''; PubMed Europe PMC Scholia
  17. Gehring NH, Kunz JB, Neu-Yilik G, Breit S, Viegas MH, Hentze MW, Kulozik AE.; ''Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements.''; PubMed Europe PMC Scholia
  18. Durand S, Lykke-Andersen J.; ''SnapShot: Nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  19. Unterholzner L, Izaurralde E.; ''SMG7 acts as a molecular link between mRNA surveillance and mRNA decay.''; PubMed Europe PMC Scholia
  20. Chiu SY, Serin G, Ohara O, Maquat LE.; ''Characterization of human Smg5/7a: a protein with similarities to Caenorhabditis elegans SMG5 and SMG7 that functions in the dephosphorylation of Upf1.''; PubMed Europe PMC Scholia
  21. Shibuya T, Tange TØ, Sonenberg N, Moore MJ.; ''eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay.''; PubMed Europe PMC Scholia
  22. Hwang J, Sato H, Tang Y, Matsuda D, Maquat LE.; ''UPF1 association with the cap-binding protein, CBP80, promotes nonsense-mediated mRNA decay at two distinct steps.''; PubMed Europe PMC Scholia
  23. Silva AL, Ribeiro P, Inácio A, Liebhaber SA, Romão L.; ''Proximity of the poly(A)-binding protein to a premature termination codon inhibits mammalian nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  24. Stalder L, Mühlemann O.; ''The meaning of nonsense.''; PubMed Europe PMC Scholia
  25. Singh G, Jakob S, Kleedehn MG, Lykke-Andersen J.; ''Communication with the exon-junction complex and activation of nonsense-mediated decay by human Upf proteins occur in the cytoplasm.''; PubMed Europe PMC Scholia
  26. Fernández IS, Yamashita A, Arias-Palomo E, Bamba Y, Bartolomé RA, Canales MA, Teixidó J, Ohno S, Llorca O.; ''Characterization of SMG-9, an essential component of the nonsense-mediated mRNA decay SMG1C complex.''; PubMed Europe PMC Scholia
  27. Palacios IM, Gatfield D, St Johnston D, Izaurralde E.; ''An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  28. Chen CY, Shyu AB.; ''Rapid deadenylation triggered by a nonsense codon precedes decay of the RNA body in a mammalian cytoplasmic nonsense-mediated decay pathway.''; PubMed Europe PMC Scholia
  29. Chakrabarti S, Jayachandran U, Bonneau F, Fiorini F, Basquin C, Domcke S, Le Hir H, Conti E.; ''Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2.''; PubMed Europe PMC Scholia
  30. Hogg JR, Goff SP.; ''Upf1 senses 3'UTR length to potentiate mRNA decay.''; PubMed Europe PMC Scholia
  31. Denning G, Jamieson L, Maquat LE, Thompson EA, Fields AP.; ''Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein.''; PubMed Europe PMC Scholia
  32. Cho H, Han S, Choe J, Park SG, Choi SS, Kim YK.; ''SMG5-PNRC2 is functionally dominant compared with SMG5-SMG7 in mammalian nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  33. Lai T, Cho H, Liu Z, Bowler MW, Piao S, Parker R, Kim YK, Song H.; ''Structural basis of the PNRC2-mediated link between mrna surveillance and decapping.''; PubMed Europe PMC Scholia
  34. Nicholson P, Yepiskoposyan H, Metze S, Zamudio Orozco R, Kleinschmidt N, Mühlemann O.; ''Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors.''; PubMed Europe PMC Scholia
  35. Yamashita A, Chang TC, Yamashita Y, Zhu W, Zhong Z, Chen CY, Shyu AB.; ''Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover.''; PubMed Europe PMC Scholia
  36. Ohnishi T, Yamashita A, Kashima I, Schell T, Anders KR, Grimson A, Hachiya T, Hentze MW, Anderson P, Ohno S.; ''Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7.''; PubMed Europe PMC Scholia
  37. Chan WK, Huang L, Gudikote JP, Chang YF, Imam JS, MacLean JA, Wilkinson MF.; ''An alternative branch of the nonsense-mediated decay pathway.''; PubMed Europe PMC Scholia
  38. Gehring NH, Lamprinaki S, Hentze MW, Kulozik AE.; ''The hierarchy of exon-junction complex assembly by the spliceosome explains key features of mammalian nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  39. Bühler M, Steiner S, Mohn F, Paillusson A, Mühlemann O.; ''EJC-independent degradation of nonsense immunoglobulin-mu mRNA depends on 3' UTR length.''; PubMed Europe PMC Scholia
  40. Hosoda N, Kim YK, Lejeune F, Maquat LE.; ''CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells.''; PubMed Europe PMC Scholia
  41. Bhuvanagiri M, Schlitter AM, Hentze MW, Kulozik AE.; ''NMD: RNA biology meets human genetic medicine.''; PubMed Europe PMC Scholia
  42. Buchwald G, Ebert J, Basquin C, Sauliere J, Jayachandran U, Bono F, Le Hir H, Conti E.; ''Insights into the recruitment of the NMD machinery from the crystal structure of a core EJC-UPF3b complex.''; PubMed Europe PMC Scholia
  43. Yamashita A, Ohnishi T, Kashima I, Taya Y, Ohno S.; ''Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  44. Isken O, Maquat LE.; ''Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function.''; PubMed Europe PMC Scholia
  45. Yamashita A, Izumi N, Kashima I, Ohnishi T, Saari B, Katsuhata Y, Muramatsu R, Morita T, Iwamatsu A, Hachiya T, Kurata R, Hirano H, Anderson P, Ohno S.; ''SMG-8 and SMG-9, two novel subunits of the SMG-1 complex, regulate remodeling of the mRNA surveillance complex during nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  46. Glavan F, Behm-Ansmant I, Izaurralde E, Conti E.; ''Structures of the PIN domains of SMG6 and SMG5 reveal a nuclease within the mRNA surveillance complex.''; PubMed Europe PMC Scholia
  47. Huntzinger E, Kashima I, Fauser M, Saulière J, Izaurralde E.; ''SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan.''; PubMed Europe PMC Scholia
  48. Couttet P, Grange T.; ''Premature termination codons enhance mRNA decapping in human cells.''; PubMed Europe PMC Scholia
  49. Ivanov PV, Gehring NH, Kunz JB, Hentze MW, Kulozik AE.; ''Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways.''; PubMed Europe PMC Scholia
  50. Cho H, Kim KM, Kim YK.; ''Human proline-rich nuclear receptor coregulatory protein 2 mediates an interaction between mRNA surveillance machinery and decapping complex.''; PubMed Europe PMC Scholia
  51. Kunz JB, Neu-Yilik G, Hentze MW, Kulozik AE, Gehring NH.; ''Functions of hUpf3a and hUpf3b in nonsense-mediated mRNA decay and translation.''; PubMed Europe PMC Scholia
  52. Chang YF, Imam JS, Wilkinson MF.; ''The nonsense-mediated decay RNA surveillance pathway.''; PubMed Europe PMC Scholia
  53. Behm-Ansmant I, Kashima I, Rehwinkel J, Saulière J, Wittkopp N, Izaurralde E.; ''mRNA quality control: an ancient machinery recognizes and degrades mRNAs with nonsense codons.''; PubMed Europe PMC Scholia
  54. Lykke-Andersen J, Shu MD, Steitz JA.; ''Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1.''; PubMed Europe PMC Scholia
  55. Eberle AB, Stalder L, Mathys H, Orozco RZ, Mühlemann O.; ''Posttranscriptional gene regulation by spatial rearrangement of the 3' untranslated region.''; PubMed Europe PMC Scholia
  56. Rebbapragada I, Lykke-Andersen J.; ''Execution of nonsense-mediated mRNA decay: what defines a substrate?''; PubMed Europe PMC Scholia
  57. Maquat LE, Gong C.; ''Gene expression networks: competing mRNA decay pathways in mammalian cells.''; PubMed Europe PMC Scholia
  58. Fukuhara N, Ebert J, Unterholzner L, Lindner D, Izaurralde E, Conti E.; ''SMG7 is a 14-3-3-like adaptor in the nonsense-mediated mRNA decay pathway.''; PubMed Europe PMC Scholia
  59. Le Hir H, Gatfield D, Izaurralde E, Moore MJ.; ''The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay.''; PubMed Europe PMC Scholia
  60. Mühlemann O, Eberle AB, Stalder L, Zamudio Orozco R.; ''Recognition and elimination of nonsense mRNA.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114999view16:53, 25 January 2021ReactomeTeamReactome version 75
113443view11:52, 2 November 2020ReactomeTeamReactome version 74
112643view16:02, 9 October 2020ReactomeTeamReactome version 73
101558view11:43, 1 November 2018ReactomeTeamreactome version 66
101094view21:25, 31 October 2018ReactomeTeamreactome version 65
100623view20:00, 31 October 2018ReactomeTeamreactome version 64
100174view16:44, 31 October 2018ReactomeTeamreactome version 63
99724view15:12, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99298view12:46, 31 October 2018ReactomeTeamreactome version 62
93761view13:34, 16 August 2017ReactomeTeamreactome version 61
93285view11:19, 9 August 2017ReactomeTeamreactome version 61
88067view14:29, 25 July 2016RyanmillerOntology Term : 'regulatory pathway' added !
86369view09:16, 11 July 2016ReactomeTeamreactome version 56
83339view10:50, 18 November 2015ReactomeTeamVersion54
81759view10:00, 26 August 2015ReactomeTeamVersion53
76924view08:19, 17 July 2014ReactomeTeamFixed remaining interactions
76629view12:00, 16 July 2014ReactomeTeamFixed remaining interactions
75960view10:01, 11 June 2014ReactomeTeamRe-fixing comment source
75662view10:56, 10 June 2014ReactomeTeamReactome 48 Update
75017view13:53, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74661view08:43, 30 April 2014ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
18S rRNA ProteinX03205 (EMBL)
28S rRNA ProteinM11167 (EMBL)
3' Fragment of Cleaved mRNA R-ALL-927738 (Reactome)
5' Fragment of Cleaved mRNA R-ALL-927835 (Reactome)
5.8S rRNA ProteinJ01866 (EMBL)
5S rRNA ProteinV00589 (EMBL)
ADPMetaboliteCHEBI:16761 (ChEBI)
ATPMetaboliteCHEBI:15422 (ChEBI)
CASC3 ProteinO15234 (Uniprot-TrEMBL)
Cap Binding Complex (CBC)ComplexR-HSA-162460 (Reactome)
DCP1AProteinQ9NPI6 (Uniprot-TrEMBL)
EIF4A3 ProteinP38919 (Uniprot-TrEMBL)
EIF4G1 ProteinQ04637 (Uniprot-TrEMBL)
EIF4G1ProteinQ04637 (Uniprot-TrEMBL)
ETF1 ProteinP62495 (Uniprot-TrEMBL)
FAU ProteinP62861 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GSPT1 ProteinP15170 (Uniprot-TrEMBL)
GSPT2 ProteinQ8IYD1 (Uniprot-TrEMBL)
MAGOH ProteinP61326 (Uniprot-TrEMBL)
MAGOHB ProteinQ96A72 (Uniprot-TrEMBL)
NCBP1 ProteinQ09161 (Uniprot-TrEMBL)
NCBP2 ProteinP52298 (Uniprot-TrEMBL)
PABPC1 ProteinP11940 (Uniprot-TrEMBL)
PABPC1ProteinP11940 (Uniprot-TrEMBL)
PNRC2ProteinQ9NPJ4 (Uniprot-TrEMBL)
PP2A (Aalpha:B55alpha:Calpha)ComplexR-HSA-377182 (Reactome)
PPP2CA ProteinP67775 (Uniprot-TrEMBL)
PPP2R1A ProteinP30153 (Uniprot-TrEMBL)
PPP2R2A ProteinP63151 (Uniprot-TrEMBL)
Phosphorylated UPF1:SMG5:SMG7:SMG6:PP2A:Translated mRNPComplexR-HSA-927854 (Reactome)
RBM8A ProteinQ9Y5S9 (Uniprot-TrEMBL)
RNPS1 ProteinQ15287 (Uniprot-TrEMBL)
RPL10 ProteinP27635 (Uniprot-TrEMBL)
RPL10A ProteinP62906 (Uniprot-TrEMBL)
RPL10L ProteinQ96L21 (Uniprot-TrEMBL)
RPL11 ProteinP62913 (Uniprot-TrEMBL)
RPL12 ProteinP30050 (Uniprot-TrEMBL)
RPL13 ProteinP26373 (Uniprot-TrEMBL)
RPL13A ProteinP40429 (Uniprot-TrEMBL)
RPL14 ProteinP50914 (Uniprot-TrEMBL)
RPL15 ProteinP61313 (Uniprot-TrEMBL)
RPL17 ProteinP18621 (Uniprot-TrEMBL)
RPL18 ProteinQ07020 (Uniprot-TrEMBL)
RPL18A ProteinQ02543 (Uniprot-TrEMBL)
RPL19 ProteinP84098 (Uniprot-TrEMBL)
RPL21 ProteinP46778 (Uniprot-TrEMBL)
RPL22 ProteinP35268 (Uniprot-TrEMBL)
RPL22L1 ProteinQ6P5R6 (Uniprot-TrEMBL)
RPL23 ProteinP62829 (Uniprot-TrEMBL)
RPL23A ProteinP62750 (Uniprot-TrEMBL)
RPL24 ProteinP83731 (Uniprot-TrEMBL)
RPL26 ProteinP61254 (Uniprot-TrEMBL)
RPL26L1 ProteinQ9UNX3 (Uniprot-TrEMBL)
RPL27 ProteinP61353 (Uniprot-TrEMBL)
RPL27A ProteinP46776 (Uniprot-TrEMBL)
RPL28 ProteinP46779 (Uniprot-TrEMBL)
RPL29 ProteinP47914 (Uniprot-TrEMBL)
RPL3 ProteinP39023 (Uniprot-TrEMBL)
RPL30 ProteinP62888 (Uniprot-TrEMBL)
RPL31 ProteinP62899 (Uniprot-TrEMBL)
RPL32 ProteinP62910 (Uniprot-TrEMBL)
RPL34 ProteinP49207 (Uniprot-TrEMBL)
RPL35 ProteinP42766 (Uniprot-TrEMBL)
RPL35A ProteinP18077 (Uniprot-TrEMBL)
RPL36 ProteinQ9Y3U8 (Uniprot-TrEMBL)
RPL36A ProteinP83881 (Uniprot-TrEMBL)
RPL36AL ProteinQ969Q0 (Uniprot-TrEMBL)
RPL37 ProteinP61927 (Uniprot-TrEMBL)
RPL37A ProteinP61513 (Uniprot-TrEMBL)
RPL38 ProteinP63173 (Uniprot-TrEMBL)
RPL39 ProteinP62891 (Uniprot-TrEMBL)
RPL39L ProteinQ96EH5 (Uniprot-TrEMBL)
RPL3L ProteinQ92901 (Uniprot-TrEMBL)
RPL4 ProteinP36578 (Uniprot-TrEMBL)
RPL40 ProteinP62987 (Uniprot-TrEMBL)
RPL41 ProteinP62945 (Uniprot-TrEMBL)
RPL5 ProteinP46777 (Uniprot-TrEMBL)
RPL6 ProteinQ02878 (Uniprot-TrEMBL)
RPL7 ProteinP18124 (Uniprot-TrEMBL)
RPL7A ProteinP62424 (Uniprot-TrEMBL)
RPL8 ProteinP62917 (Uniprot-TrEMBL)
RPL9 ProteinP32969 (Uniprot-TrEMBL)
RPLP0 ProteinP05388 (Uniprot-TrEMBL)
RPLP1 ProteinP05386 (Uniprot-TrEMBL)
RPLP2 ProteinP05387 (Uniprot-TrEMBL)
RPS10 ProteinP46783 (Uniprot-TrEMBL)
RPS11 ProteinP62280 (Uniprot-TrEMBL)
RPS12 ProteinP25398 (Uniprot-TrEMBL)
RPS13 ProteinP62277 (Uniprot-TrEMBL)
RPS14 ProteinP62263 (Uniprot-TrEMBL)
RPS15 ProteinP62841 (Uniprot-TrEMBL)
RPS15A ProteinP62244 (Uniprot-TrEMBL)
RPS16 ProteinP62249 (Uniprot-TrEMBL)
RPS17 ProteinP08708 (Uniprot-TrEMBL)
RPS18 ProteinP62269 (Uniprot-TrEMBL)
RPS19 ProteinP39019 (Uniprot-TrEMBL)
RPS2 ProteinP15880 (Uniprot-TrEMBL)
RPS20 ProteinP60866 (Uniprot-TrEMBL)
RPS21 ProteinP63220 (Uniprot-TrEMBL)
RPS23 ProteinP62266 (Uniprot-TrEMBL)
RPS24 ProteinP62847 (Uniprot-TrEMBL)
RPS25 ProteinP62851 (Uniprot-TrEMBL)
RPS26 ProteinP62854 (Uniprot-TrEMBL)
RPS27 ProteinP42677 (Uniprot-TrEMBL)
RPS27A(77-156) ProteinP62979 (Uniprot-TrEMBL)
RPS27L ProteinQ71UM5 (Uniprot-TrEMBL)
RPS28 ProteinP62857 (Uniprot-TrEMBL)
RPS29 ProteinP62273 (Uniprot-TrEMBL)
RPS3 ProteinP23396 (Uniprot-TrEMBL)
RPS3A ProteinP61247 (Uniprot-TrEMBL)
RPS4X ProteinP62701 (Uniprot-TrEMBL)
RPS4Y1 ProteinP22090 (Uniprot-TrEMBL)
RPS4Y2 ProteinQ8TD47 (Uniprot-TrEMBL)
RPS5 ProteinP46782 (Uniprot-TrEMBL)
RPS6 ProteinP62753 (Uniprot-TrEMBL)
RPS7 ProteinP62081 (Uniprot-TrEMBL)
RPS8 ProteinP62241 (Uniprot-TrEMBL)
RPS9 ProteinP46781 (Uniprot-TrEMBL)
RPSA ProteinP08865 (Uniprot-TrEMBL)
SMG1 ProteinQ96Q15 (Uniprot-TrEMBL)
SMG1:Phosphorylated

UPF1:EJC:Translated

mRNP
ComplexR-HSA-927890 (Reactome)
SMG1:SMG8:SMG9 ComplexComplexR-HSA-927853 (Reactome)
SMG1:UPF1:EJC:Translated mRNPComplexR-HSA-927767 (Reactome)
SMG5 ProteinQ9UPR3 (Uniprot-TrEMBL)
SMG5ProteinQ9UPR3 (Uniprot-TrEMBL)
SMG6 ProteinQ86US8 (Uniprot-TrEMBL)
SMG6ProteinQ86US8 (Uniprot-TrEMBL)
SMG7 ProteinQ92540 (Uniprot-TrEMBL)
SMG7ProteinQ92540 (Uniprot-TrEMBL)
SMG8 ProteinQ8ND04 (Uniprot-TrEMBL)
SMG9 ProteinQ9H0W8 (Uniprot-TrEMBL)
Translated mRNA

Complex with Premature Termination Codon Not Preceding Exon

Junction
ComplexR-HSA-927787 (Reactome)
Translated mRNA

Complex with Premature Termination Codon Preceding Exon

Junction
ComplexR-HSA-927773 (Reactome)
UPF1 ProteinQ92900 (Uniprot-TrEMBL)
UPF1:eRF3 Complex on Translated mRNAComplexR-HSA-927762 (Reactome)
UPF1ProteinQ92900 (Uniprot-TrEMBL)
UPF2 ProteinQ9HAU5 (Uniprot-TrEMBL)
UPF3A ProteinQ9H1J1 (Uniprot-TrEMBL)
UPF3AS-2 ProteinQ9H1J1-2 (Uniprot-TrEMBL)
UPF3B ProteinQ9BZI7 (Uniprot-TrEMBL)
mRNA Cleaved by SMG6ComplexR-HSA-927845 (Reactome)
mRNA with premature termination codon not preceding exon junction R-ALL-927733 (Reactome)
mRNA with premature termination codon preceding exon junction R-ALL-927796 (Reactome) This is an mRNA with a premature termination codon which precedes an exon junction. Such mRNAs are subject to nonsense-mediated decay (NMD).
p-4S-UPF1 ProteinQ92900 (Uniprot-TrEMBL)
p-4S-UPF1ProteinQ92900 (Uniprot-TrEMBL)
tRNA R-HSA-141679 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ADPArrowR-HSA-927889 (Reactome)
ATPR-HSA-927889 (Reactome)
Cap Binding Complex (CBC)ArrowR-HSA-927830 (Reactome)
DCP1AR-HSA-927813 (Reactome)
EIF4G1ArrowR-HSA-927830 (Reactome)
PABPC1ArrowR-HSA-927830 (Reactome)
PNRC2R-HSA-927813 (Reactome)
PP2A (Aalpha:B55alpha:Calpha)ArrowR-HSA-927830 (Reactome)
PP2A (Aalpha:B55alpha:Calpha)R-HSA-927813 (Reactome)
PP2A (Aalpha:B55alpha:Calpha)mim-catalysisR-HSA-927830 (Reactome)
Phosphorylated UPF1:SMG5:SMG7:SMG6:PP2A:Translated mRNPArrowR-HSA-927813 (Reactome)
Phosphorylated UPF1:SMG5:SMG7:SMG6:PP2A:Translated mRNPR-HSA-927836 (Reactome)
Phosphorylated UPF1:SMG5:SMG7:SMG6:PP2A:Translated mRNPmim-catalysisR-HSA-927836 (Reactome)
R-HSA-927789 (Reactome) Nonsense-mediated decay of an mRNA can be triggered even if the termination codon does not precede an exon junction (Buhler et al. 2006, Eberle et al. 2008, Silva et al. 2008, Singh et al. 2008, Ivanov et al. 2008). UPF1 and PABP seem to modulate the efficiency of translation termination and PABP in the proximity of a termination codon prevents NMD likely by outcompeting UPF1 for interaction with eRF3 (Singh et al. 2008, Ivanov et al. 2008, Silva et al. 2008). Factors in the competition may be the length and secondary structure of the 3' UTR (Buhler et al. 2006, Eberle et al. 2008). UPF1 preferentially binds some but not all longer UTRs (Hogg and Goff 2010).
Interaction of eRF3 with PABP stimulates ribosome dissociation and initiation of a new round of translation on the mRNA. Interaction of eRF3 with UPF1 appears to promote nonsense-mediated decay. It is possible but not yet demonstrated that all components of the SURF complex (SMG1, UPF1, eRF1, eRF3) are assembled on an mRNA without an exon junction complex and that UPF1 is phosphorylated by SMG1.
R-HSA-927813 (Reactome) SMG6, SMG5 and SMG7 contain 14-3-3 domains which are believed to bind phosphorylated SQ motifs in UPF1 (Chiu et al. 2003, Ohnishi et al. 2003, Unterholzner and Izaurralde 2004, Fukuhara et al. 2005, Durand et al. 2007). SMG7 has been shown to bind UPF1 directly, target UPF1 for dephosphorylation by PP2A, and recruit enzymes that degrade RNA (Ohnishi et al. 2003, Unterholzner and Izaurralde 2004, Fukuhara et al. 2005). UPF3AS (the small isoform of UPF3A) also associates with the complex (Ohnishi et al. 2003). SMG6 is an endoribonuclease that cleaves the mRNA bound by UPF1 and also recruits phosphatase PP2A to dephosphorylate UPF1 (Chiu et al. 2003, Glavan et al. 2006, Eberle et al. 2009). PNRC2 binds both phospo-UPF1 and the decapping enzyme DCP1A, thereby facilitating decapping of the mRNA (Cho et al. 2009, Lai et al. 2012, Cho et al. 2013).
Though immunofluorescence in vivo indicates that SMG5 and SMG7 exist in separate complexes from SMG6 (Unterholzner and Izaurralde 2004) immunoprecipitation shows that SMG6 is present in complexes that also contain SMG5, SMG7, UPF1, UPF2, Y14, Magoh, and PABP (Kashima et al. 2010). SMG5, SMG6, and SMG7 are therefore represented here together in the same RNP complex. It is possible that some complexes contain only SMG6 or SMG5:SMG7 (reviewed in Nicholson et al. 2010, Muhlemann and Lykke-Andersen 2010). Note that "Smg5/7a" in Chiu et al. 2003 actually refers to SMG6.
Phosphorylated UPF1 also inhibits translation initiation by inhibiting conversion of 40S:tRNAmet:mRNA to 80S:tRNAmet:mRNA complexes (Isken et al. 2008)
R-HSA-927830 (Reactome) SMG6 endonucleolytically cleaves an mRNA it is believed that the resulting fragments are degraded by exonucleases, possibly XRN1, a 5'-to-3' nuclease, and the exosome complex, a 3'-to-5' nuclease (Huntzinger et al. 2008, Eberle et al. 2009). Inhibition of XRN1 is observed to cause accumulation of SMG6-cleaved intermediates therefore XRN1 is postulated to act downstream of SMG6 (Huntzinger et al. 2008).
In general, during Nonsense-Mediated Decay mRNAs are observed to be deadenlyated (implicating the PAN2 complex, PARN complex, and CCR4 complex), decapped (implicating the DCP1:DCP2 complex), and exoribonucleolytically digested (implicating the XRN1 5'-to-3' exonuclease and exosome 3'-to-5' exonuclease) (Lykke-Andersen 2002, Chen et al. 2003, Lejeune et al. 2003, Couttet and Grange 2004, Unterholzner and Izaurralde 2004, Yamashita et al. 2005). UPF1 is observed to associate with the decapping enzymes DCP1a and DCP2, however the specific decay reactions that occur after SMG6, SMG5 and SMG7 have associated with an mRNA are unknown (Lykke-Andersen et al. 2002). Likewise, SMG6 may be present in complexes separate from SMG5 and SMG7 and these complexes may have different routes of decay (reviewed in Nicholson et al. 2010, Muhlemann and Lykke-Andersen 2010).
ATPase activity of UPF1 is necessary for NMD and may reflect ATP-dependent helicase activity that disassembles the mRNA-protein complex (Franks et al. 2010). UPF1 must be dephosphorylated by PP2A for NMD to continue (Ohnishi et al. 2003, Chiu et al. 2003). Presumably the dephosphoryation recycles UPF1 for interaction with other mRNA complexes.
R-HSA-927832 (Reactome) The presence of an exon junction complex (EJC) downstream of a termination codon enhances nonsense-mediated decay (NMD) but is not absolutely required for NMD. The EJC is deposited during splicing and remains bound to the mRNA until a ribosome dislodges it during the pioneer round of translation, distinguished by the presence of the cap-binding complex at the 5' end. If translation terminates at least 50-55 nucleotides 5' to an EJC during the pioneer round then termination factors (eRF1 and eRF3) and the EJC recruit UPF1 and other NMD machinery (Lykke-Andersen et al. 2001, Ishigaki et al. 2001, Le Hir et al. 2001, Gehring et al. 2003, Hosoda et al. 2005, Kashima et al. 2006, Singh et al. 2007, Chamieh et al. 2008, Ivanov et al. 2008, Buchwald et al. 2010).
A current model for NMD enhanced by the EJC posits recruitment of UPF1, SMG1, SMG8, and SMG9 to eRF3 at the ribosome to form the SURF complex (Kashima et al. 2006, Chang et al. 2007, Isken et al. 2008, Muhlemann et al. 2008, Stalder and Muhlemann 2008, Chamieh et al. 2009, Maquat and Gong 2009, Rebbapragada and Lykke-Andersen 2009, Hwang et al. 2010, Nicholson et al. 2010). UPF1 and SMG1 then interact with components of the EJC, activating phosphorylation of UPF1 by SMG1.
The model of the NMD mechanism is inferred from known protein interactions:
eRF1 and eRF3 interact with UPF1, the key regulator of NMD which also binds SMG1, UPF2, and UPF3 (UPF3a or UPF3b) to form the SURF complex (Kashima et al.2006, Ivanov et al. 2008, Clerici et al. 2009, Chakrabarti et al. 2011). UPF1 also interacts with CBP80 at the cap of the mRNA (Hwang et al. 2010).
SMG8 and SMG9 associate with SMG1 and the SURF complex and modulate the phosphorylation activity of SMG1 (Yamashita et al. 2009).
UPF2 and UPF3 are peripheral components of the EJC and thus may link the EJC to the SURF complex (Chamieh et al. 2008). UPF3b binds UPF1 and a composite surface formed by the Y14, MAGOH, and eIF4A3 subunits of the core EJC (Gehring et al. 2003, Kunz et al. 2006, Buchwald et al. 2010). SMG1 also interacts with the EJC (Kashima et al. 2006, Yamashita et al. 2009). UPF3a more weakly activates NMD than does UPF3b (Kunz et al. 2006) and UPF3a levels increase in response to loss of UPF3b (Chan et al. 2009).
The binding of UPF1 to translated RNAs may occur in two steps: Binding of the SURF complex to the terminating ribosome followed by transfer of UPF1 and SMG1 to the EJC (Kashima et al. 2006, Hwang et al. 2010).
The core EJC (Y14, MAGOH, eIF4A3, and BTZ) can activate NMD without UPF2, however RNPS1, another EJC subunit, requires UPF2 to activate NMD (Gehring et al. 2005). RNAs show differential dependence on RNPS1-activated NMD (Gehring et al. 2005). Also, NMD of some transcripts requires EJC component eIF4A3 but not UPF3b (Chan et al. 2007) therefore there may be more than one route to activating NMD via the EJC.
R-HSA-927836 (Reactome) SMG6 is an endoribonuclease which cleaves the mRNA bound by UPF1 near the premature termination codon (Glavan et al. 2006, Eberle et al. 2009).
R-HSA-927889 (Reactome) SMG1 phosphorylates UPF1 in vitro and in vivo (Denning et al. 2001, Yamashita et al. 2001, Kashima et al. 2006). Serines 1073, 1078, 1096, and 1116 in isoform 2 (Serines 1084, 1089, 1107, 1127 in isoform 1) are phosphorylated in vitro and phosphorylation at serines 1078 and 1096 has been confirmed in vivo (Yamashita et al. 2001, Ohnishi et al. 2003, Kashima et al. 2006). UPF1 also contains additional serine and threonine residues that could be phosphorylated. SMG8 and SMG9 associate with SMG1 and regulate the kinase activity of SMG1 (Yamashita et al. 2009). The phosphorylation reaction is rate-limiting in nonsense-mediated decay and is therefore regarded as a licensing step (reviewed in Rebbapragada and Lykke-Andersen 2009). Phosphorylation is enhanced by the exon junction complex, which can interact with UPF1 via UPF2 and/or UPF3 (Kashima et al. 2006, Ivanov et al. 2008) or via Y14:Magoh (Ivanov et al. 2008). SMG8 and SMG9 bind SMG1 and regulate its kinase activity (Yamashita et al. 2009, Fernandez et al. 2011).
SMG1:Phosphorylated

UPF1:EJC:Translated

mRNP
ArrowR-HSA-927889 (Reactome)
SMG1:Phosphorylated

UPF1:EJC:Translated

mRNP
R-HSA-927813 (Reactome)
SMG1:SMG8:SMG9 ComplexR-HSA-927832 (Reactome)
SMG1:UPF1:EJC:Translated mRNPArrowR-HSA-927832 (Reactome)
SMG1:UPF1:EJC:Translated mRNPR-HSA-927889 (Reactome)
SMG1:UPF1:EJC:Translated mRNPmim-catalysisR-HSA-927889 (Reactome)
SMG5ArrowR-HSA-927830 (Reactome)
SMG5R-HSA-927813 (Reactome)
SMG6ArrowR-HSA-927830 (Reactome)
SMG6R-HSA-927813 (Reactome)
SMG7ArrowR-HSA-927830 (Reactome)
SMG7R-HSA-927813 (Reactome)
Translated mRNA

Complex with Premature Termination Codon Not Preceding Exon

Junction
R-HSA-927789 (Reactome)
Translated mRNA

Complex with Premature Termination Codon Preceding Exon

Junction
R-HSA-927832 (Reactome)
UPF1:eRF3 Complex on Translated mRNAArrowR-HSA-927789 (Reactome)
UPF1ArrowR-HSA-927830 (Reactome)
UPF1R-HSA-927789 (Reactome)
UPF1R-HSA-927832 (Reactome)
mRNA Cleaved by SMG6ArrowR-HSA-927836 (Reactome)
mRNA Cleaved by SMG6R-HSA-927830 (Reactome)
p-4S-UPF1mim-catalysisR-HSA-927830 (Reactome)