Elastic fibre formation (Homo sapiens)
From WikiPathways
Description
Elastic fibres (EF) are a major structural constituent of dynamic connective tissues such as large arteries and lung parenchyma, where they provide essential properties of elastic recoil and resilience. EF are composed of a central cross-linked core of elastin, surrounded by a mesh of microfibrils, which are composed largely of fibrillin. In addition to elastin and fibrillin-1, over 30 ancillary proteins are involved in mediating important roles in elastic fibre assembly as well as interactions with the surrounding environment. These include fibulins, elastin microfibril interface located proteins (EMILINs), microfibril-associated glycoproteins (MAGPs) and Latent TGF-beta binding proteins (LTBPs). Fibulin-5 for example, is expressed by vascular smooth muscle cells and plays an essential role in the formation of elastic fibres through mediating interactions between elastin and fibrillin (Yanigasawa et al. 2002, Freeman et al. 2005). In addition, it plays a role in cell adhesion through integrin receptors and has been shown to influence smooth muscle cell proliferation (Yanigasawa et al. 2002, Nakamura et al. 2002). EMILINs are a family of homologous glycoproteins originally identified in extracts of aortas. Found at the elastin-fibrillin interface, early studies showed that antibodies to EMILIN can affect the process of elastic fibre formation (Bressan et al. 1993). EMILIN1 has been shown to bind elastin and fibulin-5 and appears to coordinate their common interaction (Zanetti et al. 2004). MAGPs are found to co-localize with microfibrils. MAGP-1, for example, binds strongly to an N-terminal sequence of fibrillin-1. Other proteins found associated with microfibrils include vitronectin (Dahlback et al. 1990).
Fibrillin is most familiar as a component of elastic fibres but microfibrils with no elastin are found in the ciliary zonules of the eye and invertebrate circulatory systems. The addition of elastin to microfibrils is a vertebrate adaptation to high pulsatile pressures in their closed circulatory systems (Faury et al. 2003). Elastin appears to have emerged after the divergence of jawless vertebrates from other vertebrates (Sage 1982).
Fibrillin-1 is the major structural component of microfibrils. Fibrillin-2 is expressed earlier in development than fibrillin-1 and may be important for elastic fiber formation (Zhang et al. 1994). Fibrillin-3 arose as a duplication of fibrillin-2 that did not occur in the rodent lineage. It was first isolated from human brain (Corson et al. 2004).
Fibrillin assembly is not as well defined as elastin assembly. The primary structure of fibrillin is dominated by calcium binding epidermal growth factor like repeats (Kielty et al. 2002). Fibrillin may form dimers or trimers before secretion. However, multimerisation predominantly occurs outside the cell. Formation of fibrils appears to require cell surface structures suggesting an involvement of cell surface receptors. Fibrillin is assembled pericellularly (i.e. on or close to the cell surface) into microfibrillar arrays that undergo time dependent maturation into microfibrils with beaded-string appearance. Transglutaminase forms gamma glutamyl epsilon lysine isopeptide bonds within or between peptide chains. Additionally, intermolecular disulfide bond formation between fibrillins is an important contributor to fibril maturation (Reinhardt et al. 2000).
Models of fibrillin-1 microfibril structure suggest that the N-terminal half of fibrillin-1 is asymmetrically exposed in outer filaments, while the C-terminal half is buried in the interior (Kuo et al. 2007). Fibrillinopathies include Marfan syndrome, familial ectopia lentis, familial thoracic aneurysm, all due to mutations in the fibrillin-1 gene FBN1, and congenital contractural arachnodactyly which is caused by mutation of FBN2 (Maslen & Glanville 1993, Davis & Summers 2012).
In vivo assembly of fibrillin requires the presence of extracellular fibronectin fibres (Sabatier et al. 2009). Fibrillins have Arg-Gly-Asp (RGD) sequences that interact with integrins (Pfaff et al. 1996, Sakamoto et al. 1996, Bax et al., 2003, Jovanovic et al. 2008) and heparin-binding domains that interact with a cell-surface heparan sulfate proteoglycan (Tiedemann et al. 2001) possibly a syndecan (Ritty et al. 2003). Fibrillins also have a major role in binding and sequestering growth factors such as TGF beta into the ECM (Neptune et al. 2003). Proteoglycans such as versican (Isogai et al. 2002), biglycan, and decorin (Reinboth et al. 2002) can interact with the microfibrils. They confer specific properties including hydration, impact absorption, molecular sieving, regulation of cellular activities, mediation of growth factor association, and release and transport within the extracellular matrix (Buczek-Thomas et al. 2002). In addition, glycosaminoglycans have been shown to interact with tropoelastin through its lysine side chains (Wu et al. 1999), regulating tropoelastin assembly (Tu & Weiss 2008).
Elastin is synthesized as a 70kDa monomer called tropoelastin, a highly hydrophobic protein composed largely of two types of domains that alternate along the polypeptide chain. Hydrophobic domains are rich in glycine, proline, alanine, leucine and valine. These amino acids occur in characteristic short (3-9 amino acids) tandem repeats, with a flexible and highly dynamic structure (Floquet et al. 2004). Unlike collagen, glycine in elastin is not rigorously positioned every 3 residues. However, glycine is distributed frequently throughout all hydrophobic domains of elastin, and displays a strong preference for inter-glycine spacing of 0-3 residues (Rauscher et al. 2006).
Elastic fibre formation involves the deposition of tropoelastin onto a template of fibrillin rich microfibrils. Recent results suggest that the first step of elastic fiber formation is the organization of small globules of elastin on the cell surface followed by globule aggregation into microfibres (Kozel et al. 2006). An important contribution to the initial stages assembly is thought to be made by the intrinsic ability of the protein to direct its own polymeric organization in a process termed 'coacervation' (Bressan et al. 1986). This self-assembly process appears to be determined by interactions between hydrophobic domains (Bressan et al. 1986, Vrhovski et al. 1997, Bellingham et al. 2003, Cirulis & Keeley 2010) which result in alignment of the cross-linking domains, allowing the stabilization of elastin through the formation of cross-links generated through the oxidative deamination of lysine residues, catalyzed by members of the lysyl oxidase (LOX) family (Reiser et al. 1992, Mithieux & Weiss 2005). The first step in the cross-linking reaction is the oxidative formation of the delta aldehyde, known as alpha aminoadipic semialdehyde or allysine (Partridge 1963). Subsequent reactions that are probably spontaneous lead to the formation of cross-links through dehydrolysinonorleucine and allysine aldol, a trifunctional cross-link dehydromerodesmosine and two tetrafunctional cross-links desmosine and isodesmosine (Lucero & Kagan 2006), which are unique to elastin. These cross-links confer mechanical integrity and high durability. In addition to their role in self-assembly, hydrophobic domains provide elastin with its elastomeric properties, with initial studies suggesting that the elastomeric propereties of elastin are driven through changes in entropic interactions with surrounding water molecules (Hoeve & Flory 1974).
A very specific set of proteases, broadly grouped under the name elastases, is responsible for elastin remodelling (Antonicelli et al. 2007). The matrix metalloproteinases (MMPs) are particularly important in elastin breakdown, with MMP2, 3, 9 and 12 explicitly shown to degrade elastin (Ra & Parks 2007). Nonetheless, elastin typically displays a low turnover rate under normal conditions over a lifetime (Davis 1993). View original pathway at Reactome.
Fibrillin is most familiar as a component of elastic fibres but microfibrils with no elastin are found in the ciliary zonules of the eye and invertebrate circulatory systems. The addition of elastin to microfibrils is a vertebrate adaptation to high pulsatile pressures in their closed circulatory systems (Faury et al. 2003). Elastin appears to have emerged after the divergence of jawless vertebrates from other vertebrates (Sage 1982).
Fibrillin-1 is the major structural component of microfibrils. Fibrillin-2 is expressed earlier in development than fibrillin-1 and may be important for elastic fiber formation (Zhang et al. 1994). Fibrillin-3 arose as a duplication of fibrillin-2 that did not occur in the rodent lineage. It was first isolated from human brain (Corson et al. 2004).
Fibrillin assembly is not as well defined as elastin assembly. The primary structure of fibrillin is dominated by calcium binding epidermal growth factor like repeats (Kielty et al. 2002). Fibrillin may form dimers or trimers before secretion. However, multimerisation predominantly occurs outside the cell. Formation of fibrils appears to require cell surface structures suggesting an involvement of cell surface receptors. Fibrillin is assembled pericellularly (i.e. on or close to the cell surface) into microfibrillar arrays that undergo time dependent maturation into microfibrils with beaded-string appearance. Transglutaminase forms gamma glutamyl epsilon lysine isopeptide bonds within or between peptide chains. Additionally, intermolecular disulfide bond formation between fibrillins is an important contributor to fibril maturation (Reinhardt et al. 2000).
Models of fibrillin-1 microfibril structure suggest that the N-terminal half of fibrillin-1 is asymmetrically exposed in outer filaments, while the C-terminal half is buried in the interior (Kuo et al. 2007). Fibrillinopathies include Marfan syndrome, familial ectopia lentis, familial thoracic aneurysm, all due to mutations in the fibrillin-1 gene FBN1, and congenital contractural arachnodactyly which is caused by mutation of FBN2 (Maslen & Glanville 1993, Davis & Summers 2012).
In vivo assembly of fibrillin requires the presence of extracellular fibronectin fibres (Sabatier et al. 2009). Fibrillins have Arg-Gly-Asp (RGD) sequences that interact with integrins (Pfaff et al. 1996, Sakamoto et al. 1996, Bax et al., 2003, Jovanovic et al. 2008) and heparin-binding domains that interact with a cell-surface heparan sulfate proteoglycan (Tiedemann et al. 2001) possibly a syndecan (Ritty et al. 2003). Fibrillins also have a major role in binding and sequestering growth factors such as TGF beta into the ECM (Neptune et al. 2003). Proteoglycans such as versican (Isogai et al. 2002), biglycan, and decorin (Reinboth et al. 2002) can interact with the microfibrils. They confer specific properties including hydration, impact absorption, molecular sieving, regulation of cellular activities, mediation of growth factor association, and release and transport within the extracellular matrix (Buczek-Thomas et al. 2002). In addition, glycosaminoglycans have been shown to interact with tropoelastin through its lysine side chains (Wu et al. 1999), regulating tropoelastin assembly (Tu & Weiss 2008).
Elastin is synthesized as a 70kDa monomer called tropoelastin, a highly hydrophobic protein composed largely of two types of domains that alternate along the polypeptide chain. Hydrophobic domains are rich in glycine, proline, alanine, leucine and valine. These amino acids occur in characteristic short (3-9 amino acids) tandem repeats, with a flexible and highly dynamic structure (Floquet et al. 2004). Unlike collagen, glycine in elastin is not rigorously positioned every 3 residues. However, glycine is distributed frequently throughout all hydrophobic domains of elastin, and displays a strong preference for inter-glycine spacing of 0-3 residues (Rauscher et al. 2006).
Elastic fibre formation involves the deposition of tropoelastin onto a template of fibrillin rich microfibrils. Recent results suggest that the first step of elastic fiber formation is the organization of small globules of elastin on the cell surface followed by globule aggregation into microfibres (Kozel et al. 2006). An important contribution to the initial stages assembly is thought to be made by the intrinsic ability of the protein to direct its own polymeric organization in a process termed 'coacervation' (Bressan et al. 1986). This self-assembly process appears to be determined by interactions between hydrophobic domains (Bressan et al. 1986, Vrhovski et al. 1997, Bellingham et al. 2003, Cirulis & Keeley 2010) which result in alignment of the cross-linking domains, allowing the stabilization of elastin through the formation of cross-links generated through the oxidative deamination of lysine residues, catalyzed by members of the lysyl oxidase (LOX) family (Reiser et al. 1992, Mithieux & Weiss 2005). The first step in the cross-linking reaction is the oxidative formation of the delta aldehyde, known as alpha aminoadipic semialdehyde or allysine (Partridge 1963). Subsequent reactions that are probably spontaneous lead to the formation of cross-links through dehydrolysinonorleucine and allysine aldol, a trifunctional cross-link dehydromerodesmosine and two tetrafunctional cross-links desmosine and isodesmosine (Lucero & Kagan 2006), which are unique to elastin. These cross-links confer mechanical integrity and high durability. In addition to their role in self-assembly, hydrophobic domains provide elastin with its elastomeric properties, with initial studies suggesting that the elastomeric propereties of elastin are driven through changes in entropic interactions with surrounding water molecules (Hoeve & Flory 1974).
A very specific set of proteases, broadly grouped under the name elastases, is responsible for elastin remodelling (Antonicelli et al. 2007). The matrix metalloproteinases (MMPs) are particularly important in elastin breakdown, with MMP2, 3, 9 and 12 explicitly shown to degrade elastin (Ra & Parks 2007). Nonetheless, elastin typically displays a low turnover rate under normal conditions over a lifetime (Davis 1993). View original pathway at Reactome.
Try the New WikiPathways
View approved pathways at the new wikipathways.org.Quality Tags
Ontology Terms
Bibliography
History
External references
DataNodes
fibre-asociated
proteinsFBLN2:Fibronectin
matrixAnnotated Interactions
fibre-asociated
proteinsFBLN2:Fibronectin
matrixFibulin-5 (FBLN5) expressed by vascular smooth muscle cells plays an essential role in the formation of elastic fibres, mediating interactions between elastin and fibrillin (Yanigasawa et al. 2002, Freeman et al. 2005). FBLN5 binds tropoelastin but not mature elastin (Zheng et al. 2007), regulating coacervation (Yanigasawa et al. 2009). FBLN5 can bind FBN1 monomers and fibrils (Freeman et al. 2005), but it is not clear whether this is necessary for elastin polymerization. FBLN5 also binds elastin cross-linking enzymes lysyl oxidase like (LOXL)-1, -2, and -4 (Hirai et al. 2007). Overexpression of Fbln5 increases elastin deposition and formation of desmosine cross-links (Nonaka et al. 2009). EMILIN can affect the process of elastic fibre formation (Bressan et al. 1993). It binds elastin and fibulin-5 and appears to coordinate their common interaction (Zanetti et al. 2004).
Vitronectin is present in plasma, extracellular matrix, and the alpha granules of blood platelets. It has been implicated as a regulator of many processes including coagulation, fibrinolysis, pericellular proteolysis, complement dependent immune response, cell attachment and spreading (Zhuang et al. 1996). It interacts with integrins alphaVbeta1 (Marshall et al. 1995), alphaVbeta3 (Pytela et al. 1985), alphaVbeta5 (Panetti & McKeown Longo 1993) and alphaIIbBeta3 (Pytela et al. 1986) through Arg Gly Asp (RGD) cell binding sequences.
The MFAPs are not a structurally related family but grouped due to their localization with microfibrils. MFAP1 was originally called 'associated microfibril protein' (AMP). It is a 54 kDa protein, processed to 32 kDa, localizing to fibrillin-containing microfibrils in several tissues including zonule fibers (Horrigan et al. 1992). MFAP3 is a 41 kDa serine-rich protein localized to zonular microfibrils, found in extracts of developing nuchal ligament, also expressed in fetal aorta and lung (Abrams et al. 1995). MFAP4 is a 29 kDa protein localized to fibrillin-containing microfibrils surrounding elastic fibers in aorta, skin and spleen (Toyoshima et al. 1999).LTBP1 and 3 bind all three isoforms of latent TGF-beta, while LTBP4 only weakly binds TGF-beta1 (Saharinen & Keski Oja 2000). LTBP2 does not bind TGF-beta and is a structural component of fibrillin microfibrils. The carboxyl termini of LTBP1 and LTBP4 binds to fibrillin. The incorporation of LTBP1 and LTBP4 into the ECM is abolished in fibrillin-1 null mice (Ono et al. 2009). The amino terminus of LTBPs binds ECM components such as collagen (Taipale et al. 1996) and fibronectin (Kantola et al. 2008). Fibulins compete for the LTBP sites in fibrillin (Ono et al. 2009).