RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) (Homo sapiens)
From WikiPathways
Description
The complex of CBFB and RUNX1 (AML1) controls transcription of the FOXP3 gene. FOXP3 is a transcription factor that acts as a key regulator of development and function of regulatory T lymphocytes (Tregs). Tregs are CD25+CD4+ T lymphocytes involved in suppression of aberrant immune responses seen in autoimmune diseases and allergies. FOXP3 can bind to RUNX1 and control transcriptional activity of the RUNX1:CBFB complex. RUNX1 stimulates transcription of IL2 and IFNG1 (IFN-gamma), and the expression of these two genes is repressed upon binding of FOXP3 to RUNX1. The complex of FOXP3 and RUNX1, on the other hand, stimulates transcription of cell surface markers of Tregs, such as CD25, CTLA-4 and GITR. In the absence of FOXP3, RUNX1 represses transcription of these genes (Shevach 2000, Maloy and Powrie 2001, Sakaguchi 2004, Ono et al. 2007, Kitoh et al. 2009).
The RUNX1:CBFB complex directly stimulates transcription of the CR1 gene, encoding Complement receptor type 1 (CD35) (Kim et al. 1999, Rho et al. 2002). Expression of CR1 on the surface of activated T cells contributes to generation of Tregs (Torok et al. 2015). View original pathway at Reactome.
The RUNX1:CBFB complex directly stimulates transcription of the CR1 gene, encoding Complement receptor type 1 (CD35) (Kim et al. 1999, Rho et al. 2002). Expression of CR1 on the surface of activated T cells contributes to generation of Tregs (Torok et al. 2015). View original pathway at Reactome.
Try the New WikiPathways
View approved pathways at the new wikipathways.org.Quality Tags
Ontology Terms
Bibliography
History
External references
DataNodes
The core domain of CBFB binds to the Runt domain of RUNX1, resulting in formation of the RUNX1:CBFB heterodimer. CBFB does not interact with DNA directly. The Runt domain of RUNX1 mediated both DNA binding and heterodimerization with CBFB (Tahirov et al. 2001), while RUNX1 regions that flank the Runt domain are involved in transactivation (reviewed in Zhang et al. 2003) and negative regulation (autoinhibition). CBFB facilitates RUNX1 binding to DNA by stabilizing Runt domain regions that interact with the major and minor grooves of the DNA (Tahirov et al. 2001, Backstrom et al. 2002, Bartfeld et al. 2002). The transactivation domain of RUNX1 is located C-terminally to the Runt domain and is followed by the negative regulatory domain. Autoinhibiton of RUNX1 is relieved by interaction with CBFB (Kanno et al. 1998).
Transcriptional targets of the RUNX1:CBFB complex involve genes that regulate self-renewal of hematopoietic stem cells (HSCs) (Zhao et al. 2014), as well as commitment and differentiation of many hematopoietic progenitors, including myeloid (Friedman 2009) and megakaryocytic progenitors (Goldfarb 2009), regulatory T lymphocytes (Wong et al. 2011) and B lymphocytes (Boller and Grosschedl 2014).
RUNX1 binds to promoters of many genes involved in ribosomal biogenesis (Ribi) and is thought to stimulate their transcription. RUNX1 loss-of-function decreases ribosome biogenesis and translation in hematopoietic stem and progenitor cells (HSPCs). RUNX1 loss-of-function is therefore associated with a slow growth, but at the same time it results in reduced apoptosis and increases resistance of cells to genotoxic and endoplasmic reticulum stress, conferring an overall selective advantage to RUNX1 deficient HSPCs (Cai et al. 2015).
RUNX1 is implicated as a tumor suppressor in breast cancer. RUNX1 forms a complex with the activated estrogen receptor alpha (ESR1) and regulates expression of estrogen-responsive genes (Chimge and Frenkel 2013).
RUNX1 is overexpressed in epithelial ovarian carcinoma where it may contribute to cell proliferation, migration and invasion (Keita et al. 2013).
RUNX1 may cooperate with TP53 in transcriptional activation of TP53 target genes upon DNA damage (Wu et al. 2013).
RUNX1 is needed for the maintenance of skeletal musculature (Wang et al. 2005).
During mouse embryonic development, Runx1 is expressed in most nociceptive sensory neurons, which are involved in the perception of pain. In adult mice, Runx1 is expressed only in nociceptive sensory neurons that express the Ret receptor and is involved in regulation of expression of genes encoding ion channels (sodium-gated, ATP-gated and hydrogen ion-gated) and receptors (thermal receptors, opioid receptor MOR and the Mrgpr class of G protein coupled receptors). Mice lacking Runx1 show defective perception of thermal and neuropathic pain (Chen CL et al. 2006). Runx1 is thought to activate the neuronal differentiation of nociceptive dorsal root ganglion cells during embryonal development possibly through repression of Hes1 expression (Kobayashi et al. 2012). In chick and mouse embryos, Runx1 expression is restricted to the dorso-medial domain of the dorsal root ganglion, to TrkA-positive cutaneous sensory neurons. Runx3 expression in chick and mouse embryos is restricted to ventro-lateral domain of the dorsal root ganglion, to TrkC-positive proprioceptive neurons (Chen AI et al. 2006, Kramer et al. 2006). RUNX1 mediated regulation of neuronally expressed genes will be annotated when mechanistic details become available.
Annotated Interactions