DNA Damage Bypass (Homo sapiens)

From WikiPathways

Revision as of 13:01, 21 August 2015 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
3, 15, 36, 42, 48...37, 38, 553563, 763519, 39, 74, 7723655, 7, 10, 12, 13, 30...16, 6635, 698, 61, 691, 35, 53, 57, 6924, 25, 4418, 453557234827, 35, 38, 549, 17, 39, 742327, 38, 552, 4, 22, 34, 49...16, 2011, 17, 25, 3318, 28, 6443, 53, 57, 7517, 26, 52, 60, 67356, 32, 33, 70, 72...35353516, 666, 14, 29, 33, 40...nucleoplasmRFC3 UBC(533-608) RFC5 UBA52(1-76) UBC(1-76) UBC(229-304) SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA TemplateRPA3 RFC3 UBA52(1-76) RFC4 MonoUb:K164-PCNA:RPA:RFC:USP1:ZBTB32:Damaged DNA TemplateTRIM25 RFC1 RPA1 UBC(533-608) UBB(1-76) UBC(609-684) POLK:REV1:POLZ:MonoUb:K164-PCNA:RPA:RFC:Tg-DNA Template,OGUA-DNA Template,BPDE-G-DNA TemplateUBC(457-532) UBC(305-380) UBB(77-152) UBC(457-532) UBB(1-76) PCNA UBB(1-76) UBC(1-76) RFC4 PPiRFC3 RFC1 PCNA RFC5 UBC(533-608) RFC2 UBC(1-76) UBC(77-152) REV1 RFC1 UBB(153-228) RFC5 RPA1 RFC5 UBA52(1-76) RFC1 MonoUb-K164-PCNA UBB(1-76) RFC3 UBC(381-456) USP1(672-785)POLH UBB(77-152) UBC(229-304) RFC2 UBB(77-152) RPA3 POLZPCNA RFC5 NPLOC4:UFD1L:VCP:SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA TemplateUBC(381-456) RFC5 POLK:REV1:POLZ:MonoUb:K164-PCNA:RPA:RFC:(Tg:A)-DNA Template,(OGUA:A)-DNA Template,(BPDE-G:C)-DNA TemplateRPA2 Mn2+ UBA52(1-76) UBA52(1-76) UBA52(1-76) UBC(229-304) UBC(533-608) RFC1 RPA1 RFC1 UBB(153-228) RFC2 UBB(153-228) RFC3 UBC(533-608) Mg2+ RPS27A(1-76) UBB(1-76) REV1:MonoUb:K164-PCNA:RPA:RFC:AP-DNA TemplateubiquitinRFC4 PPiRPA1 RPA3 UBC(305-380) UBC(1-76) RFC1 RPA3 USP1 RFC1 PCNA:POLD,POLE:RPA:RFCUBC(609-684) REV3LPPiUBC(609-684) DNA polymerase YUBB(1-76) UBC(229-304) UBC(1-76) MonoUb-K164-PCNA UBC(457-532) REV1:MonoUb:K164-PCNA:RPA:RFC:(AP:Cyt)-DNA TemplatePCNA UBC(305-380) RFC4 PPiPOLK NPLOC4:UFD1L:VPC:SPRTN:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-Template DNARFC1 RPA2 ZBTB32 UBC(533-608) UBC(305-380) UBC(457-532) ISG-K164,ISG-K168-PCNA RPA3 UBC(153-228) RPS27A(1-76) RFC2 UBA52(1-76) UBC(457-532) POLH UBB(153-228) RFC1 UBA52(1-76) RPA3 UBC(153-228) UBC(533-608) UBC(153-228) UBC(77-152) PCNA UBB(1-76) UBC(153-228) RPA3 RPA2 RPA2 UBC(229-304) UBB(153-228) REV1 PCNA RPS27A(1-76) RPA1 UBB(153-228) RFC2 REV3L UBC(609-684) UBC(381-456) RFC4 RFC5 UBB(1-76) RFC3 MAD2L2 UBC(457-532) UBC(381-456) UBC(1-76) UBC(77-152) RPA1 REV1 POLI MonoUb:K164-PCNA:RPA:RFC:AP-DNA TemplatedNTPUBC(229-304) UBC(533-608) RPS27A(1-76) MonoUb-K164-PCNA UBB(1-76) UBB(153-228) PPiUBC(229-304) REV1 UBA52(1-76) RFC2 PPiUBE2B UBC(533-608) MonoUb:K164-PCNA:RPA:RFC:EtAD-DNA Template,Gamma-HOPdG-DNA TemplateRPA1 RPA3 UBC(457-532) RFC2 UBA52(1-76) UBC(229-304) UBC(1-76) RFC4 RFC2 RFC4 RPA3 UBC(381-456) UBC(77-152) RFC4 RAD18 UBB(77-152) RCHY1 RFC4 UBB(77-152) dNTPubiquitinMAD2L2 RFC5 RPS27A(1-76) RFC3 MonoUb:K15,K24-KIAA0101RFC2 dNTPRPA3 UBC(229-304) RPA1 RFC3 UBC(609-684) UBC(229-304) POLI UBC(153-228) POLI:REV1:POLZ:MonoUb:K164-PCNA:RPA:RFC:EtAD-DNA Template,Gamma-HOPdG-DNA TemplatePOLK USP10:DNApolymeraseY:MonoUb:K164,ISG:K164,ISG:K168-PCNA:RPA:RFC:TLS-DNA TemplateMn2+ UBC(457-532) RFC2 UBC(229-304) UBC(153-228) RFC1 NPLOC4 RFC4 DDB1 ubiquitinRPA2 RFC4 RPA1 UBB(1-76) REV1SPRTN UBC(381-456) PCNA RFC3 RPS27A(1-76) RFC2 POLK UBB(1-76) ISG15RPA1 ISG-K164,ISG-K168-PCNA RPA3 UBC(1-76) UBC(609-684) RFC5 RPA2 UBC(381-456) UBC(305-380) UBA52(1-76) RFC1 UBC(77-152) RFC5 RPA2 UBC(609-684) UBA52(1-76) PPiUBC(153-228) RPS27A(1-76) UBC(457-532) RPA2 RFC3 RFC2 UBC(153-228) RFC1 K164-PCNA-G157-ISG15USP43 UBB(77-152) NPLOC4:UFD1L:VCPREV3L PCNA RFC4 MAD2L2 UBC(381-456) REV3L RPA3 RFC1 UBC(229-304) RFC2 RFC2 UBA52(1-76) UBB(1-76) UBC(381-456) dNTPUBC(153-228) UBC(153-228) RPA3 MonoUb-K164-PCNA RPA2 UBC(609-684) UBA52(1-76) UBC(305-380) PCNA:POLD,POLE:RPA:RFC:Damaged DNA TemplatePOLK:Mg2+,Mn2+UBC(1-76) UBB(153-228) UBB(1-76) UBC(305-380) RFC3 RPA3 RFC3 RBX1 PCNA UBC(77-152) RPA3 UBC(457-532) UBC(77-152) PCNA UBC(609-684) RPA2 UBB(77-152) UBB(77-152) REV1 RPS27A(1-76) UBB(153-228) UBB(77-152) UBC(153-228) UBA52(1-76) RFC1 RPA3 MonoUb-K15,K24-KIAA0101 RFC1 UBC(1-76) POLH:RCHY1MonoUb-K164-PCNA UBB(153-228) RFC3 UBC(153-228) ISG-K164,ISG-K168-PCNA RPS27A(1-76) UBC(77-152) UBC(229-304) UBB(77-152) ADPRFC2 UBC(229-304) RFC3 RPA3 MAD2L2 dNTPMonoUb-K164-PCNA RPA2 K164-PCNA-G157-ISG15RPS27A(1-76) CUL4B RFC3 RPA2 UBC(229-304) UBC(77-152) MAD2L2RPA3 RPA1 Mg2+ UBC(609-684) RPS27A(1-76) UBC(609-684) UBC(533-608) UBB(77-152) UBC(305-380) UBB(77-152) UBB(153-228) MonoUb:K164-PCNA:RPA:RFC:Tg-DNA Template,OGUA-DNA Template,BPDE-G-DNA TemplateZBTB32RPA3 UBC(609-684) RPA1 POLI RFC2 DTL MonoUb-K164-PCNA RFC2 UBC(533-608) RPA2 UBB(1-76) VCP MonoUb-K164-PCNA MonoUb-K164-PCNA UBC(77-152) RFC3 UBC(457-532) RPA2 RFC5 UBC(305-380) PCNA UBB(153-228) UBB(1-76) RFC4 UBC(77-152) UBC(381-456) UBC(153-228) UBC(77-152) RPA1 RFC2 PCNA UBC(381-456) UBB(1-76) USP1:ZBTB32UBC(153-228) UBC(229-304) UBC(609-684) dCTPRFC3 PCNA:POLD,POLE:RPA:RFC:TLS-DNA TemplateBase Excision RepairUBC(1-76) PCNA UBC(229-304) UBC(153-228) UBC(533-608) KIAA0101UBC(153-228) UBB(77-152) RFC3 UBE2L6:TRIM25:DNApolymeraseY:MonoUb:K164-PCNA:RPA:RFC:TLS-DNA TemplateISG15:UBA7UBB(77-152) DNApolymeraseY:MonoUb:K164,ISG:K164,ISG:K168-PCNA:RPA:RFC:TLS-DNA TemplateUBC(305-380) MAD2L2 Mg2+ UBC(77-152) UBC(381-456) RPA2 UBC(381-456) MAD2L2 RFC4 ISG15 RFC1 POLH MonoUb-K164-PCNA UBA52(1-76) RFC4 REV1 PPiPOLK UBC(457-532) UBB(153-228) RFC3 UBC(77-152) RFC1 UBC(77-152) UBB(77-152) UBC(305-380) UBB(1-76) UBB(153-228) RPA2 RFC3 UBC(609-684) RPA3 PCNA PCNA UBC(457-532) RFC1 UBC(153-228) USP43UBA52(1-76) RPA1 RPA2 UBB(77-152) RFC1 UBC(77-152) UBC(153-228) MonoUb-K164-PCNA REV1 UBB(77-152) RPA3 POLK PCNA:RPA:RFC:TLS-DNATemplateUBC(381-456) POLH UBC(305-380) RPS27A(1-76) UBC(609-684) Mn2+ UBB(153-228) RFC4 RFC1 MonoUb-K164-PCNA UBC(381-456) POLH UBC(229-304) UBB(77-152) Mg2+ POLZ:REV1:MonoUb:K164-PCNA:RPA:RFC:(AP:Cyt)-DNA TemplateRFC4 UBB(153-228) RPA1 UBC(305-380) RFC3 UBC(1-76) UBA52(1-76) PCNA UBC(381-456) UBC(1-76) RPS27A(1-76) UFD1L UBB(77-152) RPA2 MonoUb:K164-PCNA:RPA:RFC:TT-CPD-DNA TemplateUBB(153-228) UBC(153-228) PCNA UBC(533-608) RFC4 RAD18:UBE2B,RBX1:CUL4:DDB1:DTL:PCNA:POLD,POLE:RPA:RFC:Damaged DNA TemplateMonoUb-K164-PCNA ubiquitinUBB(153-228) RPA2 UBA7UBC(533-608) UBA52(1-76) RPA3 UBC(381-456) RFC4 USP1(1-671)UBC(1-76) RFC1 POLI UFD1L UBB(153-228) RFC3 RFC3 UBB(153-228) Damaged DNA TemplatedATPUBC(381-456) RPS27A(1-76) RPA2 UBB(1-76) UBB(1-76) RFC5 UBB(153-228) RFC5 UBC(457-532) RCHY1UBA52(1-76) UBC(381-456) PCNA UBC(305-380) UBC(1-76) UBC(229-304) RFC1 REV1:MonoUb:K164-PCNA:RPA:RFC:(AP:Cyt-mispairedPolydNMP)-DNA TemplatePOLH PCNA RFC4 RPA3 RPS27A(1-76) MonoUb:K164-PCNA:RPA:RFC:Damaged DNA TemplateRFC2 RPA2 UBC(533-608) UBC(1-76) MonoUb:K682,K686,K694,K709-POLHREV3L UBC(533-608) UBC(1-76) K168-PCNA-G157-ISG15UBC(533-608) RPA2 RFC2 UBB(77-152) UBC(153-228) UBC(533-608) UBC(305-380) MonoUb-K164-PCNA Mg2+ RFC4 RPA3 RFC4 RPA3 PCNA RFC5 MonoUb-K164-PCNA UBC(305-380) UBC(153-228) POLK UBB(1-76) RFC3 RFC2 ATPUBE2L6:TRIM25UBC(381-456) RFC1 UBC(381-456) RPS27A(1-76) RPA1 UBC(305-380) UBC(609-684) UBE2L6 RFC3 UBC(457-532) REV1 UBB(1-76) UBB(1-76) UBE2L6 UBC(305-380) RPA1 UBB(77-152) RPA1 UBA52(1-76) DNApolymeraseY:MonoUb:K164-PCNA:RPA:RFC:TLS-DNA TemplateRFC2 RPA1 REV1 UBB(153-228) UBC(1-76) REV3L UBC(229-304) UBC(229-304) UBA52(1-76) RPA1 UBC(305-380) UBC(77-152) PCNA Mg2+ MonoUb-K164-PCNA POLI UBC(533-608) RFC4 RFC4 UBC(305-380) UBB(77-152) RPA2 RPS27A(1-76) POLI:REV1:POLZ:MonoUb:K164-PCNA:RPA:RFC:(EtAD:T)-DNA Template,(Gamma-HOPdG:C)-DNA TemplateUBC(609-684) POLH UBC(533-608) RFC1 RPA1 UBC(1-76) RPS27A(1-76) RPA2 POLH UBC(457-532) RFC3 RPA1 PCNA RPA3 UBC(305-380) UBC(77-152) RPA1 RFC2 UBB(1-76) UBC(533-608) UBC(77-152) UBA52(1-76) POLH PCNA RFC1 POLZRPA2 UBC(533-608) UBC(457-532) UBC(533-608) UBB(77-152) POLD,POLEMonoUb-K164-PCNA RPA1 RFC4 UBC(1-76) RFC5 UBC(153-228) UBC(609-684) REV1 POLI POLI UBC(305-380) RFC4 Mn2+ UBB(77-152) RPA3 ZBTB32 UBC(77-152) UBC(457-532) UBC(1-76) RFC5 USP10 UBC(457-532) UBC(77-152) UBC(609-684) UBC(609-684) K164-PCNA-G157-ISG15RFC2 UBC(77-152) RFC4 UBC(609-684) POLK UFD1L UBC(381-456) POLI PCNA RPA2 UBC(533-608) POLK PCNA RPA2 UBB(77-152) MonoUb-K164-PCNA UBB(153-228) H2OUBC(381-456) UBB(153-228) RFC1 ubiquitinK168-PCNA-G157-ISG15UBA52(1-76) UBC(229-304) RFC5 RFC5 NPLOC4 UBC(533-608) UBC(305-380) REV3L UBC(457-532) RFC3 RFC5 PCNA UBC(1-76) RFC3 RFC1 UBB(153-228) UBC(457-532) TRIM25 UBC(77-152) RPA3 UBC(229-304) MonoUb-K164-PCNA RFC1 UBC(381-456) RPS27A(1-76) RPS27A(1-76) RPA3 RPA3 K168-PCNA-G157-ISG15RFC2 Mg2+ UBC(229-304) UBC(153-228) POLI:Mg2+Damaged dsDNARFC2 UBC(153-228) POLHRFC1 UBB(77-152) K164-PCNA-G157-ISG15USP1 UBB(77-152) RFC5 UBA52(1-76) RFC5 UBC(1-76) RFC4 RPS27A(1-76) RFC4 UBC(457-532) UBB(153-228) UBC(305-380) VCP RFC2 MonoUb-K164-PCNA RPA3 UBC(457-532) RFC4 dNTPUBC(153-228) RPA2 RFC2 UBC(305-380) RFC1 USP10RFC5 SPRTN H2ORFC5 UBC(77-152) UBC(1-76) UBC(1-76) RPA1 UBB(1-76) PCNA UBB(1-76) UBB(77-152) RFC5 RPA3 PCNA UBC(77-152) UBA52(1-76) K168-PCNA-G157-ISG15RPA2 UBC(381-456) MAD2L2 UBB(153-228) PCNA RFC2 UBC(457-532) RPS27A(1-76) UBC(305-380) PCNA UBC(1-76) UBB(153-228) UBC(77-152) RFC5 UBC(229-304) UBC(457-532) MonoUb-K164-PCNA MonoUb-K164-PCNA RFC1 RFC4 RFC2 RFC5 ISG:K164,ISG:K168-PCNA:RPA:RFC:TLS-DNA TemplatePCNA UBC(1-76) CUL4A UBC(77-152) POLH:MonoUb:K164-PCNA:RPA:RFC:TT-CPD-DNA TemplateRPA2 RPA3 RFC3 RPS27A(1-76) MonoUb-K682,K686,K694,K709-POLH UBC(381-456) UBC(305-380) RPA1 NPLOC4 UBC(609-684) UBC(153-228) RPA1 UBC(533-608) RFC5 RFC5 UBA52(1-76) RFC5 UBC(609-684) UBC(153-228) MonoUb-K164-PCNA RAD18:UBE2B,RBX1:CUL4:DDB1:DTLMonoUb-K164-PCNA UBC(533-608) RFC3 UBC(609-684) RFC4 POLH RPA2 POLI:MonoUb:K164-PCNA:RPA:RFC:(EtAD:T-mispaireddNMPs)-DNA Template,(Gamma-HOPdG:C-mispaireddNMPs)-DNA TemplateRPA1 UBC(229-304) REV1 UBC(305-380) POLK:MonoUb:K164-PCNA:RPA:RFC:(Tg:A-mispaireddNMPs)-DNA Template,(OGUA:A-mispaireddNMPs)-DNA Template,(BPDE-G:C-mispaireddNMPs)-DNA TemplateRPA1 VCP UBC(609-684) UBB(1-76) USP43:ISG:K164,ISG:K168-PCNA:RPA:RFC:TLS-DNA TemplateRFC2 UBC(609-684) MonoUb-K164-PCNA UBC(609-684) POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA)-DNA TemplatedNTPUBC(457-532) RFC2 RPA2 RPS27A(1-76) UBC(381-456) RFC2 RFC4 RPS27A(1-76) UBC(229-304) RFC5 RFC5 PCNA RFC3 RPA3 RFC2 REV3L UBC(381-456) UBB(1-76) UBC(457-532) SPRTN UBC(457-532) RFC4 RFC5 UBC(1-76) UBC(153-228) PCNA RPA1 POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA TemplateRPA1 RFC1 UBC(533-608) RFC1 RFC3 RPA2 RFC5 RPA1 PCNA REV1 UBA7 UBC(229-304) ISG-K164,ISG-K168-PCNA RPA1 SPRTNUBA52(1-76) RPA2 RPS27A(1-76) RFC3 RFC5 REV1RPS27A(1-76) MonoUb-K164-PCNA RPS27A(1-76) RFC3 PCNA:RPA:RFC:DamagedDNA TemplateMg2+ UBC(609-684) RPA1 UBB(1-76) UBC(77-152) 356535296963, 7621, 31283524, 444135353543, 57, 7546234124, 44


Description

In addition to various processes for removing lesions from the DNA, cells have developed specific mechanisms for tolerating unrepaired damage during the replication of the genome. These mechanisms are collectively called DNA damage bypass pathways. The Y family of DNA polymerases plays a key role in DNA damage bypass.

Y family DNA polymerases, REV1, POLH (DNA polymerase eta), POLK (DNA polymerase kappa) and POLI (DNA polymerase iota), as well as the DNA polymerase zeta (POLZ) complex composed of REV3L and MAD2L2, are able to carry out translesion DNA synthesis (TLS) or replicative bypass of damaged bases opposite to template lesions that arrest high fidelity, highly processive replicative DNA polymerase complexes delta (POLD) and epsilon (POLE). REV1, POLH, POLK, POLI and POLZ lack 3'->5' exonuclease activity and exhibit low fidelity and weak processivity. The best established TLS mechanisms are annotated here. TLS details that require substantial experimental clarification have been omitted. For recent and past reviews of this topic, please refer to Lehmann 2000, Friedberg et al. 2001, Zhu and Zhang 2003, Takata and Wood 2009, Ulrich 2011, Saugar et al. 2014. Source:Reactome.</div>

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Friedberg EC, Lehmann AR, Fuchs RP.; ''Trading places: how do DNA polymerases switch during translesion DNA synthesis?''; PubMed Europe PMC Scholia
  2. Cohn MA, Kowal P, Yang K, Haas W, Huang TT, Gygi SP, D'Andrea AD.; ''A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway.''; PubMed Europe PMC Scholia
  3. Notenboom V, Hibbert RG, van Rossum-Fikkert SE, Olsen JV, Mann M, Sixma TK.; ''Functional characterization of Rad18 domains for Rad6, ubiquitin, DNA binding and PCNA modification.''; PubMed Europe PMC Scholia
  4. Davis EJ, Lachaud C, Appleton P, Macartney TJ, Näthke I, Rouse J.; ''DVC1 (C1orf124) recruits the p97 protein segregase to sites of DNA damage.''; PubMed Europe PMC Scholia
  5. Kosarek JN, Woodruff RV, Rivera-Begeman A, Guo C, D'Souza S, Koonin EV, Walker GC, Friedberg EC.; ''Comparative analysis of in vivo interactions between Rev1 protein and other Y-family DNA polymerases in animals and yeasts.''; PubMed Europe PMC Scholia
  6. Saugar I, Ortiz-Bazán MÁ, Tercero JA.; ''Tolerating DNA damage during eukaryotic chromosome replication.''; PubMed Europe PMC Scholia
  7. Nelson JR, Lawrence CW, Hinkle DC.; ''Deoxycytidyl transferase activity of yeast REV1 protein.''; PubMed Europe PMC Scholia
  8. Carlson KD, Johnson RE, Prakash L, Prakash S, Washington MT.; ''Human DNA polymerase kappa forms nonproductive complexes with matched primer termini but not with mismatched primer termini.''; PubMed Europe PMC Scholia
  9. Ulrich HD.; ''Timing and spacing of ubiquitin-dependent DNA damage bypass.''; PubMed Europe PMC Scholia
  10. Chang CN, Feng MJ, Chen YL, Yuan RH, Jeng YM.; ''p15(PAF) is an Rb/E2F-regulated S-phase protein essential for DNA synthesis and cell cycle progression.''; PubMed Europe PMC Scholia
  11. Vasquez-Del Carpio R, Silverstein TD, Lone S, Swan MK, Choudhury JR, Johnson RE, Prakash S, Prakash L, Aggarwal AK.; ''Structure of human DNA polymerase kappa inserting dATP opposite an 8-OxoG DNA lesion.''; PubMed Europe PMC Scholia
  12. Centore RC, Yazinski SA, Tse A, Zou L.; ''Spartan/C1orf124, a reader of PCNA ubiquitylation and a regulator of UV-induced DNA damage response.''; PubMed Europe PMC Scholia
  13. Zhu F, Zhang M.; ''DNA polymerase zeta: new insight into eukaryotic mutagenesis and mammalian embryonic development.''; PubMed Europe PMC Scholia
  14. Matsuda T, Bebenek K, Masutani C, Hanaoka F, Kunkel TA.; ''Low fidelity DNA synthesis by human DNA polymerase-eta.''; PubMed Europe PMC Scholia
  15. Terai K, Abbas T, Jazaeri AA, Dutta A.; ''CRL4(Cdt2) E3 ubiquitin ligase monoubiquitinates PCNA to promote translesion DNA synthesis.''; PubMed Europe PMC Scholia
  16. Bi X, Barkley LR, Slater DM, Tateishi S, Yamaizumi M, Ohmori H, Vaziri C.; ''Rad18 regulates DNA polymerase kappa and is required for recovery from S-phase checkpoint-mediated arrest.''; PubMed Europe PMC Scholia
  17. Emanuele MJ, Ciccia A, Elia AE, Elledge SJ.; ''Proliferating cell nuclear antigen (PCNA)-associated KIAA0101/PAF15 protein is a cell cycle-regulated anaphase-promoting complex/cyclosome substrate.''; PubMed Europe PMC Scholia
  18. Yoon JH, Bhatia G, Prakash S, Prakash L.; ''Error-free replicative bypass of thymine glycol by the combined action of DNA polymerases kappa and zeta in human cells.''; PubMed Europe PMC Scholia
  19. Zhang Y, Wu X, Rechkoblit O, Geacintov NE, Taylor JS, Wang Z.; ''Response of human REV1 to different DNA damage: preferential dCMP insertion opposite the lesion.''; PubMed Europe PMC Scholia
  20. Bienko M, Green CM, Sabbioneda S, Crosetto N, Matic I, Hibbert RG, Begovic T, Niimi A, Mann M, Lehmann AR, Dikic I.; ''Regulation of translesion synthesis DNA polymerase eta by monoubiquitination.''; PubMed Europe PMC Scholia
  21. Lehmann AR.; ''Replication of UV-damaged DNA: new insights into links between DNA polymerases, mutagenesis and human disease.''; PubMed Europe PMC Scholia
  22. Hara K, Hashimoto H, Murakumo Y, Kobayashi S, Kogame T, Unzai S, Akashi S, Takeda S, Shimizu T, Sato M.; ''Crystal structure of human REV7 in complex with a human REV3 fragment and structural implication of the interaction between DNA polymerase zeta and REV1.''; PubMed Europe PMC Scholia
  23. Shiyanov P, Nag A, Raychaudhuri P.; ''Cullin 4A associates with the UV-damaged DNA-binding protein DDB.''; PubMed Europe PMC Scholia
  24. Nelson JR, Lawrence CW, Hinkle DC.; ''Thymine-thymine dimer bypass by yeast DNA polymerase zeta.''; PubMed Europe PMC Scholia
  25. Lee YS, Gregory MT, Yang W.; ''Human Pol ζ purified with accessory subunits is active in translesion DNA synthesis and complements Pol η in cisplatin bypass.''; PubMed Europe PMC Scholia
  26. Fischhaber PL, Gerlach VL, Feaver WJ, Hatahet Z, Wallace SS, Friedberg EC.; ''Human DNA polymerase kappa bypasses and extends beyond thymine glycols during translesion synthesis in vitro, preferentially incorporating correct nucleotides.''; PubMed Europe PMC Scholia
  27. Washington MT, Minko IG, Johnson RE, Wolfle WT, Harris TM, Lloyd RS, Prakash S, Prakash L.; ''Efficient and error-free replication past a minor-groove DNA adduct by the sequential action of human DNA polymerases iota and kappa.''; PubMed Europe PMC Scholia
  28. Lior-Hoffmann L, Wang L, Wang S, Geacintov NE, Broyde S, Zhang Y.; ''Preferred WMSA catalytic mechanism of the nucleotidyl transfer reaction in human DNA polymerase κ elucidates error-free bypass of a bulky DNA lesion.''; PubMed Europe PMC Scholia
  29. Kannouche PL, Wing J, Lehmann AR.; ''Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage.''; PubMed Europe PMC Scholia
  30. Ohashi E, Bebenek K, Matsuda T, Feaver WJ, Gerlach VL, Friedberg EC, Ohmori H, Kunkel TA.; ''Fidelity and processivity of DNA synthesis by DNA polymerase kappa, the product of the human DINB1 gene.''; PubMed Europe PMC Scholia
  31. Povlsen LK, Beli P, Wagner SA, Poulsen SL, Sylvestersen KB, Poulsen JW, Nielsen ML, Bekker-Jensen S, Mailand N, Choudhary C.; ''Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass.''; PubMed Europe PMC Scholia
  32. Nair DT, Johnson RE, Prakash S, Prakash L, Aggarwal AK.; ''Replication by human DNA polymerase-iota occurs by Hoogsteen base-pairing.''; PubMed Europe PMC Scholia
  33. Johnson RE, Washington MT, Haracska L, Prakash S, Prakash L.; ''Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions.''; PubMed Europe PMC Scholia
  34. Lin W, Xin H, Zhang Y, Wu X, Yuan F, Wang Z.; ''The human REV1 gene codes for a DNA template-dependent dCMP transferase.''; PubMed Europe PMC Scholia
  35. Ohashi E, Murakumo Y, Kanjo N, Akagi J, Masutani C, Hanaoka F, Ohmori H.; ''Interaction of hREV1 with three human Y-family DNA polymerases.''; PubMed Europe PMC Scholia
  36. Christov PP, Yamanaka K, Choi JY, Takata K, Wood RD, Guengerich FP, Lloyd RS, Rizzo CJ.; ''Replication of the 2,6-diamino-4-hydroxy-N(5)-(methyl)-formamidopyrimidine (MeFapy-dGuo) adduct by eukaryotic DNA polymerases.''; PubMed Europe PMC Scholia
  37. Neal JA, Fletcher KL, McCormick JJ, Maher VM.; ''The role of hRev7, the accessory subunit of hPolζ, in translesion synthesis past DNA damage induced by benzo[a]pyrene diol epoxide (BPDE).''; PubMed Europe PMC Scholia
  38. Masutani C, Kusumoto R, Iwai S, Hanaoka F.; ''Mechanisms of accurate translesion synthesis by human DNA polymerase eta.''; PubMed Europe PMC Scholia
  39. Gibbs PE, Wang XD, Li Z, McManus TP, McGregor WG, Lawrence CW, Maher VM.; ''The function of the human homolog of Saccharomyces cerevisiae REV1 is required for mutagenesis induced by UV light.''; PubMed Europe PMC Scholia
  40. Jung YS, Liu G, Chen X.; ''Pirh2 E3 ubiquitin ligase targets DNA polymerase eta for 20S proteasomal degradation.''; PubMed Europe PMC Scholia
  41. Zhang Y, Yuan F, Wu X, Wang M, Rechkoblit O, Taylor JS, Geacintov NE, Wang Z.; ''Error-free and error-prone lesion bypass by human DNA polymerase kappa in vitro.''; PubMed Europe PMC Scholia
  42. Ghosal G, Leung JW, Nair BC, Fong KW, Chen J.; ''Proliferating cell nuclear antigen (PCNA)-binding protein C1orf124 is a regulator of translesion synthesis.''; PubMed Europe PMC Scholia
  43. Murakumo Y, Roth T, Ishii H, Rasio D, Numata S, Croce CM, Fishel R.; ''A human REV7 homolog that interacts with the polymerase zeta catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2.''; PubMed Europe PMC Scholia
  44. Xie W, Yang X, Xu M, Jiang T.; ''Structural insights into the assembly of human translesion polymerase complexes.''; PubMed Europe PMC Scholia
  45. Yang IY, Miller H, Wang Z, Frank EG, Ohmori H, Hanaoka F, Moriya M.; ''Mammalian translesion DNA synthesis across an acrolein-derived deoxyguanosine adduct. Participation of DNA polymerase eta in error-prone synthesis in human cells.''; PubMed Europe PMC Scholia
  46. Sokhansanj BA, Rodrigue GR, Fitch JP, Wilson DM.; ''A quantitative model of human DNA base excision repair. I. Mechanistic insights.''; PubMed Europe PMC Scholia
  47. Bomar MG, D'Souza S, Bienko M, Dikic I, Walker GC, Zhou P.; ''Unconventional ubiquitin recognition by the ubiquitin-binding motif within the Y family DNA polymerases iota and Rev1.''; PubMed Europe PMC Scholia
  48. Lindahl T, Wood RD.; ''Quality control by DNA repair.''; PubMed Europe PMC Scholia
  49. Guo C, Fischhaber PL, Luk-Paszyc MJ, Masuda Y, Zhou J, Kamiya K, Kisker C, Friedberg EC.; ''Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis.''; PubMed Europe PMC Scholia
  50. Haracska L, Unk I, Johnson RE, Phillips BB, Hurwitz J, Prakash L, Prakash S.; ''Stimulation of DNA synthesis activity of human DNA polymerase kappa by PCNA.''; PubMed Europe PMC Scholia
  51. Jung YS, Hakem A, Hakem R, Chen X.; ''Pirh2 E3 ubiquitin ligase monoubiquitinates DNA polymerase eta to suppress translesion DNA synthesis.''; PubMed Europe PMC Scholia
  52. Mosbech A, Gibbs-Seymour I, Kagias K, Thorslund T, Beli P, Povlsen L, Nielsen SV, Smedegaard S, Sedgwick G, Lukas C, Hartmann-Petersen R, Lukas J, Choudhary C, Pocock R, Bekker-Jensen S, Mailand N.; ''DVC1 (C1orf124) is a DNA damage-targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks.''; PubMed Europe PMC Scholia
  53. Friedberg EC, Fischhaber PL, Kisker C.; ''Error-prone DNA polymerases: novel structures and the benefits of infidelity.''; PubMed Europe PMC Scholia
  54. Giannakopoulos NV, Luo JK, Papov V, Zou W, Lenschow DJ, Jacobs BS, Borden EC, Li J, Virgin HW, Zhang DE.; ''Proteomic identification of proteins conjugated to ISG15 in mouse and human cells.''; PubMed Europe PMC Scholia
  55. Everson RB, Randerath E, Santella RM, Cefalo RC, Avitts TA, Randerath K.; ''Detection of smoking-related covalent DNA adducts in human placenta.''; PubMed Europe PMC Scholia
  56. Murakumo Y, Ogura Y, Ishii H, Numata S, Ichihara M, Croce CM, Fishel R, Takahashi M.; ''Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7.''; PubMed Europe PMC Scholia
  57. Haracska L, Acharya N, Unk I, Johnson RE, Hurwitz J, Prakash L, Prakash S.; ''A single domain in human DNA polymerase iota mediates interaction with PCNA: implications for translesion DNA synthesis.''; PubMed Europe PMC Scholia
  58. Wojtaszek J, Lee CJ, D'Souza S, Minesinger B, Kim H, D'Andrea AD, Walker GC, Zhou P.; ''Structural basis of Rev1-mediated assembly of a quaternary vertebrate translesion polymerase complex consisting of Rev1, heterodimeric polymerase (Pol) ζ, and Pol κ.''; PubMed Europe PMC Scholia
  59. Yoon JH, Roy Choudhury J, Park J, Prakash S, Prakash L.; ''A role for DNA polymerase θ in promoting replication through oxidative DNA lesion, thymine glycol, in human cells.''; PubMed Europe PMC Scholia
  60. Takata K, Wood RD.; ''Bypass specialists operate together.''; PubMed Europe PMC Scholia
  61. Huang TT, Nijman SM, Mirchandani KD, Galardy PJ, Cohn MA, Haas W, Gygi SP, Ploegh HL, Bernards R, D'Andrea AD.; ''Regulation of monoubiquitinated PCNA by DUB autocleavage.''; PubMed Europe PMC Scholia
  62. Avkin S, Goldsmith M, Velasco-Miguel S, Geacintov N, Friedberg EC, Livneh Z.; ''Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells: the role of DNA polymerase kappa.''; PubMed Europe PMC Scholia
  63. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S.; ''RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO.''; PubMed Europe PMC Scholia
  64. Ohashi E, Ogi T, Kusumoto R, Iwai S, Masutani C, Hanaoka F, Ohmori H.; ''Error-prone bypass of certain DNA lesions by the human DNA polymerase kappa.''; PubMed Europe PMC Scholia
  65. Pence MG, Blans P, Zink CN, Fishbein JC, Perrino FW.; ''Bypass of N²-ethylguanine by human DNA polymerase κ.''; PubMed Europe PMC Scholia
  66. Ohashi E, Hanafusa T, Kamei K, Song I, Tomida J, Hashimoto H, Vaziri C, Ohmori H.; ''Identification of a novel REV1-interacting motif necessary for DNA polymerase kappa function.''; PubMed Europe PMC Scholia
  67. Davies AA, Huttner D, Daigaku Y, Chen S, Ulrich HD.; ''Activation of ubiquitin-dependent DNA damage bypass is mediated by replication protein a.''; PubMed Europe PMC Scholia
  68. Garg P, Burgers PM.; ''Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases eta and REV1.''; PubMed Europe PMC Scholia
  69. Wood A, Garg P, Burgers PM.; ''A ubiquitin-binding motif in the translesion DNA polymerase Rev1 mediates its essential functional interaction with ubiquitinated proliferating cell nuclear antigen in response to DNA damage.''; PubMed Europe PMC Scholia
  70. Shachar S, Ziv O, Avkin S, Adar S, Wittschieben J, Reissner T, Chaney S, Friedberg EC, Wang Z, Carell T, Geacintov N, Livneh Z.; ''Two-polymerase mechanisms dictate error-free and error-prone translesion DNA synthesis in mammals.''; PubMed Europe PMC Scholia
  71. Haracska L, Prakash L, Prakash S.; ''Role of human DNA polymerase kappa as an extender in translesion synthesis.''; PubMed Europe PMC Scholia
  72. Bienko M, Green CM, Crosetto N, Rudolf F, Zapart G, Coull B, Kannouche P, Wider G, Peter M, Lehmann AR, Hofmann K, Dikic I.; ''Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis.''; PubMed Europe PMC Scholia
  73. Park JM, Yang SW, Yu KR, Ka SH, Lee SW, Seol JH, Jeon YJ, Chung CH.; ''Modification of PCNA by ISG15 plays a crucial role in termination of error-prone translesion DNA synthesis.''; PubMed Europe PMC Scholia
  74. Wojtaszek J, Liu J, D'Souza S, Wang S, Xue Y, Walker GC, Zhou P.; ''Multifaceted recognition of vertebrate Rev1 by translesion polymerases ζ and κ.''; PubMed Europe PMC Scholia
  75. Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK.; ''Hoogsteen base pair formation promotes synthesis opposite the 1,N6-ethenodeoxyadenosine lesion by human DNA polymerase iota.''; PubMed Europe PMC Scholia
  76. Kikuchi S, Hara K, Shimizu T, Sato M, Hashimoto H.; ''Structural basis of recruitment of DNA polymerase ζ by interaction between REV1 and REV7 proteins.''; PubMed Europe PMC Scholia
  77. Wolfle WT, Washington MT, Prakash L, Prakash S.; ''Human DNA polymerase kappa uses template-primer misalignment as a novel means for extending mispaired termini and for generating single-base deletions.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
115091view17:04, 25 January 2021ReactomeTeamReactome version 75
113533view12:01, 2 November 2020ReactomeTeamReactome version 74
112731view16:13, 9 October 2020ReactomeTeamReactome version 73
101647view11:51, 1 November 2018ReactomeTeamreactome version 66
101183view21:39, 31 October 2018ReactomeTeamreactome version 65
100709view20:11, 31 October 2018ReactomeTeamreactome version 64
100259view16:56, 31 October 2018ReactomeTeamreactome version 63
99812view15:20, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99356view12:48, 31 October 2018ReactomeTeamreactome version 62
93950view13:47, 16 August 2017ReactomeTeamreactome version 61
93543view11:26, 9 August 2017ReactomeTeamreactome version 61
86644view09:23, 11 July 2016ReactomeTeamreactome version 56
83335view10:49, 18 November 2015ReactomeTeamVersion54
81489view13:01, 21 August 2015ReactomeTeamVersion53
76966view08:24, 17 July 2014ReactomeTeamFixed remaining interactions
76671view12:03, 16 July 2014ReactomeTeamFixed remaining interactions
76000view10:05, 11 June 2014ReactomeTeamRe-fixing comment source
75703view11:04, 10 June 2014ReactomeTeamReactome 48 Update
75059view13:57, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74703view08:46, 30 April 2014ReactomeTeamReactome46
45195view10:04, 7 October 2011MartijnVanIerselOntology Term : 'DNA repair pathway' added !
42026view21:51, 4 March 2011MaintBotAutomatic update
39829view05:51, 21 January 2011MaintBotNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
ADPMetaboliteCHEBI:16761 (ChEBI)
ATPMetaboliteCHEBI:15422 (ChEBI)
Base Excision RepairPathwayR-HSA-73884 (Reactome) Of the three major pathways involved in the repair of nucleotide damage in DNA, base excision repair (BER) involves the greatest number of individual enzymatic activities. This is the consequence of the numerous individual glycosylases, each of which recognizes and removes a specific modified base(s) from DNA. BER is responsible for the repair of the most prevalent types of DNA lesions, oxidatively damaged DNA bases, which arise as a consequence of reactive oxygen species generated by normal mitochondrial metabolism or by oxidative free radicals resulting from ionizing radiation, lipid peroxidation or activated phagocytic cells. BER is a two-step process initiated by one of the DNA glycosylases that recognizes a specific modified base(s) and removes that base through the catalytic cleavage of the glycosydic bond, leaving an abasic site without disruption of the phosphate-sugar DNA backbone. Subsequently, abasic sites are resolved by a series of enzymes that cleave the backbone, insert the replacement residue(s), and ligate the DNA strand. BER may occur by either a single-nucleotide replacement pathway or a multiple-nucleotide patch replacement pathway, depending on the structure of the terminal sugar phosphate residue. The glycosylases found in human cells recognize "foreign adducts" and not standard functional modifications such as DNA methylation (Lindahl and Wood 1999, Sokhansanj et al. 2002).
CUL4A ProteinQ13619 (Uniprot-TrEMBL)
CUL4B ProteinQ13620 (Uniprot-TrEMBL)
DDB1 ProteinQ16531 (Uniprot-TrEMBL)
DNA

polymerase

Y:MonoUb:K164,ISG:K164,ISG:K168-PCNA:RPA:RFC:TLS-DNA Template
ComplexR-HSA-5653761 (Reactome)
DNA

polymerase

Y:MonoUb:K164-PCNA:RPA:RFC:TLS-DNA Template
ComplexR-HSA-5653660 (Reactome)
DNA polymerase YR-HSA-5653659 (Reactome)
DTL ProteinQ9NZJ0 (Uniprot-TrEMBL)
Damaged DNA TemplateR-HSA-5651987 (Reactome)
Damaged dsDNAR-HSA-5652135 (Reactome)
H2OMetaboliteCHEBI:15377 (ChEBI)
ISG-K164,ISG-K168-PCNA ProteinP12004 (Uniprot-TrEMBL)
ISG15 ProteinP05161 (Uniprot-TrEMBL)
ISG15:UBA7ComplexR-HSA-5653757 (Reactome)
ISG15ProteinP05161 (Uniprot-TrEMBL)
ISG:K164,ISG:K168-PCNA:RPA:RFC:TLS-DNA TemplateComplexR-HSA-5653772 (Reactome)
K164-PCNA-G157-ISG15 ProteinP05161 (Uniprot-TrEMBL)
K168-PCNA-G157-ISG15 ProteinP05161 (Uniprot-TrEMBL)
KIAA0101ProteinQ15004 (Uniprot-TrEMBL)
MAD2L2 ProteinQ9UI95 (Uniprot-TrEMBL)
MAD2L2ProteinQ9UI95 (Uniprot-TrEMBL)
Mg2+ MetaboliteCHEBI:18420 (ChEBI)
Mn2+ MetaboliteCHEBI:29035 (ChEBI)
MonoUb-K15,K24-KIAA0101 ProteinQ15004 (Uniprot-TrEMBL)
MonoUb-K164-PCNA ProteinP12004 (Uniprot-TrEMBL)
MonoUb-K682,K686,K694,K709-POLH ProteinQ9Y253 (Uniprot-TrEMBL)
MonoUb:K15,K24-KIAA0101ComplexR-HSA-5655177 (Reactome)
MonoUb:K164-PCNA:RPA:RFC:AP-DNA TemplateComplexR-HSA-5652039 (Reactome)
MonoUb:K164-PCNA:RPA:RFC:Damaged DNA TemplateComplexR-HSA-5652003 (Reactome)
MonoUb:K164-PCNA:RPA:RFC:EtAD-DNA Template,Gamma-HOPdG-DNA TemplateComplexR-HSA-5656114 (Reactome)
MonoUb:K164-PCNA:RPA:RFC:TT-CPD-DNA TemplateComplexR-HSA-5653905 (Reactome)
MonoUb:K164-PCNA:RPA:RFC:Tg-DNA Template,OGUA-DNA Template,BPDE-G-DNA TemplateComplexR-HSA-5655850 (Reactome)
MonoUb:K164-PCNA:RPA:RFC:USP1:ZBTB32:Damaged DNA TemplateComplexR-HSA-5655479 (Reactome)
MonoUb:K682,K686,K694,K709-POLHComplexR-HSA-5655156 (Reactome)
NPLOC4 ProteinQ8TAT6 (Uniprot-TrEMBL)
NPLOC4:UFD1L:VCP:SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA TemplateComplexR-HSA-5654991 (Reactome)
NPLOC4:UFD1L:VCPComplexR-HSA-5654992 (Reactome)
NPLOC4:UFD1L:VPC:SPRTN:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-Template DNAComplexR-HSA-5654988 (Reactome)
PCNA ProteinP12004 (Uniprot-TrEMBL)
PCNA:POLD,POLE:RPA:RFC:Damaged DNA TemplateComplexR-HSA-5651995 (Reactome)
PCNA:POLD,POLE:RPA:RFC:TLS-DNA TemplateComplexR-HSA-5653837 (Reactome)
PCNA:POLD,POLE:RPA:RFCComplexR-HSA-5651799 (Reactome)
PCNA:RPA:RFC:Damaged DNA TemplateComplexR-HSA-5655467 (Reactome)
PCNA:RPA:RFC:TLS-DNA TemplateComplexR-HSA-5653782 (Reactome)
POLD,POLER-HSA-5651800 (Reactome)
POLH ProteinQ9Y253 (Uniprot-TrEMBL)
POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA)-DNA TemplateComplexR-HSA-110290 (Reactome)
POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA TemplateComplexR-HSA-5654981 (Reactome)
POLH:MonoUb:K164-PCNA:RPA:RFC:TT-CPD-DNA TemplateComplexR-HSA-110288 (Reactome)
POLH:RCHY1ComplexR-HSA-5655139 (Reactome)
POLHProteinQ9Y253 (Uniprot-TrEMBL)
POLI ProteinQ9UNA4 (Uniprot-TrEMBL)
POLI:Mg2+ComplexR-HSA-5656093 (Reactome)
POLI:MonoUb:K164-PCNA:RPA:RFC:(EtAD:T-mispaireddNMPs)-DNA Template,(Gamma-HOPdG:C-mispaireddNMPs)-DNA TemplateComplexR-HSA-5656156 (Reactome)
POLI:REV1:POLZ:MonoUb:K164-PCNA:RPA:RFC:(EtAD:T)-DNA Template,(Gamma-HOPdG:C)-DNA TemplateComplexR-HSA-5656146 (Reactome)
POLI:REV1:POLZ:MonoUb:K164-PCNA:RPA:RFC:EtAD-DNA Template,Gamma-HOPdG-DNA TemplateComplexR-HSA-5656097 (Reactome)
POLK ProteinQ9UBT6 (Uniprot-TrEMBL)
POLK:Mg2+,Mn2+ComplexR-HSA-5655492 (Reactome)
POLK:MonoUb:K164-PCNA:RPA:RFC:(Tg:A-mispaireddNMPs)-DNA Template,(OGUA:A-mispaireddNMPs)-DNA Template,(BPDE-G:C-mispaireddNMPs)-DNA TemplateComplexR-HSA-5655961 (Reactome)
POLK:REV1:POLZ:MonoUb:K164-PCNA:RPA:RFC:(Tg:A)-DNA Template,(OGUA:A)-DNA Template,(BPDE-G:C)-DNA TemplateComplexR-HSA-5655912 (Reactome)
POLK:REV1:POLZ:MonoUb:K164-PCNA:RPA:RFC:Tg-DNA Template,OGUA-DNA Template,BPDE-G-DNA TemplateComplexR-HSA-5655852 (Reactome)
POLZ:REV1:MonoUb:K164-PCNA:RPA:RFC:(AP:Cyt)-DNA TemplateComplexR-HSA-5652152 (Reactome)
POLZComplexR-HSA-110279 (Reactome)
PPiMetaboliteCHEBI:29888 (ChEBI)
RAD18 ProteinQ9NS91 (Uniprot-TrEMBL)
RAD18:UBE2B,RBX1:CUL4:DDB1:DTL:PCNA:POLD,POLE:RPA:RFC:Damaged DNA TemplateComplexR-HSA-5651985 (Reactome)
RAD18:UBE2B,RBX1:CUL4:DDB1:DTLR-HSA-5655459 (Reactome)
RBX1 ProteinP62877 (Uniprot-TrEMBL)
RCHY1 ProteinQ96PM5 (Uniprot-TrEMBL)
RCHY1ProteinQ96PM5 (Uniprot-TrEMBL)
REV1 ProteinQ9UBZ9 (Uniprot-TrEMBL)
REV1:MonoUb:K164-PCNA:RPA:RFC:(AP:Cyt)-DNA TemplateComplexR-HSA-110285 (Reactome)
REV1:MonoUb:K164-PCNA:RPA:RFC:(AP:Cyt-mispairedPolydNMP)-DNA TemplateComplexR-HSA-5652153 (Reactome)
REV1:MonoUb:K164-PCNA:RPA:RFC:AP-DNA TemplateComplexR-HSA-110283 (Reactome)
REV1ProteinQ9UBZ9 (Uniprot-TrEMBL)
REV3L ProteinO60673 (Uniprot-TrEMBL)
REV3LProteinO60673 (Uniprot-TrEMBL)
RFC1 ProteinP35251 (Uniprot-TrEMBL)
RFC2 ProteinP35250 (Uniprot-TrEMBL)
RFC3 ProteinP40938 (Uniprot-TrEMBL)
RFC4 ProteinP35249 (Uniprot-TrEMBL)
RFC5 ProteinP40937 (Uniprot-TrEMBL)
RPA1 ProteinP27694 (Uniprot-TrEMBL)
RPA2 ProteinP15927 (Uniprot-TrEMBL)
RPA3 ProteinP35244 (Uniprot-TrEMBL)
RPS27A(1-76) ProteinP62979 (Uniprot-TrEMBL)
SPRTN ProteinQ9H040 (Uniprot-TrEMBL)
SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA TemplateComplexR-HSA-5654984 (Reactome)
SPRTNProteinQ9H040 (Uniprot-TrEMBL)
TRIM25 ProteinQ14258 (Uniprot-TrEMBL)
UBA52(1-76) ProteinP62987 (Uniprot-TrEMBL)
UBA7 ProteinP41226 (Uniprot-TrEMBL)
UBA7ProteinP41226 (Uniprot-TrEMBL)
UBB(1-76) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(153-228) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(77-152) ProteinP0CG47 (Uniprot-TrEMBL)
UBC(1-76) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(153-228) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(229-304) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(305-380) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(381-456) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(457-532) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(533-608) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(609-684) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(77-152) ProteinP0CG48 (Uniprot-TrEMBL)
UBE2B ProteinP63146 (Uniprot-TrEMBL)
UBE2L6 ProteinO14933 (Uniprot-TrEMBL)
UBE2L6:TRIM25:DNA

polymerase

Y:MonoUb:K164-PCNA:RPA:RFC:TLS-DNA Template
ComplexR-HSA-5653760 (Reactome)
UBE2L6:TRIM25ComplexR-HSA-5653664 (Reactome)
UFD1L ProteinQ92890 (Uniprot-TrEMBL)
USP1 ProteinO94782 (Uniprot-TrEMBL)
USP1(1-671)ProteinO94782 (Uniprot-TrEMBL)
USP1(672-785)ProteinO94782 (Uniprot-TrEMBL)
USP10 ProteinQ14694 (Uniprot-TrEMBL)
USP10:DNA

polymerase

Y:MonoUb:K164,ISG:K164,ISG:K168-PCNA:RPA:RFC:TLS-DNA Template
ComplexR-HSA-5653773 (Reactome)
USP10ProteinQ14694 (Uniprot-TrEMBL)
USP1:ZBTB32ComplexR-HSA-419551 (Reactome)
USP43 ProteinQ70EL4 (Uniprot-TrEMBL)
USP43:ISG:K164,ISG:K168-PCNA:RPA:RFC:TLS-DNA TemplateComplexR-HSA-5653781 (Reactome)
USP43ProteinQ70EL4 (Uniprot-TrEMBL)
VCP ProteinP55072 (Uniprot-TrEMBL)
ZBTB32 ProteinQ9Y2Y4 (Uniprot-TrEMBL)
ZBTB32ProteinQ9Y2Y4 (Uniprot-TrEMBL)
dATPMetaboliteCHEBI:16284 (ChEBI)
dCTPMetaboliteCHEBI:16311 (ChEBI)
dNTPMetaboliteCHEBI:16516 (ChEBI)
ubiquitinR-HSA-68524 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ADPArrowR-HSA-5654989 (Reactome)
ATPR-HSA-5654989 (Reactome)
DNA

polymerase

Y:MonoUb:K164,ISG:K164,ISG:K168-PCNA:RPA:RFC:TLS-DNA Template
ArrowR-HSA-5653754 (Reactome)
DNA

polymerase

Y:MonoUb:K164,ISG:K164,ISG:K168-PCNA:RPA:RFC:TLS-DNA Template
R-HSA-5653766 (Reactome)
DNA

polymerase

Y:MonoUb:K164-PCNA:RPA:RFC:TLS-DNA Template
R-HSA-5653756 (Reactome)
DNA polymerase YArrowR-HSA-5653770 (Reactome)
Damaged DNA TemplateArrowR-HSA-5652137 (Reactome)
Damaged DNA TemplateR-HSA-5651992 (Reactome)
Damaged dsDNAArrowR-HSA-5653840 (Reactome)
Damaged dsDNAR-HSA-5652137 (Reactome)
H2OR-HSA-5653770 (Reactome)
H2OR-HSA-5653786 (Reactome)
ISG15:UBA7R-HSA-5653754 (Reactome)
ISG15ArrowR-HSA-5653786 (Reactome)
ISG:K164,ISG:K168-PCNA:RPA:RFC:TLS-DNA TemplateArrowR-HSA-5653770 (Reactome)
ISG:K164,ISG:K168-PCNA:RPA:RFC:TLS-DNA TemplateR-HSA-5653780 (Reactome)
KIAA0101R-HSA-5655193 (Reactome)
MAD2L2R-HSA-110322 (Reactome)
MonoUb:K15,K24-KIAA0101ArrowR-HSA-5653838 (Reactome)
MonoUb:K15,K24-KIAA0101ArrowR-HSA-5655193 (Reactome)
MonoUb:K164-PCNA:RPA:RFC:AP-DNA TemplateR-HSA-110307 (Reactome)
MonoUb:K164-PCNA:RPA:RFC:Damaged DNA TemplateArrowR-HSA-5652009 (Reactome)
MonoUb:K164-PCNA:RPA:RFC:Damaged DNA TemplateR-HSA-5655481 (Reactome)
MonoUb:K164-PCNA:RPA:RFC:EtAD-DNA Template,Gamma-HOPdG-DNA TemplateR-HSA-5656105 (Reactome)
MonoUb:K164-PCNA:RPA:RFC:TT-CPD-DNA TemplateR-HSA-110316 (Reactome)
MonoUb:K164-PCNA:RPA:RFC:Tg-DNA Template,OGUA-DNA Template,BPDE-G-DNA TemplateR-HSA-5655835 (Reactome)
MonoUb:K164-PCNA:RPA:RFC:USP1:ZBTB32:Damaged DNA TemplateArrowR-HSA-5655481 (Reactome)
MonoUb:K164-PCNA:RPA:RFC:USP1:ZBTB32:Damaged DNA TemplateR-HSA-5655466 (Reactome)
MonoUb:K164-PCNA:RPA:RFC:USP1:ZBTB32:Damaged DNA Templatemim-catalysisR-HSA-5655466 (Reactome)
MonoUb:K682,K686,K694,K709-POLHArrowR-HSA-5655170 (Reactome)
NPLOC4:UFD1L:VCP:SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA TemplateArrowR-HSA-5654985 (Reactome)
NPLOC4:UFD1L:VCP:SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA TemplateR-HSA-5654989 (Reactome)
NPLOC4:UFD1L:VCP:SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA Templatemim-catalysisR-HSA-5654989 (Reactome)
NPLOC4:UFD1L:VCPR-HSA-5654985 (Reactome)
NPLOC4:UFD1L:VPC:SPRTN:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-Template DNAArrowR-HSA-5654989 (Reactome)
PCNA:POLD,POLE:RPA:RFC:Damaged DNA TemplateArrowR-HSA-5651992 (Reactome)
PCNA:POLD,POLE:RPA:RFC:Damaged DNA TemplateR-HSA-5652005 (Reactome)
PCNA:POLD,POLE:RPA:RFC:TLS-DNA TemplateArrowR-HSA-5653838 (Reactome)
PCNA:POLD,POLE:RPA:RFC:TLS-DNA TemplateR-HSA-5653840 (Reactome)
PCNA:POLD,POLE:RPA:RFC:TLS-DNA Templatemim-catalysisR-HSA-5653840 (Reactome)
PCNA:POLD,POLE:RPA:RFCArrowR-HSA-5653840 (Reactome)
PCNA:POLD,POLE:RPA:RFCR-HSA-5651992 (Reactome)
PCNA:RPA:RFC:Damaged DNA TemplateArrowR-HSA-5655466 (Reactome)
PCNA:RPA:RFC:TLS-DNA TemplateArrowR-HSA-5653786 (Reactome)
PCNA:RPA:RFC:TLS-DNA TemplateR-HSA-5653838 (Reactome)
POLD,POLEArrowR-HSA-5652009 (Reactome)
POLD,POLER-HSA-5653838 (Reactome)
POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA)-DNA TemplateArrowR-HSA-110317 (Reactome)
POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA)-DNA TemplateR-HSA-110319 (Reactome)
POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA)-DNA Templatemim-catalysisR-HSA-110319 (Reactome)
POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA TemplateArrowR-HSA-110319 (Reactome)
POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA TemplateR-HSA-5654986 (Reactome)
POLH:MonoUb:K164-PCNA:RPA:RFC:TT-CPD-DNA TemplateArrowR-HSA-110316 (Reactome)
POLH:MonoUb:K164-PCNA:RPA:RFC:TT-CPD-DNA TemplateR-HSA-110317 (Reactome)
POLH:MonoUb:K164-PCNA:RPA:RFC:TT-CPD-DNA Templatemim-catalysisR-HSA-110317 (Reactome)
POLH:RCHY1ArrowR-HSA-5655142 (Reactome)
POLH:RCHY1R-HSA-5655170 (Reactome)
POLH:RCHY1mim-catalysisR-HSA-5655170 (Reactome)
POLHArrowR-HSA-5654989 (Reactome)
POLHR-HSA-110316 (Reactome)
POLHR-HSA-5655142 (Reactome)
POLI:Mg2+R-HSA-5656105 (Reactome)
POLI:MonoUb:K164-PCNA:RPA:RFC:(EtAD:T-mispaireddNMPs)-DNA Template,(Gamma-HOPdG:C-mispaireddNMPs)-DNA TemplateArrowR-HSA-5656158 (Reactome)
POLI:REV1:POLZ:MonoUb:K164-PCNA:RPA:RFC:(EtAD:T)-DNA Template,(Gamma-HOPdG:C)-DNA TemplateArrowR-HSA-5656148 (Reactome)
POLI:REV1:POLZ:MonoUb:K164-PCNA:RPA:RFC:(EtAD:T)-DNA Template,(Gamma-HOPdG:C)-DNA TemplateR-HSA-5656158 (Reactome)
POLI:REV1:POLZ:MonoUb:K164-PCNA:RPA:RFC:(EtAD:T)-DNA Template,(Gamma-HOPdG:C)-DNA Templatemim-catalysisR-HSA-5656158 (Reactome)
POLI:REV1:POLZ:MonoUb:K164-PCNA:RPA:RFC:EtAD-DNA Template,Gamma-HOPdG-DNA TemplateArrowR-HSA-5656105 (Reactome)
POLI:REV1:POLZ:MonoUb:K164-PCNA:RPA:RFC:EtAD-DNA Template,Gamma-HOPdG-DNA TemplateR-HSA-5656148 (Reactome)
POLI:REV1:POLZ:MonoUb:K164-PCNA:RPA:RFC:EtAD-DNA Template,Gamma-HOPdG-DNA Templatemim-catalysisR-HSA-5656148 (Reactome)
POLK:Mg2+,Mn2+R-HSA-5655835 (Reactome)
POLK:MonoUb:K164-PCNA:RPA:RFC:(Tg:A-mispaireddNMPs)-DNA Template,(OGUA:A-mispaireddNMPs)-DNA Template,(BPDE-G:C-mispaireddNMPs)-DNA TemplateArrowR-HSA-5655965 (Reactome)
POLK:REV1:POLZ:MonoUb:K164-PCNA:RPA:RFC:(Tg:A)-DNA Template,(OGUA:A)-DNA Template,(BPDE-G:C)-DNA TemplateArrowR-HSA-5655892 (Reactome)
POLK:REV1:POLZ:MonoUb:K164-PCNA:RPA:RFC:(Tg:A)-DNA Template,(OGUA:A)-DNA Template,(BPDE-G:C)-DNA TemplateR-HSA-5655965 (Reactome)
POLK:REV1:POLZ:MonoUb:K164-PCNA:RPA:RFC:(Tg:A)-DNA Template,(OGUA:A)-DNA Template,(BPDE-G:C)-DNA Templatemim-catalysisR-HSA-5655965 (Reactome)
POLK:REV1:POLZ:MonoUb:K164-PCNA:RPA:RFC:Tg-DNA Template,OGUA-DNA Template,BPDE-G-DNA TemplateArrowR-HSA-5655835 (Reactome)
POLK:REV1:POLZ:MonoUb:K164-PCNA:RPA:RFC:Tg-DNA Template,OGUA-DNA Template,BPDE-G-DNA TemplateR-HSA-5655892 (Reactome)
POLK:REV1:POLZ:MonoUb:K164-PCNA:RPA:RFC:Tg-DNA Template,OGUA-DNA Template,BPDE-G-DNA Templatemim-catalysisR-HSA-5655892 (Reactome)
POLZ:REV1:MonoUb:K164-PCNA:RPA:RFC:(AP:Cyt)-DNA TemplateArrowR-HSA-5652151 (Reactome)
POLZ:REV1:MonoUb:K164-PCNA:RPA:RFC:(AP:Cyt)-DNA TemplateR-HSA-110311 (Reactome)
POLZ:REV1:MonoUb:K164-PCNA:RPA:RFC:(AP:Cyt)-DNA Templatemim-catalysisR-HSA-110311 (Reactome)
POLZArrowR-HSA-110311 (Reactome)
POLZArrowR-HSA-110322 (Reactome)
POLZArrowR-HSA-5655965 (Reactome)
POLZArrowR-HSA-5656158 (Reactome)
POLZR-HSA-5652151 (Reactome)
POLZR-HSA-5655835 (Reactome)
POLZR-HSA-5656105 (Reactome)
PPiArrowR-HSA-110311 (Reactome)
PPiArrowR-HSA-110317 (Reactome)
PPiArrowR-HSA-110319 (Reactome)
PPiArrowR-HSA-5653840 (Reactome)
PPiArrowR-HSA-5655892 (Reactome)
PPiArrowR-HSA-5655965 (Reactome)
PPiArrowR-HSA-5656148 (Reactome)
PPiArrowR-HSA-5656158 (Reactome)
R-HSA-110307 (Reactome) REV1 is a deoxycytidyl transferase that belongs to the DNA polymerase type-Y family. REV1 was cloned as the human homolog of yeast REV1. Similar to its yeast counterpart, REV1 binds damaged DNA, with the preferred substrate being DNA with an AP (abasic - apurinic/apyrimidinic) site. The mechanism for DNA damage recognition has not been elucidated (Lin et al. 1999, Gibbs et al. 2000). Besides DNA binding, REV1 has a ubiquitin binding motif in its C-terminal domain that interacts with monoubiquitinated PCNA, which enhances REV1-mediated translesion synthesis (Garg and Burgers 2005, Wood et al. 2007).
R-HSA-110308 (Reactome) REV1 acts as a deoxycytidyl transferase to incorporate a single dCMP opposite a damaged DNA residue. REV1 most efficiently incorporates dCMP opposite apurinic/apyrimidinic (AP, abasic) sites. REV1 enables DNA damage bypass without repair of damaged DNA bases, but its low fidelity results in a mutagenic effect (Nelson et al. 1996, Lin et al. 1999, Gibbs et al. 2000, Zhang et al. 2002).
R-HSA-110311 (Reactome) After REV1 inserts a nucleotide directly opposite the template lesion, translesion synthesis (TLS) is continued by DNA polymerase zeta (POLZ), a complex of REV3L and MAD2L2 (REV3 and REV7 in yeast) (Nelson et al. 1996a, Neal et al. 2010). POLZ is a poorly processive enzyme in both yeast and humans and usually incorporates less than 30 nucleotides before it dissociates from the template. In human cells, the processivity of POLZ is increased in the presence of DNA polymerase delta (POLD) subunits POLD2 and POLD3, which act as accessory subunits for POLZ (Nelson et al. 1996b, Lee et al. 2014). POLZ is error-prone, especially in the context of TLS across AP (apurinic/apyrimidinic) sites, resulting in incorporation of mispaired dNTPs, which contributes to TLS-related mutagenesis (Shachar et al. 2009, Lee et al. 2014).
R-HSA-110316 (Reactome) DNA polymerase eta (POLH) belongs to Y family of DNA polymerases. POLH binds PCNA monoubiquitinated at lysine K164 by the RAD18:UBE2B (RAD18:RAD6) or RBX1:CUL4:DDB1:DTL complexes in response to DNA damage. POLH C-terminus contains a conserved PCNA interaction motif, while the catalytic domain of POLH contains a conserved monoubiquitin binding motif. POLH is most efficient in recognition and repair of thymine-thymine cyclobutane pyrimidine dimers (TT-CPD) induced by UV-mediated DNA damage (Masutani et al. 2000, Kannouche et al. 2004)
R-HSA-110317 (Reactome) DNA polymerase eta (POLH) correctly incorporates two adenine deoxyribonucleotides (dAMPs) opposite a TT-CPD (thymine-thymine cyclobutane pyrimidine dimer) lesion. POLH can bypass other types of lesions, such as AP sites and cisplatin-induced intrastrand cross-linked gunanines, preferentially incorporating dAMPs and dGMPs opposite the lesion. While POLH is accurate in translesion synthesis (TLS) across thymine dimers, POLH has a low fidelity in TLS across other DNA damage types and when copying undamaged DNA. One of the protective mechanisms against POLH-induced mutagenesis may be that POLH cannot continue chain elongation after an incorrect nucleotide is incorporated (Matsuda et al. 2000, Masutani et al. 2000).
R-HSA-110319 (Reactome) After incorporating two dAMPs opposite the thymine-thymine cyclobutane pyrimidine dimer (TT-CPD), DNA polymerase eta (POLH) can continue translesion DNA synthesis (TLS). POLH preferentially incorporates dAMPs and dGMPs, and may introduce one error per every 18-380 nucleotides (dNMPs) added. POLH stalls after incorporation of a mispaired dNMP, which limits POLH- mediated mutagenesis, in addition to the subsequent polymerase switch (Matsuda et al. 2000, Masutani et al. 2000).
R-HSA-110322 (Reactome) REV3L (hREV3), the catalytic subunit of DNA polymerase zeta (POLZ) belonging to B family of DNA polymerases, binds the adapter protein MAD2L2 (hREV7) to form a functional POLZ complex (Murakamo et al. 2000, Murakamo et al. 2001, Hara et al. 2010).
R-HSA-5651992 (Reactome) The replication complex consisting of PCNA, DNA polymerase delta complex (POLD) or DNA polymerase epsilon complex (POLE), RPA and RFC complexes, encounters damaged dsDNA that cannot be used as a template by replicative DNA polymerases POLD or POLE (Hoege et al. 2002).
R-HSA-5652005 (Reactome) The complex of RAD18, an E3 ubiquitin ligase, and UBE2B (RAD6), an E2 ubiquitin-conjugating enzyme, binds the replication complex consisting of PCNA, DNA polymerase complex delta (POLD) or DNA polymerase complex epsilon (POLE), RPA and RFC on damaged dsDNA. RAD18 simultaneously interacts with PCNA, RPA and DNA (Hoege et al. 2002, Notenboom et al. 2007, Davies et al. 2008). The ubiquitin ligase complex RBX1:CUL4:DDB1:DTL can also bind PCNA (Terai et al. 2010).
R-HSA-5652009 (Reactome) The complex of RAD18, an E3 ubiquitin ligase, and UBE2B (RAD6), an E2 ubiquitin conjugating enzyme, monoubiquitinates PCNA associated with damaged DNA on lysine residue K164, using the ubiquitin residue K63 to create the covalent bond (Hoege et al. 2002). The catalytic subunit of DNA polymerase delta (POLD), POLD1, does not bind monoubiquitinated PCNA (Park et al. 2014), implying that replicative polymerases POLD and POLE (DNA polymerase epsilon complex) dissociate from PCNA monubiquitinated at K164. This is in accordance with the proposed DNA polymerase switch during translesion DNA synthesis (TLS) (Friedberg et al. 2005). DNA damage induced removal of PCNA-associated protein KIAA0101 (PAF15) through proteasome-mediated degradation facilitates switching from replicative DNA polymerases POLD and POLE to TLS polymerases (Povlsen et al. 2012).

The ubiquitin ligase complex RBX1:CUL4:DDB1:DTL can also monoubiquitinate PCNA. RBX1:CUL4:DDB1:DTL is probably responsible for the basal monoubiquitination of PCNA and may contribute to the kinetics of DNA-damage induced PCNA monoubiquitination (Terai et al. 2010).

R-HSA-5652137 (Reactome) If a damaged double strand DNA (dsDNA) is not repaired prior to the next round of DNA replication, it provides a damaged (lesioned) DNA template that triggers mutagenic (erroneous) incorporation of nucleotides in the newly synthesized DNA strand through the process of DNA damage bypass (Friedberg et al. 2001).
R-HSA-5652151 (Reactome) REV1, bound to the replication complex, recruits DNA polymerase zeta (POLZ, REV3L:MAD2L2) to the damaged DNA template. REV3L does not bind REV1 directly. Instead, REV3L binding to MAD2L2 (REV7) during the formation of POLZ complex causes a conformational change in MAD2L2 that allows the C-terminal domain of MAD2L2 to bind the C-terminus of REV1 (Nelson et al. 1996, Hara et al. 2010, Kikuchi et al. 2012, Xie et al. 2012)
R-HSA-5653754 (Reactome) The complex of ISG15 E2 conjugating enzyme UBE2L6 (UBCH8) and ISG15 E3 conjugating enzyme TRIM25 (EFP) doubly ISGylates monoubiquitinated PCNA (MonoUb:K164-PCNA) on lysine residues K164 and K168. Note that PCNA is a homotrimer, meaning ISGylation of K164 (and K168) occurs on a different subunit than that monoubiquitinated on K164. UBA7 (UBE1L) is the ISG15 E1-activating enzyme (Park et al. 2014).
R-HSA-5653756 (Reactome) PCNA monoubiquitinated on lysine residue K164 (MonoUb:K164-PCNA) is bound by ISG15 E3 ligase TRIM25 (EFP) in complex with ISG15 E2 conjugating enzyme UBE2L6 (UBCH8) (Park et al. 2014).
R-HSA-5653766 (Reactome) Ubiquitin protease USP10 binds doubly ISGylated and monoubiquitinated PCNA (Park et al. 2014). PCNA exists as a homotrimer so that the ISGylation and monoubiquitination occur on different subunits.
R-HSA-5653770 (Reactome) USP10 acts as a ubiquitin protease to remove ubiquitin from lysine K164 residue of doubly ISGylated PCNA. Deubiquitination of PCNA by USP10 causes dissociation of Y family DNA damage bypass polymerases, thus ending translesion DNA synthesis (TLS) and limiting TLS-induced mutagenesis (Park et al. 2014).
R-HSA-5653780 (Reactome) The ubiquitin protease USP43 binds doubly ISGylated PCNA (Park et al. 2014).
R-HSA-5653786 (Reactome) USP43 acts as an ISG15 protease to cleave ISG15 from lysines K164 and K168 of PCNA, thus deISGylating PCNA (Park et al. 2014).
R-HSA-5653838 (Reactome) Once deubiquitinated and deISGylated, PCNA can again associate with the catalytic subunit POLD1 of replicative DNA polymerase delta complex (POLD), or presumably POLE of DNA polymerase epsilon complex (POLE) (Park et al. 2014). Double monoubiquitination of PCNA-associated protein KIAA0101 (PAF15) facilitates the switch from translesion DNA synthesis (TLS) polymerases to replicative DNA polymerases POLD or POLE (Povlsen et al. 2012).
R-HSA-5653840 (Reactome) After DNA damage is bypassed by error-prone DNA polymerases capable of translesion DNA synthesis (TLS), the replicative complex composed of PCNA, DNA polymerases delta (POLD) or epsilon (POLE), RPA and RFC, completes the replication of damaged DNA (Park et al. 2014). Replicated damaged DNA may then be repaired through base excision or another DNA repair mechanism before the next round of DNA replication.
R-HSA-5654985 (Reactome) SPRTN (Spartan, C1orf124, DVC1) contains a SHP box that binds the hexameric AAA-ATPase VCP (p97). SPRTN recruits VCP, in complex with VCP adaptors NPLOC4 and UFD1L, to monoubiquitinated PCNA (MonoUb:K164-PCNA) associated with POLH at DNA damage sites (Ghosal et al. 2012, Davis et al. 2012, Mosbech et al. 2012).
R-HSA-5654986 (Reactome) SPRTN (Spartan, C1orf124, DVC1) contains a PIP box and a UBZ domain that both participate in binding to monoubiquitinated PCNA (MonoUb:K164-PCNA), thus regulating POLH-mediated translesion DNA synthesis (TLS). The SPRTN UBZ domain may also interact with other monoubiquitinated proteins at the site of DNA damage. SPRTN can also bind RAD18 and function in a positive feedback loop to increase (or maintain) PCNA monoubiquitination (Centore et al. 2012, Ghosal et al. 2012).


Endogenous SPRTN is predominantly expressed during S and G2 phases of the cell cycle, and is rapidly degraded by the APC:CDH1 complex at mitotic exit (Mosbech et al. 2012).

R-HSA-5654989 (Reactome) The ATP-ase activity of VCP facilitates release of POLH (DNA polymerase eta) from monoubiquitinated PCNA (MonoUb:K164-PCNA) at DNA damage sites, thus ending POLH-mediated translesion DNA synthesis (TLS) (Davis et al. 2012, Mosbech et al. 2012). Although conjugation of the ubiquitin-like protein ISG15 to PCNA has been found to terminate POLH-dependent TLS, the SPRTN:VCP complex has been implicated in serving as an alternative termination pathway (Park et al. 2014). Since VCP has been found to undergo ISGylation (Giannakopoulos et al. 2005), it remains to be determined whether SPRTN, VCP and the ISG15-conjugating system function in the same TLS-regulatory pathway or two separate pathways.
R-HSA-5655142 (Reactome) RCHY1 (Pirh2) is an E3 ubiquitin ligase that binds DNA polymerase eta (POLH). This interaction involves the polymerase-associated domain of POLH and the RING finger of RCHY1 (Jung et al. 2010).
R-HSA-5655170 (Reactome) RCHY1 (Pirh2) acts as an E3 ubiquitin ligase to monoubiquitinate POLH (DNA polymerase eta) on lysine residues K682, K686, K694 and K709 located in the NLS (nuclear localization signal) of POLH (Jung et al. 2011). The NLS sequence of POLH is located between UBZ domain and PIP box, involved in POLH binding to monoubiquitinated PCNA (MonoUb:K164-PCNA). POLH monoubiquitination masks the PCNA-interaction region, thus disabling POLH binding to MonoUb:K164-PCNA and preventing POLH-mediated translesion DNA synthesis (TLS) (Bienko et al. 2010).
R-HSA-5655193 (Reactome) KIAA0101 (PAF15) is a PCNA-associated protein expressed during S phase of the cell cycle, under the control of members of the E2F transcription factor family (Chang et al. 2013) and degraded at mitotic exit by the APC:CDH1 complex (Emanuele et al. 2011). KIAA0101 is monoubiquitinated on two lysine residues, K15 and K24, by an unknown ubiquitin ligase. Doubly monoubiquitinated KIAA0101 (PAF15) (MonoUb:K15,K24-KIAA0101) binds PCNA and promotes the switch from translesion DNA synthesis (TLS) polymerase, such as DNA polymerase eta (POLH), to replicative DNA polymerases delta (POLD) or epsilon (POLE). KIAA0101 monoubiquitination thus facilitates termination of TLS and coordinates DNA damage bypass events (Povlsen et al. 2012). UV-induced DNA damage causes removal of MonoUb:K15,K24-KIAA0101 by proteasome-mediated degradation, promoting the switch from replicative DNA polymerase complexes delta (POLD) or epsilon (POLE) to translesion DNA synthesis (TLS) polymerases, such as POLH (DNA polymerase eta) (Povlsen et al. 2012).
R-HSA-5655466 (Reactome) Deubiquitinating enzyme USP1, bound to its accessory protein ZBTB32 (UAF1), deubiquitinates PCNA (MonoUb:K164-PCNA), thus preventing excessive activation of DNA translesion synthesis (TLS) (Huang et al. 2006).
R-HSA-5655481 (Reactome) Ubiquitin protease complex composed of deubiquitinating enzyme USP1 and its accessory factor ZBTB32 (UAF1) binds monoubiquitinated PCNA (MonoUb:K164-PCNA) (Huang et al. 2006).
R-HSA-5655483 (Reactome) UV radiation, through an unknown mechanism, triggers USP1 autocleavage immediately after a conserved Gly-Gly motif. The products of USP1 autocleavage are targeted for proteasome-mediated degradation, thus preventing the activity of USP1:ZBTB32 deubiquitinase complex and allowing for monoubiquitinated PCNA to accumulate and stimulate translesion DNA synthesis (TLS) (Huang et al. 2006).
R-HSA-5655835 (Reactome) DNA polymerase kappa (POLK) forms a quaternary complex with REV1 and the DNA polymerase zeta (POLZ) heterodimer, composed of REV3L and MAD2L2 (REV7), at DNA damage sites (Ohashi et al. 2009, Wojtaszek et al. 2012a, Wojtaszek et al. 2012b, Xie et al. 2012). POLK simultaneously interacts with the C-terminus of REV1 through its RIR (REV1-interacting region) (Ohashi et al. 2009) and with monoubiquitinated PCNA (Haracska et al. 2002, Bi et al. 2006). POLK requires Mg2+ or Mn2+ for its activity. POLK is more catalytically active in the presence of Mn2+, but exhibits higher fidelity in the presence of Mg2+ (Pence et al. 2012)
R-HSA-5655892 (Reactome) DNA polymerase kappa (POLK) is the most efficient in incorporation of nucleotides opposite to oxidation derivatives of DNA bases, such as thymine glycol (Tg) and 8-oxoguanine (OGUA). POLK preferentially incorporates dAMP opposite both Tg and OGUA, resulting in error-free translesion DNA synthesis (TLS) across Tg lesions (Fischhaber et al. 2002, Yoon et al. 2010, Yoon et al. 2014) and frequent G:C -> T:A transversions at OGUA lesions (Zhang et al. 2000, Vasquez-Del Carpio et al. 2009). POLK is also efficient in TLS across bulky DNA adducts, such as the smoking-related benzo(a)pyrene diol epoxide guanine adduct (BPDE-G) (Everson et al. 1986), and it correctly incorporates dCMP opposite to BPDE-G (Zhang et al. 2000, Avkin et al. 2004, Lior-Hoffmann et al. 2012, Christov et al. 2012). POLK is incapable of TLS across thymine-thymine dimers (Ohashi et al. 2000) and shows a very low efficiency in TLS across AP sites, where it mainly causes single base deletions (-1 frameshifts) through template-primer misalignment (Ohashi et al. 2000, Wolfle et al. 2003).
R-HSA-5655965 (Reactome) DNA polymerase kappa (POLK) can elongate mispaired primer termini generated when an incorrect nucleotide is incorporated opposite a damaged DNA base either by POLK or by another translesion DNA synthesis (TLS) polymerase (Haracska et al. 2002, Carlson et al. 2006). POLK can processively synthesize polynucleotide chains that are usually not more than 20 nucleotides long, generating single base substitutions at a rate of 7/1000 and single base deletions at a rate of 3/1000 (Ohashi et al. 2000). POLK and POLZ can cooperate in the elongation of nucleotides inserted opposite to lesioned bases by POLK (Yoon et al. 2010, Wojtaszek et al. 2012a, Wojtaszek et al. 2012b, Xie et al. 2012, Yoon et al. 2014)
R-HSA-5656105 (Reactome) DNA polymerase iota (POLI) is recruited to DNA damage sites through its interaction with PCNA and REV1. POLI has a functional PIP box in the C-terminus and two ubiquitin binding motifs (UBMs). The PIP box and UBMs are responsible for POLI binding to monoubiquitinated PCNA (MonoUb:K164-PCNA) (Bienko et al. 2005, Haracska et al. 2005, Bomar et al. 2010). The interaction between POLI and the C-terminus of REV1 is evolutionarily conserved (Kosarek et al. 2003, Guo et al. 2003, Ohashi et al. 2004). Since REV1 and POLI likely cooperate in the bypass of bulky DNA lesions (Yang et al. 2003) and the DNA polymerase zeta complex (POLZ) is needed for extension of nucleotides incorporated by POLI (Johnson et al. 2000), it is plausible that POLI forms a quaternary complex with REV1 and POLZ, as shown for POLK and proposed for other Y family DNA polymerases (Xie et al. 2012).
R-HSA-5656148 (Reactome) DNA polymerase iota (POLI) has an active site that favours Hoogsteen base pairing instead of Watson-Crick base pairing. POLI has the highest efficiency and fidelity in incorporating dTTP opposite to a template adenine (A). The active site of POLI causes the template A to rotate about its glycosidic bond and acquire a syn conformation. The hydrogen bonds are then established between the Hoogsteen edge of the template A in syn conformation (N7 and N6) and the Watson-Crick edge of dTMP (N3 and O4), which remains in anti conformation. POLI shows lower efficiency in incorporating dCTP opposite the template guanine (G) (Nair et al. 2004).


Hoogsteen base pairing and rotation of template purines from anti to syn conformation serves as a mechanism to displace adducts on template G or template A that interfere with DNA replication, as is the case with gamma-hydroxy-1,N2-propano-2'deoxyguanosine (gamma-HOPdG), or to allow base pairing of damaged purines with a disrupted Watson-Crick edge but an intact Hoogsteen edge, as is the case with 1,N6-ethenodeoxyadenosine (EtAD) (Nair et al. 2006).


Gamma-HOPdG is formed when acrolein, an alpha,beta-unsaturated aldehyde generated as an end product of lipid peroxidation or oxidation of polyamines, reacts with the N2 of guanine, leading to formation of a cyclic adduct. POLI incorporates dCMP opposite gamma-HOPdG as efficiently as opposite an undamaged G (Washington et al. 2004). EtAD is generated when DNA is exposed to chemical carcinogens, such as vinyl chloride, or epoxyaldehydes that are produced by lipid peroxidation. POLI shows preferential dTMP incorporation opposite to a template EtAD, but can also erroneously incorporate dCMP although with four times lower efficiency (Nair et al. 2006).

R-HSA-5656158 (Reactome) After it incorporates a dNMP opposite to a damaged template base, DNA polymerase iota (POLI) is unable to efficiently elongate the DNA strand further. The elongation step is performed by the DNA polymerase zeta complex (POLZ), composed of REV3L and MAD2L2 subunits (Johnson et al. 2000). POLK has also been implicated in the elongation step (Washington et al. 2004).
RAD18:UBE2B,RBX1:CUL4:DDB1:DTL:PCNA:POLD,POLE:RPA:RFC:Damaged DNA TemplateArrowR-HSA-5652005 (Reactome)
RAD18:UBE2B,RBX1:CUL4:DDB1:DTL:PCNA:POLD,POLE:RPA:RFC:Damaged DNA TemplateR-HSA-5652009 (Reactome)
RAD18:UBE2B,RBX1:CUL4:DDB1:DTL:PCNA:POLD,POLE:RPA:RFC:Damaged DNA Templatemim-catalysisR-HSA-5652009 (Reactome)
RAD18:UBE2B,RBX1:CUL4:DDB1:DTLArrowR-HSA-5652009 (Reactome)
RAD18:UBE2B,RBX1:CUL4:DDB1:DTLR-HSA-5652005 (Reactome)
RCHY1ArrowR-HSA-5655170 (Reactome)
RCHY1R-HSA-5655142 (Reactome)
REV1:MonoUb:K164-PCNA:RPA:RFC:(AP:Cyt)-DNA TemplateArrowR-HSA-110308 (Reactome)
REV1:MonoUb:K164-PCNA:RPA:RFC:(AP:Cyt)-DNA TemplateR-HSA-5652151 (Reactome)
REV1:MonoUb:K164-PCNA:RPA:RFC:(AP:Cyt-mispairedPolydNMP)-DNA TemplateArrowR-HSA-110311 (Reactome)
REV1:MonoUb:K164-PCNA:RPA:RFC:AP-DNA TemplateArrowR-HSA-110307 (Reactome)
REV1:MonoUb:K164-PCNA:RPA:RFC:AP-DNA TemplateR-HSA-110308 (Reactome)
REV1:MonoUb:K164-PCNA:RPA:RFC:AP-DNA Templatemim-catalysisR-HSA-110308 (Reactome)
REV1ArrowR-HSA-5655965 (Reactome)
REV1ArrowR-HSA-5656158 (Reactome)
REV1R-HSA-110307 (Reactome)
REV1R-HSA-5655835 (Reactome)
REV1R-HSA-5656105 (Reactome)
REV3LR-HSA-110322 (Reactome)
SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA TemplateArrowR-HSA-5654986 (Reactome)
SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA TemplateR-HSA-5654985 (Reactome)
SPRTNR-HSA-5654986 (Reactome)
UBA7ArrowR-HSA-5653754 (Reactome)
UBE2L6:TRIM25:DNA

polymerase

Y:MonoUb:K164-PCNA:RPA:RFC:TLS-DNA Template
ArrowR-HSA-5653756 (Reactome)
UBE2L6:TRIM25:DNA

polymerase

Y:MonoUb:K164-PCNA:RPA:RFC:TLS-DNA Template
R-HSA-5653754 (Reactome)
UBE2L6:TRIM25:DNA

polymerase

Y:MonoUb:K164-PCNA:RPA:RFC:TLS-DNA Template
mim-catalysisR-HSA-5653754 (Reactome)
UBE2L6:TRIM25ArrowR-HSA-5653754 (Reactome)
UBE2L6:TRIM25R-HSA-5653756 (Reactome)
USP1(1-671)ArrowR-HSA-5655483 (Reactome)
USP1(672-785)ArrowR-HSA-5655483 (Reactome)
USP10:DNA

polymerase

Y:MonoUb:K164,ISG:K164,ISG:K168-PCNA:RPA:RFC:TLS-DNA Template
ArrowR-HSA-5653766 (Reactome)
USP10:DNA

polymerase

Y:MonoUb:K164,ISG:K164,ISG:K168-PCNA:RPA:RFC:TLS-DNA Template
R-HSA-5653770 (Reactome)
USP10:DNA

polymerase

Y:MonoUb:K164,ISG:K164,ISG:K168-PCNA:RPA:RFC:TLS-DNA Template
mim-catalysisR-HSA-5653770 (Reactome)
USP10ArrowR-HSA-5653770 (Reactome)
USP10R-HSA-5653766 (Reactome)
USP1:ZBTB32ArrowR-HSA-5655466 (Reactome)
USP1:ZBTB32R-HSA-5655481 (Reactome)
USP1:ZBTB32R-HSA-5655483 (Reactome)
USP1:ZBTB32mim-catalysisR-HSA-5655483 (Reactome)
USP43:ISG:K164,ISG:K168-PCNA:RPA:RFC:TLS-DNA TemplateArrowR-HSA-5653780 (Reactome)
USP43:ISG:K164,ISG:K168-PCNA:RPA:RFC:TLS-DNA TemplateR-HSA-5653786 (Reactome)
USP43:ISG:K164,ISG:K168-PCNA:RPA:RFC:TLS-DNA Templatemim-catalysisR-HSA-5653786 (Reactome)
USP43ArrowR-HSA-5653786 (Reactome)
USP43R-HSA-5653780 (Reactome)
ZBTB32ArrowR-HSA-5655483 (Reactome)
dATPR-HSA-110317 (Reactome)
dCTPR-HSA-110308 (Reactome)
dNTPR-HSA-110311 (Reactome)
dNTPR-HSA-110319 (Reactome)
dNTPR-HSA-5653840 (Reactome)
dNTPR-HSA-5655892 (Reactome)
dNTPR-HSA-5655965 (Reactome)
dNTPR-HSA-5656148 (Reactome)
dNTPR-HSA-5656158 (Reactome)
ubiquitinArrowR-HSA-5653770 (Reactome)
ubiquitinArrowR-HSA-5655466 (Reactome)
ubiquitinR-HSA-5652009 (Reactome)
ubiquitinR-HSA-5655170 (Reactome)
ubiquitinR-HSA-5655193 (Reactome)