Eukaryotic translation initiation (Homo sapiens)

From WikiPathways

Revision as of 19:57, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
10281, 5-7, 15...2, 16248, 2519221, 7, 15111, 7, 15, 18, 2193, 5, 298, 255, 2921, 7, 12, 14, 23...1, 2, 7, 19920cytosoleIF2:GTPRPSA RPS11 RPL37A RPL12 Met-tRNAi RPS27L EIF1AX RPS4Y2 RPL10 RPS4X EIF3E RPS27A(77-156) RPL37A RPS24 RPS4X EIF3G RPS18 RPS9 RPL11 RPS4Y2 RPL17 RPL3 RPL7A RPS6 5S rRNA RPS28 RPL19 RPS28 RPS7 EIF4A2 RPS4X RPS25 EIF4H RPL11 RPS3 RPL36A RPS23 RPL18 RPS15 RPL39L EIF3F RPS27 EIF5B RPL39L RPS16 RPL26 RPL23A RPS27 RPL10 RPS16 RPL34 RPL13A RPS13 EIF2S1 EIF4A1 RPLP0 EIF3K RPL28 RPSA RPL11 RPS20 RPL3L GTP RPL13A RPS15 RPL34 RPS2 RPS8 RPL36 RPS4X RPL27A EIF2B3 GDPRPS13 RPL29 RPL5 EIF2S2 RPL22 RPS24 EIF3A RPS8 EIF4A2 RPS11 EIF3D RPL23A RPS12 RPL23 RPLP2 RPL26 RPL27 RPS11 RPS10 RPL30 RPL22L1 RPS20 EIF3E mRNPPABPC1 EIF2S3 RPL29 EIF3M EIF4E EIF3I RPLP1 RPS29 RPS20 EIF3D RPL24 Met-tRNAi RPS15 RPS15 RPL39 EIF2S3 EIF3C RPS7 Ceruloplasmin mRNA 80S:Met-tRNAi:mRNA:eIF5B:GTPEIF2S2 RPS13 RPS8 RPL11 RPS16 Ceruloplasmin mRNA EIF2S3 43S:mRNA:eIF4F:eIF4B:eIF4HRPSA RPS15 EIF3D RPS28 eIF4E:4E-BPEIF4A1 EIF3D RPL10L RPS27 RPS7 EIF4EBP1RPL27 EIF2S2 RPL26 RPL35A 40S:eIF3:eIF1ARPL28 28S rRNA RPS18 Met-tRNAi EIF4G1 RPS4Y1 RPS4Y1 RPL35 EIF3F FAU EIF4EEIF2S2 RPS26 RPS8 GDP EIF3H RPL29 RPS26 EIF4E RPS9 RPS5 RPL13A RPS25 RPS27L RPS18 RPSA RPS12 40S:Met-tRNAi:mRNARPS26 EIF2S1:EIF2S2:EIF2S3RPL4 RPL6 RPS20 RPS25 RPL27 RPL38 RPS19 RPS13 RPL19 RPL10L RPS7 Met-tRNAi eIF4A subunitscomplexRPLP0 RPS21 60s ribosomalcomplex lackingL13a subunitEIF2S1 RPS27 RPS5 RPS26 RPL5 RPS16 RPS8 GDP RPL12 EIF4G1 EIF3I RPSA EIF2S3 EIF4E EIF3B RPS15A RPS19 18S rRNA EIF4H RPS20 RPS15 RPL17 Ceruloplasmin mRNA RPL6 eIF2B subunitscomplex5.8S rRNA EIF2S1 RPL38 EIF3C EIF3I RPL15 RPL15 EIF4H eIF4F:mRNP43S:CeruloplasminmRNA:eIF4F:eIF4B:eIF4H:PABPRPL24 EIF2S2 RPL37A 5S rRNA EIF3B EIF2S3 RPS10 mRNA:eIF4F:eIF4B:eIF4HRPL4 eIF5B:GTPEIF2B4 RPS3A EIF2S1 Met-tRNAi EIF2S2 ATPRPS4Y2 RPS11 RPS6 18S rRNA Met-tRNAi EIF2S2 RPL10A RPL36 RPS15 RPL15 EIF4A2 RPS26 EIF3G RPL10 RPS12 RPL17 RPS4X RPL30 RPL27A RPS2 RPL23A RPL38 RPL22 RPL26L1 RPL10L RPL10L EIF3A RPS2 EIF2B2 RPS27A(77-156) RPS11 RPL3 EIF3K EIF3M EIF2S1 RPS7 RPL28 EIF3B RPS8 RPS23 RPS27L EIF3B RPS4Y1 RPSA RPS5 RPS25 ADPRPS23 RPS3 RPS25 EIF3C RPS16 RPS5 EIF4A1 RPL35 RPL18 5S rRNA EIF1AXEIF4E RPL10A EIF4G1 RPS19 RPL36A RPS25 RPL4 EIF3L RPL10A 18S rRNA RPL30 RPS11 RPL31 RPS3A EIF2S1 RPLP1 Met-tRNAi EIF2S2 RPS27A(77-156) RPS12 EIF2S1 RPL40 RPS27A(77-156) EIF3C EIF3F RPS23 RPL17 RPS14 RPS4X GDP GTP RPSA RPL13 EIF3G RPS4Y1 18S rRNA Ceruloplasmin mRNA EIF3I RPL24 RPS24 EIF3M EIF3E RPS9 RPS28 EIF3L RPL15 GTP RPS4Y1 RPS10 RPS21 RPS7 RPL22 80S ribosomeEIF3M RPS4Y2 EIF4BRPL7A RPL41 RPS8 RPL37 Met-tRNAi RPS15A RPL27A RPS16 Ceruloplasmin mRNA RPS27L RPS3 FAU RPS7 EIF3H GTP RPLP2 RPS12 RPS29 RPL12 RPS27A(77-156) PiRPS14 RPS24 RPS29 RPS24 CeruloplasminmRNA:eIF4F:eIF4B:eIF4HEIF3L RPS12 RPL23 RPL8 RPS4Y2 RPL4 RPL6 EIF3J EIF3F RPS5 EIF3H EIF2S1 EIF3M RPS27A(77-156) RPS26 RPL18A RPS20 EIF3E EIF3B RPS17 RPS14 RPS24 RPL29 RPL7A RPL34 RPS16 RPL7A RPS23 EIF1AX RPS10 RPL15 EIF3H GTP RPS27A(77-156) RPL23A RPS18 RPL10A 80S:Met-tRNAi:mRNARPL3 EIF4B EIF4A1 RPL32 RPS3A RPS6 RPL14 RPL35 RPS12 RPS14 EIF4B p-RPL13A RPL22 RPL40 RPS15 RPS9 ATPEIF4E RPS7 EIF2B1 GTP EIF3J RPL37A RPS9 EIF3G EIF3D RPS4Y1 GTP EIF3G RPS27A(77-156) RPS15A GTP RPL9 RPSA EIF3J RPS3 RPS23 RPS3 RPS14 RPS3A eIF2:GDPRPL26 RPS18 RPL13 RPS17 RPL31 RPL36A RPL26 PABPC1 PiRPS5 RPS15 EIF4G1 RPL41 RPS23 EIF3K RPL3L 28S rRNA RPS5 28S rRNA 18S rRNA ternary complexRPS28 EIF3I RPL41 EIF3F RPLP2 RPL36AL L13a kinaseRPS2 RPL34 5.8S rRNA EIF3J RPL3 RPS11 RPL21 RPS17 RPS25 RPS17 RPS2 RPS17 EIF2S2 RPS4X RPS27A(77-156) EIF4E EIF3K eIF3 subunitscomplexRPS11 RPS3 EIF4EBP1 RPL41 EIF1AX RPS19 FAU 5S rRNA RPS14 RPS29 RPL13A RPL40 EIF3M RPS4Y2 Ceruloplasmin mRNA EIF5B RPL18 EIF2B2 RPS20 RPS2 RPS29 RPS25 RPS3 RPS23 RPL28 EIF4A2 RPS6 RPL36A RPL27 RPS29 18S rRNA EIF3H RPS13 RPS6 EIF2B1 RPL3L RPS13 RPL23 RPS5 RPL7 eIF2:GDP: eIF2BRPL26L1 RPS15 EIF4B EIF2S3 RPL35 RPL17 EIF4A2 RPS15A RPL35A EIF3B EIF4B RPS17 RPS14 EIF4A1 RPS18 RPS21 RPL39 RPS14 RPL12 RPS15A RPS27L RPS15 RPL23 RPLP1 RPS13 RPL21 RPL14 RPS19 RPL7 EIF2S1 EIF2S3 RNA-binding protein in RNP (ribonucleoprotein) complexes RPS28 RPL9 RPL22L1 RPS27L RPS29 EIF2S1 EIF4A2 RPS28 RPS13 EIF1AX RPS4Y2 EIF3G RPS27 RPS27 Met-tRNAiRPL26L1 RPS5 RPL36AL RPS18 EIF4A2 RPS9 RPS10 RPS7 RPS15A RPL18A RPL29 RPS26 EIF1AXRPS19 RPS16 RPS11 RPLP2 RPS4X RPS27L RPS4Y2 RPS3A RPL36AL RPS24 RPL22L1 EIF2B5 RPS9 RNA-binding protein in RNP (ribonucleoprotein) complexes RPS9 RPS5 EIF3J 5.8S rRNA EIF5B RPL36 RPL39 RPL35A EIF4G1EIF3E FAU EIF3G GTP EIF3F RPL12 RPL22L1 EIF3K RPS7 RPS4Y1 RPS27L RPS17 EIF3C 18S rRNA EIF4E RPL21 RPS10 Ceruloplasmin mRNA RPL35A RPS21 RPS3A RPS23 RPS2 EIF4G1 eIF2:GTPRPS20 RPL8 RPS24 RPS15A RPL10 RPL18 5.8S rRNA RPL22 RPS27 RPS3A Ceruloplasmin mRNA RPL32 EIF2S2 EIF3D RPL10 PiRPL3 43S complexRPLP2 RPS6 RPL34 RPS29 RPS3 RPS3 RPL31 RPS17 RPL26L1 EIF4H RPL36AL RPS4Y1 eIF1RPS28 EIF4HEIF3H RPS19 RPL31 RPS21 RPL5 EIF3E EIF2S1 RPS15A EIF2B5 EIF1AXRPS19 RPS5 RPL9 RPS13 RPS27 EIF3L EIF3D 18S rRNA RPLP0 RPL10L RPS3A RPL7 p-RPL13A18S rRNA RPL13 RPL28 RPL38 EIF3L EIF3K FAU EIF5RPS27 EIF4A2 RPL37 EIF4E RPL37A RPS3 RPS4X EIF4B RPS10 EIF3H EIF5RPL23A 40S ribosomalcomplexRPL5 RPS4Y1 RPL3L EIF3A RPS4X Ceruloplasmin mRNA EIF4A1 eIF4FRPL3L RPS21 GTPRPS26 RPS4Y2 RPS18 EIF4A1 RPL7 RPS21 RPS9 RPS4Y2 RPLP1 RPS28 EIF3L RPS27 RPL13 EIF3C RPS28 EIF3A Ceruloplasmin mRNA RPL32 RPS27A(77-156) RPL36A RPS15A RPS29 RPS27 EIF1AX RPS2 RPS26 RPS17 RPL21 RPS8 RPL7A RPL36 RPL40 RPS3A RPS9 RPS29 RPL10A 48S complexRPL18A RPL39L EIF1AXRPS9 GTPRNA-binding proteinin RNP(ribonucleoprotein)complexesRPL19 RPS12 EIF4B EIF4G1 RPL6 RPS3A RPL14 RPS20 RPS6 RPL37 RPS21 RPL19 RPL7 RPL21 Ceruloplasmin mRNA RPS25 EIF2S3 FAU RPS6 RPL8 RPL27A RPL14 RPL13ARPLP0 RPL30 RPS21 EIF2S3 RPS21 RPLP1 RPS24 EIF3K RPS25 EIF3L RPS6 RPS26 RPL11 EIF3J FAU RPL18A RPL23 RPL9 5S rRNA RPSA GTP EIF3I EIF2S1 RPS15A EIF2S3 RPS23 RPS8 RPS4Y2 28S rRNA eIF5B:GDPRPS27L RPL27A EIF1AX EIF4A1 RPS20 RPL26L1 RPL39 RPS11 RPS10 RPS8 RPS19 RPLP0 60S ribosomalcomplexRPL37 EIF3A RPS3 RPL24 RPS8 RPL22L1 RPL36 RPS4X RPS7 RPL32 RPS12 RPS28 RPL6 EIF4H RPS27L PiRPS4Y1 ADPEIF2B4 RPS18 RPS14 RPL27 EIF2S3 RPS16 RPS27A(77-156) RPSA RPL31 RPS2 RPS4Y1 EIF2S2 RPS14 EIF3M EIF2S3 RPL18 EIF4G1 RPL41 RPL38 EIF3B FAU FAU RPL5 RPS12 FAU RPS12 RPS2 18S rRNA RPS10 RPS13 RPL39L RPL13 RPS14 RPS21 EIF3E EIF3I RPS26 RPS24 RPS23 RPS2 RPL18A RPS11 EIF3F RPL36AL RPS16 RPS17 EIF2B3 RPS19 RPS25 EIF4E RPL40 RPL14 Met-tRNAi RPL8 RPL4 RPS15A 18S rRNA RPL9 EIF3C RPS18 RPS10 RPL32 PABPC1RPL8 RPS3A EIF4H EIF3A RPS24 FAU eIF1RPL35 RPS6 RPS10 EIF4A1 5.8S rRNA EIF2S1:EIF2S2:EIF2S3RPS17 EIF4A2 RPS6 RPL35A RPL39L EIF3A RPS16 EIF5RPS27L RPL30 EIF3J EIF4G1 RPSA RPL37 RPS13 RPS18 RPS19 phospho-L13aassociated wth the 3' UTR GAIT elementof ceruloplasminmRNA within thetranslationinitiation complexRPL39 EIF2S2 RPL19 RPS29 RPS20 ATPRPL24 28S rRNA 13, 2613, 2613, 2613, 2613, 2613, 2613, 26413, 2613, 2613, 26


Description

Initiation of translation in the majority of eukaryotic cellular mRNAs depends on the 5'-cap (m7GpppN) and involves ribosomal scanning of the 5' untranslated region (5'-UTR) for an initiating AUG start codon. Therefore, this mechanism is often called cap-dependent translation initiation. Proximity to the cap, as well as the nucleotides surrounding an AUG codon, influence the efficiency of the start site recognition during the scanning process. However, if the recognition site is poor enough, scanning ribosomal subunits will ignore and skip potential starting AUGs, a phenomenon called leaky scanning. Leaky scanning allows a single mRNA to encode several proteins that differ in their amino-termini. Merrick (2010) provides an overview of this process and hghlights several features of it that remain incompletely understood.

Several eukaryotic cell and viral mRNAs initiate translation by an alternative mechanism that involves internal initiation rather than ribosomal scanning. These mRNAs contain complex nucleotide sequences, called internal ribosomal entry sites, where ribosomes bind in a cap-independent manner and start translation at the closest downstream AUG codon.

Initiation on several viral and cellular mRNAs is cap-independent and is mediated by binding of the ribosome to internal ribosome entry site (IRES) elements. These elements are often found in characteristically long structured regions on the 5'-UTR of an mRNA that may or may not have regulatory upstream open reading frames (uORFs). Both of these features on the 5'-end of the mRNA hinder ribosomal scanning, and thus promote a cap-independent translation initiation mechanism. IRESs act as specific translational enhancers that allow translation initiation to occur in response to specific stimuli and under the control of different trans-acting factors, as for example when cap-dependent protein synthesis is shut off during viral infection. Such regulatory elements have been identified in the mRNAs of growth factors, protooncogenes, angiogenesis factors, and apoptosis regulators, which are translated under a variety of stress conditions, including hypoxia, serum deprivation, irradiation and apoptosis. Thus, cap-independent translational control might have evolved to regulate cellular responses in acute but transient stress conditions that would otherwise lead to cell death, while the same mechanism is of major importance for viral mRNAs to bypass the shutting-off of host protein synthesis after infection. Encephalomyocarditis virus (EMCV) and hepatitis C virus exemplify two distinct mechanisms of IRES-mediated initiation. In contrast to cap-dependent initiation, the eIF4A and eIF4G subunits of eIF4F bind immediately upstream of the EMCV initiation codon and promote binding of a 43S complex. Accordingly, EMCV initiation does not involve scanning and does not require eIF1, eIF1A, and the eIF4E subunit of eIF4F. Nonetheless, initiation on some EMCV-like IRESs requires additional non-canonical initiation factors, which alter IRES conformation and promote binding of eIF4A/eIF4G. Initiation on the hepatitis C virus IRES is simpler: a 43S complex containing only eIF2 and eIF3 binds directly to the initiation codon as a result of specific interaction of the IRES and the 40S subunit.

View original pathway at:Reactome.</div>

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 72613
Reactome-version 
Reactome version: 64

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Pause A, Belsham GJ, Gingras AC, Donzé O, Lin TA, Lawrence JC, Sonenberg N.; ''Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function.''; PubMed Europe PMC Scholia
  2. Sampath P, Mazumder B, Seshadri V, Fox PL.; ''Transcript-selective translational silencing by gamma interferon is directed by a novel structural element in the ceruloplasmin mRNA 3' untranslated region.''; PubMed Europe PMC Scholia
  3. Pestova TV, Borukhov SI, Hellen CU.; ''Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons.''; PubMed Europe PMC Scholia
  4. Mazumder B, Sampath P, Seshadri V, Maitra RK, DiCorleto PE, Fox PL.; ''Regulated release of L13a from the 60S ribosomal subunit as a mechanism of transcript-specific translational control.''; PubMed Europe PMC Scholia
  5. Grifo JA, Tahara SM, Morgan MA, Shatkin AJ, Merrick WC.; ''New initiation factor activity required for globin mRNA translation.''; PubMed Europe PMC Scholia
  6. Safer B, Adams SL, Anderson WF, Merrick WC.; ''Binding of MET-TRNAf and GTP to homogeneous initiation factor MP.''; PubMed Europe PMC Scholia
  7. Pestova TV, Shatsky IN, Hellen CU.; ''Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes.''; PubMed Europe PMC Scholia
  8. Merrick WC.; ''Eukaryotic protein synthesis: still a mystery.''; PubMed Europe PMC Scholia
  9. Kozak M.; ''Evaluation of the "scanning model" for initiation of protein synthesis in eucaryotes.''; PubMed Europe PMC Scholia
  10. Chakrabarti A, Maitra U.; ''Function of eukaryotic initiation factor 5 in the formation of an 80 S ribosomal polypeptide chain initiation complex.''; PubMed Europe PMC Scholia
  11. Trachsel H, Erni B, Schreier MH, Staehelin T.; ''Initiation of mammalian protein synthesis. II. The assembly of the initiation complex with purified initiation factors.''; PubMed Europe PMC Scholia
  12. Rowlands AG, Panniers R, Henshaw EC.; ''The catalytic mechanism of guanine nucleotide exchange factor action and competitive inhibition by phosphorylated eukaryotic initiation factor 2.''; PubMed Europe PMC Scholia
  13. Iost I, Dreyfus M, Linder P.; ''Ded1p, a DEAD-box protein required for translation initiation in Saccharomyces cerevisiae, is an RNA helicase.''; PubMed Europe PMC Scholia
  14. Benne R, Hershey JW.; ''The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes.''; PubMed Europe PMC Scholia
  15. Schreier MH, Erni B, Staehelin T.; ''Initiation of mammalian protein synthesis. I. Purification and characterization of seven initiation factors.''; PubMed Europe PMC Scholia
  16. Sonenberg N, Rupprecht KM, Hecht SM, Shatkin AJ.; ''Eukaryotic mRNA cap binding protein: purification by affinity chromatography on sepharose-coupled m7GDP.''; PubMed Europe PMC Scholia
  17. Dever TE, Wei CL, Benkowski LA, Browning K, Merrick WC, Hershey JW.; ''Determination of the amino acid sequence of rabbit, human, and wheat germ protein synthesis factor eIF-4C by cloning and chemical sequencing.''; PubMed Europe PMC Scholia
  18. Merrick WC, Kemper WM, Anderson WF.; ''Purification and characterization of homogeneous initiation factor M2A from rabbit reticulocytes.''; PubMed Europe PMC Scholia
  19. Asano K, Clayton J, Shalev A, Hinnebusch AG.; ''A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo.''; PubMed Europe PMC Scholia
  20. Peterson DT, Merrick WC, Safer B.; ''Binding and release of radiolabeled eukaryotic initiation factors 2 and 3 during 80 S initiation complex formation.''; PubMed Europe PMC Scholia
  21. Goumans H, Thomas A, Verhoeven A, Voorma HO, Benne R.; ''The role of eIF-4C in protein synthesis initiation complex formation.''; PubMed Europe PMC Scholia
  22. Imataka H, Gradi A, Sonenberg N.; ''A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation.''; PubMed Europe PMC Scholia
  23. Chuang RY, Weaver PL, Liu Z, Chang TH.; ''Requirement of the DEAD-Box protein ded1p for messenger RNA translation.''; PubMed Europe PMC Scholia
  24. Lahn BT, Page DC.; ''Functional coherence of the human Y chromosome.''; PubMed Europe PMC Scholia
  25. Yoder-Hill J, Pause A, Sonenberg N, Merrick WC.; ''The p46 subunit of eukaryotic initiation factor (eIF)-4F exchanges with eIF-4A.''; PubMed Europe PMC Scholia
  26. Pestova TV, Lomakin IB, Lee JH, Choi SK, Dever TE, Hellen CU.; ''The joining of ribosomal subunits in eukaryotes requires eIF5B.''; PubMed Europe PMC Scholia
  27. Damoc E, Fraser CS, Zhou M, Videler H, Mayeur GL, Hershey JW, Doudna JA, Robinson CV, Leary JA.; ''Structural characterization of the human eukaryotic initiation factor 3 protein complex by mass spectrometry.''; PubMed Europe PMC Scholia
  28. Majumdar R, Bandyopadhyay A, Maitra U.; ''Mammalian translation initiation factor eIF1 functions with eIF1A and eIF3 in the formation of a stable 40 S preinitiation complex.''; PubMed Europe PMC Scholia
  29. Dholakia JN, Wahba AJ.; ''Mechanism of the nucleotide exchange reaction in eukaryotic polypeptide chain initiation. Characterization of the guanine nucleotide exchange factor as a GTP-binding protein.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
128373view17:49, 3 February 2024Ash iyerFixing error (check)
128372view17:45, 3 February 2024Ash iyeridentifier added
128371view17:43, 3 February 2024Ash iyereif1 identifier added.
128323view00:28, 1 February 2024EweitzOntology Term : 'translation pathway' added !
117720view12:33, 22 May 2021EweitzModified title
114979view16:50, 25 January 2021ReactomeTeamReactome version 75
113423view11:49, 2 November 2020ReactomeTeamReactome version 74
112625view16:00, 9 October 2020ReactomeTeamReactome version 73
101541view11:40, 1 November 2018ReactomeTeamreactome version 66
101076view21:23, 31 October 2018ReactomeTeamreactome version 65
100606view19:57, 31 October 2018ReactomeTeamreactome version 64
100157view16:42, 31 October 2018ReactomeTeamreactome version 63
99707view15:11, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99288view12:46, 31 October 2018ReactomeTeamreactome version 62
93969view13:48, 16 August 2017ReactomeTeamreactome version 61
93568view11:27, 9 August 2017ReactomeTeamreactome version 61
86670view09:23, 11 July 2016ReactomeTeamreactome version 56
83337view10:49, 18 November 2015ReactomeTeamVersion54
76969view08:25, 17 July 2014ReactomeTeamFixed remaining interactions
76674view12:04, 16 July 2014ReactomeTeamFixed remaining interactions
76136view13:23, 11 June 2014AnweshaRe-fixing comment source
75707view11:05, 10 June 2014ReactomeTeamReactome 48 Update
75062view13:57, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74706view08:46, 30 April 2014ReactomeTeamReactome46
45250view18:36, 7 October 2011AlexanderPicoOntology Term : 'translation initiation pathway' added !
42035view21:51, 4 March 2011MaintBotAutomatic update
39838view05:52, 21 January 2011MaintBotNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
18S rRNA ProteinX03205 (EMBL)
28S rRNA ProteinM11167 (EMBL)
40S ribosomal complexComplexR-HSA-72392 (Reactome)
40S:Met-tRNAi:mRNAComplexR-HSA-72508 (Reactome)
40S:eIF3:eIF1AComplexR-HSA-72570 (Reactome)
43S complexComplexR-HSA-72571 (Reactome)
43S:

Ceruloplasmin

mRNA:eIF4F:eIF4B:eIF4H:PABP
ComplexR-HSA-156804 (Reactome)
43S:mRNA:eIF4F:eIF4B:eIF4HComplexR-HSA-72592 (Reactome)
48S complexComplexR-HSA-72594 (Reactome)
5.8S rRNA ProteinJ01866 (EMBL)
5S rRNA ProteinV00589 (EMBL)
60S ribosomal complexComplexR-HSA-72499 (Reactome)
60s ribosomal

complex lacking

L13a subunit
ComplexR-HSA-156817 (Reactome)
80S ribosomeComplexR-HSA-72500 (Reactome)
80S:Met-tRNAi:mRNA:eIF5B:GTPComplexR-HSA-72504 (Reactome)
80S:Met-tRNAi:mRNAComplexR-HSA-72505 (Reactome)
ADPMetaboliteCHEBI:16761 (ChEBI)
ATPMetaboliteCHEBI:15422 (ChEBI)
Ceruloplasmin mRNA:eIF4F:eIF4B:eIF4HComplexR-HSA-156809 (Reactome)
Ceruloplasmin mRNA ProteinM13699 (EMBL)
EIF1AX ProteinP47813 (Uniprot-TrEMBL)
EIF1AXProteinP47813 (Uniprot-TrEMBL)
EIF2B1 ProteinQ14232 (Uniprot-TrEMBL)
EIF2B2 ProteinP49770 (Uniprot-TrEMBL)
EIF2B3 ProteinQ9NR50 (Uniprot-TrEMBL)
EIF2B4 ProteinQ9UI10 (Uniprot-TrEMBL)
EIF2B5 ProteinQ13144 (Uniprot-TrEMBL)
EIF2S1 ProteinP05198 (Uniprot-TrEMBL)
EIF2S1:EIF2S2:EIF2S3ComplexR-HSA-72515 (Reactome)
EIF2S2 ProteinP20042 (Uniprot-TrEMBL)
EIF2S3 ProteinP41091 (Uniprot-TrEMBL)
EIF3A ProteinQ14152 (Uniprot-TrEMBL)
EIF3B ProteinP55884 (Uniprot-TrEMBL)
EIF3C ProteinQ99613 (Uniprot-TrEMBL)
EIF3D ProteinO15371 (Uniprot-TrEMBL)
EIF3E ProteinP60228 (Uniprot-TrEMBL)
EIF3F ProteinO00303 (Uniprot-TrEMBL)
EIF3G ProteinO75821 (Uniprot-TrEMBL)
EIF3H ProteinO15372 (Uniprot-TrEMBL)
EIF3I ProteinQ13347 (Uniprot-TrEMBL)
EIF3J ProteinO75822 (Uniprot-TrEMBL)
EIF3K ProteinQ9UBQ5 (Uniprot-TrEMBL)
EIF3L ProteinQ9Y262 (Uniprot-TrEMBL)
EIF3M ProteinQ7L2H7 (Uniprot-TrEMBL)
EIF4A1 ProteinP60842 (Uniprot-TrEMBL)
EIF4A2 ProteinQ14240 (Uniprot-TrEMBL)
EIF4B ProteinP23588 (Uniprot-TrEMBL)
EIF4BProteinP23588 (Uniprot-TrEMBL)
EIF4E ProteinP06730 (Uniprot-TrEMBL)
EIF4EBP1 ProteinQ13541 (Uniprot-TrEMBL)
EIF4EBP1ProteinQ13541 (Uniprot-TrEMBL)
EIF4EProteinP06730 (Uniprot-TrEMBL)
EIF4G1 ProteinQ04637 (Uniprot-TrEMBL)
EIF4G1ProteinQ04637 (Uniprot-TrEMBL)
EIF4H ProteinQ15056 (Uniprot-TrEMBL)
EIF4HProteinQ15056 (Uniprot-TrEMBL)
EIF5B ProteinO60841 (Uniprot-TrEMBL)
EIF5ProteinP55010 (Uniprot-TrEMBL)
FAU ProteinP62861 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
L13a kinaseR-HSA-170641 (Reactome)
Met-tRNAi R-ALL-72393 (Reactome)
Met-tRNAiR-ALL-72393 (Reactome)
PABPC1 ProteinP11940 (Uniprot-TrEMBL)
PABPC1ProteinP11940 (Uniprot-TrEMBL)
PiMetaboliteCHEBI:18367 (ChEBI)
RNA-binding protein

in RNP (ribonucleoprotein)

complexes
R-ALL-72595 (Reactome)
RNA-binding protein in RNP (ribonucleoprotein) complexes R-ALL-72595 (Reactome)
RPL10 ProteinP27635 (Uniprot-TrEMBL)
RPL10A ProteinP62906 (Uniprot-TrEMBL)
RPL10L ProteinQ96L21 (Uniprot-TrEMBL)
RPL11 ProteinP62913 (Uniprot-TrEMBL)
RPL12 ProteinP30050 (Uniprot-TrEMBL)
RPL13 ProteinP26373 (Uniprot-TrEMBL)
RPL13A ProteinP40429 (Uniprot-TrEMBL)
RPL13AProteinP40429 (Uniprot-TrEMBL)
RPL14 ProteinP50914 (Uniprot-TrEMBL)
RPL15 ProteinP61313 (Uniprot-TrEMBL)
RPL17 ProteinP18621 (Uniprot-TrEMBL)
RPL18 ProteinQ07020 (Uniprot-TrEMBL)
RPL18A ProteinQ02543 (Uniprot-TrEMBL)
RPL19 ProteinP84098 (Uniprot-TrEMBL)
RPL21 ProteinP46778 (Uniprot-TrEMBL)
RPL22 ProteinP35268 (Uniprot-TrEMBL)
RPL22L1 ProteinQ6P5R6 (Uniprot-TrEMBL)
RPL23 ProteinP62829 (Uniprot-TrEMBL)
RPL23A ProteinP62750 (Uniprot-TrEMBL)
RPL24 ProteinP83731 (Uniprot-TrEMBL)
RPL26 ProteinP61254 (Uniprot-TrEMBL)
RPL26L1 ProteinQ9UNX3 (Uniprot-TrEMBL)
RPL27 ProteinP61353 (Uniprot-TrEMBL)
RPL27A ProteinP46776 (Uniprot-TrEMBL)
RPL28 ProteinP46779 (Uniprot-TrEMBL)
RPL29 ProteinP47914 (Uniprot-TrEMBL)
RPL3 ProteinP39023 (Uniprot-TrEMBL)
RPL30 ProteinP62888 (Uniprot-TrEMBL)
RPL31 ProteinP62899 (Uniprot-TrEMBL)
RPL32 ProteinP62910 (Uniprot-TrEMBL)
RPL34 ProteinP49207 (Uniprot-TrEMBL)
RPL35 ProteinP42766 (Uniprot-TrEMBL)
RPL35A ProteinP18077 (Uniprot-TrEMBL)
RPL36 ProteinQ9Y3U8 (Uniprot-TrEMBL)
RPL36A ProteinP83881 (Uniprot-TrEMBL)
RPL36AL ProteinQ969Q0 (Uniprot-TrEMBL)
RPL37 ProteinP61927 (Uniprot-TrEMBL)
RPL37A ProteinP61513 (Uniprot-TrEMBL)
RPL38 ProteinP63173 (Uniprot-TrEMBL)
RPL39 ProteinP62891 (Uniprot-TrEMBL)
RPL39L ProteinQ96EH5 (Uniprot-TrEMBL)
RPL3L ProteinQ92901 (Uniprot-TrEMBL)
RPL4 ProteinP36578 (Uniprot-TrEMBL)
RPL40 ProteinP62987 (Uniprot-TrEMBL)
RPL41 ProteinP62945 (Uniprot-TrEMBL)
RPL5 ProteinP46777 (Uniprot-TrEMBL)
RPL6 ProteinQ02878 (Uniprot-TrEMBL)
RPL7 ProteinP18124 (Uniprot-TrEMBL)
RPL7A ProteinP62424 (Uniprot-TrEMBL)
RPL8 ProteinP62917 (Uniprot-TrEMBL)
RPL9 ProteinP32969 (Uniprot-TrEMBL)
RPLP0 ProteinP05388 (Uniprot-TrEMBL)
RPLP1 ProteinP05386 (Uniprot-TrEMBL)
RPLP2 ProteinP05387 (Uniprot-TrEMBL)
RPS10 ProteinP46783 (Uniprot-TrEMBL)
RPS11 ProteinP62280 (Uniprot-TrEMBL)
RPS12 ProteinP25398 (Uniprot-TrEMBL)
RPS13 ProteinP62277 (Uniprot-TrEMBL)
RPS14 ProteinP62263 (Uniprot-TrEMBL)
RPS15 ProteinP62841 (Uniprot-TrEMBL)
RPS15A ProteinP62244 (Uniprot-TrEMBL)
RPS16 ProteinP62249 (Uniprot-TrEMBL)
RPS17 ProteinP08708 (Uniprot-TrEMBL)
RPS18 ProteinP62269 (Uniprot-TrEMBL)
RPS19 ProteinP39019 (Uniprot-TrEMBL)
RPS2 ProteinP15880 (Uniprot-TrEMBL)
RPS20 ProteinP60866 (Uniprot-TrEMBL)
RPS21 ProteinP63220 (Uniprot-TrEMBL)
RPS23 ProteinP62266 (Uniprot-TrEMBL)
RPS24 ProteinP62847 (Uniprot-TrEMBL)
RPS25 ProteinP62851 (Uniprot-TrEMBL)
RPS26 ProteinP62854 (Uniprot-TrEMBL)
RPS27 ProteinP42677 (Uniprot-TrEMBL)
RPS27A(77-156) ProteinP62979 (Uniprot-TrEMBL)
RPS27L ProteinQ71UM5 (Uniprot-TrEMBL)
RPS28 ProteinP62857 (Uniprot-TrEMBL)
RPS29 ProteinP62273 (Uniprot-TrEMBL)
RPS3 ProteinP23396 (Uniprot-TrEMBL)
RPS3A ProteinP61247 (Uniprot-TrEMBL)
RPS4X ProteinP62701 (Uniprot-TrEMBL)
RPS4Y1 ProteinP22090 (Uniprot-TrEMBL)
RPS4Y2 ProteinQ8TD47 (Uniprot-TrEMBL)
RPS5 ProteinP46782 (Uniprot-TrEMBL)
RPS6 ProteinP62753 (Uniprot-TrEMBL)
RPS7 ProteinP62081 (Uniprot-TrEMBL)
RPS8 ProteinP62241 (Uniprot-TrEMBL)
RPS9 ProteinP46781 (Uniprot-TrEMBL)
RPSA ProteinP08865 (Uniprot-TrEMBL)
eIF1R-ALL-72617 (Reactome)
eIF2:GDP: eIF2BComplexR-HSA-72529 (Reactome)
eIF2:GDPComplexR-HSA-72530 (Reactome)
eIF2:GTPComplexR-HSA-72531 (Reactome)
eIF2B subunits complexComplexR-HSA-72526 (Reactome)
eIF3 subunits complexComplexR-HSA-72555 (Reactome)
eIF4A subunits complexComplexR-HSA-72576 (Reactome)
eIF4E:4E-BPComplexR-HSA-72581 (Reactome)
eIF4F:mRNPComplexR-HSA-72597 (Reactome)
eIF4FComplexR-HSA-72587 (Reactome)
eIF5B:GDPComplexR-HSA-72502 (Reactome)
eIF5B:GTPComplexR-HSA-72503 (Reactome)
mRNA:eIF4F:eIF4B:eIF4HComplexR-HSA-72593 (Reactome)
mRNPComplexR-HSA-72596 (Reactome)
p-RPL13A ProteinP40429 (Uniprot-TrEMBL)
p-RPL13AProteinP40429 (Uniprot-TrEMBL)
phospho-L13a

associated wth the 3' UTR GAIT element of ceruloplasmin mRNA within the translation

initiation complex
ComplexR-HSA-156824 (Reactome)
ternary complexComplexR-HSA-72532 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
40S ribosomal complexArrowR-HSA-72673 (Reactome)
40S ribosomal complexR-HSA-72676 (Reactome)
40S:Met-tRNAi:mRNAArrowR-HSA-72619 (Reactome)
40S:Met-tRNAi:mRNAR-HSA-72672 (Reactome)
40S:eIF3:eIF1AArrowR-HSA-72676 (Reactome)
40S:eIF3:eIF1AR-HSA-72691 (Reactome)
43S complexArrowR-HSA-72691 (Reactome)
43S complexR-HSA-156808 (Reactome)
43S complexR-HSA-157849 (Reactome)
43S:

Ceruloplasmin

mRNA:eIF4F:eIF4B:eIF4H:PABP
ArrowR-HSA-156808 (Reactome)
43S:

Ceruloplasmin

mRNA:eIF4F:eIF4B:eIF4H:PABP
R-HSA-156823 (Reactome)
43S:mRNA:eIF4F:eIF4B:eIF4HArrowR-HSA-157849 (Reactome)
43S:mRNA:eIF4F:eIF4B:eIF4HR-HSA-72621 (Reactome)
48S complexArrowR-HSA-72621 (Reactome)
48S complexArrowR-HSA-72697 (Reactome)
48S complexR-HSA-72619 (Reactome)
48S complexR-HSA-72697 (Reactome)
60S ribosomal complexArrowR-HSA-72673 (Reactome)
60S ribosomal complexR-HSA-156826 (Reactome)
60S ribosomal complexR-HSA-72672 (Reactome)
60s ribosomal

complex lacking

L13a subunit
ArrowR-HSA-156826 (Reactome)
80S ribosomeR-HSA-72673 (Reactome)
80S:Met-tRNAi:mRNA:eIF5B:GTPArrowR-HSA-72672 (Reactome)
80S:Met-tRNAi:mRNA:eIF5B:GTPR-HSA-72671 (Reactome)
80S:Met-tRNAi:mRNAArrowR-HSA-72671 (Reactome)
ADPArrowR-HSA-72621 (Reactome)
ADPArrowR-HSA-72647 (Reactome)
ATPArrowR-HSA-72621 (Reactome)
ATPR-HSA-72621 (Reactome)
ATPR-HSA-72647 (Reactome)
Ceruloplasmin mRNA:eIF4F:eIF4B:eIF4HR-HSA-156808 (Reactome)
EIF1AXArrowR-HSA-156808 (Reactome)
EIF1AXArrowR-HSA-157849 (Reactome)
EIF1AXArrowR-HSA-72619 (Reactome)
EIF1AXArrowR-HSA-72673 (Reactome)
EIF1AXArrowR-HSA-72697 (Reactome)
EIF1AXR-HSA-156808 (Reactome)
EIF1AXR-HSA-157849 (Reactome)
EIF1AXR-HSA-72673 (Reactome)
EIF1AXR-HSA-72676 (Reactome)
EIF1AXR-HSA-72697 (Reactome)
EIF2S1:EIF2S2:EIF2S3ArrowR-HSA-72697 (Reactome)
EIF2S1:EIF2S2:EIF2S3R-HSA-72663 (Reactome)
EIF2S1:EIF2S2:EIF2S3R-HSA-72697 (Reactome)
EIF4BArrowR-HSA-72619 (Reactome)
EIF4BR-HSA-72647 (Reactome)
EIF4Bmim-catalysisR-HSA-72647 (Reactome)
EIF4EArrowR-HSA-72619 (Reactome)
EIF4EArrowR-HSA-72622 (Reactome)
EIF4EBP1ArrowR-HSA-72622 (Reactome)
EIF4ER-HSA-72631 (Reactome)
EIF4G1ArrowR-HSA-72619 (Reactome)
EIF4G1R-HSA-72631 (Reactome)
EIF4HArrowR-HSA-72619 (Reactome)
EIF4HR-HSA-72647 (Reactome)
EIF4Hmim-catalysisR-HSA-72647 (Reactome)
EIF5ArrowR-HSA-72619 (Reactome)
EIF5ArrowR-HSA-72697 (Reactome)
EIF5R-HSA-72619 (Reactome)
EIF5R-HSA-72697 (Reactome)
GDPArrowR-HSA-72722 (Reactome)
GTPArrowR-HSA-72669 (Reactome)
GTPR-HSA-72663 (Reactome)
GTPR-HSA-72722 (Reactome)
L13a kinasemim-catalysisR-HSA-156832 (Reactome)
Met-tRNAiR-HSA-72669 (Reactome)
PABPC1R-HSA-156808 (Reactome)
PiArrowR-HSA-72619 (Reactome)
PiArrowR-HSA-72621 (Reactome)
PiArrowR-HSA-72647 (Reactome)
PiArrowR-HSA-72671 (Reactome)
R-HSA-156808 (Reactome) The precise order of events leading to the circularization of poly (A) mRNA during translation initiation is unknown. Here the association of PABP with the poly (A) mRNA and the association of PABP with eIF4F are represented as occuring simultaneously after formation of the initiation complex. However, it is also possible that these interactions occur during the formation of the translation initiation complex. The binding of eIF4F to the cap and binding of PABP to the poly (A) tail, for example, may occur at the same time. In fact, the eIF4G-PABP interaction helps eIF4F to bind tighter to the cap (Borman et al. 2000.) In addition, eIF4B and eIF4H bind more transiently to the mRNA and may not be part of an initial complex in which PABP has not yet touched eIF4G.
R-HSA-156823 (Reactome) Although the mechanism through which L13a prevents translation initiation has not been determined, Mazumder et al. (2003) have described four alternatives. L13a could (1) inhibit the function of eIF4F, (2) block the recruitment of the 43S preinitiation complex, (3) prevent scanning of the 43S complex to the initiation codon, or 4) interfere with joining of the 60S ribosomal subunit.
R-HSA-156826 (Reactome) The L13a subunit of the 60s ribosome is phosphorylated about 16 hours after INF gamma induction by an unknown kinase. At this time, L13a is also released from the 60s subunit (Mazumder et al.,2003). It is unclear, however, whether phosphorylation occurs before or after the release of L13a. Here, phosphorylation is shown as occurring after release.
R-HSA-156832 (Reactome) The L13a subunit of the 60s ribosome is phosphorylated about 16 hours after INF gamma induction by an unknown kinase. At this time, L13a is also released from the 60s subunit (Mazumder et al.,2003). It is unclear, however, whether phosphorylation occurs before or after the release of L13a. Here, phosphorylation is shown as occurring after release.
R-HSA-157849 (Reactome) The translation initiation complex forms when the 43S complex binds the mRNA that is associated with eIF4F, eIF4B and eIF4H. eIF4G in the eIF4F complex can directly contact eIF3 in the 43S complex. eIF1A is necessary for the formation of this complex.
R-HSA-72619 (Reactome) Once the Met-tRNAi has recognized the AUG, eIF2-bound GTP is hydrolyzed. The reaction is catalyzed by eIF5 (or eIF5B) and is thought to cause dissociation of all other initiation factors and allow joining of the large 60S ribosomal subunit. Release of the initiation factors from 40S leaves the Met-tRNAi in the ribosomal P-site base-paired to the start codon on the mRNA.
R-HSA-72621 (Reactome) The mRNA-bound ribosomal complex moves along the 5'-untranslated region (5'-UTR) of the mRNA from its initial site to the initiation codon to form a 48S complex, in which the initiation codon (AUG) is base paired to the anticodon of the Met-tRNAi. It is not known whether eIF4A (or another ATPase, such as DED1) facilitates scanning by melting mRNA secondary structures or by actively propelling the ribosome.
R-HSA-72622 (Reactome) eIF4E gets released from the inactive eIF4E:4EBP complex.
R-HSA-72631 (Reactome) eIF4A interacts with eIF4G, and eIF4E interacts with the amino-terminal domain of eIF4G to form the cap-binding complex eIF4F.
R-HSA-72635 (Reactome) The factor eIF4E within the eIF4F (cap-binding) complex directly binds the 5'-cap on eukaryotic mRNAs. Note that the mRNA is in complex with cytoplasmic proteins constituting an mRNP complex.
R-HSA-72647 (Reactome) The DEAD-box RNA helicase eIF4A, together with the RNA-binding proteins eIF4B or eIF4H, is thought to unwind RNA secondary structures near the 5'-end of the mRNA and in the presence of ATP.
R-HSA-72663 (Reactome) Activation of eIF2 through direct binding of GTP.
R-HSA-72669 (Reactome) The ternary complex forms upon binding of the initiator methionyl-tRNA to the active eIF2:GTP complex.
R-HSA-72670 (Reactome) Inactive eIF2:GDP binds eIF2B to form an eIF2:GDP:eIF2B intermediate.
R-HSA-72671 (Reactome) Once the 60S subunit joins the translation initiation complex, eIF5B hydrolyzes its GTP and is released from the now 80S monosome. The fully assembled 80s ribosome is now ready to start elongation of the polypeptide chain.
R-HSA-72672 (Reactome) Joining of the 60S subunit to form the 80S ribosome is catalyzed by the presence of GTP-bound eIF5B.
R-HSA-72673 (Reactome) 80S monosomes dissociate into 40S and 60S ribosomal subunits. eIF1A promotes this dissociation.
R-HSA-72676 (Reactome) eIF3 and eIF1A bind to the 40S ribosomal subunit.
R-HSA-72691 (Reactome) The ternary complex (Met-tRNAi:eIF2:GTP) binds to the complex formed by the 40S subunit, eIF3 and eIF1A, to form the 43S complex. eIF1A promotes binding of the ternary complex to the 40S subunit within 43S. The initiator methionyl-tRNA from the ternary complex is positioned at the ribosomal P site.
R-HSA-72697 (Reactome) The AUG initiation codon in the mRNA is recognized by base pairing with the anticodon of the Met-tRNAi. This reaction requires eIF1, eIF1A, eIF2 and eIF5.
R-HSA-72722 (Reactome) eIF2B is a guanine nucleotide releasing factor that is required to cause GDP release so that a new GTP molecule can bind and activate eIF2, so that it can be reused.
RNA-binding protein

in RNP (ribonucleoprotein)

complexes
ArrowR-HSA-72647 (Reactome)
RPL13AArrowR-HSA-156826 (Reactome)
RPL13AR-HSA-156832 (Reactome)
eIF1ArrowR-HSA-72697 (Reactome)
eIF1R-HSA-72619 (Reactome)
eIF1R-HSA-72697 (Reactome)
eIF1mim-catalysisR-HSA-72621 (Reactome)
eIF1mim-catalysisR-HSA-72697 (Reactome)
eIF2:GDP: eIF2BArrowR-HSA-72670 (Reactome)
eIF2:GDP: eIF2BR-HSA-72722 (Reactome)
eIF2:GDPArrowR-HSA-72619 (Reactome)
eIF2:GDPR-HSA-72670 (Reactome)
eIF2:GTPArrowR-HSA-72663 (Reactome)
eIF2:GTPArrowR-HSA-72722 (Reactome)
eIF2:GTPR-HSA-72669 (Reactome)
eIF2B subunits complexArrowR-HSA-72722 (Reactome)
eIF2B subunits complexR-HSA-72670 (Reactome)
eIF2B subunits complexmim-catalysisR-HSA-72722 (Reactome)
eIF3 subunits complexArrowR-HSA-72619 (Reactome)
eIF3 subunits complexR-HSA-72676 (Reactome)
eIF4A subunits complexArrowR-HSA-72619 (Reactome)
eIF4A subunits complexArrowR-HSA-72647 (Reactome)
eIF4A subunits complexR-HSA-72631 (Reactome)
eIF4A subunits complexR-HSA-72647 (Reactome)
eIF4A subunits complexmim-catalysisR-HSA-72647 (Reactome)
eIF4E:4E-BPR-HSA-72622 (Reactome)
eIF4F:mRNPArrowR-HSA-72635 (Reactome)
eIF4F:mRNPR-HSA-72647 (Reactome)
eIF4FArrowR-HSA-72631 (Reactome)
eIF4FR-HSA-72635 (Reactome)
eIF5B:GDPArrowR-HSA-72671 (Reactome)
eIF5B:GTPR-HSA-72672 (Reactome)
mRNA:eIF4F:eIF4B:eIF4HArrowR-HSA-72647 (Reactome)
mRNA:eIF4F:eIF4B:eIF4HR-HSA-157849 (Reactome)
mRNPR-HSA-72635 (Reactome)
p-RPL13AArrowR-HSA-156832 (Reactome)
p-RPL13AR-HSA-156823 (Reactome)
phospho-L13a

associated wth the 3' UTR GAIT element of ceruloplasmin mRNA within the translation

initiation complex
ArrowR-HSA-156823 (Reactome)
ternary complexArrowR-HSA-72669 (Reactome)
ternary complexR-HSA-72691 (Reactome)