Eukaryotic translation initiation (Homo sapiens)

From WikiPathways

Revision as of 17:43, 3 February 2024 by Ash iyer (Talk | contribs)
Jump to: navigation, search
292, 14, 17, 18, 26...12, 14, 23, 28122, 238, 9, 14, 21, 28101223564, 15113, 14, 20, 21, 27...14, 21, 284, 1513, 16, 2013, 2076cytosolRPS4Y1 RPS11 RPL27 EIF2B3 RPL5 RPS19 RPS23 RPL22L1 EIF3M FAU 43S complexRPL23A RPL27A EIF3B RPL27 RPS17 eIF4F:mRNPRPS28 RPL4 RPL41 RPL35A RPL7 RPS6 RPS7 RPS27A(77-156) RPS8 RPS15A RPL35 RPL17 RPS9 EIF4A1 RPS3A EIF3D RPS19 RPS24 RPS24 RPS10 RPL21 RPLP2 RPS8 RPS11 RPS7 EIF2S1:EIF2S2:EIF2S328S rRNA RPL10A RPS16 RPS29 EIF2S3 RPS3 RNA-binding protein in RNP (ribonucleoprotein) complexes RPS2 RPS29 RPL39L EIF2S3 RPS3 RPS16 GTP RPS3A mRNA RPS5 EIF4HRPL26 RPS4X RPL41 RPL27A RPS23 RPL36 PABPC1 RPL41 EIF4A2 RPL17 EIF3M RPS27L RPS10 RPS3 phospho-L13aassociated wth the 3' UTR GAIT elementof ceruloplasminmRNA within thetranslationinitiation complex18S rRNA RPL3 mRNA RPS8 RPL10L EIF4B RPL13A EIF2S2 EIF4EBP1RPS26 RPS15A RPL18A RPL17 RPS7 EIF2B1 eIF2:GTPEIF3K EIF2S2 EIF3G 5S rRNA RPL23 RPS13 RPL36 RPS27A(77-156) RPS18 RPS4Y1 EIF3D RPL19 ternary complexEIF4ERPS23 EIF3H RPL3L eIF4A subunitscomplexRPL9 RPS15 RPS11 RPL31 EIF2S2 EIF3F EIF3A RPL36AL RPS27 RPL19 RPS16 RPS2 RPLP0 Ceruloplasmin mRNA RPS10 RPS20 RPL32 GDP RPS7 EIF3M RPS13 RPS14 GTP RPL23 EIF2S3 RPL38 5.8S rRNA RPS19 RPL11 RPL28 eIF1RPS25 EIF4A1 RPS25 RPL35A RPL28 EIF2B5 RPL39 RPS15 RPL6 RPS21 RPL17 RPS3A RPS15A RPL12 RPS14 RPS24 EIF3F EIF3C RPL34 RPS24 RPS27 EIF4H RPS28 RPS27A(77-156) EIF4A2 18S rRNA EIF3I RPS12 RPLP1 RPS26 RPS4X RPS2 RPS3A RPS12 EIF4E RPL32 eIF5B:GTPRNA-binding proteinin RNP(ribonucleoprotein)complexesEIF2S2 RPS18 RPS18 RPS4Y1 GTP RPS14 PiEIF3B EIF3D EIF1AXRPS6 RPS26 RPS27 RPSA FAU RPS27A(77-156) RPL23 RPS5 RPS27L RPL12 RPL22 RPS15A RPS7 RPS26 RPL23A RPL9 RPS3 EIF2B5 RPSA RPL13 RPS20 RPS27L RPS17 RPS23 RPL41 RPL18 RPS10 EIF2B3 RPL27 EIF5RPS4Y1 EIF2S2 RPS10 Ceruloplasmin mRNA RPS9 EIF3H RPS6 RPS28 EIF3K RPL35 RPS26 PiRPL37A RPS25 RPS4Y2 RPL39L EIF3I EIF3C RPL35A RPS17 RPS17 5S rRNA RPL8 ADP80S ribosomeRPL4 RPS14 RPS27A(77-156) EIF1AX 18S rRNA Pi18S rRNA mRNA RPL10A RPL10A RPS3A EIF4A1 RPL28 RPL19 p-RPL13ARPS4Y2 RPSA RPS12 RPL15 RPL34 RPS2 RPL30 RPS5 RPL10 60s ribosomalcomplex lackingL13a subunitMet-tRNAi RPS18 RPL29 RPL7 RPL10 EIF1AX RPS28 RPS4Y2 RPL10 EIF3C EIF3L RPLP0 FAU RPS6 28S rRNA EIF2S2 RPS20 RPS14 RPS14 RNA-binding protein in RNP (ribonucleoprotein) complexes RPL26L1 EIF2S3 RPL39L RPSA RPS24 Met-tRNAi RPL31 RPL31 EIF3F RPS27A(77-156) EIF3I RPL13A RPS2 RPS15A RPL3 RPL22 RPS3 EIF3M RPL13 RPS21 RPS26 5S rRNA EIF3A FAU RPS15A EIF3K RPS14 mRNA RPL21 RPS13 RPS5 RPS7 RPS16 RPL23A EIF3A RPL26L1 RPL7A GTP40S ribosomalcomplexRPS6 RPL31 GTP FAU RPL35A RPL14 PABPC1RPS7 RPS10 EIF2S2 RPL37 EIF3F RPS20 RPL18A GDPmRNA EIF2B4 RPS15 RPS4X RPL14 RPS11 RPS11 RPL37A RPL8 RPS28 RPL27A EIF3E RPL39L RPS25 RPL30 RPL27A RPS3 RPS19 RPL13 48S complex5S rRNA RPLP1 RPS11 RPL36 EIF4B RPS4Y1 RPL31 EIF4E RPS8 EIF1AXRPS20 EIF4G1 RPS3A RPS9 EIF3H EIF3E RPS4Y2 RPS8 EIF5B RPS9 RPS6 RPS27A(77-156) RPS27 mRNPRPS27L RPS20 RPL29 RPS5 RPS16 EIF1AX EIF2B2 RPS28 EIF3E RPS27A(77-156) RPS2 RPS4Y2 RPS29 Met-tRNAi RPL39 GTP RPLP0 RPS28 18S rRNA RPL10 RPS27L RPS13 RPS17 RPL8 GTP RPS25 RPS6 RPS4X RPLP2 EIF3K RPS21 RPL12 RPL36AL RPS20 80S:Met-tRNAi:mRNA:eIF5B:GTPRPL4 EIF3C RPS4Y2 RPS11 RPS11 RPS6 RPL22L1 5.8S rRNA FAU RPS4Y2 RPS20 RPL19 RPSA RPS15 EIF5RPS9 EIF4E EIF4A2 RPS15 RPS17 28S rRNA RPS15 RPL35 5.8S rRNA RPL7A eIF2B subunitscomplexRPS17 ADPRPS4X EIF3D RPS5 ATPRPS10 eIF2:GTPEIF4EBP1 EIF3A EIF2S1 EIF3K RPS15A EIF4G1 RPL40 18S rRNA RPS8 eIF5B:GDPEIF4G1 RPS23 L13a kinaseEIF2S3 RPS24 RPS3A EIF3C RPL14 RPS19 EIF2S1 EIF2S2 EIF3J EIF2S1:EIF2S2:EIF2S3EIF3E Met-tRNAi RPS27L EIF2S1 RPS13 EIF4B RPL3L RPL24 Met-tRNAi EIF3I EIF4A1 RPS11 RPL38 RPL21 RPS18 18S rRNA RPL19 RPL37 RPL6 RPSA RPS14 RPS23 RPL3 EIF3B RPS27L RPS15 RPS12 EIF3L RPL7 RPSA RPL22L1 RPS6 RPL7A RPS27 eIF3 subunitscomplexMet-tRNAi EIF2S1 RPS5 RPS25 EIF3D RPS21 RPS27 RPLP0 RPL37 RPS15 EIF3G RPS12 RPL24 RPS3A RPLP1 Pi28S rRNA EIF2S3 EIF3J RPL32 EIF4E EIF2S3 RPS26 FAU RPS4Y2 18S rRNA EIF3F RPL36A RPL39L RPS16 RPL29 RPS4Y1 EIF5RPL36 RPL39 RPS28 RPL9 EIF2S3 RPS18 RPS29 RPS25 RPS15A RPL29 RPL10A EIF4H RPS12 EIF4H EIF2B2 RPS4Y2 RPS21 RPS3 RPL22 RPL40 RPS21 RPL40 RPLP2 EIF4A2 28S rRNA EIF4H RPL13 eIF2:GDP: eIF2BRPL35 RPS28 RPL27A RPL36A RPS5 RPS29 RPL22 RPL28 RPLP2 EIF3E RPS4X RPS21 RPL6 RPL22L1 RPS8 RPL9 RPL12 RPS8 EIF2S2 RPS15 EIF2S1 EIF4B RPL35A RPS23 EIF2S3 RPS14 40S:Met-tRNAi:mRNARPS29 RPS9 40S:eIF3:eIF1ARPS13 RPL41 EIF3L RPL26L1 EIF2S1 GDP RPS9 RPL17 RPS2 RPS15 RPS2 RPL5 p-RPL13A RPLP2 RPS5 RPL3 RPS27L EIF4A2 RPS16 RPL32 RPS21 RPL14 RPL7 RPS20 EIF1AXCeruloplasminmRNA:eIF4F:eIF4B:eIF4HRPS4Y1 RPL40 60S ribosomalcomplexRPS29 RPS27 mRNA EIF3H RPL38 RPL5 EIF3L RPS3A RPL12 EIF2S1 RPSA RPL35 RPS7 RPS9 EIF2S3 RPS26 RPL10L RPL3L RPS6 RPS14 RPL7 mRNA RPL13A 80S:Met-tRNAi:mRNARPS26 EIF4A1 RPL15 RPS4Y1 RPL10A EIF4B RPL30 RPL34 RPS4X RPL11 RPS9 EIF3M EIF4G1 EIF3H 18S rRNA RPS11 EIF3J RPSA RPL8 RPS19 RPL36AL EIF4A1 RPS13 RPS10 RPL40 RPL13ARPL7A RPS3A RPL37A RPS3A ATPeIF2:GDPRPL13A RPL21 RPL36A 43S:mRNA:eIF4F:eIF4B:eIF4HRPS15 RPL37 RPS12 RPS29 RPL29 EIF4A1 RPS14 RPS24 EIF3B EIF4E EIF3I EIF3J RPS12 EIF4E RPS27 EIF4E RPS20 EIF5B RPS12 Ceruloplasmin mRNA EIF3K RPL18A EIF5B RPL18 RPS27A(77-156) EIF3G RPS20 RPSA RPL6 RPL10L RPL18A RPL11 EIF4BRPS4X RPL30 RPSA RPS13 RPS25 RPL6 FAU EIF2S3 RPL10L RPL3 EIF3M RPL38 RPS4X EIF3L RPS18 RPL10L RPS27A(77-156) EIF4A2 RPL26L1 EIF4G1 EIF3L RPS7 RPL22 RPS9 RPS5 EIF2B4 EIF2S1 RPL11 RPL15 43S:CeruloplasminmRNA:eIF4F:eIF4B:eIF4H:PABPRPL14 EIF4G1RPS24 EIF3F RPS17 RPS7 EIF3H RPL32 RPS13 eIF4E:4E-BPGTP5.8S rRNA RPL5 EIF3D RPS4Y2 RPL36A EIF3F RPL3L RPL24 RPL8 EIF4A1 EIF3I RPL9 ATPRPS28 EIF3C RPS11 RPL39 EIF1AX EIF3M EIF3J EIF2S1 RPL26 RPS10 RPS13 RPL18 mRNA RPS25 RPS19 RPS23 GTP RPS24 RPL37A EIF2B1 RPS26 EIF4E RPS5 RPL30 RPL36A RPS17 RPS25 ADPEIF3K EIF4G1 RPL4 GDP RPL10 EIF3I RPS28 RPS29 RPS27L EIF3E eIF4FRPL15 EIF3D EIF1AXRPL18A EIF3J RPS4Y2 EIF4G1 RPS25 RPS17 RPS3 RPS18 EIF4A2 RPS4Y1 PABPC1 RPS18 RPL21 18S rRNA RPS21 5.8S rRNA RPS27 EIF3J RPL34 RPS12 RPL7A RPL26 RPL23A Met-tRNAi EIF2S3 RPS7 RPL36AL RPS6 GTP RPL23 RPS26 GTP RPL24 EIF3A RPS4X GTP RPLP1 EIF3B RPS24 EIF3A RPL11 FAU RPS18 RPL28 RPS18 RPS27L EIF4A1 RPS19 RPL34 RPLP0 EIF3B EIF4H EIF3H RPS4Y1 EIF3G RPL37A RPL13 EIF1AX RPL38 FAU RPL3L RPS8 RPL23A RPS3 EIF4G1 EIF3A RPS8 RPS24 RPS2 RPS19 RPL36AL RPL26 RPL24 RPL4 RPS16 RPL37 Met-tRNAi EIF3G RPL39 RPS10 EIF2S2 RPS4Y1 RPL36 RPS23 RPS21 RPS16 Met-tRNAiEIF2S2 RPS3 RPS2 EIF4E EIF4B RPS27 RPL27 RPS27L RPS19 ATPRPL18 RPL18 RPS15A EIF4A2 Met-tRNAi EIF3G RPL22L1 EIF2S1 EIF2S1 mRNA:eIF4F:eIF4B:eIF4HEIF2S2 RPS23 RPL26 RPS15A EIF3G RPS29 RPS9 RPS4X EIF4A2 eIF1RPS16 RPLP1 EIF4H EIF3C 18S rRNA EIF3E RPS10 EIF2S1 RPS13 RPL15 RPL5 RPS2 RPS21 EIF3B RPS8 RPS27A(77-156) RPL23 RPS19 RPL26L1 RPS17 EIF3L RPS16 RPS27 RPS29 5S rRNA FAU RPS15A RPS12 RPS3 RPS23 RPL27 EIF1AX 19, 2419, 2419, 2419, 2419, 2419, 2419, 242519, 2419, 2419, 24


Description

Initiation of translation in the majority of eukaryotic cellular mRNAs depends on the 5'-cap (m7GpppN) and involves ribosomal scanning of the 5' untranslated region (5'-UTR) for an initiating AUG start codon. Therefore, this mechanism is often called cap-dependent translation initiation. Proximity to the cap, as well as the nucleotides surrounding an AUG codon, influence the efficiency of the start site recognition during the scanning process. However, if the recognition site is poor enough, scanning ribosomal subunits will ignore and skip potential starting AUGs, a phenomenon called leaky scanning. Leaky scanning allows a single mRNA to encode several proteins that differ in their amino-termini. Merrick (2010) provides an overview of this process and hghlights several features of it that remain incompletely understood.

Several eukaryotic cell and viral mRNAs initiate translation by an alternative mechanism that involves internal initiation rather than ribosomal scanning. These mRNAs contain complex nucleotide sequences, called internal ribosomal entry sites, where ribosomes bind in a cap-independent manner and start translation at the closest downstream AUG codon.

Initiation on several viral and cellular mRNAs is cap-independent and is mediated by binding of the ribosome to internal ribosome entry site (IRES) elements. These elements are often found in characteristically long structured regions on the 5'-UTR of an mRNA that may or may not have regulatory upstream open reading frames (uORFs). Both of these features on the 5'-end of the mRNA hinder ribosomal scanning, and thus promote a cap-independent translation initiation mechanism. IRESs act as specific translational enhancers that allow translation initiation to occur in response to specific stimuli and under the control of different trans-acting factors, as for example when cap-dependent protein synthesis is shut off during viral infection. Such regulatory elements have been identified in the mRNAs of growth factors, protooncogenes, angiogenesis factors, and apoptosis regulators, which are translated under a variety of stress conditions, including hypoxia, serum deprivation, irradiation and apoptosis. Thus, cap-independent translational control might have evolved to regulate cellular responses in acute but transient stress conditions that would otherwise lead to cell death, while the same mechanism is of major importance for viral mRNAs to bypass the shutting-off of host protein synthesis after infection. Encephalomyocarditis virus (EMCV) and hepatitis C virus exemplify two distinct mechanisms of IRES-mediated initiation. In contrast to cap-dependent initiation, the eIF4A and eIF4G subunits of eIF4F bind immediately upstream of the EMCV initiation codon and promote binding of a 43S complex. Accordingly, EMCV initiation does not involve scanning and does not require eIF1, eIF1A, and the eIF4E subunit of eIF4F. Nonetheless, initiation on some EMCV-like IRESs requires additional non-canonical initiation factors, which alter IRES conformation and promote binding of eIF4A/eIF4G. Initiation on the hepatitis C virus IRES is simpler: a 43S complex containing only eIF2 and eIF3 binds directly to the initiation codon as a result of specific interaction of the IRES and the 40S subunit.

View original pathway at Reactome.</div>

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 72613
Reactome-version 
Reactome version: 75

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Pause A, Belsham GJ, Gingras AC, Donzé O, Lin TA, Lawrence JC, Sonenberg N.; ''Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function.''; PubMed Europe PMC Scholia
  2. Sampath P, Mazumder B, Seshadri V, Fox PL.; ''Transcript-selective translational silencing by gamma interferon is directed by a novel structural element in the ceruloplasmin mRNA 3' untranslated region.''; PubMed Europe PMC Scholia
  3. Pestova TV, Borukhov SI, Hellen CU.; ''Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons.''; PubMed Europe PMC Scholia
  4. Mazumder B, Sampath P, Seshadri V, Maitra RK, DiCorleto PE, Fox PL.; ''Regulated release of L13a from the 60S ribosomal subunit as a mechanism of transcript-specific translational control.''; PubMed Europe PMC Scholia
  5. Grifo JA, Tahara SM, Morgan MA, Shatkin AJ, Merrick WC.; ''New initiation factor activity required for globin mRNA translation.''; PubMed Europe PMC Scholia
  6. Safer B, Adams SL, Anderson WF, Merrick WC.; ''Binding of MET-TRNAf and GTP to homogeneous initiation factor MP.''; PubMed Europe PMC Scholia
  7. Pestova TV, Shatsky IN, Hellen CU.; ''Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes.''; PubMed Europe PMC Scholia
  8. Merrick WC.; ''Eukaryotic protein synthesis: still a mystery.''; PubMed Europe PMC Scholia
  9. Kozak M.; ''Evaluation of the "scanning model" for initiation of protein synthesis in eucaryotes.''; PubMed Europe PMC Scholia
  10. Chakrabarti A, Maitra U.; ''Function of eukaryotic initiation factor 5 in the formation of an 80 S ribosomal polypeptide chain initiation complex.''; PubMed Europe PMC Scholia
  11. Trachsel H, Erni B, Schreier MH, Staehelin T.; ''Initiation of mammalian protein synthesis. II. The assembly of the initiation complex with purified initiation factors.''; PubMed Europe PMC Scholia
  12. Rowlands AG, Panniers R, Henshaw EC.; ''The catalytic mechanism of guanine nucleotide exchange factor action and competitive inhibition by phosphorylated eukaryotic initiation factor 2.''; PubMed Europe PMC Scholia
  13. Iost I, Dreyfus M, Linder P.; ''Ded1p, a DEAD-box protein required for translation initiation in Saccharomyces cerevisiae, is an RNA helicase.''; PubMed Europe PMC Scholia
  14. Benne R, Hershey JW.; ''The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes.''; PubMed Europe PMC Scholia
  15. Schreier MH, Erni B, Staehelin T.; ''Initiation of mammalian protein synthesis. I. Purification and characterization of seven initiation factors.''; PubMed Europe PMC Scholia
  16. Sonenberg N, Rupprecht KM, Hecht SM, Shatkin AJ.; ''Eukaryotic mRNA cap binding protein: purification by affinity chromatography on sepharose-coupled m7GDP.''; PubMed Europe PMC Scholia
  17. Dever TE, Wei CL, Benkowski LA, Browning K, Merrick WC, Hershey JW.; ''Determination of the amino acid sequence of rabbit, human, and wheat germ protein synthesis factor eIF-4C by cloning and chemical sequencing.''; PubMed Europe PMC Scholia
  18. Merrick WC, Kemper WM, Anderson WF.; ''Purification and characterization of homogeneous initiation factor M2A from rabbit reticulocytes.''; PubMed Europe PMC Scholia
  19. Asano K, Clayton J, Shalev A, Hinnebusch AG.; ''A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo.''; PubMed Europe PMC Scholia
  20. Peterson DT, Merrick WC, Safer B.; ''Binding and release of radiolabeled eukaryotic initiation factors 2 and 3 during 80 S initiation complex formation.''; PubMed Europe PMC Scholia
  21. Goumans H, Thomas A, Verhoeven A, Voorma HO, Benne R.; ''The role of eIF-4C in protein synthesis initiation complex formation.''; PubMed Europe PMC Scholia
  22. Imataka H, Gradi A, Sonenberg N.; ''A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation.''; PubMed Europe PMC Scholia
  23. Chuang RY, Weaver PL, Liu Z, Chang TH.; ''Requirement of the DEAD-Box protein ded1p for messenger RNA translation.''; PubMed Europe PMC Scholia
  24. Lahn BT, Page DC.; ''Functional coherence of the human Y chromosome.''; PubMed Europe PMC Scholia
  25. Yoder-Hill J, Pause A, Sonenberg N, Merrick WC.; ''The p46 subunit of eukaryotic initiation factor (eIF)-4F exchanges with eIF-4A.''; PubMed Europe PMC Scholia
  26. Pestova TV, Lomakin IB, Lee JH, Choi SK, Dever TE, Hellen CU.; ''The joining of ribosomal subunits in eukaryotes requires eIF5B.''; PubMed Europe PMC Scholia
  27. Damoc E, Fraser CS, Zhou M, Videler H, Mayeur GL, Hershey JW, Doudna JA, Robinson CV, Leary JA.; ''Structural characterization of the human eukaryotic initiation factor 3 protein complex by mass spectrometry.''; PubMed Europe PMC Scholia
  28. Majumdar R, Bandyopadhyay A, Maitra U.; ''Mammalian translation initiation factor eIF1 functions with eIF1A and eIF3 in the formation of a stable 40 S preinitiation complex.''; PubMed Europe PMC Scholia
  29. Dholakia JN, Wahba AJ.; ''Mechanism of the nucleotide exchange reaction in eukaryotic polypeptide chain initiation. Characterization of the guanine nucleotide exchange factor as a GTP-binding protein.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
128373view17:49, 3 February 2024Ash iyerFixing error (check)
128372view17:45, 3 February 2024Ash iyeridentifier added
128371view17:43, 3 February 2024Ash iyereif1 identifier added.
128323view00:28, 1 February 2024EweitzOntology Term : 'translation pathway' added !
117720view12:33, 22 May 2021EweitzModified title
114979view16:50, 25 January 2021ReactomeTeamReactome version 75
113423view11:49, 2 November 2020ReactomeTeamReactome version 74
112625view16:00, 9 October 2020ReactomeTeamReactome version 73
101541view11:40, 1 November 2018ReactomeTeamreactome version 66
101076view21:23, 31 October 2018ReactomeTeamreactome version 65
100606view19:57, 31 October 2018ReactomeTeamreactome version 64
100157view16:42, 31 October 2018ReactomeTeamreactome version 63
99707view15:11, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99288view12:46, 31 October 2018ReactomeTeamreactome version 62
93969view13:48, 16 August 2017ReactomeTeamreactome version 61
93568view11:27, 9 August 2017ReactomeTeamreactome version 61
86670view09:23, 11 July 2016ReactomeTeamreactome version 56
83337view10:49, 18 November 2015ReactomeTeamVersion54
76969view08:25, 17 July 2014ReactomeTeamFixed remaining interactions
76674view12:04, 16 July 2014ReactomeTeamFixed remaining interactions
76136view13:23, 11 June 2014AnweshaRe-fixing comment source
75707view11:05, 10 June 2014ReactomeTeamReactome 48 Update
75062view13:57, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74706view08:46, 30 April 2014ReactomeTeamReactome46
45250view18:36, 7 October 2011AlexanderPicoOntology Term : 'translation initiation pathway' added !
42035view21:51, 4 March 2011MaintBotAutomatic update
39838view05:52, 21 January 2011MaintBotNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
18S rRNA ProteinX03205 (EMBL)
28S rRNA ProteinM11167 (EMBL)
40S ribosomal complexComplexR-HSA-72392 (Reactome)
40S:Met-tRNAi:mRNAComplexR-HSA-72508 (Reactome)
40S:eIF3:eIF1AComplexR-HSA-72570 (Reactome)
43S complexComplexR-HSA-72571 (Reactome)
43S:

Ceruloplasmin

mRNA:eIF4F:eIF4B:eIF4H:PABP
ComplexR-HSA-156804 (Reactome)
43S:mRNA:eIF4F:eIF4B:eIF4HComplexR-HSA-72592 (Reactome)
48S complexComplexR-HSA-72594 (Reactome)
5.8S rRNA ProteinJ01866 (EMBL)
5S rRNA ProteinV00589 (EMBL)
60S ribosomal complexComplexR-HSA-72499 (Reactome)
60s ribosomal

complex lacking

L13a subunit
ComplexR-HSA-156817 (Reactome)
80S ribosomeComplexR-HSA-72500 (Reactome)
80S:Met-tRNAi:mRNA:eIF5B:GTPComplexR-HSA-72504 (Reactome)
80S:Met-tRNAi:mRNAComplexR-HSA-72505 (Reactome)
ADPMetaboliteCHEBI:456216 (ChEBI)
ATPMetaboliteCHEBI:30616 (ChEBI)
Ceruloplasmin mRNA:eIF4F:eIF4B:eIF4HComplexR-HSA-156809 (Reactome)
Ceruloplasmin mRNA ProteinM13699 (EMBL)
EIF1AX ProteinP47813 (Uniprot-TrEMBL)
EIF1AXProteinP47813 (Uniprot-TrEMBL)
EIF2B1 ProteinQ14232 (Uniprot-TrEMBL)
EIF2B2 ProteinP49770 (Uniprot-TrEMBL)
EIF2B3 ProteinQ9NR50 (Uniprot-TrEMBL)
EIF2B4 ProteinQ9UI10 (Uniprot-TrEMBL)
EIF2B5 ProteinQ13144 (Uniprot-TrEMBL)
EIF2S1 ProteinP05198 (Uniprot-TrEMBL)
EIF2S1:EIF2S2:EIF2S3ComplexR-HSA-72515 (Reactome)
EIF2S2 ProteinP20042 (Uniprot-TrEMBL)
EIF2S3 ProteinP41091 (Uniprot-TrEMBL)
EIF3A ProteinQ14152 (Uniprot-TrEMBL)
EIF3B ProteinP55884 (Uniprot-TrEMBL)
EIF3C ProteinQ99613 (Uniprot-TrEMBL)
EIF3D ProteinO15371 (Uniprot-TrEMBL)
EIF3E ProteinP60228 (Uniprot-TrEMBL)
EIF3F ProteinO00303 (Uniprot-TrEMBL)
EIF3G ProteinO75821 (Uniprot-TrEMBL)
EIF3H ProteinO15372 (Uniprot-TrEMBL)
EIF3I ProteinQ13347 (Uniprot-TrEMBL)
EIF3J ProteinO75822 (Uniprot-TrEMBL)
EIF3K ProteinQ9UBQ5 (Uniprot-TrEMBL)
EIF3L ProteinQ9Y262 (Uniprot-TrEMBL)
EIF3M ProteinQ7L2H7 (Uniprot-TrEMBL)
EIF4A1 ProteinP60842 (Uniprot-TrEMBL)
EIF4A2 ProteinQ14240 (Uniprot-TrEMBL)
EIF4B ProteinP23588 (Uniprot-TrEMBL)
EIF4BProteinP23588 (Uniprot-TrEMBL)
EIF4E ProteinP06730 (Uniprot-TrEMBL)
EIF4EBP1 ProteinQ13541 (Uniprot-TrEMBL)
EIF4EBP1ProteinQ13541 (Uniprot-TrEMBL)
EIF4EProteinP06730 (Uniprot-TrEMBL)
EIF4G1 ProteinQ04637 (Uniprot-TrEMBL)
EIF4G1ProteinQ04637 (Uniprot-TrEMBL)
EIF4H ProteinQ15056 (Uniprot-TrEMBL)
EIF4HProteinQ15056 (Uniprot-TrEMBL)
EIF5B ProteinO60841 (Uniprot-TrEMBL)
EIF5ProteinP55010 (Uniprot-TrEMBL)
FAU ProteinP62861 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
L13a kinaseR-HSA-170641 (Reactome)
Met-tRNAi R-ALL-72393 (Reactome)
Met-tRNAiR-ALL-72393 (Reactome)
PABPC1 ProteinP11940 (Uniprot-TrEMBL)
PABPC1ProteinP11940 (Uniprot-TrEMBL)
PiMetaboliteCHEBI:43474 (ChEBI)
RNA-binding protein

in RNP (ribonucleoprotein)

complexes
R-ALL-72595 (Reactome)
RNA-binding protein in RNP (ribonucleoprotein) complexes R-ALL-72595 (Reactome)
RPL10 ProteinP27635 (Uniprot-TrEMBL)
RPL10A ProteinP62906 (Uniprot-TrEMBL)
RPL10L ProteinQ96L21 (Uniprot-TrEMBL)
RPL11 ProteinP62913 (Uniprot-TrEMBL)
RPL12 ProteinP30050 (Uniprot-TrEMBL)
RPL13 ProteinP26373 (Uniprot-TrEMBL)
RPL13A ProteinP40429 (Uniprot-TrEMBL)
RPL13AProteinP40429 (Uniprot-TrEMBL)
RPL14 ProteinP50914 (Uniprot-TrEMBL)
RPL15 ProteinP61313 (Uniprot-TrEMBL)
RPL17 ProteinP18621 (Uniprot-TrEMBL)
RPL18 ProteinQ07020 (Uniprot-TrEMBL)
RPL18A ProteinQ02543 (Uniprot-TrEMBL)
RPL19 ProteinP84098 (Uniprot-TrEMBL)
RPL21 ProteinP46778 (Uniprot-TrEMBL)
RPL22 ProteinP35268 (Uniprot-TrEMBL)
RPL22L1 ProteinQ6P5R6 (Uniprot-TrEMBL)
RPL23 ProteinP62829 (Uniprot-TrEMBL)
RPL23A ProteinP62750 (Uniprot-TrEMBL)
RPL24 ProteinP83731 (Uniprot-TrEMBL)
RPL26 ProteinP61254 (Uniprot-TrEMBL)
RPL26L1 ProteinQ9UNX3 (Uniprot-TrEMBL)
RPL27 ProteinP61353 (Uniprot-TrEMBL)
RPL27A ProteinP46776 (Uniprot-TrEMBL)
RPL28 ProteinP46779 (Uniprot-TrEMBL)
RPL29 ProteinP47914 (Uniprot-TrEMBL)
RPL3 ProteinP39023 (Uniprot-TrEMBL)
RPL30 ProteinP62888 (Uniprot-TrEMBL)
RPL31 ProteinP62899 (Uniprot-TrEMBL)
RPL32 ProteinP62910 (Uniprot-TrEMBL)
RPL34 ProteinP49207 (Uniprot-TrEMBL)
RPL35 ProteinP42766 (Uniprot-TrEMBL)
RPL35A ProteinP18077 (Uniprot-TrEMBL)
RPL36 ProteinQ9Y3U8 (Uniprot-TrEMBL)
RPL36A ProteinP83881 (Uniprot-TrEMBL)
RPL36AL ProteinQ969Q0 (Uniprot-TrEMBL)
RPL37 ProteinP61927 (Uniprot-TrEMBL)
RPL37A ProteinP61513 (Uniprot-TrEMBL)
RPL38 ProteinP63173 (Uniprot-TrEMBL)
RPL39 ProteinP62891 (Uniprot-TrEMBL)
RPL39L ProteinQ96EH5 (Uniprot-TrEMBL)
RPL3L ProteinQ92901 (Uniprot-TrEMBL)
RPL4 ProteinP36578 (Uniprot-TrEMBL)
RPL40 ProteinP62987 (Uniprot-TrEMBL)
RPL41 ProteinP62945 (Uniprot-TrEMBL)
RPL5 ProteinP46777 (Uniprot-TrEMBL)
RPL6 ProteinQ02878 (Uniprot-TrEMBL)
RPL7 ProteinP18124 (Uniprot-TrEMBL)
RPL7A ProteinP62424 (Uniprot-TrEMBL)
RPL8 ProteinP62917 (Uniprot-TrEMBL)
RPL9 ProteinP32969 (Uniprot-TrEMBL)
RPLP0 ProteinP05388 (Uniprot-TrEMBL)
RPLP1 ProteinP05386 (Uniprot-TrEMBL)
RPLP2 ProteinP05387 (Uniprot-TrEMBL)
RPS10 ProteinP46783 (Uniprot-TrEMBL)
RPS11 ProteinP62280 (Uniprot-TrEMBL)
RPS12 ProteinP25398 (Uniprot-TrEMBL)
RPS13 ProteinP62277 (Uniprot-TrEMBL)
RPS14 ProteinP62263 (Uniprot-TrEMBL)
RPS15 ProteinP62841 (Uniprot-TrEMBL)
RPS15A ProteinP62244 (Uniprot-TrEMBL)
RPS16 ProteinP62249 (Uniprot-TrEMBL)
RPS17 ProteinP08708 (Uniprot-TrEMBL)
RPS18 ProteinP62269 (Uniprot-TrEMBL)
RPS19 ProteinP39019 (Uniprot-TrEMBL)
RPS2 ProteinP15880 (Uniprot-TrEMBL)
RPS20 ProteinP60866 (Uniprot-TrEMBL)
RPS21 ProteinP63220 (Uniprot-TrEMBL)
RPS23 ProteinP62266 (Uniprot-TrEMBL)
RPS24 ProteinP62847 (Uniprot-TrEMBL)
RPS25 ProteinP62851 (Uniprot-TrEMBL)
RPS26 ProteinP62854 (Uniprot-TrEMBL)
RPS27 ProteinP42677 (Uniprot-TrEMBL)
RPS27A(77-156) ProteinP62979 (Uniprot-TrEMBL)
RPS27L ProteinQ71UM5 (Uniprot-TrEMBL)
RPS28 ProteinP62857 (Uniprot-TrEMBL)
RPS29 ProteinP62273 (Uniprot-TrEMBL)
RPS3 ProteinP23396 (Uniprot-TrEMBL)
RPS3A ProteinP61247 (Uniprot-TrEMBL)
RPS4X ProteinP62701 (Uniprot-TrEMBL)
RPS4Y1 ProteinP22090 (Uniprot-TrEMBL)
RPS4Y2 ProteinQ8TD47 (Uniprot-TrEMBL)
RPS5 ProteinP46782 (Uniprot-TrEMBL)
RPS6 ProteinP62753 (Uniprot-TrEMBL)
RPS7 ProteinP62081 (Uniprot-TrEMBL)
RPS8 ProteinP62241 (Uniprot-TrEMBL)
RPS9 ProteinP46781 (Uniprot-TrEMBL)
RPSA ProteinP08865 (Uniprot-TrEMBL)
eIF1ProteinP41567 (Uniprot-TrEMBL)
eIF1R-ALL-72617 (Reactome)
eIF2:GDP: eIF2BComplexR-HSA-72529 (Reactome)
eIF2:GDPComplexR-HSA-72530 (Reactome)
eIF2:GTPComplexR-HSA-72531 (Reactome)
eIF2B subunits complexComplexR-HSA-72526 (Reactome)
eIF3 subunits complexComplexR-HSA-72555 (Reactome)
eIF4A subunits complexComplexR-HSA-72576 (Reactome)
eIF4E:4E-BPComplexR-HSA-72581 (Reactome)
eIF4F:mRNPComplexR-HSA-72597 (Reactome)
eIF4FComplexR-HSA-72587 (Reactome)
eIF5B:GDPComplexR-HSA-72502 (Reactome)
eIF5B:GTPComplexR-HSA-72503 (Reactome)
mRNA R-HSA-72323 (Reactome)
mRNA:eIF4F:eIF4B:eIF4HComplexR-HSA-72593 (Reactome)
mRNPComplexR-HSA-72596 (Reactome)
p-RPL13A ProteinP40429 (Uniprot-TrEMBL)
p-RPL13AProteinP40429 (Uniprot-TrEMBL)
phospho-L13a

associated wth the 3' UTR GAIT element of ceruloplasmin mRNA within the translation

initiation complex
ComplexR-HSA-156824 (Reactome)
ternary complexComplexR-HSA-72532 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
40S ribosomal complexArrowR-HSA-72673 (Reactome)
40S ribosomal complexR-HSA-72676 (Reactome)
40S:Met-tRNAi:mRNAArrowR-HSA-72619 (Reactome)
40S:Met-tRNAi:mRNAR-HSA-72672 (Reactome)
40S:eIF3:eIF1AArrowR-HSA-72676 (Reactome)
40S:eIF3:eIF1AR-HSA-72691 (Reactome)
43S complexArrowR-HSA-72691 (Reactome)
43S complexR-HSA-156808 (Reactome)
43S complexR-HSA-157849 (Reactome)
43S:

Ceruloplasmin

mRNA:eIF4F:eIF4B:eIF4H:PABP
ArrowR-HSA-156808 (Reactome)
43S:

Ceruloplasmin

mRNA:eIF4F:eIF4B:eIF4H:PABP
R-HSA-156823 (Reactome)
43S:mRNA:eIF4F:eIF4B:eIF4HArrowR-HSA-157849 (Reactome)
43S:mRNA:eIF4F:eIF4B:eIF4HR-HSA-72621 (Reactome)
48S complexArrowR-HSA-72621 (Reactome)
48S complexArrowR-HSA-72697 (Reactome)
48S complexR-HSA-72619 (Reactome)
48S complexR-HSA-72697 (Reactome)
60S ribosomal complexArrowR-HSA-72673 (Reactome)
60S ribosomal complexR-HSA-156826 (Reactome)
60S ribosomal complexR-HSA-72672 (Reactome)
60s ribosomal

complex lacking

L13a subunit
ArrowR-HSA-156826 (Reactome)
80S ribosomeR-HSA-72673 (Reactome)
80S:Met-tRNAi:mRNA:eIF5B:GTPArrowR-HSA-72672 (Reactome)
80S:Met-tRNAi:mRNA:eIF5B:GTPR-HSA-72671 (Reactome)
80S:Met-tRNAi:mRNAArrowR-HSA-72671 (Reactome)
ADPArrowR-HSA-156832 (Reactome)
ADPArrowR-HSA-72621 (Reactome)
ADPArrowR-HSA-72647 (Reactome)
ATPArrowR-HSA-72621 (Reactome)
ATPR-HSA-156832 (Reactome)
ATPR-HSA-72621 (Reactome)
ATPR-HSA-72647 (Reactome)
Ceruloplasmin mRNA:eIF4F:eIF4B:eIF4HR-HSA-156808 (Reactome)
EIF1AXArrowR-HSA-156808 (Reactome)
EIF1AXArrowR-HSA-157849 (Reactome)
EIF1AXArrowR-HSA-72619 (Reactome)
EIF1AXArrowR-HSA-72673 (Reactome)
EIF1AXArrowR-HSA-72697 (Reactome)
EIF1AXR-HSA-156808 (Reactome)
EIF1AXR-HSA-157849 (Reactome)
EIF1AXR-HSA-72673 (Reactome)
EIF1AXR-HSA-72676 (Reactome)
EIF1AXR-HSA-72697 (Reactome)
EIF2S1:EIF2S2:EIF2S3ArrowR-HSA-72697 (Reactome)
EIF2S1:EIF2S2:EIF2S3R-HSA-72663 (Reactome)
EIF2S1:EIF2S2:EIF2S3R-HSA-72697 (Reactome)
EIF4BArrowR-HSA-72619 (Reactome)
EIF4BR-HSA-72647 (Reactome)
EIF4EArrowR-HSA-72619 (Reactome)
EIF4EArrowR-HSA-72622 (Reactome)
EIF4EBP1ArrowR-HSA-72622 (Reactome)
EIF4ER-HSA-72631 (Reactome)
EIF4G1ArrowR-HSA-72619 (Reactome)
EIF4G1R-HSA-72631 (Reactome)
EIF4HArrowR-HSA-72619 (Reactome)
EIF4HR-HSA-72647 (Reactome)
EIF5ArrowR-HSA-72619 (Reactome)
EIF5ArrowR-HSA-72697 (Reactome)
EIF5R-HSA-72619 (Reactome)
EIF5R-HSA-72697 (Reactome)
GDPArrowR-HSA-72722 (Reactome)
GTPArrowR-HSA-72669 (Reactome)
GTPR-HSA-72663 (Reactome)
GTPR-HSA-72722 (Reactome)
L13a kinasemim-catalysisR-HSA-156832 (Reactome)
Met-tRNAiR-HSA-72669 (Reactome)
PABPC1R-HSA-156808 (Reactome)
PiArrowR-HSA-72619 (Reactome)
PiArrowR-HSA-72621 (Reactome)
PiArrowR-HSA-72647 (Reactome)
PiArrowR-HSA-72671 (Reactome)
R-HSA-156808 (Reactome) The precise order of events leading to the circularization of poly (A) mRNA during translation initiation is unknown. Here the association of PABP with the poly (A) mRNA and the association of PABP with eIF4F are represented as occuring simultaneously after formation of the initiation complex. However, it is also possible that these interactions occur during the formation of the translation initiation complex. The binding of eIF4F to the cap and binding of PABP to the poly (A) tail, for example, may occur at the same time. In fact, the eIF4G-PABP interaction helps eIF4F to bind tighter to the cap (Borman et al. 2000.) In addition, eIF4B and eIF4H bind more transiently to the mRNA and may not be part of an initial complex in which PABP has not yet touched eIF4G.
R-HSA-156823 (Reactome) Although the mechanism through which L13a prevents translation initiation has not been determined, Mazumder et al. (2003) have described four alternatives. L13a could (1) inhibit the function of eIF4F, (2) block the recruitment of the 43S preinitiation complex, (3) prevent scanning of the 43S complex to the initiation codon, or 4) interfere with joining of the 60S ribosomal subunit.
R-HSA-156826 (Reactome) The L13a subunit of the 60s ribosome is phosphorylated about 16 hours after INF gamma induction by an unknown kinase. At this time, L13a is also released from the 60s subunit (Mazumder et al.,2003). It is unclear, however, whether phosphorylation occurs before or after the release of L13a. Here, phosphorylation is shown as occurring after release.
R-HSA-156832 (Reactome) The L13a subunit of the 60s ribosome is phosphorylated about 16 hours after INF gamma induction by an unknown kinase. At this time, L13a is also released from the 60s subunit (Mazumder et al.,2003). It is unclear, however, whether phosphorylation occurs before or after the release of L13a. Here, phosphorylation is shown as occurring after release.
R-HSA-157849 (Reactome) The translation initiation complex forms when the 43S complex binds the mRNA that is associated with eIF4F, eIF4B and eIF4H. eIF4G in the eIF4F complex can directly contact eIF3 in the 43S complex. eIF1A is necessary for the formation of this complex.
R-HSA-72619 (Reactome) Once the Met-tRNAi has recognized the AUG, eIF2-bound GTP is hydrolyzed. The reaction is catalyzed by eIF5 (or eIF5B) and is thought to cause dissociation of all other initiation factors and allow joining of the large 60S ribosomal subunit. Release of the initiation factors from 40S leaves the Met-tRNAi in the ribosomal P-site base-paired to the start codon on the mRNA.
R-HSA-72621 (Reactome) The mRNA-bound ribosomal complex moves along the 5'-untranslated region (5'-UTR) of the mRNA from its initial site to the initiation codon to form a 48S complex, in which the initiation codon (AUG) is base paired to the anticodon of the Met-tRNAi. It is not known whether eIF4A (or another ATPase, such as DED1) facilitates scanning by melting mRNA secondary structures or by actively propelling the ribosome.
R-HSA-72622 (Reactome) eIF4E gets released from the inactive eIF4E:4EBP complex.
R-HSA-72631 (Reactome) eIF4A interacts with eIF4G, and eIF4E interacts with the amino-terminal domain of eIF4G to form the cap-binding complex eIF4F.
R-HSA-72635 (Reactome) The factor eIF4E within the eIF4F (cap-binding) complex directly binds the 5'-cap on eukaryotic mRNAs. Note that the mRNA is in complex with cytoplasmic proteins constituting an mRNP complex.
R-HSA-72647 (Reactome) The DEAD-box RNA helicase eIF4A, together with the RNA-binding proteins eIF4B or eIF4H, is thought to unwind RNA secondary structures near the 5'-end of the mRNA and in the presence of ATP.
R-HSA-72663 (Reactome) Activation of eIF2 through direct binding of GTP.
R-HSA-72669 (Reactome) The ternary complex forms upon binding of the initiator methionyl-tRNA to the active eIF2:GTP complex.
R-HSA-72670 (Reactome) Inactive eIF2:GDP binds eIF2B to form an eIF2:GDP:eIF2B intermediate.
R-HSA-72671 (Reactome) Once the 60S subunit joins the translation initiation complex, eIF5B hydrolyzes its GTP and is released from the now 80S monosome. The fully assembled 80s ribosome is now ready to start elongation of the polypeptide chain.
R-HSA-72672 (Reactome) Joining of the 60S subunit to form the 80S ribosome is catalyzed by the presence of GTP-bound eIF5B.
R-HSA-72673 (Reactome) 80S monosomes dissociate into 40S and 60S ribosomal subunits. eIF1A promotes this dissociation.
R-HSA-72676 (Reactome) eIF3 and eIF1A bind to the 40S ribosomal subunit.
R-HSA-72691 (Reactome) The ternary complex (Met-tRNAi:eIF2:GTP) binds to the complex formed by the 40S subunit, eIF3 and eIF1A, to form the 43S complex. eIF1A promotes binding of the ternary complex to the 40S subunit within 43S. The initiator methionyl-tRNA from the ternary complex is positioned at the ribosomal P site.
R-HSA-72697 (Reactome) The AUG initiation codon in the mRNA is recognized by base pairing with the anticodon of the Met-tRNAi. This reaction requires eIF1, eIF1A, eIF2 and eIF5.
R-HSA-72722 (Reactome) eIF2B is a guanine nucleotide releasing factor that is required to cause GDP release so that a new GTP molecule can bind and activate eIF2, so that it can be reused.
RNA-binding protein

in RNP (ribonucleoprotein)

complexes
ArrowR-HSA-72647 (Reactome)
RPL13AArrowR-HSA-156826 (Reactome)
RPL13AR-HSA-156832 (Reactome)
eIF1ArrowR-HSA-72697 (Reactome)
eIF1R-HSA-72619 (Reactome)
eIF1R-HSA-72697 (Reactome)
eIF1mim-catalysisR-HSA-72621 (Reactome)
eIF1mim-catalysisR-HSA-72697 (Reactome)
eIF2:GDP: eIF2BArrowR-HSA-72670 (Reactome)
eIF2:GDP: eIF2BR-HSA-72722 (Reactome)
eIF2:GDPArrowR-HSA-72619 (Reactome)
eIF2:GDPR-HSA-72670 (Reactome)
eIF2:GTPArrowR-HSA-72663 (Reactome)
eIF2:GTPArrowR-HSA-72722 (Reactome)
eIF2:GTPR-HSA-72669 (Reactome)
eIF2B subunits complexArrowR-HSA-72722 (Reactome)
eIF2B subunits complexR-HSA-72670 (Reactome)
eIF2B subunits complexmim-catalysisR-HSA-72722 (Reactome)
eIF3 subunits complexArrowR-HSA-72619 (Reactome)
eIF3 subunits complexR-HSA-72676 (Reactome)
eIF4A subunits complexArrowR-HSA-72619 (Reactome)
eIF4A subunits complexArrowR-HSA-72647 (Reactome)
eIF4A subunits complexR-HSA-72631 (Reactome)
eIF4A subunits complexR-HSA-72647 (Reactome)
eIF4A subunits complexmim-catalysisR-HSA-72647 (Reactome)
eIF4E:4E-BPR-HSA-72622 (Reactome)
eIF4F:mRNPArrowR-HSA-72635 (Reactome)
eIF4F:mRNPR-HSA-72647 (Reactome)
eIF4FArrowR-HSA-72631 (Reactome)
eIF4FR-HSA-72635 (Reactome)
eIF5B:GDPArrowR-HSA-72671 (Reactome)
eIF5B:GTPR-HSA-72672 (Reactome)
mRNA:eIF4F:eIF4B:eIF4HArrowR-HSA-72647 (Reactome)
mRNA:eIF4F:eIF4B:eIF4HR-HSA-157849 (Reactome)
mRNPR-HSA-72635 (Reactome)
p-RPL13AArrowR-HSA-156832 (Reactome)
p-RPL13AR-HSA-156823 (Reactome)
phospho-L13a

associated wth the 3' UTR GAIT element of ceruloplasmin mRNA within the translation

initiation complex
ArrowR-HSA-156823 (Reactome)
ternary complexArrowR-HSA-72669 (Reactome)
ternary complexR-HSA-72691 (Reactome)