Phosphatidyl inositol phosphate pathway (Homo sapiens)

From WikiPathways

Revision as of 14:45, 16 August 2023 by Conroy lipids (Talk | contribs)
Jump to: navigation, search
11, 12, 14, 2010PIK3CDPIP2[3'4']PLCD4MTMR2INPP5DPIKFYVEPIP4K2APIP4P1PIP4K2BPIK3C2GPIP4K2CMTMR8DGPI4K2APIP4P2MTMR1PI4KAFIG4PLCD1PIP5K1BPLCG2PLCD3MTM1PIP[3']PIK3C2BPLCB3PTENINPP5KPIK3C3PIP5K1CPLCE1PLCB2PLCG1PLCB1SACM1LMoreMTMR6PIP[5']PLCB4IPMKTPTE2PIP2[3',5']PI4K2BPIP3[3',4',5']1,2-diacyl-sn-glycero-3-phospho-(1'-myo-inositol)(PI)9, 17, 23, 25PIP2[4',5']1-5, 13, 15...PIP[4']PIP5K1APK3CGPK3CAPK3CBPK3CDSACM1LFIG4OCRLINPP5EINPP5EFIG4OCRLINPP5EINPP5KINPP5D


Description

Glycerophospholipids or phosphoglycerides, in which the hydrophobic regions are composed of two fatty acids joined to glycerol; and sphingolipids, in which a single fatty acid is joined to a fatty amine, sphingosine, are glycerol-based phospholipids and the main component of biological membranes. The hydrophilic moieties in these amphipathic compounds may be as a simple as a single -OH at one end of the sterol ring system, or they may be more complex. Glycerophospholipds, as well as sphingolipids, contained polar or charged alcohols at their polar ends; some also contain phosphate groups.

In glycerophospholipids, two fatty acids are ester-linked to glycerol at C-1 and C-2, and a highly polar or charged (and therefore hydrophilic) head group is attached to C-3 through a phosphodiester bond. All glycerophospholipds are derivatives of phosphatidic acid and are named for their polar head groups (e.g., phosphatidylethanolamine and phosphatidylcholine). All have a negative charge on the phosphate group at pH 7.0. The head-goup alcohol may also contribute one or more charges at pH near 7.0. The fatty acids in glycerophospholipds can be any of a wide variety. They are different in different species, in different tissues of the same species, and in different types of glycerophospholipids in the same cell or tissue. In general, glycerophospholipids contain a saturated fatty acid at C-1 and an unsaturated fatty acid at C-2, and, in general terms, the fatty acyl groups are generally 16 or 18 carbons long.

Eukaryotic membranes contain significant amounts of two other types of glycerophospholipids: Plasmalogens and Alkylacylglycerophospholipids. Plasmalogens contain a hydrocarbon chain linked to glycerol C-1 via vinyl ether linkage whereas alkylacylglycerophospholipids the alkyl substituent at glycerol C-1 is attached via an ether linkage. About 20% of mammalian glycerophospholipids are plasmalogens, this percentage varies both from species to species and from tissue to tissue within a given organism. While plasmalogens comprise only about 0.8% of the phospholipids in human liver, they account for around 23% of those in human nervous tissue. The alkylacylglycerophospholipids are less abundant than the plasmalogens, e.g., about 59% of ethanolamine glycerophospholipids of human heart are plasmalogens, whereas only 3.6% are alkylacylglycerophospholipids. However, in bovine erythrocytes, 75% of the ethanolamine glycerophospholipids are of alkylacyl type.

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Heilmeyer LM Jr, Vereb G Jr, Vereb G, Kakuk A, Szivák I; ''Mammalian phosphatidylinositol 4-kinases.''; IUBMB Life, 2003 PubMed Europe PMC Scholia
  2. Huang CL; ''Complex roles of PIP2 in the regulation of ion channels and transporters.''; Am J Physiol Renal Physiol, 2007 PubMed Europe PMC Scholia
  3. Thomas JR, Dwek RA, Rademacher TW; ''Structure, biosynthesis, and function of glycosylphosphatidylinositols.''; Biochemistry, 1990 PubMed Europe PMC Scholia
  4. Takenawa T, Itoh T, Fukami K; ''Regulation of phosphatidylinositol 4,5-bisphosphate levels and its roles in cytoskeletal re-organization and malignant transformation.''; Chem Phys Lipids, 1999 PubMed Europe PMC Scholia
  5. Graham TR, Burd CG; ''Coordination of Golgi functions by phosphatidylinositol 4-kinases.''; Trends Cell Biol, 2011 PubMed Europe PMC Scholia
  6. Large WA, Saleh SN, Albert AP; ''Role of phosphoinositol 4,5-bisphosphate and diacylglycerol in regulating native TRPC channel proteins in vascular smooth muscle.''; Cell Calcium, 2009 PubMed Europe PMC Scholia
  7. Gupta CM, Radhakrishnan R, Khorana HG; ''Glycerophospholipid synthesis: improved general method and new analogs containing photoactivable groups.''; Proc Natl Acad Sci U S A, 1977 PubMed Europe PMC Scholia
  8. Holmsen H, Hindenes JO, Fukami M; ''Glycerophospholipid metabolism: back to the future.''; Thromb Res, 1992 PubMed Europe PMC Scholia
  9. Clayton EL, Minogue S, Waugh MG; ''Phosphatidylinositol 4-kinases and PI4P metabolism in the nervous system: roles in psychiatric and neurological diseases.''; Mol Neurobiol, 2013 PubMed Europe PMC Scholia
  10. Gehrmann T, Heilmeyer LM Jr; ''Phosphatidylinositol 4-kinases.''; Eur J Biochem, 1998 PubMed Europe PMC Scholia
  11. Balla T; ''Phosphatidylinositol 4-kinases.''; Biochim Biophys Acta, 1998 PubMed Europe PMC Scholia
  12. Rameh LE, Tolias KF, Duckworth BC, Cantley LC; ''A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate.''; Nature, 1997 PubMed Europe PMC Scholia
  13. Kwiatkowska K; ''One lipid, multiple functions: how various pools of PI(4,5)P(2) are created in the plasma membrane.''; Cell Mol Life Sci, 2010 PubMed Europe PMC Scholia
  14. Downes CP, Carter AN; ''Inositol lipids and phosphates.''; Curr Opin Cell Biol, 1990 PubMed Europe PMC Scholia
  15. Hirasawa K, Nishizuka Y; ''Phosphatidylinositol turnover in receptor mechanism and signal transduction.''; Annu Rev Pharmacol Toxicol, 1985 PubMed Europe PMC Scholia
  16. Meyers RE, Cantley LC; ''Phosphatidylinositol 4-kinases. Assays and product analysis.''; Methods Mol Biol, 1998 PubMed Europe PMC Scholia
  17. Nakagawa Y, Waku K; ''The metabolism of glycerophospholipid and its regulation in monocytes and macrophages.''; Prog Lipid Res, 1989 PubMed Europe PMC Scholia
  18. Divecha N; ''Lipid kinases: charging PtdIns(4,5)P2 synthesis.''; Curr Biol, 2010 PubMed Europe PMC Scholia
  19. Delage E, Puyaubert J, Zachowski A, Ruelland E; ''Signal transduction pathways involving phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate: convergences and divergences among eukaryotic kingdoms.''; Prog Lipid Res, 2013 PubMed Europe PMC Scholia
  20. Zhang L, Mao YS, Janmey PA, Yin HL; ''Phosphatidylinositol 4, 5 bisphosphate and the actin cytoskeleton.''; Subcell Biochem, 2012 PubMed Europe PMC Scholia
  21. Arienti G, Goracci G, Porcellati G; ''Glycerophospholipid metabolism in neuronal and glial cell-enriched fractions.''; Neurochem Res, 1981 PubMed Europe PMC Scholia
  22. Sinha RK, Subrahmanyam G; ''Type II phosphatidylinositol 4-kinase(s) in cell signaling cascades.''; Indian J Biochem Biophys, 2007 PubMed Europe PMC Scholia
  23. Suh BC, Hille B; ''Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate.''; Curr Opin Neurobiol, 2005 PubMed Europe PMC Scholia
  24. Gamper N, Shapiro MS; ''Target-specific PIP(2) signalling: how might it work?''; J Physiol, 2007 PubMed Europe PMC Scholia
  25. Insall RH, Weiner OD; ''PIP3, PIP2, and cell movement--similar messages, different meanings?''; Dev Cell, 2001 PubMed Europe PMC Scholia
  26. Lamers JM, Dekkers DH, Bezstarosti K, Meij JT, van Heugten HA; ''Occurrence and functions of the phosphatidylinositol cycle in the myocardium.''; Mol Cell Biochem, 1992 PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
127750view10:47, 1 December 2023Conroy lipidsModified description
127220view15:01, 22 August 2023Conroy lipids
127219view13:29, 22 August 2023Conroy lipidsupdate with info from P Hawkins
127207view14:48, 16 August 2023Conroy lipids
127206view14:47, 16 August 2023Conroy lipids
127205view14:45, 16 August 2023Conroy lipids
127204view14:43, 16 August 2023Conroy lipids
127203view14:43, 16 August 2023Conroy lipids
127202view14:41, 16 August 2023Conroy lipidsNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
1,2-diacyl-sn-glycero-3-phospho-(1'-myo-inositol) (PI)MetaboliteLMGP06010000 (LIPID MAPS)
DGMetaboliteLMGL02010000 (LIPID MAPS)
FIG4GeneProductQ92562 (Uniprot-TrEMBL)
INPP5DGeneProductQ92835 (Uniprot-TrEMBL)
INPP5EGeneProductQ9NRR6 (Uniprot-TrEMBL)
INPP5KGeneProductQ9BT40 (Uniprot-TrEMBL)
IPMKProteinQ8NFU5 (Uniprot-TrEMBL)
MTM1GeneProductQ13496 (Uniprot-TrEMBL)
MTMR1GeneProductQ13613 (Uniprot-TrEMBL)
MTMR2GeneProductQ13614 (Uniprot-TrEMBL)
MTMR6GeneProductQ9Y217 (Uniprot-TrEMBL)
MTMR8GeneProductQ96EF0 (Uniprot-TrEMBL)
MoreGeneProduct
OCRLGeneProductQ01968 (Uniprot-TrEMBL)
PI4K2AGeneProductQ9BTU6 (Uniprot-TrEMBL)
PI4K2BGeneProductQ8TCG2 (Uniprot-TrEMBL)
PI4KAGeneProductP42356 (Uniprot-TrEMBL)
PIK3C2BGeneProductO00750 (Uniprot-TrEMBL)
PIK3C2GGeneProductO75747 (Uniprot-TrEMBL)
PIK3C3GeneProductP42338 (Uniprot-TrEMBL)
PIK3CDGeneProductO00329 (Uniprot-TrEMBL)
PIKFYVEGeneProductQ9Y2I7 (Uniprot-TrEMBL)
PIP2[3',5']MetaboliteLMGP08010007 (LIPID MAPS)
PIP2[3'4']MetaboliteLMGP08010006 (LIPID MAPS)
PIP2[4',5']MetaboliteLMGP08010005 (LIPID MAPS)
PIP3[3',4',5']MetaboliteLMGP09010000 (LIPID MAPS)
PIP4K2AGeneProductP48426 (Uniprot-TrEMBL)
PIP4K2BGeneProductP78356 (Uniprot-TrEMBL)
PIP4K2CGeneProductQ8TBX8 (Uniprot-TrEMBL)
PIP4P1GeneProductQ86T03 (Uniprot-TrEMBL)
PIP4P2GeneProductQ8N4L2 (Uniprot-TrEMBL)
PIP5K1AProteinQ99755 (Uniprot-TrEMBL)
PIP5K1BGeneProductO14986 (Uniprot-TrEMBL)
PIP5K1CGeneProductO60331 (Uniprot-TrEMBL)
PIP[3']MetaboliteLMGP07010000 (LIPID MAPS)
PIP[4']MetaboliteLMGP070100A0 (LIPID MAPS)
PIP[5']MetaboliteLMGP070100B0 (LIPID MAPS)
PK3CAProteinP42336 (Uniprot-TrEMBL)
PK3CBProteinP42338 (Uniprot-TrEMBL)
PK3CDProteinO00329 (Uniprot-TrEMBL)
PK3CGProteinP48736 (Uniprot-TrEMBL)
PLCB1GeneProductQ9NQ66 (Uniprot-TrEMBL)
PLCB2GeneProductQ00722 (Uniprot-TrEMBL)
PLCB3GeneProductQ01970 (Uniprot-TrEMBL)
PLCB4GeneProductQ15147 (Uniprot-TrEMBL)
PLCD1GeneProductP51178 (Uniprot-TrEMBL)
PLCD3GeneProductQ8N3E9 (Uniprot-TrEMBL)
PLCD4GeneProductQ9BRC7 (Uniprot-TrEMBL)
PLCE1GeneProductQ9P212 (Uniprot-TrEMBL)
PLCG1GeneProductP19174 (Uniprot-TrEMBL)
PLCG2GeneProductP16885 (Uniprot-TrEMBL)
PTENGeneProductP60484 (Uniprot-TrEMBL)
SACM1LGeneProductQ9NTJ5 (Uniprot-TrEMBL)
TPTE2GeneProductQ6XPS3 (Uniprot-TrEMBL)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
1,2-diacyl-sn-glycero-3-phospho-(1'-myo-inositol) (PI)PIP[4']mim-conversion19878 (Rhea) EC:2.7.1.67
PIP2[3',5']PIP[3']mim-conversion32956 (Rhea)
PIP2[3',5']PIP[5']mim-conversion39020 (Rhea) EC:3.1.3.95
PIP2[4',5']DGmim-conversion33180 (Rhea) EC:3.1.4.11
PIP2[4',5']PIP3[3',4',5']mim-conversion21293 (Rhea) EC:2.7.1.153
PIP2[4',5']PIP[4']mim-conversion22765 (Rhea) EC:3.1.3.36
PIP2[4',5']mim-conversion25674 (Rhea) EC:3.1.3.78
PIP3[3',4',5']PIP2[3'4']mim-conversion25529 (Rhea) EC:3.1.3.86
PIP3[3',4',5']PIP2[4',5']mim-conversion25018 (Rhea) EC:3.1.3.67
PIP[3']1,2-diacyl-sn-glycero-3-phospho-(1'-myo-inositol) (PI)mim-conversion12317 (Rhea) EC:3.1.3.64
PIP[3']PIP2[3',5']mim-conversion13610 (Rhea) EC:2.7.1.150
PIP[3']PIP2[3'4']mim-conversion63689 (Rhea)
PIP[3']mim-conversion12710 (Rhea) EC:2.7.1.137
PIP[4']PIP2[4',5']mim-conversion14426 (Rhea) EC:2.7.1.68
PIP[4']mim-conversion55653 (Rhea)
PIP[5']PIP2[4',5']mim-conversion12281 (Rhea) EC:2.7.1.149