Eukaryotic translation elongation (Homo sapiens)

From WikiPathways

Jump to: navigation, search
71524cytosolRPS8 RPS15A RPL24 Val-tRNA(Val) RPL10 GTP RPL39L RPS13 RPL19 RPS20 Trp-tRNA(Trp) RPL31 RPL3L 5.8S rRNA RPS25 Phe-tRNA(Phe) Glu-tRNA(Glu) Asp-tRNA(Asp) RPL8 RPLP0 RPS27A(77-156) RPS21 RPL29 RPS23 RPL39 eEF1A:GTP:aminoacyl-tRNA complexRPS21 RPLP0 RPS3 RPL23A Thr-tRNA(Thr) RPS7 RPL6 RPL36 RPL10L RPL36AL Leu-tRNA(Leu) RPL37A RPS16 RPL19 RPS15 RPL31 RPL13A EEF1G Gln-tRNA(Gln) RPL37 RPL30 RPL21 Val-tRNA(Val) RPS5 RPL9 RPL30 RPL38 RPS27L RPL7 5S rRNA RPS19 RPL37A RPS28 28S rRNA RPS18 18S rRNA RPL39L 18S rRNA RPL38 RPL7 RPL11 RPL36 EEF1B2 RPL7A RPL11 Ala-tRNA(Ala) RPL28 RPS13 RPS3A RPL3L RPL5 RPL32 RPL10 RPL12 RPL31 RPL8 RPL9 RPL37 RPL10 RPL13A RPL10A 5S rRNA RPL36AL peptidyl-tRNA with elongated peptide RPL28 RPL7A RPL3 RPS2 RPL5 RPL39L RPS13 RPS17 5S rRNA RPL18A RPSA RPL34 RPS3A RPL27 Asn-tRNA(Asn) RPS4Y2 RPS11 RPL23 RPL7A Met-tRNA(Met) RPS27L 80SRibosome:mRNA:peptidyl-tRNA with elongating peptideRPL3 RPS13 RPL4 Ile-tRNA(Ile) RPL26 RPL30 RPS12 Trp-tRNA(Trp) 28S rRNA RPL29 RPL36AL RPS16 RPL13 RPL10L 18S rRNA FAU EEF1A1 RPS21 Cys-tRNA(Cys) Ser-tRNA(Ser) RPL23A EEF1A1-like proteinsRPS20 RPS25 RPS23 RPL6 RPL26L1 RPL35A RPL13A RPS26 RPS18 RPL6 RPS3 RPL8 RPS15 RPS18 Cys-tRNA(Cys) Cys-tRNA(Cys) RPL40 RPS26 RPL32 RPL36 5S rRNA RPS27 RPS4Y2 RPL35A RPL39L RPS28 RPL31 RPL37A RPL3L RPS11 RPS14 RPS23 Gln-tRNA(Gln) Leu-tRNA(Leu) RPL26 RPS10 RPS6 RPS15 RPL26L1 RPL23 RPS4Y2 RPS11 RPL12 RPL12 RPS18 RPL37A RPL10 RPS19 RPS15A RPL10A RPS9 RPLP2 EEF1D Ala-tRNA(Ala) RPS12 RPS3 eEF2:GDPRPS17 mRNA RPL39 RPL7 RPS4Y1 RPL9 RPL14 RPL36 PiRPL21 RPS19 RPS27A(77-156) RPS15A Ile-tRNA(Ile) Asp-tRNA(Asp) RPS27L RPL38 RPL5 RPL18 RPL38 RPS27 EEF1A1 RPL37 RPS12 RPL36A RPLP2 RPL26L1 RPL40 RPS21 RPL22L1 PiRPS28 RPL7A Val-tRNA(Val) RPL35 RPS7 Ala-tRNA(Ala) FAU RPL18A Leu-tRNA(Leu) RPS6 RPS24 RPS16 RPS4Y1 RPL4 Gln-tRNA(Gln) RPS4X RPS9 RPS21 RPL23A FAU RPS2 RPS27 RPS15 RPL31 RPS2 RPL24 RPS17 RPS3A RPS15 EEF1A1 Met-tRNA(Met) RPL35A RPS4X RPL7 RPSA RPL36A RPL17 Trp-tRNA(Trp) RPL23A GDP RPL39L RPL5 RPL41 EEF1GTyr-tRNA(Tyr) RPS3A RPL4 RPLP2 RPLP1 RPL15 RPS15A RPL39 Tyr-tRNA(Tyr) RPS25 RPS7 RPL14 GTP His-tRNA(His) RPS4X Met-tRNAi RPS2 GTPRPS6 RPS9 RPL41 EEF2RPS29 RPL37 28S rRNA EEF1A1 RPL10L RPL19 RPL26 Asp-tRNA(Asp) FAU Thr-tRNA(Thr) RPS5 RPL27 RPS9 Lys-tRNA(Lys) RPL35A RPL41 RPS20 5S rRNA EEF1A1P5 RPL28 RPL37 RPL30 RPL3L Asn-tRNA(Asn) RPS27L RPL34 RPS7 RPS4Y1 Gly-tRNA(Gly) RPL27 Pro-tRNA(Pro) RPS28 80S:Met-tRNAi:mRNAVal-tRNA(Val) Asn-tRNA(Asn) RPL18A RPL21 RPS5 RPS11 Pro-tRNA(Pro) RPL23A RPL32 28S rRNA FAU RPL14 Pro-tRNA(Pro) RPS14 eEF1B:GDP exchangecomplexRPS4Y2 RPS27 RPL27A RPS3 RPL9 GTPRPL12 RPL36AL RPL13A RPL13 RPL40 RPL35 RPL37A RPS10 RPL34 RPL10A RPL22 RPL27 RPL12 RPL35A RPL36 RPS5 RPS24 5.8S rRNA 5.8S rRNA RPL26L1 mRNA RPL12 RPL22 Trp-tRNA(Trp) 5S rRNA EEF1A1 RPL18 RPL26 RPS24 RPL17 RPL29 80S:aminoacyltRNA:mRNA:eEF1A:GTPRPL15 Arg-tRNA(Arg) RPL7 RPL22L1 RPL11 RPL30 Tyr-tRNA(Tyr) RPL28 RPS27A(77-156) RPLP1 18S rRNA RPL13 RPS12 Lys-tRNA(Lys) RPS19 RPL22 Thr-tRNA(Thr) Phe-tRNA(Phe) RPS15A Arg-tRNA(Arg) Lys-tRNA(Lys) RPLP1 RPS26 RPL8 RPL10 RPL39L RPL27A RPL41 RPL22 RPL39 RPL32 RPL36AL RPS8 RPSA RPS4Y1 RPS10 RPL9 Thr-tRNA(Thr) Met-tRNAi RPL27 80S:Met-tRNAi:mRNA:aminoacyl-tRNARPS6 RPLP1 RPL10A RPL19 Arg-tRNA(Arg) RPL35A Met-tRNA(Met) RPS9 RPL39 RPS15A RPLP2 RPS24 EEF1A1RPS27L RPL7A RPL27A RPL39 RPS26 RPL19 Arg-tRNA(Arg) RPS18 RPS8 RPS4Y2 RPS4Y1 RPS8 RPL23 RPL13A RPL10A RPS11 RPL24 GTP RPS27A(77-156) His-tRNA(His) RPL8 RPL26L1 Gly-tRNA(Gly) EEF1DRPL22L1 RPL27A Met-tRNAi RPS3A Phe-tRNA(Phe) 18S rRNA RPL21 RPL10L RPS3A RPSA RPS16 Met-tRNA(Met) RPL29 RPS5 RPL18 RPS4X RPS25 Aminoacyl-tRNAPhe-tRNA(Phe) RPL29 EEF1A2 RPS26 RPL26 RPL3 RPL40 RPL17 Gly-tRNA(Gly) RPS27 RPL15 RPL3L RPS12 RPS19 Ile-tRNA(Ile) RPLP2 RPLP0 RPS23 5.8S rRNA RPS15 RPL37A RPS6 peptidyl-tRNA with elongated peptide RPL24 His-tRNA(His) RPL36A RPL4 RPL35 RPL4 RPS20 RPS25 RPL36A RPL18 RPS14 RPL22 RPL23 RPL23 RPL11 RPL17 RPL36 RPL24 mRNA RPL9 RPS7 RPL18A Lys-tRNA(Lys) RPL23 Glu-tRNA(Glu) RPS29 mRNA RPL40 RPS7 RPL35 RPL10L RPL26 RPS26 RPS10 RPL13 GTP RPS20 RPL3 RPL10L Ala-tRNA(Ala) Cys-tRNA(Cys) RPL15 RPS6 RPS19 RPL22 RPLP0 RPS14 RPL11 RPL29 RPL3L RPL32 RPL19 RPL10 eEF2:GTPRPL41 28S rRNA RPLP1 18S rRNA Glu-tRNA(Glu) RPL14 RPL14 RPL27A RPL17 RPL22L1 Gly-tRNA(Gly) RPS18 5.8S rRNA RPL13 RPL27 RPS24 RPS29 RPSA RPL7A RPS29 Glu-tRNA(Glu) 28S rRNA RPS14 RPL41 Ser-tRNA(Ser) His-tRNA(His) RPS25 RPS10 RPS4Y2 RPS2 RPL38 RPL3 RPL17 RPS28 RPL13A RPL5 Ile-tRNA(Ile) RPS28 RPLP0 RPLP0 5.8S rRNA EEF2 RPL28 RPL23A Elongation complexwith growingpeptide chainRPL5 RPS10 Asn-tRNA(Asn) RPLP1 RPL3 RPS8 RPS16 EEF1G Leu-tRNA(Leu) Gln-tRNA(Gln) eEF1A:GTPRPS4X RPS11 RPS4Y1 RPS2 RPL18A RPS13 RPS12 EEF2 RPL36A RPS29 RPL15 RPL18A RPL24 RPL27A RPL26L1 RPS23 RPL6 RPS3 RPS8 RPS3 RPS24 RPL35 RPS27L FAU RPL28 RPL36AL RPS17 RPL40 RPSA RPL18 RPS4X RPL32 RPL35 RPL31 RPL6 RPL11 RPL30 RPS27A(77-156) EEF1D RPL34 RPL38 RPL22L1 RPL34 GDP RPL37 RPS27 RPL10A Ser-tRNA(Ser) eEF1A:GDPAsp-tRNA(Asp) RPL36A RPS17 RPL15 RPL6 RPS23 RPL34 EEF1B2RPL21 Ser-tRNA(Ser) RPL13 RPS14 RPS9 Tyr-tRNA(Tyr) RPS29 eEF1B complexRPS13 RPL21 RPS5 RPL8 RPS21 GDP RPS17 mRNA Pro-tRNA(Pro) RPL22L1 RPS20 RPL18 80S ribosomeRPL4 RPL7 RPS16 RPLP2 EEF1B2 RPS27A(77-156) RPL14 3, 63, 63, 6


Description

The translation elongation cycle adds one amino acid at a time to a growing polypeptide according to the sequence of codons found in the mRNA. The next available codon on the mRNA is exposed in the aminoacyl-tRNA (aa-tRNA) binding site (A site) on the 30S subunit.
A: Ternary complexes of aa -tRNA:eEF1A:GTP enter the ribosome and enable the anticodon of the tRNA to make a codon/anticodon interaction with the A-site codon of the mRNA. B: Upon cognate recognition, the eEF1A:GTP is brought into the GTPase activating center of the ribosome, GTP is hydrolyzed and eEF1A:GDP leaves the ribosome. C: The peptidyl transferase center of ribosome catalyses the formation of a peptide bond between the incoming amino acid and the peptide found in the peptidyl-tRNA binding site (P site). D: In the pre-translocation state of the ribosome, the eEF2:GTP enters the ribosome, physically translocating the peptidyl-tRNA out of the A site to P site and leaves the ribosome eEF2:GDP. This action of eEF2:GTP accounts for the precise movement of the mRNA by 3 nucleotides.Consequently, deacylated tRNA is shifted to the E site. A ribosome associated ATPase activity is proposed to stimulate the release of deacylated tRNA from the E site subsequent to translocation (Elskaya et al., 1991). In this post-translocation state, the ribosome is now ready to receive a new ternary complex.
This process is illustrated below with: an amino acyl-tRNA with an amino acid, a peptidyl-tRNA with a growing peptide, a deacylated tRNA with an -OH, and a ribosome with A,P and E sites to accommodate these three forms of tRNA. View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 156842
Reactome-version 
Reactome version: 75
Reactome Author 
Reactome Author: Gopinathrao, G

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Carvalho MD, Carvalho JF, Merrick WC.; ''Biological characterization of various forms of elongation factor 1 from rabbit reticulocytes.''; PubMed Europe PMC Scholia
  2. Pérez JM, Siegal G, Kriek J, Hård K, Dijk J, Canters GW, Möller W.; ''The solution structure of the guanine nucleotide exchange domain of human elongation factor 1beta reveals a striking resemblance to that of EF-Ts from Escherichia coli.''; PubMed Europe PMC Scholia
  3. Van Ness BG, Howard JB, Bodley JW.; ''ADP-ribosylation of elongation factor 2 by diphtheria toxin. Isolation and properties of the novel ribosyl-amino acid and its hydrolysis products.''; PubMed Europe PMC Scholia
  4. Veremieva M, Khoruzhenko A, Zaicev S, Negrutskii B, El'skaya A.; ''Unbalanced expression of the translation complex eEF1 subunits in human cardioesophageal carcinoma.''; PubMed Europe PMC Scholia
  5. Guillot D, Penin F, Di Pietro A, Sontag B, Lavergne JP, Reboud JP.; ''GTP binding to elongation factor eEF-2 unmasks a tryptophan residue required for biological activity.''; PubMed Europe PMC Scholia
  6. Van Ness BG, Howard JB, Bodley JW.; ''ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-diphthamide and its hydrolysis products.''; PubMed Europe PMC Scholia
  7. Kapp LD, Lorsch JR.; ''The molecular mechanics of eukaryotic translation.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
117719view12:33, 22 May 2021EweitzModified title
114891view16:40, 25 January 2021ReactomeTeamReactome version 75
113337view11:41, 2 November 2020ReactomeTeamReactome version 74
112548view15:51, 9 October 2020ReactomeTeamReactome version 73
101462view11:32, 1 November 2018ReactomeTeamreactome version 66
101000view21:12, 31 October 2018ReactomeTeamreactome version 65
100536view19:46, 31 October 2018ReactomeTeamreactome version 64
100083view16:30, 31 October 2018ReactomeTeamreactome version 63
99634view15:02, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99240view12:44, 31 October 2018ReactomeTeamreactome version 62
93857view13:41, 16 August 2017ReactomeTeamreactome version 61
93420view11:23, 9 August 2017ReactomeTeamreactome version 61
86508view09:19, 11 July 2016ReactomeTeamreactome version 56
83399view11:07, 18 November 2015ReactomeTeamVersion54
81592view13:08, 21 August 2015ReactomeTeamVersion53
77053view08:35, 17 July 2014ReactomeTeamFixed remaining interactions
76758view12:11, 16 July 2014ReactomeTeamFixed remaining interactions
76083view10:14, 11 June 2014ReactomeTeamRe-fixing comment source
75793view11:32, 10 June 2014ReactomeTeamReactome 48 Update
75143view14:09, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74790view08:52, 30 April 2014ReactomeTeamReactome46
69032view17:50, 8 July 2013MaintBotUpdated to 2013 gpml schema
45249view18:35, 7 October 2011AlexanderPicoOntology Term : 'translation elongation pathway' added !
42034view21:51, 4 March 2011MaintBotAutomatic update
39837view05:52, 21 January 2011MaintBotNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
18S rRNA ProteinX03205 (EMBL)
28S rRNA ProteinM11167 (EMBL)
5.8S rRNA ProteinJ01866 (EMBL)
5S rRNA ProteinV00589 (EMBL)
80S Ribosome:mRNA:peptidyl-tRNA with elongating peptideComplexR-HSA-141952 (Reactome)
80S ribosomeComplexR-HSA-72500 (Reactome)
80S:Met-tRNAi:mRNA:aminoacyl-tRNAComplexR-HSA-72506 (Reactome)
80S:Met-tRNAi:mRNAComplexR-HSA-72505 (Reactome)
80S:aminoacyl tRNA:mRNA:eEF1A:GTPComplexR-HSA-156903 (Reactome)
Ala-tRNA(Ala) R-HSA-379700 (Reactome)
Aminoacyl-tRNAComplexR-HSA-37001 (Reactome)
Arg-tRNA(Arg) R-HSA-379720 (Reactome)
Asn-tRNA(Asn) R-HSA-379728 (Reactome)
Asp-tRNA(Asp) R-HSA-379707 (Reactome)
Cys-tRNA(Cys) R-HSA-379719 (Reactome)
EEF1A1 ProteinP68104 (Uniprot-TrEMBL)
EEF1A1-like proteinsComplexR-HSA-3907260 (Reactome) This CandidateSet contains sequences identified by William Pearson's analysis of Reactome catalyst entities. Catalyst entity sequences were used to identify analagous sequences that shared overall homology and active site homology. Sequences in this Candidate set were identified in an April 24, 2012 analysis.
EEF1A1P5 ProteinQ5VTE0 (Uniprot-TrEMBL)
EEF1A1ProteinP68104 (Uniprot-TrEMBL)
EEF1A2 ProteinQ05639 (Uniprot-TrEMBL)
EEF1B2 ProteinP24534 (Uniprot-TrEMBL)
EEF1B2ProteinP24534 (Uniprot-TrEMBL)
EEF1D ProteinP29692 (Uniprot-TrEMBL)
EEF1DProteinP29692 (Uniprot-TrEMBL)
EEF1G ProteinP26641 (Uniprot-TrEMBL)
EEF1GProteinP26641 (Uniprot-TrEMBL)
EEF2 ProteinP13639 (Uniprot-TrEMBL)
EEF2ProteinP13639 (Uniprot-TrEMBL)
Elongation complex

with growing

peptide chain
ComplexR-HSA-156927 (Reactome)
FAU ProteinP62861 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Gln-tRNA(Gln) R-HSA-379772 (Reactome)
Glu-tRNA(Glu) R-HSA-379751 (Reactome)
Gly-tRNA(Gly) R-HSA-379784 (Reactome)
His-tRNA(His) R-HSA-379786 (Reactome)
Ile-tRNA(Ile) R-HSA-379787 (Reactome)
Leu-tRNA(Leu) R-HSA-379757 (Reactome)
Lys-tRNA(Lys) R-HSA-379736 (Reactome)
Met-tRNA(Met) R-HSA-379794 (Reactome)
Met-tRNAi R-ALL-72393 (Reactome)
Phe-tRNA(Phe) R-HSA-379792 (Reactome)
PiMetaboliteCHEBI:43474 (ChEBI)
Pro-tRNA(Pro) R-HSA-379746 (Reactome)
RPL10 ProteinP27635 (Uniprot-TrEMBL)
RPL10A ProteinP62906 (Uniprot-TrEMBL)
RPL10L ProteinQ96L21 (Uniprot-TrEMBL)
RPL11 ProteinP62913 (Uniprot-TrEMBL)
RPL12 ProteinP30050 (Uniprot-TrEMBL)
RPL13 ProteinP26373 (Uniprot-TrEMBL)
RPL13A ProteinP40429 (Uniprot-TrEMBL)
RPL14 ProteinP50914 (Uniprot-TrEMBL)
RPL15 ProteinP61313 (Uniprot-TrEMBL)
RPL17 ProteinP18621 (Uniprot-TrEMBL)
RPL18 ProteinQ07020 (Uniprot-TrEMBL)
RPL18A ProteinQ02543 (Uniprot-TrEMBL)
RPL19 ProteinP84098 (Uniprot-TrEMBL)
RPL21 ProteinP46778 (Uniprot-TrEMBL)
RPL22 ProteinP35268 (Uniprot-TrEMBL)
RPL22L1 ProteinQ6P5R6 (Uniprot-TrEMBL)
RPL23 ProteinP62829 (Uniprot-TrEMBL)
RPL23A ProteinP62750 (Uniprot-TrEMBL)
RPL24 ProteinP83731 (Uniprot-TrEMBL)
RPL26 ProteinP61254 (Uniprot-TrEMBL)
RPL26L1 ProteinQ9UNX3 (Uniprot-TrEMBL)
RPL27 ProteinP61353 (Uniprot-TrEMBL)
RPL27A ProteinP46776 (Uniprot-TrEMBL)
RPL28 ProteinP46779 (Uniprot-TrEMBL)
RPL29 ProteinP47914 (Uniprot-TrEMBL)
RPL3 ProteinP39023 (Uniprot-TrEMBL)
RPL30 ProteinP62888 (Uniprot-TrEMBL)
RPL31 ProteinP62899 (Uniprot-TrEMBL)
RPL32 ProteinP62910 (Uniprot-TrEMBL)
RPL34 ProteinP49207 (Uniprot-TrEMBL)
RPL35 ProteinP42766 (Uniprot-TrEMBL)
RPL35A ProteinP18077 (Uniprot-TrEMBL)
RPL36 ProteinQ9Y3U8 (Uniprot-TrEMBL)
RPL36A ProteinP83881 (Uniprot-TrEMBL)
RPL36AL ProteinQ969Q0 (Uniprot-TrEMBL)
RPL37 ProteinP61927 (Uniprot-TrEMBL)
RPL37A ProteinP61513 (Uniprot-TrEMBL)
RPL38 ProteinP63173 (Uniprot-TrEMBL)
RPL39 ProteinP62891 (Uniprot-TrEMBL)
RPL39L ProteinQ96EH5 (Uniprot-TrEMBL)
RPL3L ProteinQ92901 (Uniprot-TrEMBL)
RPL4 ProteinP36578 (Uniprot-TrEMBL)
RPL40 ProteinP62987 (Uniprot-TrEMBL)
RPL41 ProteinP62945 (Uniprot-TrEMBL)
RPL5 ProteinP46777 (Uniprot-TrEMBL)
RPL6 ProteinQ02878 (Uniprot-TrEMBL)
RPL7 ProteinP18124 (Uniprot-TrEMBL)
RPL7A ProteinP62424 (Uniprot-TrEMBL)
RPL8 ProteinP62917 (Uniprot-TrEMBL)
RPL9 ProteinP32969 (Uniprot-TrEMBL)
RPLP0 ProteinP05388 (Uniprot-TrEMBL)
RPLP1 ProteinP05386 (Uniprot-TrEMBL)
RPLP2 ProteinP05387 (Uniprot-TrEMBL)
RPS10 ProteinP46783 (Uniprot-TrEMBL)
RPS11 ProteinP62280 (Uniprot-TrEMBL)
RPS12 ProteinP25398 (Uniprot-TrEMBL)
RPS13 ProteinP62277 (Uniprot-TrEMBL)
RPS14 ProteinP62263 (Uniprot-TrEMBL)
RPS15 ProteinP62841 (Uniprot-TrEMBL)
RPS15A ProteinP62244 (Uniprot-TrEMBL)
RPS16 ProteinP62249 (Uniprot-TrEMBL)
RPS17 ProteinP08708 (Uniprot-TrEMBL)
RPS18 ProteinP62269 (Uniprot-TrEMBL)
RPS19 ProteinP39019 (Uniprot-TrEMBL)
RPS2 ProteinP15880 (Uniprot-TrEMBL)
RPS20 ProteinP60866 (Uniprot-TrEMBL)
RPS21 ProteinP63220 (Uniprot-TrEMBL)
RPS23 ProteinP62266 (Uniprot-TrEMBL)
RPS24 ProteinP62847 (Uniprot-TrEMBL)
RPS25 ProteinP62851 (Uniprot-TrEMBL)
RPS26 ProteinP62854 (Uniprot-TrEMBL)
RPS27 ProteinP42677 (Uniprot-TrEMBL)
RPS27A(77-156) ProteinP62979 (Uniprot-TrEMBL)
RPS27L ProteinQ71UM5 (Uniprot-TrEMBL)
RPS28 ProteinP62857 (Uniprot-TrEMBL)
RPS29 ProteinP62273 (Uniprot-TrEMBL)
RPS3 ProteinP23396 (Uniprot-TrEMBL)
RPS3A ProteinP61247 (Uniprot-TrEMBL)
RPS4X ProteinP62701 (Uniprot-TrEMBL)
RPS4Y1 ProteinP22090 (Uniprot-TrEMBL)
RPS4Y2 ProteinQ8TD47 (Uniprot-TrEMBL)
RPS5 ProteinP46782 (Uniprot-TrEMBL)
RPS6 ProteinP62753 (Uniprot-TrEMBL)
RPS7 ProteinP62081 (Uniprot-TrEMBL)
RPS8 ProteinP62241 (Uniprot-TrEMBL)
RPS9 ProteinP46781 (Uniprot-TrEMBL)
RPSA ProteinP08865 (Uniprot-TrEMBL)
Ser-tRNA(Ser) R-HSA-379738 (Reactome)
Thr-tRNA(Thr) R-HSA-379783 (Reactome)
Trp-tRNA(Trp) R-HSA-379765 (Reactome)
Tyr-tRNA(Tyr) R-HSA-379785 (Reactome)
Val-tRNA(Val) R-HSA-379790 (Reactome)
eEF1A:GDPComplexR-HSA-156929 (Reactome)
eEF1A:GTP:aminoacyl-tRNA complexComplexR-HSA-156911 (Reactome)
eEF1A:GTPComplexR-HSA-156921 (Reactome)
eEF1B complexComplexR-HSA-156920 (Reactome)
eEF1B:GDP exchange complexComplexR-HSA-156917 (Reactome)
eEF2:GDPComplexR-HSA-156922 (Reactome)
eEF2:GTPComplexR-HSA-156916 (Reactome)
mRNA R-HSA-72323 (Reactome)
peptidyl-tRNA with elongated peptide R-ALL-141678 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
80S Ribosome:mRNA:peptidyl-tRNA with elongating peptideArrowR-HSA-156915 (Reactome)
80S ribosomemim-catalysisR-HSA-156912 (Reactome)
80S ribosomemim-catalysisR-HSA-156923 (Reactome)
80S:Met-tRNAi:mRNA:aminoacyl-tRNAArrowR-HSA-156923 (Reactome)
80S:Met-tRNAi:mRNA:aminoacyl-tRNAR-HSA-156912 (Reactome)
80S:Met-tRNAi:mRNAR-HSA-156907 (Reactome)
80S:aminoacyl tRNA:mRNA:eEF1A:GTPArrowR-HSA-156907 (Reactome)
80S:aminoacyl tRNA:mRNA:eEF1A:GTPR-HSA-156923 (Reactome)
Aminoacyl-tRNAR-HSA-156908 (Reactome)
EEF1A1-like proteinsmim-catalysisR-HSA-156909 (Reactome)
EEF1A1R-HSA-156909 (Reactome)
EEF1B2R-HSA-156910 (Reactome)
EEF1DR-HSA-156910 (Reactome)
EEF1GR-HSA-156910 (Reactome)
EEF2R-HSA-156930 (Reactome)
Elongation complex

with growing

peptide chain
ArrowR-HSA-156912 (Reactome)
Elongation complex

with growing

peptide chain
R-HSA-156915 (Reactome)
GTPR-HSA-156909 (Reactome)
GTPR-HSA-156913 (Reactome)
GTPR-HSA-156930 (Reactome)
PiArrowR-HSA-156915 (Reactome)
PiArrowR-HSA-156923 (Reactome)
R-HSA-156907 (Reactome) Once the correct codon-anticodon match occurs between the mRNA and aa-tRNA, the decoding event triggers GTP hydrolysis on eEF1A. The resulting conformational change releases the aa-tRNA to the A-site, and GDP bound form eEF1A is released from the ribosome.
Insight into the mechanics of this system has been obtained from earlier works with rabbit reticulocytes and the E.coli system.
This process is illustrated below with: an amino acyl-tRNA with an amino acid, a peptidyl-tRNA with a growing peptide and a ribosome with A,P and E sites to accommodate these two forms of tRNA.
R-HSA-156908 (Reactome) The binding of eEF1A:GTP to aminoacyl tRNA (aa-tRNA) results in the formation of a ternary complex (eEF1A:GTP:aa-tRNA). Human eEF1A and rabbit eEF1A are 100% identical, and prokaryotic homologue of eEF1A (EF-Tu) shows 59% identity in the GTP-binding domain.This process is illustrated below with: a GTP molecule in white and eEF1A protein in yellow.
R-HSA-156909 (Reactome) The cycle of elongation starts with an empty ribosomal A-site and the peptidyl-tRNA in the P-site. eEF1A is activated by GTP binding and allows for the subsequent binding of aminoacyl-tRNA (aa-tRNA).This process is illustrated below with a GTP molecule in white and eEF1A protein in yellow.
R-HSA-156910 (Reactome) At the beginning of this reaction, 1 molecule of 'eEF1B alpha', 1 molecule of 'eEF1B gamma', and 1 molecule of 'eEF1B beta' are present. At the end of this reaction, 1 molecule of 'eEF1B complex' is present.
This reaction takes place in the 'cytosol' (Veremieva et al. 2011).

R-HSA-156912 (Reactome) The A- and P-sites of the ribosome positions the aa-tRNA and peptidyl-tRNA such that a nucleophilic attack can occur between the amine group of the A-site aa-tRNA and the carbonyl group of the growing peptide chain on the P-site tRNA, resulting in the formation of a peptide bond. The carboxyl end of the peptide chain is uncoupled from the tRNA molecule in the P-site and forms a new peptide bond with the amino acid that is in the A-site.
This process is illustrated below with: a peptidyl-tRNA with a growing peptide,a deacylated tRNA with an -OH and a ribosome with A,P and E sites to accommodate these three forms of tRNA.
R-HSA-156913 (Reactome) The eEF1B complex binds to eEF1A and regulates its activity by catalyzing the release of GDP. Subsequently, GTP is able to bind eEF1A allowing the formation of the ternary complex (eEF1A-GTP-aa-tRNA).In metazoans eEF1 protein family is composed of four subunits: eEF1A and eEF1B alpha, beta, and gamma (formerly EF-1alpha, EF-1beta, EF-1delta, and EF-1gamma, respectively). Both eEF1B alpha and eEF1B beta function as nucleotide exchange proteins. eEF1B gamma associates with eEF1B alpha and stimulates its exchange activity.
This process is illustrated below with a GTP molecule in white and eEF1A protein in yellow.The three subunits of eEF1B are also shown.
R-HSA-156915 (Reactome) Following peptide bond formation, GTP-bound eEF2 catalyzes the translocation of the deacylated tRNA in the P-site and the peptidyl-tRNA in the A-site (the pre-translocation state) into the E- and P- sites (the post-translocation state), respectively. Thus, the mRNA advances by three bases to expose the next codon in the A-site. After translocation, GDP-bound eEF2 leaves the ribosome to allow another round of elongation. eEF2 is reactivated by the release of GDP and binds GTP for subsequent rounds.
This process is illustrated below with a peptidyl-tRNA with a growing peptide, a deacylated tRNA with an -OH and a ribosome with A,P and E sites to accommodate these three forms of tRNA is also shown.
R-HSA-156923 (Reactome) Once the correct codon-anticodon match occurs between the mRNA and aa-tRNA, the decoding event triggers GTP hydrolysis on eEF1A. The resulting conformational change releases the aa-tRNA to the A-site, and GDP bound form of eEF1A is released from the ribosome.
This process is illustrated below with: an amino acyl-tRNA with an amino acid,a peptidyl-tRNA with a growing peptide and a ribosome with A,P and E sites to accommodate these two forms of tRNA.
R-HSA-156930 (Reactome) At the beginning of this reaction, 1 molecule of 'eEF2', and 1 molecule of 'GTP' are present. At the end of this reaction, 1 molecule of 'eEF2:GTP' is present.

This reaction takes place in the 'cytosol' (Guillot et al. 2013).

eEF1A:GDPArrowR-HSA-156915 (Reactome)
eEF1A:GDPArrowR-HSA-156923 (Reactome)
eEF1A:GDPR-HSA-156913 (Reactome)
eEF1A:GTP:aminoacyl-tRNA complexArrowR-HSA-156908 (Reactome)
eEF1A:GTP:aminoacyl-tRNA complexR-HSA-156907 (Reactome)
eEF1A:GTP:aminoacyl-tRNA complexR-HSA-156915 (Reactome)
eEF1A:GTPArrowR-HSA-156909 (Reactome)
eEF1A:GTPArrowR-HSA-156913 (Reactome)
eEF1A:GTPR-HSA-156908 (Reactome)
eEF1B complexArrowR-HSA-156910 (Reactome)
eEF1B complexR-HSA-156913 (Reactome)
eEF1B complexmim-catalysisR-HSA-156913 (Reactome)
eEF1B:GDP exchange complexArrowR-HSA-156913 (Reactome)
eEF2:GDPArrowR-HSA-156915 (Reactome)
eEF2:GTPArrowR-HSA-156930 (Reactome)
eEF2:GTPR-HSA-156915 (Reactome)
Personal tools