Transport of bile salts and organic acids, metal ions and amine compounds (Homo sapiens)

From WikiPathways

Jump to: navigation, search
31, 36, 37, 39, 55...10, 45, 7332, 51, 11340, 13565, 11461, 934, 25, 38, 75, 123...81, 12074, 99, 12686968, 13219, 22, 80857, 18, 30, 566, 42, 56, 7087, 90, 91, 100, 107...1350, 6372, 8141, 71, 11126, 5346, 102118, 121106, 12948, 58, 952454, 12723, 9511215, 2711, 212884381, 1201652, 1035, 7620, 36, 49, 82, 9862, 101, 105, 133679266, 122347814, 43, 47, 9769, 79, 1095740, 13512, 9472, 819289, 11081831171, 6035, 9817, 94, 1306833, 8829, 44, 77, 105, 116...65, 11423, 9559, 12564endoplasmic reticulum lumencytosolGolgi lumenlate endosome lumenendosome lumenclathrin-sculpted monoamine transport vesicle lumensynaptic vesiclesecretory granuleL-Tyr Zn2+SLC44A2 Na+Cl-SLC22A18 substratesSLC6A14 ligandsInsMTF NAd L-Ile Chob-Ala N1MNA SLC22A7 b-Ala LACT SLC40A1 NH4+SLC6A75HT L-Val SLC22A3NAd SLC39A1-4Cl-RHBGSLC22A15 Na+SLC39A5SLC5A3Na+CHI SLC5A11Procainamide SLC22A11 L-Ser L-Gln Na+CLON GABAGlyNa+E1S LACT Inositolstransported bySMIT2Zn2+ L-Tyr SLC22A1,SLC22A2H+SLC13A5H+H+L-ProL-Ala RHCGBET MPP SLC16A3 DA L-Ala RSC1A1Na+bHBA SLC6A19IMIP SLC40A1:HEPH:6Cu2+H+RUNX1L-Phe GABA OCT3 substratesMPP TMAM DAGly MPP ligands of SLC6A12(BGT-1)L-Thr 4-Di-2-ASP ligands of SLC6A6SPN SLC30A3-like ProteinSLC30A7SLC6A5 SLC22A1 SPM SLC47A2 SLC44A3 NAd Hist SLC44A1 SLC22A6 Na+Cu2+ H+L-Ile SLC10A6SLC6A2L-Val H+SLC22A2 TAU Zn2+OCT2 substratesSLC39A1 SUCCAOAT1-3SO4(2-)L-Leu H+L-Trp LACTSLC30A2 Cys L-Phe L-Arg MCT substratesCLON SLC39A10Fe2+UreaMCT substratesDicarboxylatestransported byNaDC1NH4+H+L-Trp Na+4-Di-2-ASP CIT Divalent metalstransported byNRAMP1SLC13A2UreaCl-SLC39A14 MATE substratesTAU InsSLC44A5 neutral amino acidsCl-OCT1 substratesSLC6A3L-Leu TMAM OAT2/4Na+SLC40A1:CP:6Cu2+BET DHEA-SO4 4-Di-2-ASP Na+Zn2+ ChoSLC6A GABAtransportersZn2+OAT2/4 sulfateconjugatesubstratesERGTSLC6A6L-Ile SLC22A7 ADR SLC39A7L-Lys Cu2+ L-Leu L-Arg neutral amino acidsL-Prob-Ala Na+SLC30A10MATE1/2QN Gu Gly taurolithocholatesulfateL-Pro Fe2+ ZIP6/ZIP14SLC30A1Biogenic aminestransported byVMAT1/2H+Procainamide TMAM Zn2+SLC16A7:EMB,SLC16A3,8:BSGSLC41A2 CIT 5HTIMIP L-Met Hist Mg2+BSG HPRO SLC14A2 NAd SLC22A1,SLC22A2H+ADR 2OGDivalent metalstransported byNRAMP1Na+SUCCA DA NAd L-Val Na+ChoCl-ADR SLC6A14NAd Inositolstransported bySMIT2bHBA b-Ala H+H+SLC6A13 SPM SLC22A18 substratesADR SLC11A1SLC39A4 DHEA-SO4 Mn2+Na+SO4(2-)Cl-L-Trp Cl-SLC22A1 Zn2+L-Ser CITSLC22A4H+L-Met CHI ACA SLC6A11 Hist taurolithocholatesulfateSLC6A5,9Zn2+Cl-L-Ser Na+Hist MPP DAB GABA L-Leu Na+MTF SLC30A2SLC22A4 GABASLC47A1 CITAGM NH4+Na+ADR L-Leu MATE substratesADR OCT1Gly Hist L-Met L-Cys InsIns L-Ser OCT1 substratesSLC6A12ligands of SLC6A15Na+DA L-Val L-Met SLC13A3SLC16A1:BSGNa+PYR InsL-Thr L-His L-His Na+PYR ChoCu2+SLC18A1 SLC41A1,2L-Ile L-Gln MTF SLC40A1 Na+DA Cu2+L-Ser OAT1-3 substratesSLC30A3 urateDA L-Ala L-Cys ACA 5HT SLC13A4SLC6A20SUCCANa+OAT2/4 sulfateconjugatesubstratesL-Val Na+SPN Cho SLC22A8 L-Ala 5HT5HT Cys MPP SLC30A5Mn2+ Na+SLC6A15SLC6A1 2OGNH4+SLC39A6 Cl-EMB OAT1-3 substratesSLC6A9 L-Pro VMAT1/2Ins Mn2+ L-Met Fe2+SLC11A2b-Ala 5HT Na+GlyBiogenic aminestransported byVMAT1/2SLC39A2 SLC5A7Na+SLC22A2 Cho SLC22A1 SLC22A4, 5,15,16SLC22A16 OCT3 substratesSLC2A13NAdNa+N1MNA L-Leu NH4+Na+DANa+DAB NH4+QN MPP L-Ile 4-Di-2-ASP ligands of SLC6A15CP MPP SLC22A18SLC41A1 TMAM DESI Cl-L-Trp SLC18A2 Cho SLC16A1 MNA H+L-Asn CTL1-5E1S Hist Gly Cl-MPP L-Gln Sodium dependentSerotonintransporterNa+SLC13A1SLC39A14 BSG MNA LACTL-Met Fe2+ Zn2+SLC6A14 ligandsSLC14A1 SLC31A1SLC44A4 Na+Mn2+L-Ala L-Ser Na+TMAM AGM SLC39A8 SLC30A6Na+SUCCA SLC22A2 Na+HPRO Na+L-Asn RHAGNAdGu L-Gln Na+ligands of SLC6A6L-Lys Urea transportersHEPH SLC30A8DESI L-Ile SLC16A7 Na+Zn2+Zn2+Na+Cho L-Val DA L-Cys Gu Cys SLC39A8-likeproteinsCARurateCARCl-SLC16A8 Mg2+TMAM SLC22A5 Gu SLC39A3 b-Ala SLC6A18SLC22A12ligands of SLC6A12(BGT-1)H+MTF L-Ala Dicarboxylatestransported byNaDC1OCT2 substratesERGT70


Description

SLC transporters described in this section transport bile salts, organic acids, metal ions and amine compounds.
Myo-Inositol is a neutral cyclic polyol, abundant in mammalian tissues. It is a precursor to phosphatidylinositols (PtdIns) and to the inositol phosphates (IP), which serve as second messengers and also act as key regulators of many cell functions. Three members of the glucose transporter gene family encode inositol transporters (SLC2A13, SLC5A3 and SLC5A11) (Schneider 2015).
Five human SLC13 genes encode sodium-coupled sulphate, di- and tri-carboxylate transporters typically located on the plasma membrane of mammalian cells (Pajor 2006).
The SLC16A gene family encode proton-linked monocarboxylate transporters (MCT) which mediate the transport of monocarboxylates such as lactate and pyruvate, major energy sources for all cells in the body so their transport in and out of cells is crucial for cellular function (Morris & Felmlee 2008).
The transport of essential metals and other nutrients across tight membrane barriers such as the gastrointestinal tract and blood-brain barrier is mediated by metal-transporting proteins (encoded by SLC11, SLC30, SLC31, SLC39, SLC40 and SLC41). They can also regulate metals by efflux out of cells and cellular compartments to avoid toxic build-up (Bressler et al. 2007).
The SLC6 gene family encodes proteins that mediate neurotransmitter uptake in the central nervous system (CSN) and peripheral nervous system (PNS), thus terminating a synaptic signal. The proteins mediate transport of GABA (gamma-aminobutyric acid), norepinephrine, dopamine, serotonin, glycine, taurine, L-proline, creatine and betaine (Chen et al. 2004).
Carrier-mediated urea transport allows rapid urea movement across the cell membrane, which is particularly important in the process of urinary concentration and for rapid urea equilibrium in non-renal tissues. Two carriers exist in humans, encoded by SLC14A1 and ALC14A2 (Olives et al. 1994).
Choline uptake is the rate-limiting step in the synthesis of the neurotransmitter acetylcholine. SLC genes SLC5A7 and the SLC44 family encode choline transporters ((Okuda & Haga 2000, Traiffort et al. 2005).
The SLC22 gene family of solute carriers function as organic cation transporters (OCTs), cation/zwitterion transporters (OCTNs) and organic anion transporters (OATs). Most of this family are polyspecific transporters. Since many of these transporters are expressed in the liver, kidney and intestine, they play an important role in drug absorption and excretion. Substrates include xenobiotics, drugs, and endogenous amine compounds (Koepsell & Endou 2004). View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 425366
Reactome-version 
Reactome version: 75
Reactome Author 
Reactome Author: Jassal, Bijay

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Hager K, Hazama A, Kwon HM, Loo DD, Handler JS, Wright EM.; ''Kinetics and specificity of the renal Na+/myo-inositol cotransporter expressed in Xenopus oocytes.''; PubMed Europe PMC Scholia
  2. Tandy S, Williams M, Leggett A, Lopez-Jimenez M, Dedes M, Ramesh B, Srai SK, Sharp P.; ''Nramp2 expression is associated with pH-dependent iron uptake across the apical membrane of human intestinal Caco-2 cells.''; PubMed Europe PMC Scholia
  3. Lee A, Beck L, Markovich D.; ''The human renal sodium sulfate cotransporter (SLC13A1; hNaSi-1) cDNA and gene: organization, chromosomal localization, and functional characterization.''; PubMed Europe PMC Scholia
  4. Eraly SA, Nigam SK.; ''Novel human cDNAs homologous to Drosophila Orct and mammalian carnitine transporters.''; PubMed Europe PMC Scholia
  5. Quan H, Athirakul K, Wetsel WC, Torres GE, Stevens R, Chen YT, Coffman TM, Caron MG.; ''Hypertension and impaired glycine handling in mice lacking the orphan transporter XT2.''; PubMed Europe PMC Scholia
  6. Merezhinskaya N, Fishbein WN, Davis JI, Foellmer JW.; ''Mutations in MCT1 cDNA in patients with symptomatic deficiency in lactate transport.''; PubMed Europe PMC Scholia
  7. Philp NJ, Wang D, Yoon H, Hjelmeland LM.; ''Polarized expression of monocarboxylate transporters in human retinal pigment epithelium and ARPE-19 cells.''; PubMed Europe PMC Scholia
  8. Kishi F, Nobumoto M.; ''Identification of natural resistance-associated macrophage protein in peripheral blood lymphocytes.''; PubMed Europe PMC Scholia
  9. Taylor KM, Morgan HE, Johnson A, Nicholson RI.; ''Structure-function analysis of HKE4, a member of the new LIV-1 subfamily of zinc transporters.''; PubMed Europe PMC Scholia
  10. Quadri M, Federico A, Zhao T, Breedveld GJ, Battisti C, Delnooz C, Severijnen LA, Di Toro Mammarella L, Mignarri A, Monti L, Sanna A, Lu P, Punzo F, Cossu G, Willemsen R, Rasi F, Oostra BA, van de Warrenburg BP, Bonifati V.; ''Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease.''; PubMed Europe PMC Scholia
  11. Taylor KM, Morgan HE, Johnson A, Hadley LJ, Nicholson RI.; ''Structure-function analysis of LIV-1, the breast cancer-associated protein that belongs to a new subfamily of zinc transporters.''; PubMed Europe PMC Scholia
  12. Texel SJ, Xu X, Harris ZL.; ''Ceruloplasmin in neurodegenerative diseases.''; PubMed Europe PMC Scholia
  13. Palmiter RD, Cole TB, Quaife CJ, Findley SD.; ''ZnT-3, a putative transporter of zinc into synaptic vesicles.''; PubMed Europe PMC Scholia
  14. Loo DD, Eskandari S, Boorer KJ, Sarkar HK, Wright EM.; ''Role of Cl- in electrogenic Na+-coupled cotransporters GAT1 and SGLT1.''; PubMed Europe PMC Scholia
  15. Erickson JD, Schafer MK, Bonner TI, Eiden LE, Weihe E.; ''Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter.''; PubMed Europe PMC Scholia
  16. Takanaga H, Mackenzie B, Suzuki Y, Hediger MA.; ''Identification of mammalian proline transporter SIT1 (SLC6A20) with characteristics of classical system imino.''; PubMed Europe PMC Scholia
  17. Chen H, Attieh ZK, Dang T, Huang G, van der Hee RM, Vulpe C.; ''Decreased hephaestin expression and activity leads to decreased iron efflux from differentiated Caco2 cells.''; PubMed Europe PMC Scholia
  18. Lin RY, Vera JC, Chaganti RS, Golde DW.; ''Human monocarboxylate transporter 2 (MCT2) is a high affinity pyruvate transporter.''; PubMed Europe PMC Scholia
  19. Kim KM, Kingsmore SF, Kingsmore SF, Han H, Yang-Feng TL, Godinot N, Seldin MF, Caron MG, Giros B.; ''Cloning of the human glycine transporter type 1: molecular and pharmacological characterization of novel isoform variants and chromosomal localization of the gene in the human and mouse genomes.''; PubMed Europe PMC Scholia
  20. O'Regan S, Traiffort E, Ruat M, Cha N, Compaore D, Meunier FM.; ''An electric lobe suppressor for a yeast choline transport mutation belongs to a new family of transporter-like proteins.''; PubMed Europe PMC Scholia
  21. Taylor KM, Morgan HE, Johnson A, Nicholson RI.; ''Structure-function analysis of a novel member of the LIV-1 subfamily of zinc transporters, ZIP14.''; PubMed Europe PMC Scholia
  22. Rees MI, Harvey K, Pearce BR, Chung SK, Duguid IC, Thomas P, Beatty S, Graham GE, Armstrong L, Shiang R, Abbott KJ, Zuberi SM, Stephenson JB, Owen MJ, Tijssen MA, van den Maagdenberg AM, Smart TG, Supplisson S, Harvey RJ.; ''Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease.''; PubMed Europe PMC Scholia
  23. Liu Z, Chen Y, Mo R, Hui C, Cheng JF, Mohandas N, Huang CH.; ''Characterization of human RhCG and mouse Rhcg as novel nonerythroid Rh glycoprotein homologues predominantly expressed in kidney and testis.''; PubMed Europe PMC Scholia
  24. Geyer J, Döring B, Meerkamp K, Ugele B, Bakhiya N, Fernandes CF, Godoy JR, Glatt H, Petzinger E.; ''Cloning and functional characterization of human sodium-dependent organic anion transporter (SLC10A6).''; PubMed Europe PMC Scholia
  25. Gong S, Lu X, Xu Y, Swiderski CF, Jordan CT, Moscow JA.; ''Identification of OCT6 as a novel organic cation transporter preferentially expressed in hematopoietic cells and leukemias.''; PubMed Europe PMC Scholia
  26. Kleta R, Romeo E, Ristic Z, Ohura T, Stuart C, Arcos-Burgos M, Dave MH, Wagner CA, Camargo SR, Inoue S, Matsuura N, Helip-Wooley A, Bockenhauer D, Warth R, Bernardini I, Visser G, Eggermann T, Lee P, Chairoungdua A, Jutabha P, Babu E, Nilwarangkoon S, Anzai N, Kanai Y, Verrey F, Gahl WA, Koizumi A.; ''Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder.''; PubMed Europe PMC Scholia
  27. Erickson JD, Eiden LE.; ''Functional identification and molecular cloning of a human brain vesicle monoamine transporter.''; PubMed Europe PMC Scholia
  28. Kirschke CP, Huang L.; ''ZnT7, a novel mammalian zinc transporter, accumulates zinc in the Golgi apparatus.''; PubMed Europe PMC Scholia
  29. Race JE, Grassl SM, Williams WJ, Holtzman EJ.; ''Molecular cloning and characterization of two novel human renal organic anion transporters (hOAT1 and hOAT3).''; PubMed Europe PMC Scholia
  30. Yoon H, Donoso LA, Philp NJ.; ''Cloning of the human monocarboxylate transporter MCT3 gene: localization to chromosome 22q12.3-q13.2.''; PubMed Europe PMC Scholia
  31. Pajor AM.; ''Molecular properties of the SLC13 family of dicarboxylate and sulfate transporters.''; PubMed Europe PMC Scholia
  32. Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y.; ''A human transporter protein that mediates the final excretion step for toxic organic cations.''; PubMed Europe PMC Scholia
  33. Schwienbacher C, Sabbioni S, Campi M, Veronese A, Bernardi G, Menegatti A, Hatada I, Mukai T, Ohashi H, Barbanti-Brodano G, Croce CM, Negrini M.; ''Transcriptional map of 170-kb region at chromosome 11p15.5: identification and mutational analysis of the BWR1A gene reveals the presence of mutations in tumor samples.''; PubMed Europe PMC Scholia
  34. Kambe T, Narita H, Yamaguchi-Iwai Y, Hirose J, Amano T, Sugiura N, Sasaki R, Mori K, Iwanaga T, Nagao M.; ''Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells.''; PubMed Europe PMC Scholia
  35. Apparsundaram S, Ferguson SM, George AL, Blakely RD.; ''Molecular cloning of a human, hemicholinium-3-sensitive choline transporter.''; PubMed Europe PMC Scholia
  36. Traiffort E, Ruat M, O'Regan S, Meunier FM.; ''Molecular characterization of the family of choline transporter-like proteins and their splice variants.''; PubMed Europe PMC Scholia
  37. Bressler JP, Olivi L, Cheong JH, Kim Y, Maerten A, Bannon D.; ''Metal transporters in intestine and brain: their involvement in metal-associated neurotoxicities.''; PubMed Europe PMC Scholia
  38. Tang NL, Ganapathy V, Wu X, Hui J, Seth P, Yuen PM, Wanders RJ, Fok TF, Hjelm NM.; ''Mutations of OCTN2, an organic cation/carnitine transporter, lead to deficient cellular carnitine uptake in primary carnitine deficiency.''; PubMed Europe PMC Scholia
  39. Schneider S.; ''Inositol transport proteins.''; PubMed Europe PMC Scholia
  40. Ludewig U.; ''Electroneutral ammonium transport by basolateral rhesus B glycoprotein.''; PubMed Europe PMC Scholia
  41. Roll P, Massacrier A, Pereira S, Robaglia-Schlupp A, Cau P, Szepetowski P.; ''New human sodium/glucose cotransporter gene (KST1): identification, characterization, and mutation analysis in ICCA (infantile convulsions and choreoathetosis) and BFIC (benign familial infantile convulsions) families.''; PubMed Europe PMC Scholia
  42. Otonkoski T, Jiao H, Kaminen-Ahola N, Tapia-Paez I, Ullah MS, Parton LE, Schuit F, Quintens R, Sipilä I, Mayatepek E, Meissner T, Halestrap AP, Rutter GA, Kere J.; ''Physical exercise-induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic beta cells.''; PubMed Europe PMC Scholia
  43. Borden LA, Dhar TG, Smith KE, Branchek TA, Gluchowski C, Weinshank RL.; ''Cloning of the human homologue of the GABA transporter GAT-3 and identification of a novel inhibitor with selectivity for this site.''; PubMed Europe PMC Scholia
  44. Lu R, Chan BS, Schuster VL.; ''Cloning of the human kidney PAH transporter: narrow substrate specificity and regulation by protein kinase C.''; PubMed Europe PMC Scholia
  45. Leyva-Illades D, Chen P, Zogzas CE, Hutchens S, Mercado JM, Swaim CD, Morrisett RA, Bowman AB, Aschner M, Mukhopadhyay S.; ''SLC30A10 is a cell surface-localized manganese efflux transporter, and parkinsonism-causing mutations block its intracellular trafficking and efflux activity.''; PubMed Europe PMC Scholia
  46. Girard JP, Baekkevold ES, Feliu J, Brandtzaeg P, Amalric F.; ''Molecular cloning and functional analysis of SUT-1, a sulfate transporter from human high endothelial venules.''; PubMed Europe PMC Scholia
  47. Christiansen B, Meinild AK, Jensen AA, Braüner-Osborne H.; ''Cloning and characterization of a functional human gamma-aminobutyric acid (GABA) transporter, human GAT-2.''; PubMed Europe PMC Scholia
  48. Westhoff CM, Ferreri-Jacobia M, Mak DO, Foskett JK.; ''Identification of the erythrocyte Rh blood group glycoprotein as a mammalian ammonium transporter.''; PubMed Europe PMC Scholia
  49. Wille S, Szekeres A, Majdic O, Prager E, Staffler G, Stöckl J, Kunthalert D, Prieschl EE, Baumruker T, Burtscher H, Zlabinger GJ, Knapp W, Stockinger H.; ''Characterization of CDw92 as a member of the choline transporter-like protein family regulated specifically on dendritic cells.''; PubMed Europe PMC Scholia
  50. Kaler P, Prasad R.; ''Molecular cloning and functional characterization of novel zinc transporter rZip10 (Slc39a10) involved in zinc uptake across rat renal brush-border membrane.''; PubMed Europe PMC Scholia
  51. Masuda S, Terada T, Yonezawa A, Tanihara Y, Kishimoto K, Katsura T, Ogawa O, Inui K.; ''Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2.''; PubMed Europe PMC Scholia
  52. Chimienti F, Favier A, Seve M.; ''ZnT-8, a pancreatic beta-cell-specific zinc transporter.''; PubMed Europe PMC Scholia
  53. Seow HF, Bröer S, Bröer A, Bailey CG, Potter SJ, Cavanaugh JA, Rasko JE.; ''Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19.''; PubMed Europe PMC Scholia
  54. Pacholczyk T, Blakely RD, Amara SG.; ''Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter.''; PubMed Europe PMC Scholia
  55. Chen NH, Reith ME, Quick MW.; ''Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6.''; PubMed Europe PMC Scholia
  56. Halestrap AP.; ''Monocarboxylic acid transport.''; PubMed Europe PMC Scholia
  57. Palmiter RD, Cole TB, Findley SD.; ''ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration.''; PubMed Europe PMC Scholia
  58. Hyland CA, Chérif-Zahar B, Cowley N, Raynal V, Parkes J, Saul A, Cartron JP.; ''A novel single missense mutation identified along the RH50 gene in a composite heterozygous Rhnull blood donor of the regulator type.''; PubMed Europe PMC Scholia
  59. Rasola A, Galietta LJ, Barone V, Romeo G, Bagnasco S.; ''Molecular cloning and functional characterization of a GABA/betaine transporter from human kidney.''; PubMed Europe PMC Scholia
  60. Berry GT, Mallee JJ, Kwon HM, Rim JS, Mulla WR, Muenke M, Spinner NB.; ''The human osmoregulatory Na+/myo-inositol cotransporter gene (SLC5A3): molecular cloning and localization to chromosome 21.''; PubMed Europe PMC Scholia
  61. Anderson CM, Ganapathy V, Thwaites DT.; ''Human solute carrier SLC6A14 is the beta-alanine carrier.''; PubMed Europe PMC Scholia
  62. Cha SH, Sekine T, Kusuhara H, Yu E, Kim JY, Kim DK, Sugiyama Y, Kanai Y, Endou H.; ''Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta.''; PubMed Europe PMC Scholia
  63. Kagara N, Tanaka N, Noguchi S, Hirano T.; ''Zinc and its transporter ZIP10 are involved in invasive behavior of breast cancer cells.''; PubMed Europe PMC Scholia
  64. Wang H, Fei YJ, Kekuda R, Yang-Feng TL, Devoe LD, Leibach FH, Prasad PD, Ganapathy V.; ''Structure, function, and genomic organization of human Na(+)-dependent high-affinity dicarboxylate transporter.''; PubMed Europe PMC Scholia
  65. Wu X, Huang W, Ganapathy ME, Wang H, Kekuda R, Conway SJ, Leibach FH, Ganapathy V.; ''Structure, function, and regional distribution of the organic cation transporter OCT3 in the kidney.''; PubMed Europe PMC Scholia
  66. Sahni J, Nelson B, Scharenberg AM.; ''SLC41A2 encodes a plasma-membrane Mg2+ transporter.''; PubMed Europe PMC Scholia
  67. Ramamoorthy S, Leibach FH, Mahesh VB, Han H, Yang-Feng T, Blakely RD, Ganapathy V.; ''Functional characterization and chromosomal localization of a cloned taurine transporter from human placenta.''; PubMed Europe PMC Scholia
  68. Takanaga H, Mackenzie B, Peng JB, Hediger MA.; ''Characterization of a branched-chain amino-acid transporter SBAT1 (SLC6A15) that is expressed in human brain.''; PubMed Europe PMC Scholia
  69. Tokuhiro S, Yamada R, Chang X, Suzuki A, Kochi Y, Sawada T, Suzuki M, Nagasaki M, Ohtsuki M, Ono M, Furukawa H, Nagashima M, Yoshino S, Mabuchi A, Sekine A, Saito S, Takahashi A, Tsunoda T, Nakamura Y, Yamamoto K.; ''An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis.''; PubMed Europe PMC Scholia
  70. Garcia CK, Goldstein JL, Pathak RK, Anderson RG, Brown MS.; ''Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle.''; PubMed Europe PMC Scholia
  71. Ostlund RE, Seemayer R, Gupta S, Kimmel R, Ostlund EL, Sherman WR.; ''A stereospecific myo-inositol/D-chiro-inositol transporter in HepG2 liver cells. Identification with D-chiro-[3-3H]inositol.''; PubMed Europe PMC Scholia
  72. Zhang L, Schaner ME, Giacomini KM.; ''Functional characterization of an organic cation transporter (hOCT1) in a transiently transfected human cell line (HeLa).''; PubMed Europe PMC Scholia
  73. Tuschl K, Clayton PT, Gospe SM, Gulab S, Ibrahim S, Singhi P, Aulakh R, Ribeiro RT, Barsottini OG, Zaki MS, Del Rosario ML, Dyack S, Price V, Rideout A, Gordon K, Wevers RA, Chong WK, Mills PB.; ''Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man.''; PubMed Europe PMC Scholia
  74. De Feo CJ, Aller SG, Unger VM.; ''A structural perspective on copper uptake in eukaryotes.''; PubMed Europe PMC Scholia
  75. Enomoto A, Wempe MF, Tsuchida H, Shin HJ, Cha SH, Anzai N, Goto A, Sakamoto A, Niwa T, Kanai Y, Anders MW, Endou H.; ''Molecular identification of a novel carnitine transporter specific to human testis. Insights into the mechanism of carnitine recognition.''; PubMed Europe PMC Scholia
  76. Höglund PJ, Adzic D, Scicluna SJ, Lindblom J, Fredriksson R.; ''The repertoire of solute carriers of family 6: identification of new human and rodent genes.''; PubMed Europe PMC Scholia
  77. Bakhiya A, Bahn A, Burckhardt G, Wolff N.; ''Human organic anion transporter 3 (hOAT3) can operate as an exchanger and mediate secretory urate flux.''; PubMed Europe PMC Scholia
  78. Uldry M, Ibberson M, Horisberger JD, Chatton JY, Riederer BM, Thorens B.; ''Identification of a mammalian H(+)-myo-inositol symporter expressed predominantly in the brain.''; PubMed Europe PMC Scholia
  79. Gründemann D, Harlfinger S, Golz S, Geerts A, Lazar A, Berkels R, Jung N, Rubbert A, Schömig E.; ''Discovery of the ergothioneine transporter.''; PubMed Europe PMC Scholia
  80. Morrow JA, Collie IT, Dunbar DR, Walker GB, Shahid M, Hill DR.; ''Molecular cloning and functional expression of the human glycine transporter GlyT2 and chromosomal localisation of the gene in the human genome.''; PubMed Europe PMC Scholia
  81. Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, Baumann C, Lang F, Busch AE, Koepsell H.; ''Cloning and characterization of two human polyspecific organic cation transporters.''; PubMed Europe PMC Scholia
  82. Nair TS, Kozma KE, Hoefling NL, Kommareddi PK, Ueda Y, Gong TW, Lomax MI, Lansford CD, Telian SA, Satar B, Arts HA, El-Kashlan HK, Berryhill WE, Raphael Y, Carey TE.; ''Identification and characterization of choline transporter-like protein 2, an inner ear glycoprotein of 68 and 72 kDa that is the target of antibody-induced hearing loss.''; PubMed Europe PMC Scholia
  83. Canli T, Lesch KP.; ''Long story short: the serotonin transporter in emotion regulation and social cognition.''; PubMed Europe PMC Scholia
  84. Inoue K, Zhuang L, Ganapathy V.; ''Human Na+ -coupled citrate transporter: primary structure, genomic organization, and transport function.''; PubMed Europe PMC Scholia
  85. Shafqat S, Velaz-Faircloth M, Henzi VA, Whitney KD, Yang-Feng TL, Seldin MF, Fremeau RT.; ''Human brain-specific L-proline transporter: molecular cloning, functional expression, and chromosomal localization of the gene in human and mouse genomes.''; PubMed Europe PMC Scholia
  86. Devergnas S, Chimienti F, Naud N, Pennequin A, Coquerel Y, Chantegrel J, Favier A, Seve M.; ''Differential regulation of zinc efflux transporters ZnT-1, ZnT-5 and ZnT-7 gene expression by zinc levels: a real-time RT-PCR study.''; PubMed Europe PMC Scholia
  87. Gaither LA, Eide DJ.; ''Functional expression of the human hZIP2 zinc transporter.''; PubMed Europe PMC Scholia
  88. Reece M, Prawitt D, Landers J, Kast C, Gros P, Housman D, Zabel BU, Pelletier J.; ''Functional characterization of ORCTL2--an organic cation transporter expressed in the renal proximal tubules.''; PubMed Europe PMC Scholia
  89. Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, Hosoyamada M, Takeda M, Sekine T, Igarashi T, Matsuo H, Kikuchi Y, Oda T, Ichida K, Hosoya T, Shimokata K, Niwa T, Kanai Y, Endou H.; ''Molecular identification of a renal urate anion exchanger that regulates blood urate levels.''; PubMed Europe PMC Scholia
  90. Costello LC, Liu Y, Zou J, Franklin RB.; ''Evidence for a zinc uptake transporter in human prostate cancer cells which is regulated by prolactin and testosterone.''; PubMed Europe PMC Scholia
  91. Li M, Zhang Y, Liu Z, Bharadwaj U, Wang H, Wang X, Zhang S, Liuzzi JP, Chang SM, Cousins RJ, Fisher WE, Brunicardi FC, Logsdon CD, Chen C, Yao Q.; ''Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression.''; PubMed Europe PMC Scholia
  92. Huang L, Kirschke CP, Gitschier J.; ''Functional characterization of a novel mammalian zinc transporter, ZnT6.''; PubMed Europe PMC Scholia
  93. Sloan JL, Mager S.; ''Cloning and functional expression of a human Na(+) and Cl(-)-dependent neutral and cationic amino acid transporter B(0+).''; PubMed Europe PMC Scholia
  94. Schimanski LM, Drakesmith H, Merryweather-Clarke AT, Viprakasit V, Edwards JP, Sweetland E, Bastin JM, Cowley D, Chinthammitr Y, Robson KJ, Townsend AR.; ''In vitro functional analysis of human ferroportin (FPN) and hemochromatosis-associated FPN mutations.''; PubMed Europe PMC Scholia
  95. Marini AM, Matassi G, Raynal V, André B, Cartron JP, Chérif-Zahar B.; ''The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast.''; PubMed Europe PMC Scholia
  96. Vandenbergh DJ, Thompson MD, Cook EH, Bendahhou E, Nguyen T, Krasowski MD, Zarrabian D, Comings D, Sellers EM, Tyndale RF, George SR, O'Dowd BF, Uhl GR.; ''Human dopamine transporter gene: coding region conservation among normal, Tourette's disorder, alcohol dependence and attention-deficit hyperactivity disorder populations.''; PubMed Europe PMC Scholia
  97. Nelson H, Mandiyan S, Nelson N.; ''Cloning of the human brain GABA transporter.''; PubMed Europe PMC Scholia
  98. Okuda T, Haga T.; ''Functional characterization of the human high-affinity choline transporter.''; PubMed Europe PMC Scholia
  99. Zhou B, Gitschier J.; ''hCTR1: a human gene for copper uptake identified by complementation in yeast.''; PubMed Europe PMC Scholia
  100. Wang K, Zhou B, Kuo YM, Zemansky J, Gitschier J.; ''A novel member of a zinc transporter family is defective in acrodermatitis enteropathica.''; PubMed Europe PMC Scholia
  101. Ekaratanawong S, Anzai N, Jutabha P, Miyazaki H, Noshiro R, Takeda M, Kanai Y, Sophasan S, Endou H.; ''Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules.''; PubMed Europe PMC Scholia
  102. Markovich D, Regeer RR, Kunzelmann K, Dawson PA.; ''Functional characterization and genomic organization of the human Na(+)-sulfate cotransporter hNaS2 gene (SLC13A4).''; PubMed Europe PMC Scholia
  103. Chimienti F, Devergnas S, Pattou F, Schuit F, Garcia-Cuenca R, Vandewalle B, Kerr-Conte J, Van Lommel L, Grunwald D, Favier A, Seve M.; ''In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion.''; PubMed Europe PMC Scholia
  104. Morris ME, Felmlee MA.; ''Overview of the proton-coupled MCT (SLC16A) family of transporters: characterization, function and role in the transport of the drug of abuse gamma-hydroxybutyric acid.''; PubMed Europe PMC Scholia
  105. Sun W, Wu RR, van Poelje PD, Erion MD.; ''Isolation of a family of organic anion transporters from human liver and kidney.''; PubMed Europe PMC Scholia
  106. Olivès B, Martial S, Mattei MG, Matassi G, Rousselet G, Ripoche P, Cartron JP, Bailly P.; ''Molecular characterization of a new urea transporter in the human kidney.''; PubMed Europe PMC Scholia
  107. Desouki MM, Geradts J, Milon B, Franklin RB, Costello LC.; ''hZip2 and hZip3 zinc transporters are down regulated in human prostate adenocarcinomatous glands.''; PubMed Europe PMC Scholia
  108. Koepsell H, Endou H.; ''The SLC22 drug transporter family.''; PubMed Europe PMC Scholia
  109. Yamada R, Tokuhiro S, Chang X, Yamamoto K.; ''SLC22A4 and RUNX1: identification of RA susceptible genes.''; PubMed Europe PMC Scholia
  110. Wakida N, Tuyen DG, Adachi M, Miyoshi T, Nonoguchi H, Oka T, Ueda O, Tazawa M, Kurihara S, Yoneta Y, Shimada H, Oda T, Kikuchi Y, Matsuo H, Hosoyamada M, Endou H, Otagiri M, Tomita K, Kitamura K.; ''Mutations in human urate transporter 1 gene in presecretory reabsorption defect type of familial renal hypouricemia.''; PubMed Europe PMC Scholia
  111. Lin X, Ma L, Fitzgerald RL, Ostlund RE.; ''Human sodium/inositol cotransporter 2 (SMIT2) transports inositols but not glucose in L6 cells.''; PubMed Europe PMC Scholia
  112. Pajor AM.; ''Molecular cloning and functional expression of a sodium-dicarboxylate cotransporter from human kidney.''; PubMed Europe PMC Scholia
  113. Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, Inui K.; ''Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters.''; PubMed Europe PMC Scholia
  114. Gründemann D, Schechinger B, Rappold GA, Schömig E.; ''Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter.''; PubMed Europe PMC Scholia
  115. Küry S, Dréno B, Bézieau S, Giraudet S, Kharfi M, Kamoun R, Moisan JP.; ''Identification of SLC39A4, a gene involved in acrodermatitis enteropathica.''; PubMed Europe PMC Scholia
  116. Reid G, Wolff NA, Dautzenberg FM, Burckhardt G.; ''Cloning of a human renal p-aminohippurate transporter, hROAT1.''; PubMed Europe PMC Scholia
  117. Wang F, Kim BE, Petris MJ, Eide DJ.; ''The mammalian Zip5 protein is a zinc transporter that localizes to the basolateral surface of polarized cells.''; PubMed Europe PMC Scholia
  118. Besecker B, Bao S, Bohacova B, Papp A, Sadee W, Knoell DL.; ''The human zinc transporter SLC39A8 (Zip8) is critical in zinc-mediated cytoprotection in lung epithelia.''; PubMed Europe PMC Scholia
  119. Gaither LA, Eide DJ.; ''The human ZIP1 transporter mediates zinc uptake in human K562 erythroleukemia cells.''; PubMed Europe PMC Scholia
  120. Veyhl M, Keller T, Gorboulev V, Vernaleken A, Koepsell H.; ''RS1 (RSC1A1) regulates the exocytotic pathway of Na+-D-glucose cotransporter SGLT1.''; PubMed Europe PMC Scholia
  121. He L, Wang B, Hay EB, Nebert DW.; ''Discovery of ZIP transporters that participate in cadmium damage to testis and kidney.''; PubMed Europe PMC Scholia
  122. Goytain A, Quamme GA.; ''Identification and characterization of a novel mammalian Mg2+ transporter with channel-like properties.''; PubMed Europe PMC Scholia
  123. Peltekova VD, Wintle RF, Rubin LA, Amos CI, Huang Q, Gu X, Newman B, Van Oene M, Cescon D, Greenberg G, Griffiths AM, St George-Hyslop PH, Siminovitch KA.; ''Functional variants of OCTN cation transporter genes are associated with Crohn disease.''; PubMed Europe PMC Scholia
  124. Lioumi M, Ferguson CA, Sharpe PT, Freeman T, Marenholz I, Mischke D, Heizmann C, Ragoussis J.; ''Isolation and characterization of human and mouse ZIRTL, a member of the IRT1 family of transporters, mapping within the epidermal differentiation complex.''; PubMed Europe PMC Scholia
  125. Matskevitch I, Wagner CA, Stegen C, Bröer S, Noll B, Risler T, Kwon HM, Handler JS, Waldegger S, Busch AE, Lang F.; ''Functional characterization of the Betaine/gamma-aminobutyric acid transporter BGT-1 expressed in Xenopus oocytes.''; PubMed Europe PMC Scholia
  126. Lee J, Peña MM, Nose Y, Thiele DJ.; ''Biochemical characterization of the human copper transporter Ctr1.''; PubMed Europe PMC Scholia
  127. Shannon JR, Flattem NL, Jordan J, Jacob G, Black BK, Biaggioni I, Blakely RD, Robertson D.; ''Orthostatic intolerance and tachycardia associated with norepinephrine-transporter deficiency.''; PubMed Europe PMC Scholia
  128. Hosoyamada M, Sekine T, Kanai Y, Endou H.; ''Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney.''; PubMed Europe PMC Scholia
  129. Olives B, Neau P, Bailly P, Hediger MA, Rousselet G, Cartron JP, Ripoche P.; ''Cloning and functional expression of a urea transporter from human bone marrow cells.''; PubMed Europe PMC Scholia
  130. Han O, Kim EY.; ''Colocalization of ferroportin-1 with hephaestin on the basolateral membrane of human intestinal absorptive cells.''; PubMed Europe PMC Scholia
  131. Li M, Zhang Y, Bharadwaj U, Zhai QJ, Ahern CH, Fisher WE, Brunicardi FC, Logsdon CD, Chen C, Yao Q.; ''Down-regulation of ZIP4 by RNA interference inhibits pancreatic cancer growth and increases the survival of nude mice with pancreatic cancer xenografts.''; PubMed Europe PMC Scholia
  132. Kishi F.; ''Isolation and characterization of human Nramp cDNA.''; PubMed Europe PMC Scholia
  133. Kobayashi Y, Ohshiro N, Sakai R, Ohbayashi M, Kohyama N, Yamamoto T.; ''Transport mechanism and substrate specificity of human organic anion transporter 2 (hOat2 [SLC22A7]).''; PubMed Europe PMC Scholia
  134. Tamai I, Ohashi R, Nezu J, Yabuuchi H, Oku A, Shimane M, Sai Y, Tsuji A.; ''Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2.''; PubMed Europe PMC Scholia
  135. Liu Z, Peng J, Mo R, Hui C, Huang CH.; ''Rh type B glycoprotein is a new member of the Rh superfamily and a putative ammonia transporter in mammals.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114951view16:47, 25 January 2021ReactomeTeamReactome version 75
113395view11:47, 2 November 2020ReactomeTeamReactome version 74
112600view15:57, 9 October 2020ReactomeTeamReactome version 73
101754view12:49, 5 November 2018EgonwCHEBI:29036 is the identifier for Cu2+
101516view11:38, 1 November 2018ReactomeTeamreactome version 66
101052view21:20, 31 October 2018ReactomeTeamreactome version 65
100583view19:53, 31 October 2018ReactomeTeamreactome version 64
100132view16:39, 31 October 2018ReactomeTeamreactome version 63
99682view15:08, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99274view12:45, 31 October 2018ReactomeTeamreactome version 62
94493view08:58, 14 September 2017MkutmonReactome release 61
86602view09:22, 11 July 2016ReactomeTeamreactome version 56
83132view10:06, 18 November 2015ReactomeTeamVersion54
81475view13:00, 21 August 2015ReactomeTeamVersion53
76949view08:22, 17 July 2014ReactomeTeamFixed remaining interactions
76654view12:02, 16 July 2014ReactomeTeamFixed remaining interactions
75983view10:04, 11 June 2014ReactomeTeamRe-fixing comment source
75686view11:01, 10 June 2014ReactomeTeamReactome 48 Update
75042view13:55, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74686view08:45, 30 April 2014ReactomeTeamReactome46
45063view20:02, 6 October 2011KhanspersOntology Term : 'metal ion transport pathway' added !
45062view20:01, 6 October 2011KhanspersOntology Term : 'sugar transport pathway' added !
42150view22:00, 4 March 2011MaintBotAutomatic update
39961view05:58, 21 January 2011MaintBotNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
2OGMetaboliteCHEBI:16810 (ChEBI)
4-Di-2-ASP MetaboliteCHEBI:65133 (ChEBI)
5HT MetaboliteCHEBI:28790 (ChEBI)
5HTMetaboliteCHEBI:28790 (ChEBI)
ACA MetaboliteCHEBI:13705 (ChEBI)
ACA MetaboliteCHEBI:15344 (ChEBI)
ADR MetaboliteCHEBI:28918 (ChEBI)
AGM MetaboliteCHEBI:17431 (ChEBI)
BET MetaboliteCHEBI:17750 (ChEBI)
BSG ProteinP35613 (Uniprot-TrEMBL)
Biogenic amines

transported by

VMAT1/2
ComplexR-ALL-444152 (Reactome)
Biogenic amines

transported by

VMAT1/2
ComplexR-ALL-444154 (Reactome)
CARMetaboliteCHEBI:17126 (ChEBI)
CHI MetaboliteCHEBI:27372 (ChEBI)
CIM
CIT MetaboliteCHEBI:30769 (ChEBI)
CITMetaboliteCHEBI:30769 (ChEBI)
CLON MetaboliteCHEBI:46631 (ChEBI)
CP ProteinP00450 (Uniprot-TrEMBL)
CQ
CTL1-5ComplexR-HSA-444452 (Reactome)
Cho MetaboliteCHEBI:15354 (ChEBI)
ChoMetaboliteCHEBI:15354 (ChEBI)
Cl-MetaboliteCHEBI:17996 (ChEBI)
Cu2+ MetaboliteCHEBI:28694 (ChEBI)
Cu2+ MetaboliteCHEBI:29036 (ChEBI)
Cu2+MetaboliteCHEBI:29036 (ChEBI)
Cys MetaboliteCHEBI:35235 (ChEBI)
DA MetaboliteCHEBI:18243 (ChEBI)
DAB MetaboliteCHEBI:48950 (ChEBI)
DAMetaboliteCHEBI:18243 (ChEBI)
DESI MetaboliteCHEBI:47781 (ChEBI)
DHEA-SO4 MetaboliteCHEBI:16814 (ChEBI)
Dicarboxylates

transported by

NaDC1
ComplexR-ALL-433111 (Reactome)
Dicarboxylates

transported by

NaDC1
ComplexR-ALL-433124 (Reactome)
Divalent metals

transported by

NRAMP1
ComplexR-ALL-445829 (Reactome)
Divalent metals

transported by

NRAMP1
ComplexR-ALL-445832 (Reactome)
E1S MetaboliteCHEBI:17474 (ChEBI)
EMB ProteinQ6PCB8 (Uniprot-TrEMBL)
ERGTMetaboliteCHEBI:4828 (ChEBI)
Fe2+ MetaboliteCHEBI:29033 (ChEBI)
Fe2+MetaboliteCHEBI:29033 (ChEBI)
GABA MetaboliteCHEBI:59888 (ChEBI)
GABAMetaboliteCHEBI:59888 (ChEBI)
Gly MetaboliteCHEBI:57305 (ChEBI)
GlyMetaboliteCHEBI:57305 (ChEBI)
Gu MetaboliteCHEBI:42820 (ChEBI)
H+MetaboliteCHEBI:15378 (ChEBI)
HEPH ProteinQ9BQS7 (Uniprot-TrEMBL)
HPRO MetaboliteCHEBI:18240 (ChEBI)
Hist MetaboliteCHEBI:18295 (ChEBI)
IMIP MetaboliteCHEBI:47499 (ChEBI)
Inositols

transported by

SMIT2
ComplexR-ALL-429648 (Reactome)
Inositols

transported by

SMIT2
ComplexR-ALL-429652 (Reactome)
Ins MetaboliteCHEBI:17268 (ChEBI)
InsMetaboliteCHEBI:17268 (ChEBI)
L-Ala MetaboliteCHEBI:57972 (ChEBI)
L-Arg MetaboliteCHEBI:32682 (ChEBI)
L-Asn MetaboliteCHEBI:58048 (ChEBI)
L-Cys MetaboliteCHEBI:35235 (ChEBI)
L-Gln MetaboliteCHEBI:58359 (ChEBI)
L-His MetaboliteCHEBI:32513 (ChEBI)
L-Ile MetaboliteCHEBI:58045 (ChEBI)
L-Leu MetaboliteCHEBI:57427 (ChEBI)
L-Lys MetaboliteCHEBI:32551 (ChEBI)
L-Met MetaboliteCHEBI:57844 (ChEBI)
L-Phe MetaboliteCHEBI:58095 (ChEBI)
L-Pro MetaboliteCHEBI:60039 (ChEBI)
L-ProMetaboliteCHEBI:60039 (ChEBI)
L-Ser MetaboliteCHEBI:33384 (ChEBI)
L-Thr MetaboliteCHEBI:57926 (ChEBI)
L-Trp MetaboliteCHEBI:57912 (ChEBI)
L-Tyr MetaboliteCHEBI:58315 (ChEBI)
L-Val MetaboliteCHEBI:57762 (ChEBI)
LACT MetaboliteCHEBI:422 (ChEBI)
LACTMetaboliteCHEBI:422 (ChEBI)
MATE substratesComplexR-ALL-446589 (Reactome)
MATE substratesComplexR-ALL-446597 (Reactome)
MATE1/2ComplexR-HSA-446605 (Reactome)
MCT substratesComplexR-ALL-433683 (Reactome)
MCT substratesComplexR-ALL-433686 (Reactome)
MNA MetaboliteCHEBI:16797 (ChEBI)
MPP MetaboliteCHEBI:641 (ChEBI)
MTF MetaboliteCHEBI:6801 (ChEBI)
Mg2+MetaboliteCHEBI:18420 (ChEBI)
Mn2+ MetaboliteCHEBI:29035 (ChEBI)
Mn2+MetaboliteCHEBI:29035 (ChEBI)
N1MNA MetaboliteCHEBI:16797 (ChEBI)
NAd MetaboliteCHEBI:18357 (ChEBI)
NAdMetaboliteCHEBI:18357 (ChEBI)
NH4+MetaboliteCHEBI:28938 (ChEBI)
Na+MetaboliteCHEBI:29101 (ChEBI)
OAT1-3 substratesComplexR-ALL-561049 (Reactome)
OAT1-3 substratesComplexR-ALL-561078 (Reactome)
OAT1-3ComplexR-HSA-561087 (Reactome)
OAT2/4 sulfate

conjugate

substrates
ComplexR-ALL-561062 (Reactome)
OAT2/4 sulfate

conjugate

substrates
ComplexR-ALL-561071 (Reactome)
OAT2/4ComplexR-HSA-561077 (Reactome)
OCT1 substratesComplexR-ALL-549250 (Reactome)
OCT1 substratesComplexR-ALL-549264 (Reactome)
OCT1ComplexR-HSA-2901782 (Reactome) This CandidateSet contains sequences identified by William Pearson's analysis of Reactome catalyst entities. Catalyst entity sequences were used to identify analagous sequences that shared overall homology and active site homology. Sequences in this Candidate set were identified in an April 24, 2012 analysis.
OCT2 substratesComplexR-ALL-549237 (Reactome)
OCT2 substratesComplexR-ALL-549266 (Reactome)
OCT3 substratesComplexR-ALL-549255 (Reactome)
OCT3 substratesComplexR-ALL-549326 (Reactome)
PYR MetaboliteCHEBI:15361 (ChEBI)
Procainamide MetaboliteCHEBI:8428 (ChEBI)
QN MetaboliteCHEBI:15854 (ChEBI)
RHAGProteinQ02094 (Uniprot-TrEMBL)
RHBGProteinQ9H310 (Uniprot-TrEMBL)
RHCGProteinQ9UBD6 (Uniprot-TrEMBL)
RSC1A1ProteinQ92681 (Uniprot-TrEMBL)
RUNX1ProteinQ01196 (Uniprot-TrEMBL)
SLC10A6ProteinQ3KNW5 (Uniprot-TrEMBL)
SLC11A1ProteinP49279 (Uniprot-TrEMBL)
SLC11A2ProteinP49281 (Uniprot-TrEMBL)
SLC13A1ProteinQ9BZW2 (Uniprot-TrEMBL)
SLC13A2ProteinQ13183 (Uniprot-TrEMBL)
SLC13A3ProteinQ8WWT9 (Uniprot-TrEMBL)
SLC13A4ProteinQ9UKG4 (Uniprot-TrEMBL)
SLC13A5ProteinQ86YT5 (Uniprot-TrEMBL)
SLC14A1 ProteinQ13336 (Uniprot-TrEMBL)
SLC14A2 ProteinQ15849 (Uniprot-TrEMBL)
SLC16A1 ProteinP53985 (Uniprot-TrEMBL)
SLC16A1:BSGComplexR-HSA-8856534 (Reactome)
SLC16A3 ProteinO15427 (Uniprot-TrEMBL)
SLC16A7 ProteinO60669 (Uniprot-TrEMBL)
SLC16A7:EMB,SLC16A3,8:BSGComplexR-HSA-434162 (Reactome)
SLC16A8 ProteinO95907 (Uniprot-TrEMBL)
SLC18A1 ProteinP54219 (Uniprot-TrEMBL)
SLC18A2 ProteinQ05940 (Uniprot-TrEMBL)
SLC22A1 ProteinO15245 (Uniprot-TrEMBL)
SLC22A1,SLC22A2ComplexR-HSA-2901780 (Reactome) This CandidateSet contains sequences identified by William Pearson's analysis of Reactome catalyst entities. Catalyst entity sequences were used to identify analagous sequences that shared overall homology and active site homology. Sequences in this Candidate set were identified in an April 24, 2012 analysis.
SLC22A11 ProteinQ9NSA0 (Uniprot-TrEMBL)
SLC22A12ProteinQ96S37 (Uniprot-TrEMBL)
SLC22A15 ProteinQ8IZD6 (Uniprot-TrEMBL)
SLC22A16 ProteinQ86VW1 (Uniprot-TrEMBL)
SLC22A18 substratesComplexR-ALL-597604 (Reactome)
SLC22A18 substratesComplexR-ALL-597623 (Reactome)
SLC22A18ProteinQ96BI1 (Uniprot-TrEMBL)
SLC22A2 ProteinO15244 (Uniprot-TrEMBL)
SLC22A3ProteinO75751 (Uniprot-TrEMBL)
SLC22A4 ProteinQ9H015 (Uniprot-TrEMBL)
SLC22A4, 5,15,16ComplexR-HSA-597614 (Reactome)
SLC22A4ProteinQ9H015 (Uniprot-TrEMBL)
SLC22A5 ProteinO76082 (Uniprot-TrEMBL)
SLC22A6 ProteinQ4U2R8 (Uniprot-TrEMBL)
SLC22A7 ProteinQ9Y694 (Uniprot-TrEMBL)
SLC22A8 ProteinQ8TCC7 (Uniprot-TrEMBL)
SLC2A13ProteinQ96QE2 (Uniprot-TrEMBL)
SLC30A10ProteinQ6XR72 (Uniprot-TrEMBL)
SLC30A1ProteinQ9Y6M5 (Uniprot-TrEMBL)
SLC30A2 ProteinQ9BRI3 (Uniprot-TrEMBL)
SLC30A2ProteinQ9BRI3 (Uniprot-TrEMBL)
SLC30A3 ProteinQ99726 (Uniprot-TrEMBL)
SLC30A3-like ProteinComplexR-HSA-4084713 (Reactome) This CandidateSet contains sequences identified by William Pearson's analysis of Reactome catalyst entities. Catalyst entity sequences were used to identify analagous sequences that shared overall homology and active site homology. Sequences in this Candidate set were identified in an April 24, 2012 analysis.
SLC30A5ProteinQ8TAD4 (Uniprot-TrEMBL)
SLC30A6ProteinQ6NXT4 (Uniprot-TrEMBL)
SLC30A7ProteinQ8NEW0 (Uniprot-TrEMBL)
SLC30A8ProteinQ8IWU4 (Uniprot-TrEMBL)
SLC31A1ProteinO15431 (Uniprot-TrEMBL)
SLC39A1 ProteinQ9NY26 (Uniprot-TrEMBL)
SLC39A1-4ComplexR-HSA-442327 (Reactome)
SLC39A10ProteinQ9ULF5 (Uniprot-TrEMBL)
SLC39A14 ProteinQ15043 (Uniprot-TrEMBL)
SLC39A2 ProteinQ9NP94 (Uniprot-TrEMBL)
SLC39A3 ProteinQ9BRY0 (Uniprot-TrEMBL)
SLC39A4 ProteinQ6P5W5 (Uniprot-TrEMBL)
SLC39A5ProteinQ6ZMH5 (Uniprot-TrEMBL)
SLC39A6 ProteinQ13433 (Uniprot-TrEMBL)
SLC39A7ProteinQ92504 (Uniprot-TrEMBL)
SLC39A8 ProteinQ9C0K1 (Uniprot-TrEMBL)
SLC39A8-like proteinsComplexR-HSA-4127409 (Reactome) This CandidateSet contains sequences identified by William Pearson's analysis of Reactome catalyst entities. Catalyst entity sequences were used to identify analagous sequences that shared overall homology and active site homology. Sequences in this Candidate set were identified in an April 24, 2012 analysis.
SLC40A1 ProteinQ9NP59 (Uniprot-TrEMBL)
SLC40A1:CP:6Cu2+ComplexR-HSA-904825 (Reactome)
SLC40A1:HEPH:6Cu2+ComplexR-HSA-904821 (Reactome)
SLC41A1 ProteinQ8IVJ1 (Uniprot-TrEMBL)
SLC41A1,2ComplexR-HSA-442654 (Reactome)
SLC41A2 ProteinQ96JW4 (Uniprot-TrEMBL)
SLC44A1 ProteinQ8WWI5 (Uniprot-TrEMBL)
SLC44A2 ProteinQ8IWA5 (Uniprot-TrEMBL)
SLC44A3 ProteinQ8N4M1 (Uniprot-TrEMBL)
SLC44A4 ProteinQ53GD3 (Uniprot-TrEMBL)
SLC44A5 ProteinQ8NCS7 (Uniprot-TrEMBL)
SLC47A1 ProteinQ96FL8 (Uniprot-TrEMBL)
SLC47A2 ProteinQ86VL8 (Uniprot-TrEMBL)
SLC5A11ProteinQ8WWX8 (Uniprot-TrEMBL)
SLC5A3ProteinP53794 (Uniprot-TrEMBL)
SLC5A7ProteinQ9GZV3 (Uniprot-TrEMBL)
SLC6A GABA transportersComplexR-HSA-444011 (Reactome)
SLC6A1 ProteinP30531 (Uniprot-TrEMBL)
SLC6A11 ProteinP48066 (Uniprot-TrEMBL)
SLC6A12ProteinP48065 (Uniprot-TrEMBL)
SLC6A13 ProteinQ9NSD5 (Uniprot-TrEMBL)
SLC6A14 ligandsComplexR-ALL-375459 (Reactome)
SLC6A14 ligandsComplexR-ALL-375468 (Reactome)
SLC6A14ProteinQ9UN76 (Uniprot-TrEMBL)
SLC6A15ProteinQ9H2J7 (Uniprot-TrEMBL)
SLC6A18ProteinQ96N87 (Uniprot-TrEMBL)
SLC6A19ProteinQ695T7 (Uniprot-TrEMBL)
SLC6A20ProteinQ9NP91 (Uniprot-TrEMBL)
SLC6A2ProteinP23975 (Uniprot-TrEMBL)
SLC6A3ProteinQ01959 (Uniprot-TrEMBL)
SLC6A5 ProteinQ9Y345 (Uniprot-TrEMBL)
SLC6A5,9ComplexR-HSA-444088 (Reactome)
SLC6A6ProteinP31641 (Uniprot-TrEMBL)
SLC6A7ProteinQ99884 (Uniprot-TrEMBL)
SLC6A9 ProteinP48067 (Uniprot-TrEMBL)
SO4(2-)MetaboliteCHEBI:16189 (ChEBI)
SPM MetaboliteCHEBI:16610 (ChEBI)
SPN MetaboliteCHEBI:15746 (ChEBI)
SUCCA MetaboliteCHEBI:30031 (ChEBI)
SUCCAMetaboliteCHEBI:30031 (ChEBI)
Sodium dependent

Serotonin

transporter
R-HSA-380618 (Reactome)
TAU MetaboliteCHEBI:15891 (ChEBI)
TMAM MetaboliteCHEBI:46020 (ChEBI)
Urea transportersComplexR-HSA-444114 (Reactome)
UreaMetaboliteCHEBI:16199 (ChEBI)
VMAT1/2ComplexR-HSA-444147 (Reactome)
ZIP6/ZIP14ComplexR-HSA-442330 (Reactome)
Zn2+ MetaboliteCHEBI:29105 (ChEBI)
Zn2+MetaboliteCHEBI:29105 (ChEBI)
b-Ala MetaboliteCHEBI:16958 (ChEBI)
bHBA MetaboliteCHEBI:37054 (ChEBI)
ligands of SLC6A12 (BGT-1)ComplexR-ALL-351982 (Reactome)
ligands of SLC6A12 (BGT-1)ComplexR-ALL-352007 (Reactome)
ligands of SLC6A15ComplexR-ALL-352048 (Reactome)
ligands of SLC6A15ComplexR-ALL-352051 (Reactome)
ligands of SLC6A6ComplexR-ALL-352019 (Reactome)
ligands of SLC6A6ComplexR-ALL-352024 (Reactome)
neutral amino acidsComplexR-ALL-375458 (Reactome)
neutral amino acidsComplexR-ALL-375481 (Reactome)
taurolithocholate sulfateMetaboliteCHEBI:17864 (ChEBI)
urateMetaboliteCHEBI:17775 (ChEBI)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
2OGArrowR-HSA-561041 (Reactome)
2OGArrowR-HSA-561059 (Reactome)
2OGR-HSA-561041 (Reactome)
2OGR-HSA-561059 (Reactome)
5HTArrowR-HSA-380620 (Reactome)
5HTR-HSA-380620 (Reactome)
Biogenic amines

transported by

VMAT1/2
ArrowR-HSA-444160 (Reactome)
Biogenic amines

transported by

VMAT1/2
R-HSA-444160 (Reactome)
CARArrowR-HSA-549297 (Reactome)
CARR-HSA-549297 (Reactome)
CITArrowR-HSA-433104 (Reactome)
CITR-HSA-433104 (Reactome)
CTL1-5mim-catalysisR-HSA-444433 (Reactome)
ChoArrowR-HSA-429594 (Reactome)
ChoArrowR-HSA-444433 (Reactome)
ChoR-HSA-429594 (Reactome)
ChoR-HSA-444433 (Reactome)
Cl-ArrowR-HSA-351987 (Reactome)
Cl-ArrowR-HSA-352029 (Reactome)
Cl-ArrowR-HSA-375487 (Reactome)
Cl-ArrowR-HSA-429594 (Reactome)
Cl-ArrowR-HSA-444007 (Reactome)
Cl-ArrowR-HSA-444100 (Reactome)
Cl-ArrowR-HSA-444120 (Reactome)
Cl-R-HSA-351987 (Reactome)
Cl-R-HSA-352029 (Reactome)
Cl-R-HSA-375487 (Reactome)
Cl-R-HSA-429594 (Reactome)
Cl-R-HSA-444007 (Reactome)
Cl-R-HSA-444100 (Reactome)
Cl-R-HSA-444120 (Reactome)
Cu2+ArrowR-HSA-437300 (Reactome)
Cu2+R-HSA-437300 (Reactome)
DAArrowR-HSA-379393 (Reactome)
DAR-HSA-379393 (Reactome)
Dicarboxylates

transported by

NaDC1
ArrowR-HSA-433131 (Reactome)
Dicarboxylates

transported by

NaDC1
R-HSA-433131 (Reactome)
Divalent metals

transported by

NRAMP1
ArrowR-HSA-435171 (Reactome)
Divalent metals

transported by

NRAMP1
R-HSA-435171 (Reactome)
ERGTArrowR-HSA-549241 (Reactome)
ERGTR-HSA-549241 (Reactome)
Fe2+ArrowR-HSA-435349 (Reactome)
Fe2+ArrowR-HSA-442368 (Reactome)
Fe2+ArrowR-HSA-904830 (Reactome)
Fe2+R-HSA-435349 (Reactome)
Fe2+R-HSA-442368 (Reactome)
Fe2+R-HSA-904830 (Reactome)
GABAArrowR-HSA-444007 (Reactome)
GABAR-HSA-444007 (Reactome)
GlyArrowR-HSA-351963 (Reactome)
GlyArrowR-HSA-444120 (Reactome)
GlyR-HSA-351963 (Reactome)
GlyR-HSA-444120 (Reactome)
H+ArrowR-HSA-429101 (Reactome)
H+ArrowR-HSA-433698 (Reactome)
H+ArrowR-HSA-434650 (Reactome)
H+ArrowR-HSA-435171 (Reactome)
H+ArrowR-HSA-435349 (Reactome)
H+ArrowR-HSA-444393 (Reactome)
H+ArrowR-HSA-444419 (Reactome)
H+ArrowR-HSA-446277 (Reactome)
H+ArrowR-HSA-446278 (Reactome)
H+ArrowR-HSA-597628 (Reactome)
H+ArrowR-HSA-9645220 (Reactome)
H+R-HSA-429101 (Reactome)
H+R-HSA-433698 (Reactome)
H+R-HSA-434650 (Reactome)
H+R-HSA-435171 (Reactome)
H+R-HSA-435349 (Reactome)
H+R-HSA-444393 (Reactome)
H+R-HSA-444419 (Reactome)
H+R-HSA-446277 (Reactome)
H+R-HSA-446278 (Reactome)
H+R-HSA-597628 (Reactome)
H+R-HSA-9645220 (Reactome)
Inositols

transported by

SMIT2
ArrowR-HSA-429571 (Reactome)
Inositols

transported by

SMIT2
R-HSA-429571 (Reactome)
InsArrowR-HSA-429101 (Reactome)
InsArrowR-HSA-429663 (Reactome)
InsR-HSA-429101 (Reactome)
InsR-HSA-429663 (Reactome)
L-ProArrowR-HSA-352052 (Reactome)
L-ProArrowR-HSA-444100 (Reactome)
L-ProR-HSA-352052 (Reactome)
L-ProR-HSA-444100 (Reactome)
LACTArrowR-HSA-561253 (Reactome)
LACTR-HSA-561253 (Reactome)
MATE substratesArrowR-HSA-434650 (Reactome)
MATE substratesR-HSA-434650 (Reactome)
MATE1/2mim-catalysisR-HSA-434650 (Reactome)
MCT substratesArrowR-HSA-433698 (Reactome)
MCT substratesArrowR-HSA-9645220 (Reactome)
MCT substratesR-HSA-433698 (Reactome)
MCT substratesR-HSA-9645220 (Reactome)
Mg2+ArrowR-HSA-442661 (Reactome)
Mg2+R-HSA-442661 (Reactome)
Mn2+ArrowR-HSA-8959798 (Reactome)
Mn2+R-HSA-8959798 (Reactome)
NAdArrowR-HSA-374896 (Reactome)
NAdArrowR-HSA-443997 (Reactome)
NAdR-HSA-374896 (Reactome)
NAdR-HSA-443997 (Reactome)
NH4+ArrowR-HSA-444393 (Reactome)
NH4+ArrowR-HSA-444416 (Reactome)
NH4+ArrowR-HSA-444419 (Reactome)
NH4+ArrowR-HSA-446277 (Reactome)
NH4+ArrowR-HSA-446278 (Reactome)
NH4+R-HSA-444393 (Reactome)
NH4+R-HSA-444416 (Reactome)
NH4+R-HSA-444419 (Reactome)
NH4+R-HSA-446277 (Reactome)
NH4+R-HSA-446278 (Reactome)
Na+ArrowR-HSA-351987 (Reactome)
Na+ArrowR-HSA-352029 (Reactome)
Na+ArrowR-HSA-352052 (Reactome)
Na+ArrowR-HSA-352059 (Reactome)
Na+ArrowR-HSA-375473 (Reactome)
Na+ArrowR-HSA-375487 (Reactome)
Na+ArrowR-HSA-379393 (Reactome)
Na+ArrowR-HSA-380620 (Reactome)
Na+ArrowR-HSA-429571 (Reactome)
Na+ArrowR-HSA-429594 (Reactome)
Na+ArrowR-HSA-429663 (Reactome)
Na+ArrowR-HSA-433089 (Reactome)
Na+ArrowR-HSA-433099 (Reactome)
Na+ArrowR-HSA-433101 (Reactome)
Na+ArrowR-HSA-433104 (Reactome)
Na+ArrowR-HSA-433114 (Reactome)
Na+ArrowR-HSA-433131 (Reactome)
Na+ArrowR-HSA-443997 (Reactome)
Na+ArrowR-HSA-444007 (Reactome)
Na+ArrowR-HSA-444100 (Reactome)
Na+ArrowR-HSA-444120 (Reactome)
Na+ArrowR-HSA-549241 (Reactome)
Na+ArrowR-HSA-549297 (Reactome)
Na+R-HSA-351987 (Reactome)
Na+R-HSA-352029 (Reactome)
Na+R-HSA-352052 (Reactome)
Na+R-HSA-352059 (Reactome)
Na+R-HSA-375473 (Reactome)
Na+R-HSA-375487 (Reactome)
Na+R-HSA-379393 (Reactome)
Na+R-HSA-380620 (Reactome)
Na+R-HSA-429571 (Reactome)
Na+R-HSA-429594 (Reactome)
Na+R-HSA-429663 (Reactome)
Na+R-HSA-433089 (Reactome)
Na+R-HSA-433099 (Reactome)
Na+R-HSA-433101 (Reactome)
Na+R-HSA-433104 (Reactome)
Na+R-HSA-433114 (Reactome)
Na+R-HSA-433131 (Reactome)
Na+R-HSA-443997 (Reactome)
Na+R-HSA-444007 (Reactome)
Na+R-HSA-444100 (Reactome)
Na+R-HSA-444120 (Reactome)
Na+R-HSA-549241 (Reactome)
Na+R-HSA-549297 (Reactome)
OAT1-3 substratesArrowR-HSA-561041 (Reactome)
OAT1-3 substratesR-HSA-561041 (Reactome)
OAT1-3mim-catalysisR-HSA-561041 (Reactome)
OAT2/4 sulfate

conjugate

substrates
ArrowR-HSA-561059 (Reactome)
OAT2/4 sulfate

conjugate

substrates
R-HSA-561059 (Reactome)
OAT2/4mim-catalysisR-HSA-561059 (Reactome)
OCT1 substratesArrowR-HSA-549129 (Reactome)
OCT1 substratesArrowR-HSA-549322 (Reactome)
OCT1 substratesR-HSA-549129 (Reactome)
OCT1 substratesR-HSA-549322 (Reactome)
OCT1mim-catalysisR-HSA-549129 (Reactome)
OCT1mim-catalysisR-HSA-549322 (Reactome)
OCT2 substratesArrowR-HSA-549279 (Reactome)
OCT2 substratesArrowR-HSA-561054 (Reactome)
OCT2 substratesR-HSA-549279 (Reactome)
OCT2 substratesR-HSA-561054 (Reactome)
OCT3 substratesArrowR-HSA-549304 (Reactome)
OCT3 substratesArrowR-HSA-561072 (Reactome)
OCT3 substratesR-HSA-549304 (Reactome)
OCT3 substratesR-HSA-561072 (Reactome)
R-HSA-351963 (Reactome) The protein SLC6A18 was first identified as an amino acid transporter based on sequence similarity to other members of the SLC6 protein family (Hoglund et al. 2005). It is annotated here as mediating glycine uptake based on the phenotype of mice homozygous for a null mutation in the homologous gene (Quan et al. 2004).
R-HSA-351987 (Reactome) The plasma membrane transport protein SLC6A6 mediates the uptake of taurine and beta-alanine. Together with each amino acid molecule, 2 sodium ions and 1 chloride ion are taken up. SLC6A6 is widely expressed in the body (Ramamoorthy et al. 1994).
R-HSA-352029 (Reactome) The plasma membrane transport protein SLC6A12 (BGT-1) mediates the uptake of GABA (gamma-aminobutyrate) and betaine and, less efficiently, of diminobutyrate (DABA) and beta-alanine. Together with each amino acid molecule, 3 sodium ions and 2 chloride ions are taken up. In the body, SLC6A12 is expressed in the proximal tubules of the kidney and cells of the central nervous system (Rasola et al. 1995; Matskevitch et al. 1999).
R-HSA-352052 (Reactome) SLC6A20, associated with the plasma membrane, mediates the uptake of proline plus a sodium ion. The human protein is expressed in the intestine and kidney (Takanaga et al. 2005).
R-HSA-352059 (Reactome) SLC6A15, associated with the plasma membrane, mediates the uptake of a broad range of amino acids plus a sodium ion, transporting branched-chain amiono acids and methionine most efficiently. The human protein is expressed in the brain (Takanaga et al. 2005).
R-HSA-374896 (Reactome) Noradrenaline is cleared from the synaptic cleft by Noaradrenaline uptake transporter. This reaction is carried out by neurons as well as astrocytes.
R-HSA-375473 (Reactome) SLC6A19 mediates the uptake of neutral amino acids across the plasma membrane. Uptake of an amino acid molecule is accompanied by uptake of a sodium ion. The protein is abundant in cells in the small intestine and kidney. Its deficiency is associated with Hartnup disorder, the failure to take up neutral amino acids efficiently from the gut lumen and to reabsorb them in the proximal kidney tubule (Kleta et al. 2004, Seow et al. 2004).
R-HSA-375487 (Reactome) SLC6A14, associated with the plasma membrane, mediates the uptake of multiple basic and nonpolar amino acids as well as beta-alanine. Uptake of one amino acid molecule is accompanied by uptake of two sodium ions and a chloride ion. As assessed by Northern blotting, SLC6A14 is expressed at high levels in lung but only at low levels, if at all, in intestine or kidney (Sloan & Mager 1999, Anderson et al. 2008).
R-HSA-379393 (Reactome) The human gene SLC6A3 encodes the sodium-dependent dopamine transporter, DAT which mediates the re-uptake of dopamine from the synaptic cleft (Vandenbergh DJ et al, 2000). Dopamine can then be degraded by either COMT or monoamine oxidase.
R-HSA-380620 (Reactome) The human gene SLC6A4 encodes the sodium-dependent serotonin transporter 5HTT which mediates the re-uptake of serotonin from the synaptic cleft thus terminating the action of serotonin (Canli T and Lesch KP, 2007). The serotonin taken up in the cytosol from the synaptic cleft may be recycled into synaptic vesicles or metabolized.
R-HSA-429101 (Reactome) SLC2A13 encodes a H+/myo-inositol co-transporter, HMIT (Uldry M et al, 2001) which is abundantly expressed in the brain. A proton is co-transported with myo-inositol uptake into cells. No glucose transport function has been detected to date.
R-HSA-429571 (Reactome) The human SLC5A11 gene encodes a high affinity myo-inositol transporter (SMIT2, SGLT6) (Ostlund RE et al, 1996; Roll P et al, 2002). It can transport myo-inositol and D-chiro-inositol, together with two Na+ ions. It was thought SGLT6 could transport glucose but there is no evidence for this so far (Lin X et al, 2009).
R-HSA-429594 (Reactome) The human SLC5A7 gene encodes a sodium- and chloride-dependent, high affinity choline transporter, CHT (Apparsundaram et al. 2000). CHT transports choline (Cho) from the extracellular space into neuronal cells and is dependent on Na+ and Cl- ions for transport (Okuda & Haga 2000). Choline uptake is the rate-limiting step in acetylcholine synthesis.
R-HSA-429663 (Reactome) The human SLC5A3 gene encodes a Na+/myo-inositol (Ins) transporter also known as SMIT1 (Berry et al. 1995). The stoichiometry and inositol specificity of the human transport reaction are inferred from the properties of cloned canine protein expressed in Xenopus oocytes (Hager et al. 1995). SMIT1 functions in cellular osmoregulation and is expressed in many human tissues including skeletal muscle, brain, kidney, and placenta.
R-HSA-433089 (Reactome) The human SLC10A6 gene encodes a sodium-dependant organic anion transporter, SOAT. Highest expressions of the gene are in testis, placenta and pancreas. Unlike the other SLC10A gene products, SOAT shows no affinity for binding bile acids. However, SOAT is able to transport sulpho-conjugated bile acids such as taurolithocholate 3-sulphate (Geyer J et al, 2007). It can also transport the structurally similar sulphated steroids (not shown here), thus SOAT may play a role in delivery of these prohormones to testis, pancreas and placenta.
R-HSA-433099 (Reactome) The human gene SLC13A4 encodes a sodium/sulphate co-transporter NaS2 (Girard JP et al, 1999). NaS2 is highly expressed in placenta and testis, mainly in high endothelial venules. Kinetic experiments suggest two sodium ions co-transported for every sulphate ion (Markovich D et al, 2005).
R-HSA-433101 (Reactome) Mammalian sodium/dicarboxylate cotransporters (transport succinate and other Krebs cycle intermediates) fall into two categories based on their substrate affinity. The human gene SLC13A3 encodes a high-affinity sodium/dicarboxlate co-transporter, NaDC3. NaDC3 is expressed in the basolateral membrane of renal proximal tubular epithelial cells, sinusoidal membrane of hepatocytes, and brain synaptosomes. Kinetic studies in human retinal pigment epithelial (HRPE) cells suggest three sodium ions co-transported with every divalent succinate (Wang H et al, 2000).
R-HSA-433104 (Reactome) The human SLC13A5 gene encodes a sodium-coupled citrate transporter, NACT. This gene is expressed mainly in the liver, with lower levels in brain and testis. NACT has a preference for trivalent citrate (Inoue K et al, 2002).
R-HSA-433114 (Reactome) The human gene SLC13A1 encodes a sodium/sulphate co-transporter NaS1 (Lee A et al, 2000). NaS1 is almost exclusively expressed in the kidney and mediates sulphate reabsorption there.
R-HSA-433131 (Reactome) Mammalian sodium/dicarboxylate cotransporters (transport succinate and other Krebs cycle intermediates) fall into two categories based on their substrate affinity. The human gene SLC13A2 encodes a low-affinity sodium/dicarboxlate co-transporter, NaDC1. NaDC1 is highly expressed in the brush-border membranes of kidney and intestinal cells and reabsorbs Krebs cycle intermediates, such as succinate and citrate, from the glomerular filtrate (Pajor AM, 1996).
R-HSA-433698 (Reactome) Four members of the SLC16A gene family encode classical monocarboxylate transporters, MCT1-4. They all function as proton-dependent transporters of monocarboxylic acids such as lactate and pyruvate and ketone bodies such as acetacetate and beta-hydroxybutyrate. These processes are crucial in the regulation of energy metabolism and acid-base homeostasis.

SLC16A1 encodes MCT1, a ubiquitiously expressed protein (Garcia et al. 1994). Defects in SLC16A1 are the cause of symptomatic deficiency in lactate transport (SDLT), resulting in an acidic intracellular environment and muscle degeneration (Merezhinskaya et al. 2000). Activating promotor mutations in SLC16A1 are associated with exercise-induced hyperinsulinism (EIHI), a dominantly inherited hypoglycemic disorder characterized by inappropriate insulin secretion during anaerobic exercise or on pyruvate load (Otonkoski et al. 2000). SLC16A7 encodes MCT2, a high affinity pyruvate transporter highly expressed in testis (Lin et al. 1998). SLC16A8 encodes MCT3 (Yoon et al. 1999).

Human RPE (retinal pigment epithelial) cells express two proton-coupled monocarboxylate transporters: MCT1 in the apical membrane and MCT3 in the basolateral membrane. This suggests that the coordinated activities of these two transporters could facilitate the transepithelial transport of lactate from the retina to the choroid. (Philip et al. 2003). MCTs require the binding of a single transmembrane glycoprotein (either embigin (EMB) or basigin (BSG)) for activity (Halestrap 2013).
R-HSA-434650 (Reactome) The human gene family SLC47 encodes 2 multidrug and toxin extrusion (MATE) proteins. Mammalian MATE-type transporters are responsible for the final step in the excretion of metabolic waste and xenobiotic organic cations in the kidney and liver through electroneutral exchange of H(+).
MATE1 is primarily expressed in the kidney and liver, where it is localized to the luminal membranes of the urinary tubules and bile canaliculi. When expressed in HEK293 cells, MATE1 mediates H(+)-coupled electroneutral exchange of various drugs (Otsuka M et al, 2005). MATE2 is a human kidney-specific H+/organic cation antiporter that is responsible for the tubular secretion of cationic drugs across the brush border membranes (Masuda S et al, 2006). Substrates for both MATEs include tetraethylammonium, 1-methyl-4-phenylpyridinium, cimetidine, metformin, creatinine, guanidine and procainamide (Tanihara Y et al, 2007).
R-HSA-435171 (Reactome) Natural resistance-associated macrophage proteins (NRAMPs) regulate macrophage activation for antimicrobial activity against intracellular pathogens. They do this by mediating bivalent metal ion transport across macrophage membranes and the subsequent use of these ions in the Fenton/and or Haber–Weiss reactions of free radical formation.
The human gene SLC11A1 encodes NRAMP1 (Kishi F, 2004; Kishi F and Nobumoto M, 1995) which can utilize the protonmotive force to mediate divalent iron (Fe2+), zinc (Zn2+) and manganese (Mn2+) influx to or efflux from phagosomes.
R-HSA-435349 (Reactome) The primary site for absorption of dietary iron is the duodenum. Ferrous iron (Fe2+) is taken up from the gut lumen across the apical membranes of enterocytes and released into the portal vein circulation across basolateral membranes. The human gene SLC11A2 encodes the divalent cation transporter DCT1 (NRAMP2, Natural resistance-associated macrophage protein 2). DCT1 resides on the apical membrane of enterocytes and mediates the uptake of many metal ions, particularly ferrous iron, into these cells (Tandy et al. 2000).
R-HSA-435366 (Reactome) The human gene SLC30A1 encodes the zinc transporter ZnT1. It is widely expressed throughout the body and it's expression is regulated by zinc. ZnT1 is the only member of the SLC30 gene family that is located on the plasma membrane and mediates the transport of zinc out of the cell (Devergnas S et al, 2004).
R-HSA-435375 (Reactome) The human gene SLC30A2 encodes zinc transporter ZnT2. Its function is inferred from experiments using rat Znt2 (Palmiter RD et al, 1996).
R-HSA-437084 (Reactome) The human gene SLC30A3 encodes zinc transporter ZnT3. Through experiments on the mouse homologue Znt3, it is thought this transporter is expressed mainly in brain and testis and mediated the accumulation of zinc into synaptic vesicles (Palmiter et al, 1996).
R-HSA-437085 (Reactome) The human gene SLC30A5 encodes the zinc transporter ZnT5. This protein is widely expressed but is most abundant in pancreatic beta cells (Kambe T et al, 2002). In these cells, ZnT5 mediates the transport of zinc into secretory granules that contain insulin.
R-HSA-437129 (Reactome) The human gene SLC30A7 encodes the zinc transporter ZnT7. It is thought to be present in the small intestine and lung in humans (Kirschke CP and Huang L, 2003). Functional properties assigned to ZnT7 are based on studies conducted with mouse experiments.
R-HSA-437136 (Reactome) The human SLC30A8 gene encodes the zinc transporter ZnT8 which is specifically expressed in pancreatic beta cells (Chimienti et al. 2005). Zinc is required for zinc-insulin crystallization within secretory vesicles of these cells. After glucose stimulation, large amounts of zinc are secreted locally in the extracellular matrix together with insulin. It has been suggested that this co-secreted zinc plays a role in islet cell paracrine and/or autocrine communication (Chimienti F et al, 2006). Loss of function mutations in SLC30A8 are strongly protective against type 2 diabetes, suggesting SLC20A8 inhibition as a therapeutic target in T2D prevention. (Flannick et al. 2014).
R-HSA-437139 (Reactome) Two human genes mediate the transport of zinc into the TGN and they are both localized to the TGN. The human gene SLC30A6 encodes the zinc transporter ZnT6. By Western blot studies, ZnT6 is only found in the brain and lung in human (Huang L et al, 2002).
R-HSA-437300 (Reactome) Copper (Cu2+) is essential for many important biological processes such as mitochondrial oxidative phosphorylation, detoxification of free radicals, iron metabolism and neurotransmiter synthesis. Too much influx results in cell poisoning. In humans, there are two member of the SLC31 gene family that are implicated in copper transport. The human gene SLC31A1 encodes human copper transporter 1, hCTR1 and is ubiquitiously expressed, with highest levels seen in the liver.. It was first identified by functional complementation in ctr1-deficient yeast (Zhou B and Gitschier J, 1997). hCTR1 exists as a homotrimer at the plasma membrane of cells (De Feo CJ et al, 2007) and is responsible for high-affinity copper uptake (Lee J et al, 2002). The second gene product, hCTR2, has not be characterized yet.
R-HSA-442317 (Reactome) The human gene SLC39A6 encodes the zinc transporter ZIP6 (LIV-1). The gene is oestrogen-regulated and has been implicated in metastatic breast cancer. ZIP6 mediates the transport of zinc into cells, is localized to the plasma membrane and is expressed mainly in hormonal tissues such as breast, prostate and brain (Taylor KM et al, 2003).

The human gene SLC39A14 encodes the zinc transporter ZIP14. This protein is ubiquitously expressed with higher expression seen in heart, liver and pancreas. ZIP14 is localized to the plasma membrane and mediates zinc influx into cells (Taylor KM et al, 2005).
R-HSA-442345 (Reactome) The human gene SLC39A10 encodes the zinc transporter hZIP10. It is thought to be involved in the invasive behaviour of breast cancer cells where depletion of hZIP10 and intracellular zinc levels inhibit the migratory effects these cells (Kagara N et al, 2007). Functional characterization of this transporter was elucidated in the rat orthologue rZip10.
R-HSA-442368 (Reactome) The primary site for absorption of dietary iron is the duodenum. Ferrous iron (Fe2+) is taken up from the gut lumen across the apical membranes of enterocytes and released into the portal vein circulation across basolateral membranes.
The human gene SLC40A1 encodes the metal transporter protein MTP1 (aka ferroportin or IREG1). This protein resides on the basolateral membrane of enterocytes and mediates ferrous iron efflux into the portal vein (Schimanski et al. 2005). MTP1 colocalizes with hephaestin (HEPH) which stablizes MTP1 and is necessary for the efflux reaction to occur (Han & Kim 2007, Chen et al. 2009). As well as the dudenum, MTP1 is also highly expressed on macrophages (where it mediates iron efflux from the breakdown of haem) and the placenta (where it may mediate the transport of iron from maternal to foetal circulation). It is also expressed in muscle and spleen.
R-HSA-442387 (Reactome) The human gene SLC39A8 encodes the zinc transporter ZIP8 (BIGM103, BCG-induced integral membrane protein in monocyte clone 103 protein). It is highly expressed in the pancreas and localized to the plasma membrane where it mediates the influx of zinc into the cell (Besecker B et al, 2008). The highly homologous mouse ZIP8 have been shown to play important roles in regulating zinc homeostasis and determining sensitivity to cadmium toxicity in mouse testicular endothelium and kidney tissue. It is expected the human transporter plays a similar role (He L et al, 2009). ZIP8 belongs to the LZT subfamily of ZIP transporters.
R-HSA-442393 (Reactome) The human gene SLC39A7 encodes the zinc transporter ZIP7 (HKE4, Histidine-rich membrane protein Ke4). It is expressed in many tissues but especially in liver, kidney and the hormonal tissues apart from brain. Unlike the other members of the LZT subfamily, ZIP7 is localized to intracellular membranes of the ER rather than the plasma membrane and mediates zinc efflux into the cytoplasm (Taylor KM et al, 2004).
R-HSA-442405 (Reactome) The human gene SLC39A5 encodes the zinc transporter hZIP5 (Wang F et al, 2004). Highest expressions are seen in liver, kidney, pancreas and throughout the small intestine and colon with little expression detected in other tissues. hZIP5 is localized to the basolateral membrane of cells in these tissues. The functionality of ZIP5 as a zinc transporter was determined using mouse protein (mZIP5) (Wang F et al, 2004).
R-HSA-442422 (Reactome) The human gene SLC39A1 encodes the human zinc transporter hZIP1. It is ubiquitously expressed (Lioumi M et al, 1999) and mediates the influx of zinc into cells (Gaither LA and Eide DJ, 2001).
The human gene SLC39A2 encodes the zinc transporter hZIP2. It is expressed exclusively in prostate and uterine epithelial cells and mediates zinc transport into cells (Gaither LA and Eide DJ, 2000).

Normal prostate cells have the ability to accumulate high levels of zinc. In prostate cancer, hZIP1-3 transporters are down-regulated and the cells lose the ability to accumulate zinc. Zinc plays a role as a tumour-suppressing agent thus prostate cells can become cancerous. Silencing of the genes that express hZIP1-3 transporters is a required event for malignancy (Costello LC et al, 1999; Desouki MM et al, 2007).

The human gene SLC39A4 encodes the zinc transporter hZIP4 (Kury S et al, 2002). The role of zinc in tumour progression is complicated and, subsequently, so are the role of ZIP transporters. For example, ZIP4 can actually enhance cancer progression (Li M et al, 2007; Li M et al, 2009). Defects in SLC39A4 result in the inherited condition acrodermatitis enteropathica (AE) results from defective absorption of dietary zinc from the duodenum and jejunum. Clinical features include growth retardation, immune system dysfunction, severe dermatitis and mental disorders (Wang K et al, 2002).
R-HSA-442661 (Reactome) Magnesium (Mg2+) is an abundant cation that is important for many intracellular biochemical functions, especially as a cofactor for ATP. Intracellular Mg2+ concentrations must be finely regulated and recently, transporters for this cation have been elucidated. The human genes SLC41A1 and SLC41A2 encode magnesium transport proteins 1 and 2 respectively (MagT1 and MagT2). They both mediate the uptake of Mg2+ into cells (Goytain A and Quamme GA, 2005; Sahni J et al, 2007). A third human gene, SLC41A3, is also thought to encode a MagT protein but has not been characterized yet.
R-HSA-443997 (Reactome) Noradrenaline (NAd, norepinephrine) is a neurotransmitter whose action is mediated by the noradrenaline transporter NAT1. NAT1 is a monoamine transporter that transports noradrenaline from the synapse back to its vesicles for storage until later use. NAT1 is encoded by the human gene SLC6A2 and is expressed in the CNS and adrenal gland (Pacholczyk et al. 1991). Defects in SLC6A2 results in orthostatic intolerance (OI), which is a syndrome characterized by lightheadedness, fatigue and development of symptoms during upright standing, relieved by sitting back down again (Shannon et al. 2000).
R-HSA-444007 (Reactome) Four transporters mediate GABA uptake in the brain, GAT1-3 and BGT1. They terminates the action of GABA by high affinity sodium-dependent reuptake into presynaptic terminals. Transport of GABA by GAT1-3 is proposed to be accompanied by 2Na+ ions and 1 Cl- ion (Loo DD et al, 2000).

SLC6A1 encodes a sodium- and chloride-dependent GABA transporter 1, GAT1, which is the predominant GABA transporter in brain. It is widely distributed in the brain and co-localized to GABAergic neurons (Nelson H et al, 1990). SLC6A13 encodes a sodium- and chloride-dependent GABA transporter 2, GAT2, which is localized to GABAergic neurons in the brain. It is also found in retina, liver and kidney (Christiansen B et al, 2007). SLC6A11 encodes a sodium- and chloride-dependent GABA transporter 3, GAT3. It is expressed in the brain and localizes to GABAergic neurons (Borden LA et al, 1994).
R-HSA-444100 (Reactome) The amino acid L-proline can act as a neurotransmitter. Its actions are terminated by its re-uptake from the synaptic cleft into the pre-synaptic terminal in the brain. This re-uptake is mediated by a sodium-dependent proline transporter, PROT (Shafqat S et al, 1995).
R-HSA-444120 (Reactome) The amino acid glycine plays an important role in neurotransmission. Its action is terminated by rapid re-uptake into the pre-synaptic terminal or surrounding glial cells. This re-uptake is mediated by the sodium- and chloride-dependent glycine transporters 1 and 2 (GLYT1 and GLYT2 respectively). GLYT1 is encoded by the human gene SLC6A9 and is expressed in the brain, liver, kidney, pancreas, lung and placenta (Kim KM et al, 1994). GLYT2 is encoded by the human gene SLC6A5 and is predominantly expressed in the medulla (Morrow JA et al, 1998). Defects in SLC6A5 cause startle disease (STHE or hyperekplexia). STHE is is a human neurological disorder characterized by an excessive startle response (Rees MI et al, 2006).
R-HSA-444126 (Reactome) Carrier-mediated urea transport allows rapid urea movement across the cell membrane, which is particularly important in the process of urinary concentration and for rapid urea equilibrium in non-renal tissues. Two carriers exist in humans, HUT2 which is renal-specific (Olives B et al, 1996) and HUT11, which is erythrocyte-specific (Olives B et al, 1994).
R-HSA-444160 (Reactome) The human gene SLC18A1 encodes the vesicular monoamine transporter 1 (VMAT1) (Erickson JD et al, 1996). VMAT1 is mainly expressed in neuroendocrine cells. The human gene SLC18A2 encodes VMAT2 (Erickson JD and Eiden LE, 1993). Both transporters can mediate the transport of biogenic amines into secretory vesicles, which can then discharge their contents into the extracellular space by exocytosis. Predominant biogenic amines these proteins can transport are serotonin, dopamine, adrenaline, noradrenaline and histamine.
R-HSA-444393 (Reactome) The human gene RhCG encodes the Rhesus blood group family type C glycoprotein which is mainly expressed in kidney collecting duct but also found in testis. RhCG is located on the apical membrane and mediates the bi-directional transport of ammonium into and out of renal collecting duct cells in an electroneutral manner, with H+ transported the other way (Liu Z et al, 2000; Marini AM et al, 2000).
R-HSA-444416 (Reactome) The human gene RHAG encodes a Rhesus blood group family type A glycoprotein which is expressed specifically in erythroid cells. It is thought to mediate ammonium export from these cells (Marini et al. 2000, Westhoff et al. 2002). Defects in RHAG are the cause of regulator type Rh-null hemolytic anemia (RHN, Rh-deficiency syndrome). RHN is a form of chronic hemolytic anemia (Hyland et al. 1998).
R-HSA-444419 (Reactome) The human gene RhBG encodes a Rhesus blood group family type B glycoprotein which is expressed mainly in the kidney but is also found in the liver. The liver and kidney are important tissues for ammonium metabolism and excretion. RhBG is located on the basolateral membrane and mediates the reversible transport of ammonium in and out of renal collecting duct cells in an electroneutral manner, with H+ transported the other way (Ludewig U, 2004; Liu Z et al, 2001).
R-HSA-444433 (Reactome) Choline (Cho) transports from the extracellular space through the plasma membrane via the choline transporter-like proteins (SLC44A1-5 also known as CTL1-5) to the cytosol (Okuda & Haga 2000, Traiffort et al. 2005, O'Regan et al. 2000).

CTL1 is broadly expressed on leukocytes and endothelial cells (Wille et al. 2001). CTL2 is highly expressed in human inner ear and is the target of antibody-induced hearing loss (Nair et al. 2004).
R-HSA-446277 (Reactome) The human gene RhCG encodes the Rhesus blood group family type C glycoprotein which is mainly expressed in kidney collecting duct but also found in testis. RhCG is located on the apical membrane and mediates the bi-directional transport of ammonium into and out of renal collecting duct cells in an electroneutral manner, with H+ transported the other way (Liu Z et al, 2000; Marini AM et al, 2000).
R-HSA-446278 (Reactome) The human gene RhBG encodes a Rhesus blood group family type B glycoprotein which is expressed mainly in the kidney but is also found in the liver. The liver and kidney are important tissues for ammonium metabolism and excretion. RhBG is located on the basolateral membrane and mediates the reversible transport of ammonium in and out of renal collecting duct cells in an electroneutral manner, with H+ transported the other way (Ludewig U, 2004; Liu Z et al, 2001).
R-HSA-549129 (Reactome) The human gene SLC22A1 expresses the organic cation transporter 1 (OCT1) mainly in the liver. It can mediate the reversible transport of a broad array of organic cations with various structures and molecular weights including the model compounds 1-methyl-4-phenylpyridinium (MPP), tetraethylammonium (TEA), N-1-methylnicotinamide (NMN) and 4-(4-(dimethylamino)styryl)-N-methylpyridinium (Zhang L et al, 1998; Gorboulev V et al, 1997).
R-HSA-549241 (Reactome) The human gene SLC22A4 encodes the ergothioneine transporter (ETT). It was originally discovered as an organic cation/carnitine transporter (OCTN1) (Tamai et al. 1997) but its main substrate is not carnitine. It is widely expressed and transports ergothioneine more than 100 times more efficiently than tetraethylammonium and carnitine (Grundemann et al. 2005), leading to the name change from OCTN1 to ETT. Defects in SLC22A4 could be implicated in rheumatoid arthritis (RA; MIM:180300), an inflammatory disease with autoimmune features and a complex genetic component (Tokuhiro et al. 2003, Yamada et al. 2004). An intronic SNP (slc2F2) in intron 1, consists of a susceptible T allele and a nonsusceptible C allele. The runt-related transcription factor 1 (RUNX1) has a suppressive effect on SLC22A4 expression and this suppression appears to be stronger with the susceptible T allele of SLC22A4 than with the nonsusceptible C allele, leading to a lower expression of SLC22A4 (Tokuhiro et al. 2003).
R-HSA-549279 (Reactome) The human gene SLC22A2 encodes the organic cation transporter OCT2. It is expressed in a variety of tissues, especially the kidney and placenta. OCT2 can mediate the reversible transport of a broad array of organic cations with various structures and molecular weights including the model compounds 1-methyl-4-phenylpyridinium (MPP), tetraethylammonium (TEA), N-1-methylnicotinamide (NMN) and 4-(4-(dimethylamino)styryl)-N-methylpyridinium (Gorboulev et al. 1997). Pharmaceuticals that up-regulate OCT2 in the kidney can increase the renal excretion of cationic drugs. The transport activity of OCT2 was decreased upon co-expression of regulatory solute carrier protein family 1 member 1 (RSC1A1, aka RS1). RSC1A1 exhibits glucose-dependent, short-term inhibition of OCT2 by inhibiting the release of vesicles from the trans-Golgi network (Veyhl et al. 2006).
R-HSA-549297 (Reactome) The human gene SLC22A5 encodes the organic cation/carnitine transporter 2 (OCTN2). OCTN2 is strongly expressed in the kidney, skeletal muscle, heart and placenta (Tamai et al. 1998). Defects in SLC22A5 are the cause of systemic primary carnitine deficiency (CDSP) (Tang et al. 1999) and susceptibility to Crohn disease (CD) (Peltekova et al. 2004). The human gene SLC22A15 encodes the fly-like putative transporter1 (FLIPT1). FLIPT1 is a novel transporter highly expressed in kidney and brain is shown to be homologous to other carnitine transporters (Eraly & Nigan 2002). The human gene SLC22A16 encodes the organic cation/carnitine transporter 6 (also called the fly-like putative transporter 2, FLIPT2) (Enomoto et al. 2002). FLIPT2 is strongly expressed in the testis and epididymas as well as generally in other tissues and in leukaemia cells ( Enomoto et al. 2002, Gong et al. 2002). All of these transporters are sodium-dependent, high affinity carnitine cotransporters.
R-HSA-549304 (Reactome) The human gene SLC22A3 encodes organic cation transporter OCT3. It is mainly expressed in skeletal muscle, liver, placenta, kidney and heart, and to a lesser extent in brain. OCT3 is involved in the biliary excretion of cationic drugs. In CNS, ganglia and heart, OCT3 regulates the interstitial concentrations of monoamine neurotransmitters and cationic drugs. In placenta, OCT3 is responsible for the release of acetylcholine during nonneuronal cholinergic regulation (Grundemann D et al,1998; Wu X et al, 2000).
R-HSA-549322 (Reactome) The human gene SLC22A1 expresses the organic cation transporter 1 (OCT1) mainly in the liver. It can mediate the reversible transport of a broad array of organic cations with various structures and molecular weights including the model compounds 1-methyl-4-phenylpyridinium (MPP), tetraethylammonium (TEA), N-1-methylnicotinamide (NMN) and 4-(4-(dimethylamino)styryl)-N-methylpyridinium (Zhang L et al, 1998; Gorboulev V et al, 1997).
R-HSA-561041 (Reactome) The human gene SLC22A6 encodes organic anion transporter1 (OAT1). It was originally characterized in mouse as Novel Kidney Transcript (NKT). OAT1 is located on the basolateral membrane of the proximal tubule in human kidney as well as in the brain (Reid G et al, 1998; Lu R et al, 1999; Hosoyamada M et al, 1999). The human gene SLC22A7 encodes organic anion transporter 2 (OAT2) and is highly expressed in the liver and kidney (Sun W et al, 2001; Kobayashi Y et al, 2005). The human gene SLC22A8 encodes organic anion transporter 3 (OAT3) which is expressed mainly in the brain and kidney (Race JE et al, 1999; Bakhiya A et al, 2003).
OAT1-3 transport organic anions such as p-aminohippurate and drugs such as cimetidine and acyclovir. This transport is is coupled with an efflux of one molecule of endogenous dicarboxylic acid such as alpha-ketoglutarate (2-oxoglutarate). OAT2 is classified as both a transporter of organic anions and sulphate conjugates.
R-HSA-561054 (Reactome) The human gene SLC22A2 encodes the organic cation transporter OCT2. It is expressed in a variety of tissues, especially the kidney and placenta. OCT2 can mediate the reversible transport of a broad array of organic cations with various structures and molecular weights including the model compounds 1-methyl-4-phenylpyridinium (MPP), tetraethylammonium (TEA), N-1-methylnicotinamide (NMN) and 4-(4-(dimethylamino)styryl)-N-methylpyridinium (Gorboulev et al. 1997). Pharmaceuticals that up-regulate OCT2 in the kidney can increase the renal excretion of cationic drugs. The transport activity of OCT2 was decreased upon co-expression of regulatory solute carrier protein family 1 member 1 (RSC1A1, aka RS1). RSC1A1 exhibits glucose-dependent, short-term inhibition of OCT2 by inhibiting the release of vesicles from the trans-Golgi network (Veyhl et al. 2006).
R-HSA-561059 (Reactome) The human gene SLC22A7 encodes organic anion transporter 2 (OAT2) and is highly expressed in the liver and kidney (Sun W et al, 2001; Kobayashi Y et al, 2005). The human gene SLC22A11 encodes organic anion transporter 4 (OAT4) which is highly expressed in the placenta and kidney (Cha SH et al, 2000; Ekaratanawong S et al, 2004). Both of these transporters mediate the influx of sulfate conjugates with antiport of dicarboxylic acid. OAT2 is classified as both a transporter of organic anions and sulphate conjugates.
R-HSA-561072 (Reactome) The human gene SLC22A3 encodes organic cation transporter OCT3. It is mainly expressed in skeletal muscle, liver, placenta, kidney and heart, and to a lesser extent in brain. OCT3 is involved in the biliary excretion of cationic drugs. In CNS, ganglia and heart, OCT3 regulates the interstitial concentrations of monoamine neurotransmitters and cationic drugs. In placenta, OCT3 is responsible for the release of acetylcholine during nonneuronal cholinergic regulation (Grundemann D et al,1998; Wu X et al, 2000).
R-HSA-561253 (Reactome) Urate is a naturally occurring product of purine metabolism and is a scavenger of biological oxidants. Uric acid readily precipitates out of aqueous solutions causing gout and kidney stones. Due to this ability, changes in urate levels are implicated in numerous disease processes. The human gene SLC22A12 encodes urate transporter 1 (URAT1), predominantly expressed in the kidney and is involved in the regulation of blood urate levels. This transport can be trans-stimulated by organic anions such as L-lactate (LACT) (Enomoto et al. 2002). Defects in SLC22A12 result in idiopathic renal hypouricaemia (lack of blood urate) (Wakida et al. 2005).
R-HSA-597628 (Reactome) The human gene SLC22A18 encodes organic cation transporter-like protein 2 (ORCTL2). It is expressed at high levels in kidney, liver and colon and at lower levels in heart, brain and lung. ORCTL2 can transport chloroquine and quinidine with the antiport of protons (Reece et al. 1998). Defects in SLC22A18 may play a role in tumorigenesis (Schwienbacher et al. 1998). How SLC22A18 might be involved in growth regulation is poorly understood. There is speculation that it may be involved in resistance to chemotherapy drugs and/or in the export of genotoxic substances whose retention may increase the risk of tumor formation.
R-HSA-8959798 (Reactome) Manganese (Mn2+) is an essential metal that functions as a cofactor required for the activity of numerous essential enzymes but at at elevated levels, M2+n becomes toxic as it enhances oxidative stress, compromises mitochondrial function and induces cell death. Mn2+ is excreted by the liver in bile but excess Mn2+ preferentially accumulates in the basal ganglia, leading to the development of an irreversible and incurable Parkinsonian-like syndrome (Tuschl et al. 2012, Quadri et al. 2012, Leyva-Illades et al. 2014). SLC30A10 had previously been presumed to be a zinc transporter but now has been confirmed to function as an essential Mn2+ transporter in humans (Tuschi et al. 2012), mediating the efflux of Mn2+ from cells ( Leyva-Illades et al. 2014).
R-HSA-904830 (Reactome) SLC40A1 (MTP1 aka ferroportin or IREG1) is highly expressed on macrophages where it mediates iron efflux from the breakdown of haem (Schimanski et al. 2005). SLC40A1 colocalizes with ceruloplasmin (CP) which stablizes SLC40A1 and is necessary for the efflux reaction to occur (Texel et al. 2008). Six copper ions are required as cofactor. Ceruloplasmin (CP) also catalyses the conversion of iron from ferrous (Fe2+) to ferric form (Fe3+), thereby assisting in its transport in the plasma in association with transferrin, which can only carry iron in the ferric state. As well as being expressed on macrophages, SLC40A1 is also highly expressed in the duodenum, placenta (where it may mediate the transport of iron from maternal to foetal circulation), muscle and spleen.
R-HSA-9645220 (Reactome) Four members of the SLC16A gene family encode classical monocarboxylate transporters, MCT1-4. They all function as proton-dependent transporters of monocarboxylic acids such as lactate and pyruvate and ketone bodies such as acetacetate and beta-hydroxybutyrate. These processes are crucial in the regulation of energy metabolism and acid-base homeostasis.

SLC16A1 encodes MCT1, a ubiquitiously expressed protein (Garcia et al. 1994). Defects in SLC16A1 are the cause of symptomatic deficiency in lactate transport (SDLT), resulting in an acidic intracellular environment and muscle degeneration (Merezhinskaya et al. 2000). Activating promotor mutations in SLC16A1 are associated with exercise-induced hyperinsulinism (EIHI), a dominantly inherited hypoglycemic disorder characterized by inappropriate insulin secretion during anaerobic exercise or on pyruvate load (Otonkoski et al. 2000). MCT1 requires the binding of a single transmembrane glycoprotein (basigin, BSG) for activity (Halestrap 2013).
RHAGmim-catalysisR-HSA-444416 (Reactome)
RHBGmim-catalysisR-HSA-444419 (Reactome)
RHBGmim-catalysisR-HSA-446278 (Reactome)
RHCGmim-catalysisR-HSA-444393 (Reactome)
RHCGmim-catalysisR-HSA-446277 (Reactome)
RSC1A1TBarR-HSA-549279 (Reactome)
RSC1A1TBarR-HSA-561054 (Reactome)
RUNX1TBarR-HSA-549241 (Reactome)
SLC10A6mim-catalysisR-HSA-433089 (Reactome)
SLC11A1mim-catalysisR-HSA-435171 (Reactome)
SLC11A2mim-catalysisR-HSA-435349 (Reactome)
SLC13A1mim-catalysisR-HSA-433114 (Reactome)
SLC13A2mim-catalysisR-HSA-433131 (Reactome)
SLC13A3mim-catalysisR-HSA-433101 (Reactome)
SLC13A4mim-catalysisR-HSA-433099 (Reactome)
SLC13A5mim-catalysisR-HSA-433104 (Reactome)
SLC16A1:BSGmim-catalysisR-HSA-9645220 (Reactome)
SLC16A7:EMB,SLC16A3,8:BSGmim-catalysisR-HSA-433698 (Reactome)
SLC22A1,SLC22A2mim-catalysisR-HSA-374896 (Reactome)
SLC22A1,SLC22A2mim-catalysisR-HSA-549279 (Reactome)
SLC22A1,SLC22A2mim-catalysisR-HSA-561054 (Reactome)
SLC22A12mim-catalysisR-HSA-561253 (Reactome)
SLC22A18 substratesArrowR-HSA-597628 (Reactome)
SLC22A18 substratesR-HSA-597628 (Reactome)
SLC22A18mim-catalysisR-HSA-597628 (Reactome)
SLC22A3mim-catalysisR-HSA-549304 (Reactome)
SLC22A3mim-catalysisR-HSA-561072 (Reactome)
SLC22A4, 5,15,16mim-catalysisR-HSA-549297 (Reactome)
SLC22A4mim-catalysisR-HSA-549241 (Reactome)
SLC2A13mim-catalysisR-HSA-429101 (Reactome)
SLC30A10mim-catalysisR-HSA-8959798 (Reactome)
SLC30A1mim-catalysisR-HSA-435366 (Reactome)
SLC30A2mim-catalysisR-HSA-435375 (Reactome)
SLC30A3-like Proteinmim-catalysisR-HSA-437084 (Reactome)
SLC30A5mim-catalysisR-HSA-437085 (Reactome)
SLC30A6mim-catalysisR-HSA-437139 (Reactome)
SLC30A7mim-catalysisR-HSA-437129 (Reactome)
SLC30A8mim-catalysisR-HSA-437136 (Reactome)
SLC31A1mim-catalysisR-HSA-437300 (Reactome)
SLC39A1-4mim-catalysisR-HSA-442422 (Reactome)
SLC39A10mim-catalysisR-HSA-442345 (Reactome)
SLC39A5mim-catalysisR-HSA-442405 (Reactome)
SLC39A7mim-catalysisR-HSA-442393 (Reactome)
SLC39A8-like proteinsmim-catalysisR-HSA-442387 (Reactome)
SLC40A1:CP:6Cu2+mim-catalysisR-HSA-904830 (Reactome)
SLC40A1:HEPH:6Cu2+mim-catalysisR-HSA-442368 (Reactome)
SLC41A1,2mim-catalysisR-HSA-442661 (Reactome)
SLC5A11mim-catalysisR-HSA-429571 (Reactome)
SLC5A3mim-catalysisR-HSA-429663 (Reactome)
SLC5A7mim-catalysisR-HSA-429594 (Reactome)
SLC6A GABA transportersmim-catalysisR-HSA-444007 (Reactome)
SLC6A12mim-catalysisR-HSA-352029 (Reactome)
SLC6A14 ligandsArrowR-HSA-375487 (Reactome)
SLC6A14 ligandsR-HSA-375487 (Reactome)
SLC6A14mim-catalysisR-HSA-375487 (Reactome)
SLC6A15mim-catalysisR-HSA-352059 (Reactome)
SLC6A18mim-catalysisR-HSA-351963 (Reactome)
SLC6A19mim-catalysisR-HSA-375473 (Reactome)
SLC6A20mim-catalysisR-HSA-352052 (Reactome)
SLC6A2mim-catalysisR-HSA-443997 (Reactome)
SLC6A3mim-catalysisR-HSA-379393 (Reactome)
SLC6A5,9mim-catalysisR-HSA-444120 (Reactome)
SLC6A6mim-catalysisR-HSA-351987 (Reactome)
SLC6A7mim-catalysisR-HSA-444100 (Reactome)
SO4(2-)ArrowR-HSA-433099 (Reactome)
SO4(2-)ArrowR-HSA-433114 (Reactome)
SO4(2-)R-HSA-433099 (Reactome)
SO4(2-)R-HSA-433114 (Reactome)
SUCCAArrowR-HSA-433101 (Reactome)
SUCCAR-HSA-433101 (Reactome)
Sodium dependent

Serotonin

transporter
mim-catalysisR-HSA-380620 (Reactome)
Urea transportersmim-catalysisR-HSA-444126 (Reactome)
UreaArrowR-HSA-444126 (Reactome)
UreaR-HSA-444126 (Reactome)
VMAT1/2mim-catalysisR-HSA-444160 (Reactome)
ZIP6/ZIP14mim-catalysisR-HSA-442317 (Reactome)
Zn2+ArrowR-HSA-435366 (Reactome)
Zn2+ArrowR-HSA-435375 (Reactome)
Zn2+ArrowR-HSA-437084 (Reactome)
Zn2+ArrowR-HSA-437085 (Reactome)
Zn2+ArrowR-HSA-437129 (Reactome)
Zn2+ArrowR-HSA-437136 (Reactome)
Zn2+ArrowR-HSA-437139 (Reactome)
Zn2+ArrowR-HSA-442317 (Reactome)
Zn2+ArrowR-HSA-442345 (Reactome)
Zn2+ArrowR-HSA-442387 (Reactome)
Zn2+ArrowR-HSA-442393 (Reactome)
Zn2+ArrowR-HSA-442405 (Reactome)
Zn2+ArrowR-HSA-442422 (Reactome)
Zn2+R-HSA-435366 (Reactome)
Zn2+R-HSA-435375 (Reactome)
Zn2+R-HSA-437084 (Reactome)
Zn2+R-HSA-437085 (Reactome)
Zn2+R-HSA-437129 (Reactome)
Zn2+R-HSA-437136 (Reactome)
Zn2+R-HSA-437139 (Reactome)
Zn2+R-HSA-442317 (Reactome)
Zn2+R-HSA-442345 (Reactome)
Zn2+R-HSA-442387 (Reactome)
Zn2+R-HSA-442393 (Reactome)
Zn2+R-HSA-442405 (Reactome)
Zn2+R-HSA-442422 (Reactome)
ligands of SLC6A12 (BGT-1)ArrowR-HSA-352029 (Reactome)
ligands of SLC6A12 (BGT-1)R-HSA-352029 (Reactome)
ligands of SLC6A15ArrowR-HSA-352059 (Reactome)
ligands of SLC6A15R-HSA-352059 (Reactome)
ligands of SLC6A6ArrowR-HSA-351987 (Reactome)
ligands of SLC6A6R-HSA-351987 (Reactome)
neutral amino acidsArrowR-HSA-375473 (Reactome)
neutral amino acidsR-HSA-375473 (Reactome)
taurolithocholate sulfateArrowR-HSA-433089 (Reactome)
taurolithocholate sulfateR-HSA-433089 (Reactome)
urateArrowR-HSA-561253 (Reactome)
urateR-HSA-561253 (Reactome)
Personal tools