MyD88:MAL(TIRAP) cascade initiated on plasma membrane (Homo sapiens)

From WikiPathways

Jump to: navigation, search
2519, 24, 76, 7814, 4672, 7320, 26, 47, 6122, 23, 493762, 64, 71, 8129, 30, 44, 53136620, 45, 613737, 3829, 30, 44, 5321, 23, 49, 794, 15, 17, 34, 35, 54...37, 488, 47, 5531, 36, 751, 7, 6551, 741, 28, 43, 48, 65...37, 38763931, 40, 5913, 32, 38, 52, 63...cytosolp-IRAK2 CD14(20-345) TAB2 Major outer membrane protein P p-T209-IRAK1 TRAF6:hp-IRAK1:p-IRAK4:oligo-MyD88:TIRAP:activated TLRIRAK2:p-S,2T-IRAK4:oligo-MyD88:Mal:activated TLR4xPalmC-CD36 TLR6 Diacyl lipopeptide TAB1 mip p-PELI3 TLR1 IRAK1/orIRAK2:p-IRAK4:MyD88oligomer:TIRAP:activated TLRATPTIRAP:PI(4,5)P2:activated TLR2/4Lipoteichoic acid TIRAP:PI(4,5)P2Clostridial peptidoglycan mip Lipoteichoic acid Triacyl lipopeptide TLR2 TLR1 Diacyl lipopeptide p-PELI3 UBB(77-152) BTKLPS Diacyl lipopeptide Clostridial peptidoglycan Lipoteichoic acid Major outer membrane protein P p-2S,S376,T,T209,T387-IRAK1 MAP3K7 Activated TLR1:2 orTLR 2:6heterodimers orTLR4 homodimerLPS IKBKG MYD88 Lipoteichoic acid TRAF6:p-IRAK2MYD88 K63polyUb-TRAF6 LPS Diacyl lipopeptide p-2S,S376,T,T209,T387-IRAK1 MAP3K1GPIN-CD14(20-345) PI(4,5)P2 MYD88 2xN4GlycoAsn-LY96 GPIN-CD14(20-345) TLR2 ECSITp-PELI2 UBB(1-76) Major outer membrane protein P 2xN4GlycoAsn-LY96 Lipoteichoic acid ADPTLR6 Lipoteichoic acid BTK Diacyl lipopeptide p-PELI2 2xN4GlycoAsn-TLR4 TRAF6:K63-linkedpolyUb p-IRAK1:IKKcomplexp-T342,T345,S346-IRAK4 Clostridial peptidoglycan TRAF6 Triacyl lipopeptide 2xN4GlycoAsn-LY96 Diacyl lipopeptide CD14(20-345) LPS TLR6 p-4Y-TIRAP K63polyUb-hp-IRAK1 LPS GPIN-CD14(20-345) ADPTLR6 2xN4GlycoAsn-TLR4 PI(4,5)P2 TLR2 IRAK3Lipoteichoic acid Major outer membrane protein P GPIN-CD14(20-345) MYD88 Triacyl lipopeptide Clostridial peptidoglycan Clostridial peptidoglycan pp-IRAK1:p-IRAK4:oligo-MyD88:TIRAP:activated TLRMajor outer membrane protein P TRAF6Lipoteichoic acid ATP2xN4GlycoAsn-LY96 GPIN-CD14(20-345) p-IRAK2 p-T342,T345,S346-IRAK4 p-IRAK2:K63-linkedpUboligo-TRAF6:freeK63-linkedpUb:p-TAK1complexLPS mip 4xPalmC-CD36 RPS27A(1-76) PI(4,5)P2 p-IRAK2 IKBKB MYD88 Triacyl lipopeptide Clostridial peptidoglycan LPS p-PELI2 GPIN-CD14(20-345) PI(4,5)P2 IRAK2 Lipoteichoic acid ADPATPK63-linked polyUbp-IRAK1:TRAF6CD14(20-345) TLR1 2xN4GlycoAsn-LY96 LPS Major outer membrane protein P Major outer membrane protein P GPIN-CD14(20-345) CD14(20-345) GPIN-CD14(20-345) p-S,2T-IRAK4:oligo-MyD88:TIRAP:activated TLR receptorTLR6 UBC(1-76) p-IRAK2 MyD88:TIRAP:BTK:activated TLR2/4p-T184,T187-MAP3K7 2xN4GlycoAsn-LY96 BTK CHUK mip TLR2 CD14(20-345) TAB1 p-4Y-TIRAP CD14(20-345) TLR6 K63polyUb TLR1 BTK CD14(20-345) TLR6 PI(4,5)P2 p-4Y-TIRAP TLR1 K63polyUb-TRAF6 IRAK2 TRAF6:hp-IRAK1TLR6 Diacyl lipopeptide UBE2N:UBE2V1CD14(20-345) TLR2 Clostridial peptidoglycan UBC(77-152) Triacyl lipopeptide p-PELI1 UBC(305-380) LPS TLR2 TLR2 mip BTK CD14(20-345) GPIN-CD14(20-345) TLR1 mip TRAF6:p-IRAK2:p-IRAK4:oligo-MyD88:TIRAP:activated TLRSIGIRRBTK TLR2 PI(4,5)P2 K63polyUb-hp-IRAK1 mip IKBKG p-IRAK2:K63-linkedpUb oligo-TRAF6mip 4xPalmC-CD36 TLR6 2xN4GlycoAsn-LY96 TLR2 2xN4GlycoAsn-LY96 GPIN-CD14(20-345) PI(4,5)P2 GPIN-CD14(20-345) Clostridial peptidoglycan TLR1 p-IRAK2 K63polyUbGPIN-CD14(20-345) Lipoteichoic acid ATPp-PELI1 IRAK4PI(4,5)P2IRAK1:p-S,2T-IRAK4:oligo-MyD88:TIRAP:activated TLR4xPalmC-CD36 PI(4,5)P2 2xN4GlycoAsn-LY96 PI(4,5)P2 Triacyl lipopeptide TLR1 TRAF6Lipoteichoic acid MYD88 mip 4xPalmC-CD36 BTK UBE2N TRAF6 TLR1 Major outer membrane protein P PI(4,5)P2 K63polyUbCD14(20-345) Triacyl lipopeptide TAB3 TLR6 TRAF6 2xN4GlycoAsn-LY96 2xN4GlycoAsn-TLR4 TLR1 MAP3K1 Triacyl lipopeptide PI(4,5)P2 4xPalmC-CD36 Lipoteichoic acid p-4Y-TIRAP p-4Y-TIRAP Lipoteichoic acid IRAK4 CD14(20-345) Major outer membrane protein P TIRAP Clostridial peptidoglycan PI(4,5)P2 CD14(20-345) IRAK2 p-IRAK1:p-IRAK4:oligo-MyD88:TIRAP:activated TLR2xN4GlycoAsn-TLR4 mip ADPBTK TLR1 IRAK1 p-4Y-TIRAP oligo-MyD88:TIRAP:BTK:activated TLR4xPalmC-CD36 CD14(20-345) PI(4,5)P2 MAP kinaseactivationTLR2 p-2S,S376,T,T209,T387-IRAK1 p-T342,T345,S346-IRAK4 Clostridial peptidoglycan TRAF6 2xN4GlycoAsn-TLR4 p-T342,T345,S346-IRAK4 ADPTLR2 TAB1 CD14(20-345) PI(4,5)P2 2xN4GlycoAsn-LY96 TLR6 LPS LPS mip TLR6 Clostridial peptidoglycan p-2S,S376,T,T209,T387-IRAK1 BTK Diacyl lipopeptide TRAF6 2xN4GlycoAsn-TLR4 ATPp-4Y-TIRAP 4xPalmC-CD36 LPS Lipoteichoic acid TAK1 activates NFkBby phosphorylationand activation ofIKKs complexK63polyUb-TRAF6 GPIN-CD14(20-345) IRAK4 BTK TRAF6 UBC(457-532) TLR2 TLR2 2xN4GlycoAsn-LY96 LPS Clostridial peptidoglycan BTK 4xPalmC-CD36 PI(4,5)P2 TRAF6 TLR6 PI(4,5)P2 Triacyl lipopeptide Diacyl lipopeptide ADPDiacyl lipopeptide TLR1 TLR1 GPIN-CD14(20-345) Diacyl lipopeptide p-4Y-TIRAP TIRAP:PI(4,5)P2:BTK:activated TLR2/4TLR6 Triacyl lipopeptide ATPTriacyl lipopeptide TRAF6 mip TAB2 MAP3K7 p-T342,T345,S346-IRAK4 TLR2 p-PELI1 TRAF6 Diacyl lipopeptide mip p-4Y-TIRAP TAK1 complexUBC(229-304) Diacyl lipopeptide TRAF6 p-Pellino:hp-IRAK1:TRAF6p-PELI3 TLR2 p-Pellino-1,2,(3)p-4Y-TIRAP 2xN4GlycoAsn-TLR4 UBC(533-608) MEKK1:activatedTRAF6MYD88 TLR1 Major outer membrane protein P Lipoteichoic acid TRAF6Ub2xN4GlycoAsn-LY96 mip 2xN4GlycoAsn-TLR4 2xN4GlycoAsn-TLR4 Clostridial peptidoglycan UBC(381-456) 4xPalmC-CD36 UBB(153-228) UBE2V1 Major outer membrane protein P mip Major outer membrane protein P 4xPalmC-CD36 p-4Y-TIRAP p-IRAK2:K63-linkedpUboligo-TRAF6:freeK63 pUb:TAK1complexp-T342,T345,S346-IRAK4 TAB3 Triacyl lipopeptide IKBKB LPS CD14(20-345) BTK UBA52(1-76) 2xN4GlycoAsn-TLR4 2xN4GlycoAsn-LY96 2xN4GlycoAsn-TLR4 TLR2 SOCS1TLR2 CHUK:IKBKB:IKBKGMajor outer membrane protein P PI(4,5)P2 ATP2xN4GlycoAsn-LY96 p-3S,3T-IRAK1:p-S,2T-IRAK4:oligo-MyD88:TIRAP:activated TLRADPClostridial peptidoglycan 4xPalmC-CD36 2xN4GlycoAsn-LY96 p-T342,T345,S346-IRAK4 mip Major outer membrane protein P TAB3 p-4Y-TIRAP Clostridial peptidoglycan p-IRAK2 Clostridial peptidoglycan p-IRAK2:p-IRAK4:oligo-MyD88:TIRAP:activated TLRp-4Y-TIRAP MYD88 BTK 2xN4GlycoAsn-TLR4 UBC(609-684) LPS p-IRAK2:oligo-TRAF6BTK Triacyl lipopeptide Triacyl lipopeptide Triacyl lipopeptide Diacyl lipopeptide p-T342,T345,S346-IRAK4 2xN4GlycoAsn-LY96 TLR6 MYD88 LPS Diacyl lipopeptide 2xN4GlycoAsn-TLR4 p-T209,T387-IRAK1 mip GPIN-CD14(20-345) IRAK1 GPIN-CD14(20-345) TLR1 TLR6 Triacyl lipopeptide CD14(20-345) BTK ADP4xPalmC-CD36 LPS Triacyl lipopeptide TAB2 GPIN-CD14(20-345) p-4Y-TIRAP 4xPalmC-CD36 MYD88 Major outer membrane protein P 4xPalmC-CD36 Clostridial peptidoglycan TLR1 Diacyl lipopeptide CD14(20-345) MYD88MYD88 2xN4GlycoAsn-TLR4 TIRAPIRAK1, IRAK2Lipoteichoic acid TLR1 TLR6 BTK 2xN4GlycoAsn-TLR4 2xN4GlycoAsn-TLR4 p-IRAK2 TIRAP UBC(153-228) MYD88 4xPalmC-CD36 K63polyUb TIRAP ATPLipoteichoic acid p-T342,T345,S346-IRAK4 Diacyl lipopeptide 2xN4GlycoAsn-TLR4 IRAK1 Major outer membrane protein P p-2S,S376,T,T209,T387-IRAK1 activatedTLR2/4:p-4Y-TIRAP:PI(4,5)P2:BTKCHUK IRAK4:oligo-MyD88:TIRAP:activated TLRMajor outer membrane protein P 4xPalmC-CD36 MYD88 TRAF6:hp-IRAK1:Pellino11, 691111, 693393394533911, 69933333310, 651, 6511, 6933333327, 70333311112, 37, 809918, 21, 47, 56116193311, 69333333114511335, 60911, 6933913, 773316, 486147, 56114739111911, 6911, 69333345336, 12, 41, 67393311114011, 6911, 6933395, 5711, 6911911, 69113, 42, 503327, 40, 64, 79331110, 64, 65911, 69911, 693311, 6994733333316, 48111, 6511, 6993327, 31, 40, 64, 79111116, 486533


Description

The first known downstream component of TLR4 and TLR2 signaling is the adaptor MyD88. Another adapter MyD88-adaptor-like (Mal; also known as TIR-domain-containing adaptor protein or TIRAP) has also been described for TLR4 and TLR2 signaling. MyD88 comprises an N-terminal Death Domain (DD) and a C-terminal TIR, whereas Mal lacks the DD. The TIR homotypic interactions bring adapters into contact with the activated TLRs, whereas the DD modules recruit serine/threonine kinases such as interleukin-1-receptor-associated kinase (IRAK). Recruitment of these protein kinases is accompanied by phosphorylation, which in turn results in the interaction of IRAKs with TNF-receptor-associated factor 6 (TRAF6). The oligomerization of TRAF6 activates TAK1, a member of the MAP3-kinase family, and this leads to the activation of the IkB kinases. These kinases, in turn, phosphorylate IkB, leading to its proteolytic degradation and the translocation of NF-kB to the nucleus. Concomitantly, members of the activator protein-1 (AP-1) transcription factor family, Jun and Fos, are activated, and both AP-1 transcription factors and NF-kB are required for cytokine production, which in turn produces downstream inflammatory effects. View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 166058
Reactome-version 
Reactome version: 75
Reactome Author 
Reactome Author: de Bono, Bernard

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Motshwene PG, Moncrieffe MC, Grossmann JG, Kao C, Ayaluru M, Sandercock AM, Robinson CV, Latz E, Gay NJ.; ''An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4.''; PubMed Europe PMC Scholia
  2. Jiang Z, Ninomiya-Tsuji J, Qian Y, Matsumoto K, Li X.; ''Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol.''; PubMed Europe PMC Scholia
  3. Rothwarf DM, Zandi E, Natoli G, Karin M.; ''IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex.''; PubMed Europe PMC Scholia
  4. Kishimoto K, Matsumoto K, Ninomiya-Tsuji J.; ''TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation loop.''; PubMed Europe PMC Scholia
  5. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ.; ''TAK1 is a ubiquitin-dependent kinase of MKK and IKK.''; PubMed Europe PMC Scholia
  6. Banerjee A, Gerondakis S.; ''Coordinating TLR-activated signaling pathways in cells of the immune system.''; PubMed Europe PMC Scholia
  7. George J, Motshwene PG, Wang H, Kubarenko AV, Rautanen A, Mills TC, Hill AV, Gay NJ, Weber AN.; ''Two human MYD88 variants, S34Y and R98C, interfere with MyD88-IRAK4-myddosome assembly.''; PubMed Europe PMC Scholia
  8. Windheim M, Stafford M, Peggie M, Cohen P.; ''Interleukin-1 (IL-1) induces the Lys63-linked polyubiquitination of IL-1 receptor-associated kinase 1 to facilitate NEMO binding and the activation of IkappaBalpha kinase.''; PubMed Europe PMC Scholia
  9. Tao N, Wagner SJ, Lublin DM.; ''CD36 is palmitoylated on both N- and C-terminal cytoplasmic tails.''; PubMed Europe PMC Scholia
  10. Loiarro M, Gallo G, Fantò N, De Santis R, Carminati P, Ruggiero V, Sette C.; ''Identification of critical residues of the MyD88 death domain involved in the recruitment of downstream kinases.''; PubMed Europe PMC Scholia
  11. da Silva Correia J, Ulevitch RJ.; ''MD-2 and TLR4 N-linked glycosylations are important for a functional lipopolysaccharide receptor.''; PubMed Europe PMC Scholia
  12. Dong C, Davis RJ, Flavell RA.; ''MAP kinases in the immune response.''; PubMed Europe PMC Scholia
  13. Keating SE, Maloney GM, Moran EM, Bowie AG.; ''IRAK-2 participates in multiple toll-like receptor signaling pathways to NFkappaB via activation of TRAF6 ubiquitination.''; PubMed Europe PMC Scholia
  14. Moynagh PN.; ''The Pellino family: IRAK E3 ligases with emerging roles in innate immune signalling.''; PubMed Europe PMC Scholia
  15. Brown K, Vial SC, Dedi N, Long JM, Dunster NJ, Cheetham GM.; ''Structural basis for the interaction of TAK1 kinase with its activating protein TAB1.''; PubMed Europe PMC Scholia
  16. Dunne A, Carpenter S, Brikos C, Gray P, Strelow A, Wesche H, Morrice N, O'Neill LA.; ''IRAK1 and IRAK4 promote phosphorylation, ubiquitination, and degradation of MyD88 adaptor-like (Mal).''; PubMed Europe PMC Scholia
  17. Sakurai H, Miyoshi H, Mizukami J, Sugita T.; ''Phosphorylation-dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1.''; PubMed Europe PMC Scholia
  18. Mansell A, Brint E, Gould JA, O'Neill LA, Hertzog PJ.; ''Mal interacts with tumor necrosis factor receptor-associated factor (TRAF)-6 to mediate NF-kappaB activation by toll-like receptor (TLR)-2 and TLR4.''; PubMed Europe PMC Scholia
  19. Kulathu Y, Akutsu M, Bremm A, Hofmann K, Komander D.; ''Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain.''; PubMed Europe PMC Scholia
  20. Ordureau A, Smith H, Windheim M, Peggie M, Carrick E, Morrice N, Cohen P.; ''The IRAK-catalysed activation of the E3 ligase function of Pellino isoforms induces the Lys63-linked polyubiquitination of IRAK1.''; PubMed Europe PMC Scholia
  21. Verstak B, Nagpal K, Bottomley SP, Golenbock DT, Hertzog PJ, Mansell A.; ''MyD88 adapter-like (Mal)/TIRAP interaction with TRAF6 is critical for TLR2- and TLR4-mediated NF-kappaB proinflammatory responses.''; PubMed Europe PMC Scholia
  22. Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z.; ''MyD88: an adapter that recruits IRAK to the IL-1 receptor complex.''; PubMed Europe PMC Scholia
  23. Horng T, Barton GM, Flavell RA, Medzhitov R.; ''The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors.''; PubMed Europe PMC Scholia
  24. Kanayama A, Seth RB, Sun L, Ea CK, Hong M, Shaito A, Chiu YH, Deng L, Chen ZJ.; ''TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains.''; PubMed Europe PMC Scholia
  25. Gangloff M, Gay NJ.; ''MD-2: the Toll 'gatekeeper' in endotoxin signalling.''; PubMed Europe PMC Scholia
  26. Newton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, Tan J, Dugger D, Gordon N, Sidhu SS, Fellouse FA, Komuves L, French DM, Ferrando RE, Lam C, Compaan D, Yu C, Bosanac I, Hymowitz SG, Kelley RF, Dixit VM.; ''Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies.''; PubMed Europe PMC Scholia
  27. Valkov E, Stamp A, Dimaio F, Baker D, Verstak B, Roversi P, Kellie S, Sweet MJ, Mansell A, Gay NJ, Martin JL, Kobe B.; ''Crystal structure of Toll-like receptor adaptor MAL/TIRAP reveals the molecular basis for signal transduction and disease protection.''; PubMed Europe PMC Scholia
  28. Moncrieffe MC, Grossmann JG, Gay NJ.; ''Assembly of oligomeric death domain complexes during Toll receptor signaling.''; PubMed Europe PMC Scholia
  29. Ye H, Arron JR, Lamothe B, Cirilli M, Kobayashi T, Shevde NK, Segal D, Dzivenu OK, Vologodskaia M, Yim M, Du K, Singh S, Pike JW, Darnay BG, Choi Y, Wu H.; ''Distinct molecular mechanism for initiating TRAF6 signalling.''; PubMed Europe PMC Scholia
  30. Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV.; ''TRAF6 is a signal transducer for interleukin-1.''; PubMed Europe PMC Scholia
  31. Jefferies CA, Doyle S, Brunner C, Dunne A, Brint E, Wietek C, Walch E, Wirth T, O'Neill LA.; ''Bruton's tyrosine kinase is a Toll/interleukin-1 receptor domain-binding protein that participates in nuclear factor kappaB activation by Toll-like receptor 4.''; PubMed Europe PMC Scholia
  32. Wan Y, Xiao H, Affolter J, Kim TW, Bulek K, Chaudhuri S, Carlson D, Hamilton T, Mazumder B, Stark GR, Thomas J, Li X.; ''Interleukin-1 receptor-associated kinase 2 is critical for lipopolysaccharide-mediated post-transcriptional control.''; PubMed Europe PMC Scholia
  33. Kawai T, Akira S.; ''TLR signaling.''; PubMed Europe PMC Scholia
  34. Ono K, Ohtomo T, Sato S, Sugamata Y, Suzuki M, Hisamoto N, Ninomiya-Tsuji J, Tsuchiya M, Matsumoto K.; ''An evolutionarily conserved motif in the TAB1 C-terminal region is necessary for interaction with and activation of TAK1 MAPKKK.''; PubMed Europe PMC Scholia
  35. Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie K, Nishida E, Matsumoto K.; ''TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction.''; PubMed Europe PMC Scholia
  36. Lee KG, Xu S, Kang ZH, Huo J, Huang M, Liu D, Takeuchi O, Akira S, Lam KP.; ''Bruton's tyrosine kinase phosphorylates Toll-like receptor 3 to initiate antiviral response.''; PubMed Europe PMC Scholia
  37. Kollewe C, Mackensen AC, Neumann D, Knop J, Cao P, Li S, Wesche H, Martin MU.; ''Sequential autophosphorylation steps in the interleukin-1 receptor-associated kinase-1 regulate its availability as an adapter in interleukin-1 signaling.''; PubMed Europe PMC Scholia
  38. Gottipati S, Rao NL, Fung-Leung WP.; ''IRAK1: a critical signaling mediator of innate immunity.''; PubMed Europe PMC Scholia
  39. Lamothe B, Besse A, Campos AD, Webster WK, Wu H, Darnay BG.; ''Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of I kappa B kinase activation.''; PubMed Europe PMC Scholia
  40. Gray P, Dunne A, Brikos C, Jefferies CA, Doyle SL, O'Neill LA.; ''MyD88 adapter-like (Mal) is phosphorylated by Bruton's tyrosine kinase during TLR2 and TLR4 signal transduction.''; PubMed Europe PMC Scholia
  41. Bardwell AJ, Frankson E, Bardwell L.; ''Selectivity of docking sites in MAPK kinases.''; PubMed Europe PMC Scholia
  42. Cui J, Zhu L, Xia X, Wang HY, Legras X, Hong J, Ji J, Shen P, Zheng S, Chen ZJ, Wang RF.; ''NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways.''; PubMed Europe PMC Scholia
  43. Suzuki N, Suzuki S, Yeh WC.; ''IRAK-4 as the central TIR signaling mediator in innate immunity.''; PubMed Europe PMC Scholia
  44. Ross K, Yang L, Dower S, Volpe F, Guesdon F.; ''Identification of threonine 66 as a functionally critical residue of the interleukin-1 receptor-associated kinase.''; PubMed Europe PMC Scholia
  45. Smith H, Peggie M, Campbell DG, Vandermoere F, Carrick E, Cohen P.; ''Identification of the phosphorylation sites on the E3 ubiquitin ligase Pellino that are critical for activation by IRAK1 and IRAK4.''; PubMed Europe PMC Scholia
  46. Schauvliege R, Janssens S, Beyaert R.; ''Pellino proteins are more than scaffold proteins in TLR/IL-1R signalling: a role as novel RING E3-ubiquitin-ligases.''; PubMed Europe PMC Scholia
  47. Conze DB, Wu CJ, Thomas JA, Landstrom A, Ashwell JD.; ''Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor- and toll-like receptor-mediated NF-kappaB activation.''; PubMed Europe PMC Scholia
  48. Li S, Strelow A, Fontana EJ, Wesche H.; ''IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase.''; PubMed Europe PMC Scholia
  49. Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T, Hoshino K, Takeuchi O, Kobayashi M, Fujita T, Takeda K, Akira S.; ''Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4.''; PubMed Europe PMC Scholia
  50. Krappmann D, Hatada EN, Tegethoff S, Li J, Klippel A, Giese K, Baeuerle PA, Scheidereit C.; ''The I kappa B kinase (IKK) complex is tripartite and contains IKK gamma but not IKAP as a regular component.''; PubMed Europe PMC Scholia
  51. Lee FS, Hagler J, Chen ZJ, Maniatis T.; ''Activation of the IkappaB alpha kinase complex by MEKK1, a kinase of the JNK pathway.''; PubMed Europe PMC Scholia
  52. Rao N, Nguyen S, Ngo K, Fung-Leung WP.; ''A novel splice variant of interleukin-1 receptor (IL-1R)-associated kinase 1 plays a negative regulatory role in Toll/IL-1R-induced inflammatory signaling.''; PubMed Europe PMC Scholia
  53. Muroi M, Tanamoto K.; ''TRAF6 distinctively mediates MyD88- and IRAK-1-induced activation of NF-kappaB.''; PubMed Europe PMC Scholia
  54. Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O, Akira S.; ''Essential function for the kinase TAK1 in innate and adaptive immune responses.''; PubMed Europe PMC Scholia
  55. Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD.; ''Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected].''; PubMed Europe PMC Scholia
  56. Xiong Y, Qiu F, Piao W, Song C, Wahl LM, Medvedev AE.; ''Endotoxin tolerance impairs IL-1 receptor-associated kinase (IRAK) 4 and TGF-beta-activated kinase 1 activation, K63-linked polyubiquitination and assembly of IRAK1, TNF receptor-associated factor 6, and IkappaB kinase gamma and increases A20 expression.''; PubMed Europe PMC Scholia
  57. Cheung PC, Nebreda AR, Cohen P.; ''TAB3, a new binding partner of the protein kinase TAK1.''; PubMed Europe PMC Scholia
  58. Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS, Lee KY, Bussey C, Steckel M, Tanaka N, Yamada G, Akira S, Matsumoto K, Ghosh S.; ''TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo.''; PubMed Europe PMC Scholia
  59. Piao W, Song C, Chen H, Wahl LM, Fitzgerald KA, O'Neill LA, Medvedev AE.; ''Tyrosine phosphorylation of MyD88 adapter-like (Mal) is critical for signal transduction and blocked in endotoxin tolerance.''; PubMed Europe PMC Scholia
  60. Thiefes A, Wolter S, Mushinski JF, Hoffmann E, Dittrich-Breiholz O, Graue N, Dörrie A, Schneider H, Wirth D, Luckow B, Resch K, Kracht M.; ''Simultaneous blockade of NFkappaB, JNK, and p38 MAPK by a kinase-inactive mutant of the protein kinase TAK1 sensitizes cells to apoptosis and affects a distinct spectrum of tumor necrosis factor [corrected] target genes.''; PubMed Europe PMC Scholia
  61. Butler MP, Hanly JA, Moynagh PN.; ''Kinase-active interleukin-1 receptor-associated kinases promote polyubiquitination and degradation of the Pellino family: direct evidence for PELLINO proteins being ubiquitin-protein isopeptide ligases.''; PubMed Europe PMC Scholia
  62. Takeda K, Akira S.; ''Toll-like receptors in innate immunity.''; PubMed Europe PMC Scholia
  63. Flannery SM, Keating SE, Szymak J, Bowie AG.; ''Human interleukin-1 receptor-associated kinase-2 is essential for Toll-like receptor-mediated transcriptional and post-transcriptional regulation of tumor necrosis factor alpha.''; PubMed Europe PMC Scholia
  64. Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A, Gray P, Harte MT, McMurray D, Smith DE, Sims JE, Bird TA, O'Neill LA.; ''Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction.''; PubMed Europe PMC Scholia
  65. Lin SC, Lo YC, Wu H.; ''Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling.''; PubMed Europe PMC Scholia
  66. Kawagoe T, Sato S, Matsushita K, Kato H, Matsui K, Kumagai Y, Saitoh T, Kawai T, Takeuchi O, Akira S.; ''Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2.''; PubMed Europe PMC Scholia
  67. Chang L, Karin M.; ''Mammalian MAP kinase signalling cascades.''; PubMed Europe PMC Scholia
  68. Towb P, Sun H, Wasserman SA.; ''Tube Is an IRAK-4 homolog in a Toll pathway adapted for development and immunity.''; PubMed Europe PMC Scholia
  69. Ohnishi T, Muroi M, Tanamoto K.; ''N-linked glycosylations at Asn(26) and Asn(114) of human MD-2 are required for toll-like receptor 4-mediated activation of NF-kappaB by lipopolysaccharide.''; PubMed Europe PMC Scholia
  70. Dunne A, Ejdeback M, Ludidi PL, O'Neill LA, Gay NJ.; ''Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors Mal and MyD88.''; PubMed Europe PMC Scholia
  71. Kagan JC, Medzhitov R.; ''Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling.''; PubMed Europe PMC Scholia
  72. Cheng H, Addona T, Keshishian H, Dahlstrand E, Lu C, Dorsch M, Li Z, Wang A, Ocain TD, Li P, Parsons TF, Jaffee B, Xu Y.; ''Regulation of IRAK-4 kinase activity via autophosphorylation within its activation loop.''; PubMed Europe PMC Scholia
  73. Kawagoe T, Sato S, Jung A, Yamamoto M, Matsui K, Kato H, Uematsu S, Takeuchi O, Akira S.; ''Essential role of IRAK-4 protein and its kinase activity in Toll-like receptor-mediated immune responses but not in TCR signaling.''; PubMed Europe PMC Scholia
  74. Kopp E, Medzhitov R, Carothers J, Xiao C, Douglas I, Janeway CA, Ghosh S.; ''ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway.''; PubMed Europe PMC Scholia
  75. Brunner C, Müller B, Wirth T.; ''Bruton's Tyrosine Kinase is involved in innate and adaptive immunity.''; PubMed Europe PMC Scholia
  76. Xia ZP, Sun L, Chen X, Pineda G, Jiang X, Adhikari A, Zeng W, Chen ZJ.; ''Direct activation of protein kinases by unanchored polyubiquitin chains.''; PubMed Europe PMC Scholia
  77. Wesche H, Gao X, Li X, Kirschning CJ, Stark GR, Cao Z.; ''IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family.''; PubMed Europe PMC Scholia
  78. Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K, Ninomiya-Tsuji J, Matsumoto K.; ''TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway.''; PubMed Europe PMC Scholia
  79. Núñez Miguel R, Wong J, Westoll JF, Brooks HJ, O'Neill LA, Gay NJ, Bryant CE, Monie TP.; ''A dimer of the Toll-like receptor 4 cytoplasmic domain provides a specific scaffold for the recruitment of signalling adaptor proteins.''; PubMed Europe PMC Scholia
  80. Qian Y, Commane M, Ninomiya-Tsuji J, Matsumoto K, Li X.; ''IRAK-mediated translocation of TRAF6 and TAB2 in the interleukin-1-induced activation of NFkappa B.''; PubMed Europe PMC Scholia
  81. Nagpal K, Plantinga TS, Wong J, Monks BG, Gay NJ, Netea MG, Fitzgerald KA, Golenbock DT.; ''A TIR domain variant of MyD88 adapter-like (Mal)/TIRAP results in loss of MyD88 binding and reduced TLR2/TLR4 signaling.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114639view16:10, 25 January 2021ReactomeTeamReactome version 75
113087view11:14, 2 November 2020ReactomeTeamReactome version 74
112321view15:24, 9 October 2020ReactomeTeamReactome version 73
101220view11:11, 1 November 2018ReactomeTeamreactome version 66
100758view20:36, 31 October 2018ReactomeTeamreactome version 65
100302view19:13, 31 October 2018ReactomeTeamreactome version 64
99849view15:58, 31 October 2018ReactomeTeamreactome version 63
99406view14:34, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99095view12:39, 31 October 2018ReactomeTeamreactome version 62
93832view13:39, 16 August 2017ReactomeTeamreactome version 61
93386view11:22, 9 August 2017ReactomeTeamreactome version 61
88021view13:31, 25 July 2016RyanmillerOntology Term : 'signaling pathway' added !
86472view09:19, 11 July 2016ReactomeTeamreactome version 56
83182view10:18, 18 November 2015ReactomeTeamVersion54
81550view13:05, 21 August 2015ReactomeTeamVersion53
77020view08:31, 17 July 2014ReactomeTeamFixed remaining interactions
76725view12:09, 16 July 2014ReactomeTeamFixed remaining interactions
76051view10:11, 11 June 2014ReactomeTeamRe-fixing comment source
75760view11:26, 10 June 2014ReactomeTeamReactome 48 Update
75110view14:06, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74757view08:50, 30 April 2014ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
2xN4GlycoAsn-LY96 ProteinQ9Y6Y9 (Uniprot-TrEMBL)
2xN4GlycoAsn-TLR4 ProteinO00206 (Uniprot-TrEMBL)
4xPalmC-CD36 ProteinP16671 (Uniprot-TrEMBL)
ADPMetaboliteCHEBI:456216 (ChEBI)
ATPMetaboliteCHEBI:30616 (ChEBI)
Activated TLR1:2 or

TLR 2:6 heterodimers or

TLR4 homodimer
ComplexR-HSA-181230 (Reactome)
BTK ProteinQ06187 (Uniprot-TrEMBL)
BTKProteinQ06187 (Uniprot-TrEMBL)
CD14(20-345) ProteinP08571 (Uniprot-TrEMBL)
CHUK ProteinO15111 (Uniprot-TrEMBL)
CHUK:IKBKB:IKBKGComplexR-HSA-168113 (Reactome) Co-immunoprecipitation studies and size exclusion chromatography analysis indicate that the high molecular weight (around 700 to 900 kDa) IKK complex is composed of two kinase subunits (IKK1/CHUK/IKBKA and/or IKK2/IKBKB/IKKB) bound to a regulatory gamma subunit (IKBKG/NEMO) (Rothwarf DMet al. 1998; Krappmann D et al. 2000; Miller BS & Zandi E 2001). Variants of the IKK complex containing IKBKA or IKBKB homodimers associated with NEMO may also exist. Crystallographic and quantitative analyses of the binding interactions between N-terminal NEMO and C-terminal IKBKB fragments showed that IKBKB dimers would interact with NEMO dimers resulting in 2:2 stoichiometry (Rushe M et al. 2008). Chemical cross-linking and equilibrium sedimentation analyses of IKBKG (NEMO) suggest a tetrameric oligomerization (dimers of dimers) (Tegethoff S et al. 2003). The tetrameric NEMO could sequester four kinase molecules, yielding an 2xIKBKA:2xIKBKB:4xNEMO stoichiometry (Tegethoff S et al. 2003). The above data suggest that the core IKK complex consists of an IKBKA:IKBKB heterodimer associated with an IKBKG dimer or higher oligomeric assemblies. However, the exact stoichiometry of the IKK complex remains unclear.
Clostridial peptidoglycan MetaboliteCHEBI:8005 (ChEBI)
Diacyl lipopeptide MetaboliteCHEBI:46896 (ChEBI)
ECSITProteinQ9BQ95 (Uniprot-TrEMBL)
GPIN-CD14(20-345) ProteinP08571 (Uniprot-TrEMBL)
IKBKB ProteinO14920 (Uniprot-TrEMBL)
IKBKG ProteinQ9Y6K9 (Uniprot-TrEMBL)
IRAK1 ProteinP51617 (Uniprot-TrEMBL)
IRAK1, IRAK2ComplexR-HSA-937023 (Reactome)
IRAK1/or

IRAK2:p-IRAK4:MyD88

oligomer:TIRAP:activated TLR
ComplexR-HSA-166100 (Reactome)
IRAK1:p-S,2T-IRAK4
oligo-MyD88:TIRAP:activated TLR
ComplexR-HSA-937018 (Reactome)
IRAK2 ProteinO43187 (Uniprot-TrEMBL)
IRAK2:p-S,2T-IRAK4:oligo-MyD88:Mal:activated TLRComplexR-HSA-937028 (Reactome)
IRAK3ProteinQ9Y616 (Uniprot-TrEMBL)
IRAK4 ProteinQ9NWZ3 (Uniprot-TrEMBL)
IRAK4:oligo-MyD88:TIRAP:activated TLRComplexR-HSA-166080 (Reactome)
IRAK4ProteinQ9NWZ3 (Uniprot-TrEMBL)
K63-linked polyUb p-IRAK1:TRAF6ComplexR-HSA-937043 (Reactome)
K63polyUb R-HSA-450152 (Reactome)
K63polyUb-TRAF6 ProteinQ9Y4K3 (Uniprot-TrEMBL)
K63polyUb-hp-IRAK1 ProteinP51617 (Uniprot-TrEMBL)
K63polyUbR-HSA-450152 (Reactome)
LPS MetaboliteCHEBI:16412 (ChEBI)
Lipoteichoic acid MetaboliteCHEBI:28640 (ChEBI)
MAP kinase activationPathwayR-HSA-450294 (Reactome) The mitogen activated protein kinase (MAPK) cascade, one of the most ancient and evolutionarily conserved signaling pathways, is involved in many processes of immune responses. The MAP kinases cascade transduces signals from the cell membrane to the nucleus in response to a wide range of stimuli (Chang and Karin, 2001; Johnson et al, 2002).

There are three major groups of MAP kinases

  • the extracellular signal-regulated protein kinases ERK1/2,
  • the p38 MAP kinase
  • and the c-Jun NH-terminal kinases JNK.

ERK1 and ERK2 are activated in response to growth stimuli. Both JNKs and p38-MAPK are activated in response to a variety of cellular and environmental stresses. The MAP kinases are activated by dual phosphorylation of Thr and Tyr within the tripeptide motif Thr-Xaa-Tyr. The sequence of this tripeptide motif is different in each group of MAP kinases: ERK (Thr-Glu-Tyr); p38 (Thr-Gly-Tyr); and JNK (Thr-Pro-Tyr).

MAPK activation is mediated by signal transduction in the conserved three-tiered kinase cascade: MAPKKKK (MAP4K or MKKKK or MAPKKK Kinase) activates the MAPKKK. The MAPKKKs then phosphorylates a dual-specificity protein kinase MAPKK, which in turn phosphorylates the MAPK.

The dual specificity MAP kinase kinases (MAPKK or MKK) differ for each group of MAPK. The ERK MAP kinases are activated by the MKK1 and MKK2; the p38 MAP kinases are activated by MKK3, MKK4, and MKK6; and the JNK pathway is activated by MKK4 and MKK7. The ability of MAP kinase kinases (MKKs, or MEKs) to recognize their cognate MAPKs is facilitated by a short docking motif (the D-site) in the MKK N-terminus, which binds to a complementary region on the MAPK. MAPKs then recognize many of their targets using the same strategy, because many MAPK substrates also contain D-sites.

The upstream signaling events in the TLR cascade that initiate and mediate the ERK signaling pathway remain unclear.

MAP3K1 ProteinQ13233 (Uniprot-TrEMBL)
MAP3K1ProteinQ13233 (Uniprot-TrEMBL)
MAP3K7 ProteinO43318 (Uniprot-TrEMBL)
MEKK1:activated TRAF6ComplexR-HSA-166867 (Reactome)
MYD88 ProteinQ99836 (Uniprot-TrEMBL)
MYD88ProteinQ99836 (Uniprot-TrEMBL)
Major outer membrane protein P ProteinP30690 (Uniprot-TrEMBL)
MyD88:TIRAP:BTK:activated TLR2/4ComplexR-HSA-166062 (Reactome)
PI(4,5)P2 MetaboliteCHEBI:18348 (ChEBI)
PI(4,5)P2MetaboliteCHEBI:18348 (ChEBI)
RPS27A(1-76) ProteinP62979 (Uniprot-TrEMBL)
SIGIRRProteinQ6IA17 (Uniprot-TrEMBL)
SOCS1ProteinO15524 (Uniprot-TrEMBL)
TAB1 ProteinQ15750 (Uniprot-TrEMBL)
TAB2 ProteinQ9NYJ8 (Uniprot-TrEMBL)
TAB3 ProteinQ8N5C8 (Uniprot-TrEMBL)
TAK1 activates NFkB

by phosphorylation and activation of

IKKs complex
PathwayR-HSA-445989 (Reactome) NF-kappaB is sequestered in the cytoplasm in a complex with inhibitor of NF-kappaB (IkB). Almost all NF-kappaB activation pathways are mediated by IkB kinase (IKK), which phosphorylates IkB resulting in dissociation of NF-kappaB from the complex. This allows translocation of NF-kappaB to the nucleus where it regulates gene expression.
TAK1 complexComplexR-HSA-446878 (Reactome)
TIRAP ProteinP58753 (Uniprot-TrEMBL)
TIRAP:PI(4,5)P2:BTK:activated TLR2/4ComplexR-HSA-2201331 (Reactome)
TIRAP:PI(4,5)P2:activated TLR2/4ComplexR-HSA-2559411 (Reactome)
TIRAP:PI(4,5)P2ComplexR-HSA-2559415 (Reactome)
TIRAPProteinP58753 (Uniprot-TrEMBL)
TLR1 ProteinQ15399 (Uniprot-TrEMBL)
TLR2 ProteinO60603 (Uniprot-TrEMBL)
TLR6 ProteinQ9Y2C9 (Uniprot-TrEMBL)
TRAF6 ProteinQ9Y4K3 (Uniprot-TrEMBL)
TRAF6:K63-linked

polyUb p-IRAK1:IKK

complex
ComplexR-HSA-937038 (Reactome)
TRAF6:hp-IRAK1:PellinoComplexR-HSA-937020 (Reactome)
TRAF6:hp-IRAK1:p-IRAK4:oligo-MyD88:TIRAP:activated TLRComplexR-HSA-937053 (Reactome)
TRAF6:hp-IRAK1ComplexR-HSA-937036 (Reactome) The listed studies describe an activation of IRAK-TRAF6-TAK1 axes downstream of IL1 receptor signaling cascade, which is mediated by its cytosolic domain called Toll/IL1R (TIR) domain. TLRs and IL1R are thought to share a similar downstream signaling pathway due to a high homology of their C-terminal TIR domains.
TRAF6:p-IRAK2
p-IRAK4:oligo-MyD88:TIRAP:activated TLR
ComplexR-HSA-2262774 (Reactome)
TRAF6:p-IRAK2ComplexR-HSA-936961 (Reactome)
TRAF6ProteinQ9Y4K3 (Uniprot-TrEMBL)
Triacyl lipopeptide MetaboliteCHEBI:60192 (ChEBI)
UBA52(1-76) ProteinP62987 (Uniprot-TrEMBL)
UBB(1-76) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(153-228) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(77-152) ProteinP0CG47 (Uniprot-TrEMBL)
UBC(1-76) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(153-228) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(229-304) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(305-380) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(381-456) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(457-532) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(533-608) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(609-684) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(77-152) ProteinP0CG48 (Uniprot-TrEMBL)
UBE2N ProteinP61088 (Uniprot-TrEMBL)
UBE2N:UBE2V1ComplexR-HSA-202463 (Reactome)
UBE2V1 ProteinQ13404 (Uniprot-TrEMBL)
UbComplexR-HSA-113595 (Reactome)
activated TLR2/4:p-4Y-TIRAP:PI(4,5)P2:BTKComplexR-HSA-2201325 (Reactome)
mip ProteinP26623 (Uniprot-TrEMBL)
oligo-MyD88:TIRAP:BTK:activated TLRComplexR-HSA-937033 (Reactome)
p-2S,S376,T,T209,T387-IRAK1 ProteinP51617 (Uniprot-TrEMBL) This is the hyperphosphorylated, active form of IRAK1. The unknown coordinate phosphorylation events are to symbolize the multiple phosphorylations that likely take place in the ProST domain (aa10-211).
p-3S,3T-IRAK1:p-S,2T-IRAK4:oligo-MyD88:TIRAP:activated TLRComplexR-HSA-166360 (Reactome)
p-4Y-TIRAP ProteinP58753 (Uniprot-TrEMBL)
p-IRAK1:p-IRAK4:oligo-MyD88:TIRAP:activated TLRComplexR-HSA-166118 (Reactome)
p-IRAK2 ProteinO43187 (Uniprot-TrEMBL)
p-IRAK2:K63-linked

pUb oligo-TRAF6:free K63 pUb:TAK1

complex
ComplexR-HSA-936953 (Reactome)
p-IRAK2:K63-linked

pUb oligo-TRAF6:free K63-linked

pUb:p-TAK1complex
ComplexR-HSA-937008 (Reactome)
p-IRAK2:K63-linked pUb oligo-TRAF6ComplexR-HSA-936988 (Reactome)
p-IRAK2:oligo-TRAF6ComplexR-HSA-936990 (Reactome)
p-IRAK2:p-IRAK4:oligo-MyD88:TIRAP:activated TLRComplexR-HSA-937055 (Reactome)
p-PELI1 ProteinQ96FA3 (Uniprot-TrEMBL)
p-PELI2 ProteinQ9HAT8 (Uniprot-TrEMBL)
p-PELI3 ProteinQ8N2H9 (Uniprot-TrEMBL)
p-Pellino-1,2,(3)ComplexR-HSA-450819 (Reactome)
p-Pellino:hp-IRAK1:TRAF6ComplexR-HSA-937040 (Reactome)
p-S,2T-IRAK4:oligo-MyD88:TIRAP:activated TLR receptorComplexR-HSA-937048 (Reactome)
p-T184,T187-MAP3K7 ProteinO43318 (Uniprot-TrEMBL)
p-T209,T387-IRAK1 ProteinP51617 (Uniprot-TrEMBL)
p-T209-IRAK1 ProteinP51617 (Uniprot-TrEMBL)
p-T342,T345,S346-IRAK4 ProteinQ9NWZ3 (Uniprot-TrEMBL)
pp-IRAK1:p-IRAK4:oligo-MyD88:TIRAP:activated TLRComplexR-HSA-166281 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ADPArrowR-HSA-166119 (Reactome)
ADPArrowR-HSA-166284 (Reactome)
ADPArrowR-HSA-166286 (Reactome)
ADPArrowR-HSA-2201322 (Reactome)
ADPArrowR-HSA-936991 (Reactome)
ADPArrowR-HSA-937022 (Reactome)
ADPArrowR-HSA-937034 (Reactome)
ADPArrowR-HSA-937059 (Reactome)
ATPR-HSA-166119 (Reactome)
ATPR-HSA-166284 (Reactome)
ATPR-HSA-166286 (Reactome)
ATPR-HSA-2201322 (Reactome)
ATPR-HSA-936991 (Reactome)
ATPR-HSA-937022 (Reactome)
ATPR-HSA-937034 (Reactome)
ATPR-HSA-937059 (Reactome)
Activated TLR1:2 or

TLR 2:6 heterodimers or

TLR4 homodimer
R-HSA-2201316 (Reactome)
BTKR-HSA-2559414 (Reactome)
CHUK:IKBKB:IKBKGR-HSA-937032 (Reactome)
ECSITArrowR-HSA-166869 (Reactome)
IRAK1, IRAK2R-HSA-166091 (Reactome)
IRAK1/or

IRAK2:p-IRAK4:MyD88

oligomer:TIRAP:activated TLR
ArrowR-HSA-166091 (Reactome)
IRAK1:p-S,2T-IRAK4
oligo-MyD88:TIRAP:activated TLR
R-HSA-166119 (Reactome)
IRAK1:p-S,2T-IRAK4
oligo-MyD88:TIRAP:activated TLR
mim-catalysisR-HSA-166119 (Reactome)
IRAK2:p-S,2T-IRAK4:oligo-MyD88:Mal:activated TLRR-HSA-937059 (Reactome)
IRAK2:p-S,2T-IRAK4:oligo-MyD88:Mal:activated TLRmim-catalysisR-HSA-937059 (Reactome)
IRAK3TBarR-HSA-166362 (Reactome)
IRAK4:oligo-MyD88:TIRAP:activated TLRArrowR-HSA-166082 (Reactome)
IRAK4:oligo-MyD88:TIRAP:activated TLRR-HSA-937022 (Reactome)
IRAK4:oligo-MyD88:TIRAP:activated TLRmim-catalysisR-HSA-937022 (Reactome)
IRAK4R-HSA-166082 (Reactome)
K63-linked polyUb p-IRAK1:TRAF6ArrowR-HSA-937050 (Reactome)
K63-linked polyUb p-IRAK1:TRAF6R-HSA-937032 (Reactome)
K63polyUbArrowR-HSA-936986 (Reactome)
K63polyUbR-HSA-936960 (Reactome)
K63polyUbR-HSA-937050 (Reactome)
MAP3K1R-HSA-166869 (Reactome)
MEKK1:activated TRAF6ArrowR-HSA-166869 (Reactome)
MYD88R-HSA-166072 (Reactome)
MYD88R-HSA-937079 (Reactome)
MyD88:TIRAP:BTK:activated TLR2/4ArrowR-HSA-166072 (Reactome)
MyD88:TIRAP:BTK:activated TLR2/4R-HSA-937079 (Reactome)
PI(4,5)P2R-HSA-2559456 (Reactome)
R-HSA-166072 (Reactome) MyD88 binds to IRAK (IL-1 receptor-associated kinase) and the receptor heterocomplex (the signaling complex) and thereby mediates the association of IRAK with the receptor. MyD88 therefore couples a serine/threonine protein kinase to the receptor complex.
R-HSA-166082 (Reactome) IRAK4 is the mammalian homolog of Drosophila melanogaster Tube [Towb P et al 2009; Moncrieffe MC et al 2008]. Like Tube, IRAK4 possesses a conserved N-terminal death domain (DD), which mediates interactions with MyD88 at one binding site and a downstream IRAK kinase at the other, thereby bridging MyD88 and IRAK1/2 association [Towb P et al 2009; Lin SC e al 2010]. IRAK-4 plays a critical role in Toll receptor signaling - any interference with IRAK-4's kinase activity virtually abolishes downstream events. This is not the case with other members of the IRAK family [Suzuki N et al 2002; Li S et al 2002].
R-HSA-166091 (Reactome) IRAK2 has been implicated in IL1R and TLR signaling by the observation that IRAK2 can associate with MyD88 and Mal (Muzio et al. 1997). Like IRAK1, IRAK2 is activated downstream of IRAK4 (Kawagoe et al. 2008). It has been suggested that IRAK1 activates IRAK2 (Wesche et al. 1999) but IRAK2 phosphorylation is observed in IRAK1–/– mouse macrophages while IRAK4 deficiency abrogates IRAK2 phosphorylation (Kawagoe et al. 2008), suggesting that activated IRAK4 phosphorylates IRAK2 as it does IRAK1. IL6 production in response to IL1beta is impaired in embryonic fibroblasts from IRAK1 or IRAK2 knockout mice and abrogated in IRAK1/2 dual knockouts (Kawagoe et al. 2007) suggesting that IRAK1 and IRAK2 are both involved in IL1R signaling downstream of IRAK4.
R-HSA-166119 (Reactome) First, IRAK1 is phosphorylated at Thr209 by IRAK4. This results in a conformational change of the kinase domain, permitting further phosphorylations to take place. Substitution of Thr209 by alanine results in a kinase-inactive IRAK1.
R-HSA-166284 (Reactome) Second, Thr387 in the activation loop is phosphorylated, leading to full enzymatic activity.
R-HSA-166286 (Reactome) Phosphorylation of IRAK-1 is due to three sequential phosphorylation steps, which leads to full or hyper-phopshorylation of IRAK1. Under in vitro conditions these are all autophosphorylation events. First, Thr-209 is phosphorylated resulting in a conformational change of the kinase domain. Next, Thr-387 in the activation loop is phosphorylated, leading to full enzymatic activity. Several additional residues are phosphorylated in the proline-, serine-, and threonine-rich (ProST) region between the N-terminal death domain and kinase domain. Hyperphosphorylation of this region leads to dissociation of IRAK1 from the activated receptor complex. The kinase activity of IRAK1 is dispensable for IL1-induced NFkB and MAP kinase activation (Knop & Martin, 1999), unlike that of IRAK4 (Suzuki et al. 2002; Kozicak-Holbro et al. 2007), It has been suggested that IRAK1 primarily acts as an adaptor for TRAF6 (Conze et al. 2008).
R-HSA-166362 (Reactome) Hyperphosphorylated IRAK1 and TRAF6 are thought to dissociate from the activated receptor. (Gottipati et al. 2007) but the IRAK1:TRAF6 complex may remain associated with the membrane (Dong et al. 2006).

Phosphorylated IRAK2, like its paralog IRAK1, possibly dissociates from the activated receptor as shown here, although mechanism of IRAK2 activation by IRAK4 followed by TRAF6 binding remains to be deciphered.

R-HSA-166363 (Reactome) Hyperphosphorylated IRAK1, still within the receptor complex, binds TRAF6 through multiple regions including the death domain, the undefined domain and the C-terminal C1 domain (Li et al. 2001). The C-terminal region of IRAK-1 contains three potential TRAF6-binding sites; mutation of the amino acids (Glu544, Glu587, Glu706) in these sites to alanine greatly reduces activation of NFkappaB (Ye et al. 2002).
R-HSA-166869 (Reactome) TRAF6 binding to MAPK kinase kinase 1 (MEKK1) is mediated by the adapter protein evolutionarily conserved signaling intermediate in Toll pathway or in short ECSIT (Kopp E et al 1999). Induced MEKK1 can activate both IKK alpha and IKK beta thus leading to induction of NF-kappa-B activation. MEKK1 was also shown to induce ERK1/2 and JNK activation [Yujiri T et al 1998].

Although TRAF6 interacts with several upstream mediators (IRAK1, IRAK2, TRIF), there is no data showing MEKK1 participating in the interaction with the TRAF6 activators. Therefore this reaction is simplified to include only TRAF6 and MEKK1.

R-HSA-2201316 (Reactome) TIRAP/Mal-deficient mice showed normal responses to the TLR3, TLR5, TLR7, and TLR9 ligands, but were defective in TLR4 and TLR2 ligand-induced proinflammatory cytokine production (Horng et al. 2002,Yamamoto et al. 2002). In contrast, TLR4 ligand-induced activation of IRF-3 and expression of IFN-inducible genes were not impaired in TIRAP/Mal knockout macrophages or in mice lacking both MyD88 and TIRAP/Mal (Horng et al. 2002,Yamamoto et al. 2002). Thus, TIRAP/Mal is an essential adapter that is involved in the MyD88-dependent pathway via TLR4 and TLR2, but not in the MyD88-independent pathway. Mal contains a phosphatidylinositol 4,5-bisphosphate-binding domain required for retention in the plasma membrane. The intracellular TIR domains of TLR2 or 4 associate with Mal at the cytoplasmic side of the plasma membrane, which in turn facilitates the binding of MyD88 to the activated TLR, leading to NF-kB and MAPK activation [Nunez Miguel et al 2007].
R-HSA-2201322 (Reactome) Upon activation of TLR2/or 4 signaling pathway TIRAP(MAL), a TIR domain–containing adapter protein, undergoes tyrosine phosphorylation (Piao W et al. 2008; Gray P et al. 2006). Bruton's tyrosine kinase (BTK) was shown to mediate the TIRAP phosphorylation (Jefferies CA et al. 2003; Gray P et al. 2006). BTK-specific inhibitor, LFM-A13, blocked the phosphorylation of TIRAP in human monocytic cell line THP-1 stimulated with LPS or macrophage-activating lipopeptide-2 (MALP-2) (Gray P et al. 2006). LFM-A13 also inhibited activation of NFkappaB in LPS-treated THP-1 (Jefferies CA et al. 2003). Besides BTK kinase TIRAP was shown to associate with other kinases such as protein kinase C delta (PKC delta) suggesting their regulatory role in TIRAP activation (Kubo-Murai M et al. 2007).

Tyr-86, Tyr-106 and Tyr-187 were identified as possible phosphorylation sites (Gray P et al. 2006). An additional study has shown that Tyr-86, Tyr-106, and Tyr-159 are important residues, as mutagenesis of these residues impaired TIRAP (MAL) phosphorylation, affected its interaction with BTK and also impaired downstream signaling (Piao W et al. 2008). BTK-mediated phosphorylation of TIRAP leads to recruitment of suppressor of cytokine signaling 1 (SOCS1), which assembles K48-linked polyubiquitin chains resulting in TIRAP's proteosomal degradation, disrupting the TLR complex, and terminating signaling (Mansell A et al. 2006). TIRAP function is also regulated by the cysteine protease caspase-1, which cleaves the protein in a region of the molecule that interacts with MyD88 and TLR4 (Ulrichts P et al. 2010).

R-HSA-2262775 (Reactome) Hyperphosphorylated IRAK1 and TRAF6 are thought to dissociate from the activated receptor. (Gottipati et al. 2007) but the IRAK1:TRAF6 complex may remain associated with the membrane (Dong et al. 2006).

Phosphorylated IRAK2, like its paralog IRAK1, possibly dissociates from the activated receptor as shown here, although mechanism of IRAK2 activation by IRAK4 followed by TRAF6 binding remains to be deciphered.

R-HSA-2262777 (Reactome) IRAK-2 has two TRAF6 binding motifs that are responsible for initiating TRAF6 signaling transduction (Ye H et al 2002). IRAK2 point mutants with mutated TRAF6-binding motifs abrogate NFkB activation and are incapable to stimulate TRAF6 ubiquitination (Keating SE et al 2007).
R-HSA-2559414 (Reactome) Bruton's tyrosine kinase (BTK) is a cytoplasmic protein tyrosine kinase, which plays an essential role in B cell receptor (BCR) signaling (Brunner C et al. 2005). BTK has been also implicated in TLR signaling (Lee KG et al. 2012, Jefferies CA et al. 2003; Doyle SL et al. 2007). Interaction studies revealed that BTK can associate with intracellular TIR-domains of TLRs 4, 6, 8 and 9. Furthermore, BTK was found to interact with other proteins involved in TLR2/4 signaling - MyD88, MAL and IRAK-1 (Jefferies CA et al. 2003)

Loss of BTK function causes X-linked agammaglobulinemia (XLA), a rare primary immunode?ciency disease with severe defects in early B-cell development resulting in an almost complete absence of peripheral B cells and severely reduced serum levels of immunoglobulins of all classes (Väliaho J et al. 2006). Affected individuals suffer from recurrent bacterial and enteroviral infections. It remains unclear whether XLA patients have normal or impared TLR signaling functions. LPS-stimulated monocytes from XLA patients were found to produce reduced amounts of TNFalpha (Horwood NJ et al. 2003), These data contradict a study that showed enhanced amounts of TNFalpha and IL6 comparing to control cells, starting at 6 hours and extending for 48 hours (Marron TU et al. 2012). The other group reported similar expression TNFalpha upon TLR4 triggering, compared with healthy control cells (Perez de Diego R et al. 2006). Thus, the effect of BTK deficiency on TLR-mediated inflammation needs to be further clarified.

R-HSA-2559456 (Reactome) Upon LPS stimulation, Mal(TIRAP) was shown to bind to PIP2-rich regions on the cell surface trough its phosphatidylinositol 4,5-bisphosphate-binding domain [Kagan JC and Medzithov R 2007]. TLR2 or 4 associates with Mal(TIRAP) on the cell surface, which in turn facilitates the binding of MyD88 to the activated TLR, leading to NF-kB and MAPK activation [Nunez Miguel R et al 2007, Nagpal K et al 2009].
R-HSA-936942 (Reactome) TRAF6 possesses ubiquitin ligase activity and undergoes K-63-linked auto-ubiquitination after its oligomerization. In the first step, ubiquitin is activated by an E1 ubiquitin activating enzyme. The activated ubiquitin is transferred to a E2 conjugating enzyme (a heterodimer of proteins Ubc13 and Uev1A) forming the E2-Ub thioester. Finally, in the presence of ubiquitin-protein ligase E3 (TRAF6, a RING-domain E3), ubiquitin is attached to the target protein (TRAF6 on residue Lysine 124) through an isopeptide bond between the C-terminus of ubiquitin and the epsilon-amino group of a lysine residue in the target protein. In contrast to K-48-linked ubiquitination that leads to the proteosomal degradation of the target protein, K-63-linked polyubiquitin chains act as a scaffold to assemble protein kinase complexes and mediate their activation through proteosome-independent mechanisms. This K63 polyubiquitinated TRAF6 activates the TAK1 kinase complex.
R-HSA-936960 (Reactome) TAK1-binding protein 2 (TAB2) and/or TAB3, as part of a complex that also contains TAK1 and TAB1, binds polyubiquitinated TRAF6. The TAB2 and TAB3 regulatory subunits of the TAK1 complex contain C-terminal Npl4 zinc finger (NZF) motifs that recognize with Lys63-pUb chains (Kanayama et al. 2004). The recognition mechanism is specific for Lys63-linked ubiquitin chains [Kulathu Y et al 2009]. TAK1 can be activated by unattached Lys63-polyubiquitinated chains when TRAF6 has no detectable polyubiquitination (Xia et al. 2009) and thus the synthesis of these chains by TRAF6 may be the signal transduction mechanism.
R-HSA-936963 (Reactome) The mechanism by which IRAK-2 induces TRAF6 E3 ligase activity remains to be deciphered, but one possibility is that IRAK-2 may direct TRAF6 oligomerization.
R-HSA-936986 (Reactome) Polyubiquitinated TRAF6 (as E3 ubiquitin ligase) generates free K63 -linked polyubiquitin chains that non-covalently associate with ubiquitin receptors of TAB2/TAB3 regulatory proteins of the TAK1 complex, leading to the activation of the TAK1 kinase.
R-HSA-936991 (Reactome) The TAK1 complex consists of Transforming growth factor-beta (TGFB)-activated kinase (TAK1) and TAK1-binding protein 1 (TAB1), TAB2 and TAB3. TAK1 requires TAB1 for its kinase activity (Shibuya et al. 1996, Sakurai et al. 2000). TAB1 promotes TAK1 autophosphorylation at the kinase activation lobe, probably through an allosteric mechanism (Brown et al. 2005, Ono et al. 2001). The TAK1 complex is regulated by polyubiquitination. Binding of TAB2 and TAB3 to Lys63-linked polyubiquitin chains leads to the activation of TAK1 by an uncertain mechanism. Binding of multiple TAK1 complexes to the same polyubiquitin chain may promote oligomerization of TAK1, facilitating TAK1 autophosphorylation and subsequent activation of its kinase activity (Kishimoto et al. 2000). The binding of TAB2/3 to polyubiquitinated TRAF6 may facilitate polyubiquitination of TAB2/3 by TRAF6 (Ishitani et al. 2003), which might result in conformational changes within the TAK1 complex that lead to TAK1 activation. Another possibility is that TAB2/3 may recruit the IKK complex by binding to ubiquitinated NEMO; polyubiquitin chains may function as a scaffold for higher order signaling complexes that allow interaction between TAK1 and IKK (Kanayama et al. 2004).
R-HSA-937022 (Reactome) IRAK4 is activated by autophosphorylation at 3 positions within the kinase activation loop, Thr-342, Thr-345 and Ser-346.
R-HSA-937032 (Reactome) NF-kappa-B essential modulator (NEMO, also known as IKKG abbreviated from Inhibitor of nuclear factor kappa-B kinase subunit gamma) is the regulatory subunit of the IKK complex which phosphorylates inhibitors of NF-kappa-B leading to dissociation of the inhibitor/NF-kappa-B complex. NEMO binds to K63-pUb chains (Ea et al. 2006; Wu et al. 2006), linking K63-pUb-hp-IRAK1 with the IKK complex. Models of IL-1R dependent activation of NF-kappaB suggest that the polyubiquitination of both TRAF6 and IRAK1 within a TRAF6:IRAK1 complex and their subsequent interactions with the TAK1 complex and IKK complex respectively brings these complexes into proximity, facilitating the TAK1-catalyzed activation of IKK (Moynagh, 2008).
R-HSA-937034 (Reactome) Both IRAK1 and IRAK4 were shown to phosphorylate Pellino isoforms in vitro. The phosphorylation of Pellino proteins is a necessary step in enhancing of their E3 ubiquitin ligase activity. It remains unclear whether IRAK1(as shown here), IRAK4, or both protein kinases mediate the activation of Pellino isoforms in vivo.
R-HSA-937044 (Reactome) Pellino isoforms -1, 2 and 3 have been shown to interact with IRAK1 and IRAK4 (Jiang et al. 2003, Strellow et al. 2003, Butler et al. 2005, 2007). It has been also reported that Pellino-1 forms a complex with TRAF6, but not TAK1 or IL1R (Jiang et al. 2003), suggesting that Pellino-1 function as intermediate complex with IRAK1 in the propagation of signal from the activated receptor to activation of TAK1.

All Pellino isoforms function as E3 ubiquitin ligases in conjunction with several different E2-conjugating enzymes - Ubc13-Uev1a, UbcH4, or UbcH5a/5b.(Schauvliege R et al. 2006, Butler MP et al. 2007, Ordureau A et al. 2008). Their C-terminus contains a RING-like domain which is responsible for IL1-induced Lys63-linked polyubiquitination of IRAK1 in vitro.

R-HSA-937050 (Reactome) IL1R/TLR induces the Lys48- polyubiquitination and proteosomal degradation of IRAK1. IRAK1 has been shown to undergo Lys63-linked polyubiquitination which induced activation of NFkB (Windheim et al 2008; Conze et al 2008). These two forms of ubiquitination are not mutually exclusive for a protein (Newton K et al 2008). Upon stimulation Lys63-linked ubiquitination may occur first to activate NFkB, but at later time Lys48-linked ubiquitination occurs to target the proteins for proteosomal degradation.

IRAK1 is ubiquitinated on Lys134 and Lys180; mutation of these sites impairs IL1R-mediated ubiquitylation of IRAK1 (Conze et al 2008). Some authors have proposed a role for TRAF6 as the E3 ubiquitin ligase that catalyzes polyubiquitination of IRAK1 (Conze et al 2008) but this view has been refuted (Windheim et al. 2008; Xiao et al. 2008). There is a stronger agreement that Pellino proteins have a role as IRAK1 E3 ubiquitin ligases.
Pellino1-3 possess E3 ligase activity and are believed to directly catalyse polyubiquitylation of IRAK1 (Xiao et al 2008; Butler et al 2007; Ordureau et al. 2008). They are capable of catalysing the formation of K63- and Lys48-linked polyubiquitin chains; the type of linkage is controlled by the collaborating E2 enzyme. All the Pellino proteins can combine with the E2 heterodimer UbcH13/Uev1a to catalyze Lys63-linked ubiquitylation (Ordureau et al 2008).

R-HSA-937059 (Reactome) IRAK4 deficient macrophages fail to induce IRAK2 phosphorylation (Kawagoe et al. 2008), suggesting that activated IRAK4 phosphorylates IRAK2 as it does IRAK1.

Phosphorylation sites of IRAK2 remain to be characterized.

R-HSA-937079 (Reactome) Structural analysis of MyD88:IRAK4 and MyD88:IRAK4:IRAK2 suggested that upon MyD88 recruitment to an activated dimerized TLR the MyD88 death domains clustering induces the formation of Mydosome, a large oligomeric signaling platform (Motshwene PG et al 2009, Lin SC et al 2010). Assembly of these Myddosome complexes brings the kinase domains of IRAKs into proximity for phosphorylation and activation. The oligomer complex stoichiometry was reported as 7:4 and 8:4 for MyD88:IRAK4 (Motshwene PG et al 2009), and 6:4:4 in the complex of MyD88:IRAK4:IRAK2(Lin SC et al 2010).
SIGIRRTBarR-HSA-166072 (Reactome)
SOCS1TBarR-HSA-166072 (Reactome)
TAK1 complexR-HSA-936960 (Reactome)
TIRAP:PI(4,5)P2:BTK:activated TLR2/4ArrowR-HSA-2559414 (Reactome)
TIRAP:PI(4,5)P2:BTK:activated TLR2/4R-HSA-2201322 (Reactome)
TIRAP:PI(4,5)P2:BTK:activated TLR2/4mim-catalysisR-HSA-2201322 (Reactome)
TIRAP:PI(4,5)P2:activated TLR2/4ArrowR-HSA-2201316 (Reactome)
TIRAP:PI(4,5)P2:activated TLR2/4R-HSA-2559414 (Reactome)
TIRAP:PI(4,5)P2ArrowR-HSA-2559456 (Reactome)
TIRAP:PI(4,5)P2R-HSA-2201316 (Reactome)
TIRAPR-HSA-2559456 (Reactome)
TRAF6:K63-linked

polyUb p-IRAK1:IKK

complex
ArrowR-HSA-937032 (Reactome)
TRAF6:hp-IRAK1:PellinoArrowR-HSA-937044 (Reactome)
TRAF6:hp-IRAK1:PellinoR-HSA-937034 (Reactome)
TRAF6:hp-IRAK1:Pellinomim-catalysisR-HSA-937034 (Reactome)
TRAF6:hp-IRAK1:p-IRAK4:oligo-MyD88:TIRAP:activated TLRArrowR-HSA-166363 (Reactome)
TRAF6:hp-IRAK1:p-IRAK4:oligo-MyD88:TIRAP:activated TLRR-HSA-166362 (Reactome)
TRAF6:hp-IRAK1ArrowR-HSA-166362 (Reactome)
TRAF6:hp-IRAK1R-HSA-937044 (Reactome)
TRAF6:p-IRAK2
p-IRAK4:oligo-MyD88:TIRAP:activated TLR
ArrowR-HSA-2262777 (Reactome)
TRAF6:p-IRAK2
p-IRAK4:oligo-MyD88:TIRAP:activated TLR
R-HSA-2262775 (Reactome)
TRAF6:p-IRAK2ArrowR-HSA-2262775 (Reactome)
TRAF6:p-IRAK2R-HSA-936963 (Reactome)
TRAF6R-HSA-166363 (Reactome)
TRAF6R-HSA-166869 (Reactome)
TRAF6R-HSA-2262777 (Reactome)
TRAF6R-HSA-936963 (Reactome)
UBE2N:UBE2V1ArrowR-HSA-937050 (Reactome)
UBE2N:UBE2V1R-HSA-937050 (Reactome)
UbR-HSA-936942 (Reactome)
UbR-HSA-936986 (Reactome)
activated TLR2/4:p-4Y-TIRAP:PI(4,5)P2:BTKArrowR-HSA-2201322 (Reactome)
activated TLR2/4:p-4Y-TIRAP:PI(4,5)P2:BTKR-HSA-166072 (Reactome)
oligo-MyD88:TIRAP:BTK:activated TLRArrowR-HSA-937079 (Reactome)
oligo-MyD88:TIRAP:BTK:activated TLRR-HSA-166082 (Reactome)
p-3S,3T-IRAK1:p-S,2T-IRAK4:oligo-MyD88:TIRAP:activated TLRArrowR-HSA-166286 (Reactome)
p-3S,3T-IRAK1:p-S,2T-IRAK4:oligo-MyD88:TIRAP:activated TLRR-HSA-166363 (Reactome)
p-IRAK1:p-IRAK4:oligo-MyD88:TIRAP:activated TLRArrowR-HSA-166119 (Reactome)
p-IRAK1:p-IRAK4:oligo-MyD88:TIRAP:activated TLRR-HSA-166284 (Reactome)
p-IRAK1:p-IRAK4:oligo-MyD88:TIRAP:activated TLRmim-catalysisR-HSA-166284 (Reactome)
p-IRAK2:K63-linked

pUb oligo-TRAF6:free K63 pUb:TAK1

complex
ArrowR-HSA-936960 (Reactome)
p-IRAK2:K63-linked

pUb oligo-TRAF6:free K63 pUb:TAK1

complex
R-HSA-936991 (Reactome)
p-IRAK2:K63-linked

pUb oligo-TRAF6:free K63 pUb:TAK1

complex
mim-catalysisR-HSA-936991 (Reactome)
p-IRAK2:K63-linked

pUb oligo-TRAF6:free K63-linked

pUb:p-TAK1complex
ArrowR-HSA-936991 (Reactome)
p-IRAK2:K63-linked pUb oligo-TRAF6ArrowR-HSA-936942 (Reactome)
p-IRAK2:K63-linked pUb oligo-TRAF6R-HSA-936960 (Reactome)
p-IRAK2:K63-linked pUb oligo-TRAF6mim-catalysisR-HSA-936986 (Reactome)
p-IRAK2:oligo-TRAF6ArrowR-HSA-936963 (Reactome)
p-IRAK2:oligo-TRAF6R-HSA-936942 (Reactome)
p-IRAK2:oligo-TRAF6mim-catalysisR-HSA-936942 (Reactome)
p-IRAK2:p-IRAK4:oligo-MyD88:TIRAP:activated TLRArrowR-HSA-937059 (Reactome)
p-IRAK2:p-IRAK4:oligo-MyD88:TIRAP:activated TLRR-HSA-2262777 (Reactome)
p-Pellino-1,2,(3)ArrowR-HSA-937050 (Reactome)
p-Pellino-1,2,(3)R-HSA-937044 (Reactome)
p-Pellino:hp-IRAK1:TRAF6ArrowR-HSA-937034 (Reactome)
p-Pellino:hp-IRAK1:TRAF6R-HSA-937050 (Reactome)
p-Pellino:hp-IRAK1:TRAF6mim-catalysisR-HSA-937050 (Reactome)
p-S,2T-IRAK4:oligo-MyD88:TIRAP:activated TLR receptorArrowR-HSA-166362 (Reactome)
p-S,2T-IRAK4:oligo-MyD88:TIRAP:activated TLR receptorArrowR-HSA-2262775 (Reactome)
p-S,2T-IRAK4:oligo-MyD88:TIRAP:activated TLR receptorArrowR-HSA-937022 (Reactome)
p-S,2T-IRAK4:oligo-MyD88:TIRAP:activated TLR receptorR-HSA-166091 (Reactome)
pp-IRAK1:p-IRAK4:oligo-MyD88:TIRAP:activated TLRArrowR-HSA-166284 (Reactome)
pp-IRAK1:p-IRAK4:oligo-MyD88:TIRAP:activated TLRR-HSA-166286 (Reactome)
pp-IRAK1:p-IRAK4:oligo-MyD88:TIRAP:activated TLRmim-catalysisR-HSA-166286 (Reactome)
Personal tools