SUMOylation (Homo sapiens)
From WikiPathways
Description
Small Ubiquitin-like MOdifiers (SUMOs) are a family of 3 proteins (SUMO1,2,3) that are reversibly conjugated to lysine residues of target proteins via a glycine-lysine isopeptide bond (reviewed in Hay 2013, Hannoun et al. 2010, Gareau and Lima 2010, Wilkinson and Henley 2010, Wang and Dasso 2009). Proteomic methods have yielded estimates of hundreds of target proteins. Targets are mostly located in the nucleus and therefore SUMOylation disproportionately affects gene expression.
SUMOs are initially translated as proproteins possessing extra amino acid residues at the C-terminus which are removed by the SUMO processing endoproteases SENP1,2,5 (Hay 2007). Different SENPs have significantly different efficiencies with different SUMOs. The processing exposes a glycine residue at the C-terminus that is activated by ATP-dependent thiolation at cysteine-173 of UBA2 in a complex with SAE1, the E1 complex. The SUMO is transferred from E1 to cysteine-93 of a single E2 enzyme, UBC9 (UBE2I). UBC9 with or, in some cases, without an E3 ligase conjugates the glycine C-terminus of SUMO to an epsilon amino group of a lysine residue on the target protein. SUMO2 and SUMO3 may then be further polymerized, forming chains. SUMO1 is unable to form polymers.
Conjugated SUMO can act as a biinding site for proteins possessing SUMO interaction motifs (SIMs) and can also directly affect the formation of complexes between the target protein and other proteins.
Conjugated SUMOs are removed by cleavage of the isopeptide bond by processing enzymes SENP1,2,3,5. The processing enzymes SENP6 and SENP7 edit chains of SUMO2 and SUMO3. View original pathway at Reactome.
SUMOs are initially translated as proproteins possessing extra amino acid residues at the C-terminus which are removed by the SUMO processing endoproteases SENP1,2,5 (Hay 2007). Different SENPs have significantly different efficiencies with different SUMOs. The processing exposes a glycine residue at the C-terminus that is activated by ATP-dependent thiolation at cysteine-173 of UBA2 in a complex with SAE1, the E1 complex. The SUMO is transferred from E1 to cysteine-93 of a single E2 enzyme, UBC9 (UBE2I). UBC9 with or, in some cases, without an E3 ligase conjugates the glycine C-terminus of SUMO to an epsilon amino group of a lysine residue on the target protein. SUMO2 and SUMO3 may then be further polymerized, forming chains. SUMO1 is unable to form polymers.
Conjugated SUMO can act as a biinding site for proteins possessing SUMO interaction motifs (SIMs) and can also directly affect the formation of complexes between the target protein and other proteins.
Conjugated SUMOs are removed by cleavage of the isopeptide bond by processing enzymes SENP1,2,3,5. The processing enzymes SENP6 and SENP7 edit chains of SUMO2 and SUMO3. View original pathway at Reactome.
Try the New WikiPathways
View approved pathways at the new wikipathways.org.Quality Tags
Ontology Terms
Bibliography
History
External references
DataNodes
SUMOylate target
proteinsUBE2I (UBC9), the E2 activating enzyme of the SUMO pathway, is itself also a SUMO E3 ligase. Most SUMOylation reactions will proceed with only the substrate protein and the UBE2I:SUMO thioester conjugate. The rates of some reactions are further enhanced by the action of other E3 ligases such as RANBP2. These E3 ligases catalyze SUMO transfer to substrate by one of two basic mechanisms: they interact with both the substrate and UBE2I:SUMO thus bringing them into proximity or they enhance the release of SUMO from UBE2I to the substrate.
In the cell SUMO1 is mainly concentrated at the nuclear membrane and in nuclear bodies. Most SUMO1 is conjugated to RANGAP1 near the nuclear pore. SUMO2 is at least partially cytosolic and SUMO3 is located mainly in nuclear bodies. Most SUMO2 and SUMO3 is unconjugated in unstressed cells and becomes conjugated to target proteins in response to stress (Golebiowski et al. 2009). Especially notable is the requirement for recruitment of SUMO to sites of DNA damage where conjugation to targets seems to coordinate the repair process (Flotho and Melchior 2013).
Several effects of SUMOylation have been described: steric interference with protein-protein interactions, interference with other post-translational modifications such as ubiquitinylation and phosphorylation, and recruitment of proteins that possess a SUMO-interacting motif (SIM) (reviewed in Zhao 2007, Flotho and Melchior 2013, Jentsch and Psakhye 2013, Yang and Chiang 2013). In most cases SUMOylation inhibits the activity of the target protein.
The SUMOylation reactions included in this module have met two criteria: They have been verified by assays of individual proteins (as opposed to mass proteomic assays) and the effect of SUMOylation on the function of the target protein has been tested.
Annotated Interactions