TCF dependent signaling in response to WNT (Homo sapiens)

From WikiPathways

Jump to: navigation, search
33, 36, 126118, 120, 17712, 19, 116, 180, 189...84, 87, 95, 137108, 186, 24127, 30, 109, 218, 24013, 136, 18327, 61, 122, 167, 20829, 44, 73, 909, 31, 56, 68, 97...18, 25, 26, 55, 72...22536, 47, 91, 107, 131...18180, 101, 170, 2218121, 51, 81135, 18199, 112, 135, 18120463, 88, 251212066, 37, 38, 49, 59...5, 123, 21712, 1970, 75, 139, 142, 166...10, 27, 66, 88, 98...24, 46, 79, 83, 93...48, 84, 89, 23321, 51, 8120315354, 19210212, 1927, 16411, 33, 87, 95, 125...3, 8, 28, 33, 36...52, 88, 138, 159, 185203113, 20510222, 32, 76, 92, 144...4, 50, 82, 86, 111...52, 88, 138, 159, 18513512, 19, 206520, 40, 76, 146, 14954, 778115, 108158, 2012041, 39, 45, 124, 150...53, 81, 110, 130, 132...1812787, 105, 153, 23610223, 35, 78, 104, 1282032045140, 189, 20644, 73, 87, 90, 137...27, 88, 14564, 127, 17433, 43, 55, 90, 96...2, 17, 27, 58, 62...27, 164cytosolearly endosome lumennucleoplasmearly endosome lumenBTRC LGR6 Ub-121-HIST1H2BK UBC(305-380) N4GlycoAsn-PalmSWNT3APSMD2 HIST1H2BM SOX9 TCF/LEF:TLE:HDAC1LRP5 FZD2 UBB(153-228) Ub-TLE2 UBC(609-684) FZD4 N4GlycoAsn-PalmS WNT5A(36-380) TCF7 TCF7 PIP5K1B YWHAZ TLE3 AXIN1 FZD1 DKK4 PSMD11 Me3K5-HIST1H3A BCL9L Ubp-LRP6 ZNRF3,RNF43SOX17 Ub-121-HIST1H2BB TCF7 LRP6 ZNRF3 LEF1 PSMB5 GSK3B UBC(457-532) BTRC SFRP1 WIF1:WNTpp-DVL3 TCF7L1 N4GlycoAsn-PalmS WNT3 UBC(1-76) N4GlycoAsn-PalmS WNT8A MEN1 pp-DVL2 ub-TLE:XIAPWNT:FZD:p5S/T-LRP5/6:DVL:AXIN:GSK3BLRP6 H2AFJ HIST1H2AB PSMD3 SFRP2 UBC(381-456) PSMB7 TLE4 PSMB11 DVL1 UBC(609-684) Ub-TLE1 N4GlycoAsn-PalmS WNT3 N4GlycoAsn-PalmS WNT9A TCF/LEF:CTNNB1:RUVBL1:TRRAP:KAT5RSPO1 GSK3B KRM2 YWHAZTLE4 WNT3A:sFRPPPP2R5C KRM1 LRP6 ATPK63polyUb-APCFZD1 APCLGR5 p-5S,5T-LRP5 UBC(305-380) TCF7L2 RibC-AXIN1 CSNK2A1 TCF7 SOX3 LRP5 UBB(153-228) p-DVL3 H2AFZ PSMA3 TCF7L2 TCF7L2 CTNNB1 CSNK1G2HIST3H3 UBC(77-152) LRP5 N4GlycoAsn-PalmS WNT1 HECW1 UBC(77-152) LRP5/6SOX17 N4GlycoAsn-PalmS WNT5A(36-380) UBB(1-76) KRM2 UBC(1-76) TCF7 KLHL12 N4GlycoAsn-PalmS WNT8B pS20-CBY1:CTNNB1HIST2H2AA3 CTNNB1 PSMC6 HIST1H2AC pp-DVL2 TLE tetramerCSNK1A1 N4GlycoAsn-PalmS WNT3A Ub-121-HIST1H2BJ AXIN2 geneHIST1H2BB FZD4 p-4S,3T,T1479,S1490,T1493-LRP6 AXIN:TNKSATPDKK2 Ub-121-HIST1H2BM Ub-121-HIST3H2BB SOX6 PSMB8 AXIN1 LRP5 CTNNB1 HIST1H2BJ UBC(153-228) ATPPYGO1 CTNNB1 CSNK2B TCF7L1 H2AFZ H2AFB1 TCF7L1 SOX9 UBA52(1-76) HIST2H2AC TLE:XIAPTCF7L2 CTNNB1 HECW1 DKK2 pp-DVL1 RSPO2 RUNX3:TCF7L2,(LEF1,TCF7L1)HIST1H2AJ CREBBP UBC(533-608) CTNNB1 CDC73CCDC88C AMER1TCF4 gene HIST1H2BL LGR4 UbUb-122-HIST1H2BA K63polyUb-APC XIAP TRRAPub-FZD8 DVL2 Ub-121-HIST1H2BM FZD8 UBC(609-684) SHFM1 PSMB6 XIAP LGR5 PSMD14 Ub-RibC-AXIN2 HIST3H3 LGR5 RNF43 Me3K5-H3F3A UBC(609-684) UbLRP6 UBC(77-152) LGR4 SRY LEF1 RibC-AXIN2 PSMB9 UBC(229-304) ub-DVL:CUL3:KLHL12:RBX1DVL3 TCF7L1 HIST2H2AA3 HECW1GSK3B LGR6 UBA52(1-76) AXINASH2LDVLDVL1 XPO1 SOX7 DVL1 AXIN1 HDAC1 Ub-121-HIST1H2BC TNKS1/2:XAV939H2OLEF1 CTNNB1 CTBP1 UBB(77-152) N4GlycoAsn-PalmS WNT8B UBC(381-456) TNKS LEF1 DKK1 HIST1H2BN N4GlycoAsn-PalmS WNT3A CXXC4HIST1H4 Ub-121-H2BFS UBC(153-228) SOX4 PPP2CA LRP5 UBC(533-608) CSNK1A1HIST3H2BB CDC73 CUL3 PYGO1 UBA52(1-76) CTNNB1PPP2CB TCF7L1 UBB(1-76) HIST1H2BD DVL3 p-2S,S1490,2T-LRP6 PPP2R5A BCL9FZD5 HIST1H2BM UBC(77-152) UBC(533-608) DVL1 DKK1 XPO1:YWHAZ:p-S20-CBY1:CTNNB1TCF7L1 ub-DVL1 LEF1 TLE1 PSMB4 UBC(153-228) FZD1 PPP2R5C PSMB2 LEF1 UBC(533-608) SFRP2 pp-DVL3 DVL2DKKHIST1H2BB p-AKT1/2N4GlycoAsn-PalmS WNT3A UBC(305-380) TNKS RUVBL1canonical FZDreceptorsRibC-AXIN:TNKS:RNF146PSMD12 SOX17 TLE1 CTNNBIP1PSME1 PPP2R5D DVL2 PSMC5 Degradation ofbeta-catenin by thedestruction complexFZD6 HIST2H2BE ub-AXIN:SMURF2TCF7L1 pS20-CBY1 UBB(1-76) AXIN2KRM:DKK:LRP5/6PSMF1 CTNNBIP1:CTNNB1CTNNB1LGR5 DVL3 DKK2 FRAT2 KLHL12 UBC(153-228) H2AFV DVL2 TCF7L1 FZD2 N4GlycoAsn-PalmS WNT3A UBC(1-76) CSNK1EZNRF3 ub-DVL3 XAV939UBB(77-152) DVL:CCDC88CRNF43 SMARCA4 TNKS PSMD8 MEN1DKK4 pp-DVL2 AXIN1 CTNNB1 TCF/LEF:CTNNB1:SOX4,SOX13,SOX17TCF7 N4GlycoAsn-PalmS-WNT3A:FZD:LRP5/6:ZNRF3/RNF43canonical WNTsRYK:WNTsUBB(153-228) TLE2 RYK DVL1UBC(381-456) TCF7L2 TCF7L1/TCF7L2/LEF1:CTNNB1HIST1H2AJ TCF7 RSPO3 N4GlycoAsn-PalmS-WNT3A:FZD:LRP5/6TCF/LEF:CTNNB1:PAF1-like complexPSME3 UBB(1-76) MYC gene:H2B K121ubH3K4me3 nucleosomeKRM1 SOST RibC-AXIN2 ADPTCF7L1 KRM:DKK:LRP5/6LGR6 XIAPpp-DVL1 N4GlycoAsn-PalmS WNT3A Ub-TLE3 GSK3Bp-S33,S37,T41,S45 CTNNB1 p-4S,3T,T1479,S1490,T1493-LRP6 UBC(457-532) PSME2 TNKS2 N4GlycoAsn-PalmS WNT3A GSK3B pp-DVL2 HIST2H2AC KRM2 ppDVL:PIP5K1BPSMA1 TCF7 AXIN1 HIST1H3A PSMD13 UBC(77-152) RSPO1 LRP5 N4GlycoAsn-PalmS WNT3A UBC(381-456) UBB(153-228) UBC(609-684) AcK-HIST1H4 YWHAZ:p-S20-CBY:CTNNB1MYC gene MYC gene ATPUBC(153-228) CBY1UBC(1-76) ub-TLELEF1 UBB(1-76) HIST1H2AJ CoA-SHLGR4 UbCHD8 CTNNB1 DVL:CUL3:KLHL12:RBX1PPP2R5E RNF146 HIST1H2AD HIST1H2BD H2BFS RNF146CTNNB1 ub-RNF43 RSPO3 RSPO2 N4GlycoAsn-PalmS WNT8A UBC(77-152) TCF4 gene:acetyl H4nucleosomeTCF4 gene:nucleosomeCUL3 CTNNB1 H2AFX UBC(381-456) Ub-121-HIST1H2BD Ub-TLE2 SOX4,SOX13,SOX17FRAT1 PSMA7 PPP2R5D LGR6 PYGO2 BCL9L UBC(153-228) Ub-TLE4 HIST1H2BJ pS20-CBY1 PI(4,5)P2UbYWHAZ SOX4 CUL3:KLHL12:RBX1TCF7L1/TCF7L2/LEF1:CTNNB1:MYC genep-S-DVL1 TCF7L2 PPP2R5B PSMD10 N4GlycoAsn-PalmS WNT8B PYGO2 SMARCA4N4GlycoAsn-PalmS WNT1 N4GlycoAsn-PalmS WNT8A SFRP1 CTNNB1 PPP2R1B HIST2H2AC 26S proteasomePSMA5 LRP6 TCF7L2 p-DVL2 Ub-RibC-AXIN:TNKS:RNF146RUNX3 LEF1 UBC(305-380) UBC(229-304) HIST2H2AA3 ub-AXIN1 TCF7L1 WNT:FZD:LRP5/6:DVLH2AFJ TCF7 HIST1H2AD SOX17 AXIN1 RPS27A(1-76) AXIN:SMURF2CTNNB1 TNKS2 KMT2DPYGOFZD2 Ub-121-HIST1H2BN RSPO1 N4GlycoAsn-PalmS WNT8A RYK-binding WNTsRPS27A(1-76) H2AFJ HIST2H3A ATPAMER1 LRP6 N4GlycoAsn-PalmS WNT1 pp-DVL1 LRP6 HIST2H2AA3 CTNNB1 HIST1H2BA Ub-TLE3 UBC(305-380) UBC(457-532) N4GlycoAsn-PalmS WNT4 AXIN1 TCF7 GSK3B SOST:LRP5/6ATPAPC ub-FZD6 SMURF2 AXIN1 UBB(153-228) RSPO:LGR:ZNRF3,RNF43UBC(533-608) LRP6 LRP5 TCF7 pp-DVL3 CTNNB1 Ub-121-HIST1H2BL WNT:FZD:p10S/T-LRP5/6:DVL:AXIN:GSK3BGSK3B NAD+pp-DVL1 HIST1H2AJ SOX7 TNKS TCF7L2 N4GlycoAsn-PalmS WNT3A PPP2R5E H3F3A ADPp-3S,2T-LRP5 HIST1H2BC CTNNB1:CHD8FRAT1 CTNNB1 FZD5 N4GlycoAsn-PalmS WNT8A pp-DVLGSK3B PSMA2 DVL2:DACT1PPP2R5B PSMB1 TCF/LEF:CTNNB1:BCL9:PYGO:SET1-like complexUb-121-HIST3H2BB DVL2 RBX1 pp-DVL1 LEF1 CTNNB1 MYCHIST1H2BK ub-FZD6 PSME4 UBC(1-76) Casein kinase IITCF7L2 HIST1H4 TCF7L1 Me3K5-HIST3H3 WNT3A:FZD5:p-LRP6:GSK3B:AXIN:CAV1HIST2H2AC SRY HIST1H2BO TCF7L2 HIST1H2BN TCF/LEF:CTNNB1N4GlycoAsn-PalmS WNT5A(36-380) EP300 SOX13 MYC gene BCL9 ub-DVL2 WNT ligandbiogenesis andtraffickingPPP2R5B H2AFX LRP5 FZD6 UBC(533-608) Ub-121-HIST1H2BC CTNNB1 UbCSNK1A1 TCF7L1 N4GlycoAsn-PalmS WNT1 pS20-CBY1 CBY1:CTNNB1PPP2R1B AXIN1 BCL9 UBB(77-152) CSNK2A2 SOX2 HIST1H2BC WNT3A:FZD5:p-LRP6:GSK3B:AXIN:CAV1APC:CTBP:CTNNB1:BTRCPSMB10 TCF/LEF:CTNNB1:CBP/p300TCF7L1 PYGO1 H2AFB1 ZNRF3 CTNNB1:SRY,SOX2,SOX3,SOX4,SOX6,SOX7,SOX9,SOX17SOX3 APC ub-AXIN2 UBC(305-380) Ub-121-HIST1H2BO Ub-121-HIST1H2BL PPP2R1A CCDC88CMe3K5-HIST2H3A AXIN2 gene TCF7L2 PPP2R1B UbUBB(1-76) ub-FZD4 RSPO2 UBC(229-304) TNKS1/2TLE1 CTNNB1 H2AFJ Ub-121-HIST1H2BH DVL3 FZD1 UBB(1-76) RibC-AXIN1 H2AFB1 PSMC1 PP2Aub-DVL1:HECW1ub-ZNRF3 TCF/LEF:CTNNB1:AXIN2geneBCL9L ub-FZD5 TLE1 TLE4 XPO1:YWHAZ:p-S20-CBY1:CTNNB1N4GlycoAsn-PalmS WNT3A RSPO:LGR:ub-ZNRF3,RNF43TLE1:HDAC1ADPUBC(153-228) PYGO2 N4GlycoAsn-PalmS WNT3A FZD5 KMT2D PSMA6 N4GlycoAsn-PalmS WNT1 p-S33,S37,T41,S45CTNNB1:p-AXIN:CK1alpha:GSK3B:phospho-ub-APC (20 aa repeat region):PP2A:AMER1 complexLRP6 PPP2R5A HIST1H2AB DVL1 RNF146 FRAT2 GSK3B p-DVLUBC(457-532) RPS27A(1-76) RPS27A(1-76) CHD8PPP2CA LRP6 RBX1 RSPO3 UBC(609-684) PIP5K1BLEO1 TLE2 DVL2 TCF/LEF:CTNNB1:SMARCA4:TERTLEF1 AXIN2 PPP2R5A LEF1 DVL3 UBC(229-304) HDAC1RSPO1 UBA52(1-76) H2AFZ TNKS2 HDAC1 WIF1H2AFV LRP5 GSK3B PSMD4 ADPUBA52(1-76) UBC(457-532) ZNRF3 FRAT1,2CBY1 KAT5 LEO1AdoHcyN4GlycoAsn-PalmS WNT8B PSMB3 PSMC3 N4GlycoAsn-PalmS WNT3A H2AFZ TERT DVL1:HECW1USP8pp-DVL3 FZD8 UBC(1-76) CTBP1PPP2R5E Ub-RibC-AXIN1 UBC(1-76) PPP2CA HIST1H4 ADPUb-121-HIST1H2BO PPP2R5C N4GlycoAsn-PalmS WNT4 RNF43 UBC(77-152) HIST1H2AD RSPO4 LEF1 UBB(77-152) Ub-TLE1 CTNNB1 AdoMetSMURF2 Ub-121-HIST1H2BK ASH2L H2BFS PSMD6 N4GlycoAsn-PalmS WNT8A TNKS N4GlycoAsn-PalmS WNT8B CTNNB1 DVL2 LRP5 KLHL12 TLE2 Ub-121-HIST1H2BB pp-DVL3 PSMD9 RBBP5UBC(229-304) LEF1 SMURF2XPO1 SOSTN4GlycoAsn-PalmS WNT3A RYKAMER1 H2AFX N4GlycoAsn-PalmS-WNT3A:ub-FZD:LRP5/6YWHAZ XPO1HIST3H3 TCF4 gene CAV1 RSPO4 LEF1 UBB(153-228) FZD2 UBB(77-152) DKK1 FZD1 N4GlycoAsn-PalmS WNT3A CAV1 RSPO:LGRLRP6 SOX4 XAV939FZD5 N4GlycoAsn-PalmS WNT3A WNT:FZD:LRP5/6:DVL:AXIN:GSK3BSOX4 TRRAP UBB(153-228) Ub-121-HIST2H2BE TCF7L2 N4GlycoAsn-PalmS WNT5A(36-380) PI4PPSMA8 DACT1 pp-DVL1 N4GlycoAsn-PalmS WNT1 pp-DVL2 CTNNB1 DVL1 NAMHIST2H2BE p-T308,S473-AKT1 pp-DVL2 UBC(381-456) PPP2CB PSMD5 LEF1 HIST1H2AC PPP2R5D ub-FZD5 UBC(609-684) TNKS2 H2Op-ub-APC Ub-121-HIST1H2BN KRM1/2CTNNBIP1 CTBP1 CUL3 RibC-AXIN:TNKSHIST1H2BA RSPO3 RPS27A(1-76) WIF1 LGRN4GlycoAsn-PalmS WNT1 UBA52(1-76) H2AFB1 UBC(305-380) CXXC4 TCF7L1 UBA52(1-76) N4GlycoAsn-PalmS WNT3A FRAT1,2:GSK3betaLGR4 KRM1 H2AFV DVLPSMD1 PPP2R1A FZD2 KAT5TNKS2 PPP2CB HIST1H2AB ub-FZD4 Ub-TLE4 SOX2 H2AFX TCF7 N4GlycoAsn-PalmS WNT8B HIST1H2BL UBC(457-532) TCF/LEF:CTNNB1:APC:CTBP:BTRCAXIN2 SRY,SOX2,SOX3,SOX4,SOX6,SOX7,SOX9,SOX17UBC(229-304) FZD1 PSMC4 LRP5 TCF7L1 TNKS2 HIST1H2BK ADPUb-122-HIST1H2BA CREBBP USP34Ub-121-HIST1H2BD p-T519,S524,S531-AXIN1 RSPO4 N4GlycoAsn-PalmS WNT3A HIST1H2AC AXIN1 TNKS SOX13 HIST1H2AB N4GlycoAsn-PalmS WNT1 TCF/LEF:CTNNB1Ub-121-H2BFS PPP2R1A MYC gene: H2B K121ubnucleosomeTCF7L2 CTNNB1:AXIN:GSK3:CK1alpha:ub-APC:PP2A:AMER1 complexTLE3 UBB(77-152) TERTH2AFV PSMA4 UBC(457-532) PSMD7 CTNNB1 Ub-121-HIST2H2BE p-T309,S474-AKT2 TCF7L2 PSMC2 GSK3B:AXIN1Ub-121-HIST1H2BH Ub-121-HIST1H2BJ DACT1UBC(229-304) UBC(381-456) RNF43 BTRCSOX6 sFRPAXIN2 HIST1H2BH TLE3 ub-DVL1 N4GlycoAsn-PalmS WNT3A pS20-CBY1 N4GlycoAsn-PalmS-WNT3A:ub-FZD:LRP5/6:ZNRF3/RNF43RBX1 UBC(533-608) TCF7L2 BCL9 RPS27A(1-76) DVL:CXXC4HIST1H2AD HIST3H2BB DKK4 UBB(77-152) RPS27A(1-76) WIF1-binding WNTsWNT:FZD:LRP5/6CREBBP, EP300HIST1H2BO HIST1H2BH pp-DVL3 EP300 RSPO4 N4GlycoAsn-PalmS WNT9A TCF/LEF:CTNNB1:BCL9:PYGORSPO2 HIST1H2AC ub-FZD8 MYC geneRBBP5 FZD2 Ac-CoARSPORUVBL1 18110211471, 1144714181221206713181206188148, 1881029, 31, 119, 172, 188...18627277, 5710218120616, 33, 34, 60, 85...


Description

19 WNT ligands and 10 FZD receptors have been identified in human cells; interactions amongst these ligands and receptors vary in a developmental and tissue-specific manner and lead to activation of so-called 'canonical' and 'non-canonical' WNT signaling. In the canonical WNT signaling pathway, binding of a WNT ligand to the Frizzled (FZD) and lipoprotein receptor-related protein (LRP) receptors results in the inactivation of the destruction complex, the stabilization and nuclear translocation of beta-catenin and subsequent activation of T-cell factor/lymphoid enhancing factor (TCF/LEF)-dependent transcription. Transcriptional activation in response to canonical WNT signaling controls processes such as cell fate, proliferation and self renewal of stem cells, as well as contributing to oncogenesis (reviewed in MacDonald et al, 2009; Saito-Diaz et al, 2013; Kim et al, 2013). View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 201681
Reactome-version 
Reactome version: 65
Reactome Author 
Reactome Author: Rothfels, Karen

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Tang Y, Simoneau AR, Liao WX, Yi G, Hope C, Liu F, Li S, Xie J, Holcombe RF, Jurnak FA, Mercola D, Hoang BH, Zi X.; ''WIF1, a Wnt pathway inhibitor, regulates SKP2 and c-myc expression leading to G1 arrest and growth inhibition of human invasive urinary bladder cancer cells.''; PubMed Europe PMC Scholia
  2. Kramps T, Peter O, Brunner E, Nellen D, Froesch B, Chatterjee S, Murone M, Züllig S, Basler K.; ''Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex.''; PubMed Europe PMC Scholia
  3. Kutay U, Izaurralde E, Bischoff FR, Mattaj IW, Görlich D.; ''Dominant-negative mutants of importin-beta block multiple pathways of import and export through the nuclear pore complex.''; PubMed Europe PMC Scholia
  4. Macheda ML, Sun WW, Kugathasan K, Hogan BM, Bower NI, Halford MM, Zhang YF, Jacques BE, Lieschke GJ, Dabdoub A, Stacker SA.; ''The Wnt receptor Ryk plays a role in mammalian planar cell polarity signaling.''; PubMed Europe PMC Scholia
  5. Hanson AJ, Wallace HA, Freeman TJ, Beauchamp RD, Lee LA, Lee E.; ''XIAP monoubiquitylates Groucho/TLE to promote canonical Wnt signaling.''; PubMed Europe PMC Scholia
  6. van Amerongen R, Nawijn MC, Lambooij JP, Proost N, Jonkers J, Berns A.; ''Frat oncoproteins act at the crossroad of canonical and noncanonical Wnt-signaling pathways.''; PubMed Europe PMC Scholia
  7. Wei SJ, Williams JG, Dang H, Darden TA, Betz BL, Humble MM, Chang FM, Trempus CS, Johnson K, Cannon RE, Tennant RW.; ''Identification of a specific motif of the DSS1 protein required for proteasome interaction and p53 protein degradation.''; PubMed Europe PMC Scholia
  8. Tolwinski NS, Wieschaus E.; ''Armadillo nuclear import is regulated by cytoplasmic anchor Axin and nuclear anchor dTCF/Pan.''; PubMed Europe PMC Scholia
  9. Graham TA, Weaver C, Mao F, Kimelman D, Xu W.; ''Crystal structure of a beta-catenin/Tcf complex.''; PubMed Europe PMC Scholia
  10. Ito K, Lim AC, Salto-Tellez M, Motoda L, Osato M, Chuang LS, Lee CW, Voon DC, Koo JK, Wang H, Fukamachi H, Ito Y.; ''RUNX3 attenuates beta-catenin/T cell factors in intestinal tumorigenesis.''; PubMed Europe PMC Scholia
  11. Piao S, Lee SH, Kim H, Yum S, Stamos JL, Xu Y, Lee SJ, Lee J, Oh S, Han JK, Park BJ, Weis WI, Ha NC.; ''Direct inhibition of GSK3beta by the phosphorylated cytoplasmic domain of LRP6 in Wnt/beta-catenin signaling.''; PubMed Europe PMC Scholia
  12. Callow MG, Tran H, Phu L, Lau T, Lee J, Sandoval WN, Liu PS, Bheddah S, Tao J, Lill JR, Hongo JA, Davis D, Kirkpatrick DS, Polakis P, Costa M.; ''Ubiquitin ligase RNF146 regulates tankyrase and Axin to promote Wnt signaling.''; PubMed Europe PMC Scholia
  13. Oshita A, Kishida S, Kobayashi H, Michiue T, Asahara T, Asashima M, Kikuchi A.; ''Identification and characterization of a novel Dvl-binding protein that suppresses Wnt signalling pathway.''; PubMed Europe PMC Scholia
  14. Hino S, Kishida S, Michiue T, Fukui A, Sakamoto I, Takada S, Asashima M, Kikuchi A.; ''Inhibition of the Wnt signaling pathway by Idax, a novel Dvl-binding protein.''; PubMed Europe PMC Scholia
  15. Michiue T, Fukui A, Yukita A, Sakurai K, Danno H, Kikuchi A, Asashima M.; ''XIdax, an inhibitor of the canonical Wnt pathway, is required for anterior neural structure formation in Xenopus.''; PubMed Europe PMC Scholia
  16. Gross JC, Chaudhary V, Bartscherer K, Boutros M.; ''Active Wnt proteins are secreted on exosomes.''; PubMed Europe PMC Scholia
  17. Sampietro J, Dahlberg CL, Cho US, Hinds TR, Kimelman D, Xu W.; ''Crystal structure of a beta-catenin/BCL9/Tcf4 complex.''; PubMed Europe PMC Scholia
  18. Wang K, Zhang Y, Li X, Chen L, Wang H, Wu J, Zheng J, Wu D.; ''Characterization of the Kremen-binding site on Dkk1 and elucidation of the role of Kremen in Dkk-mediated Wnt antagonism.''; PubMed Europe PMC Scholia
  19. Zhang Y, Liu S, Mickanin C, Feng Y, Charlat O, Michaud GA, Schirle M, Shi X, Hild M, Bauer A, Myer VE, Finan PM, Porter JA, Huang SM, Cong F.; ''RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling.''; PubMed Europe PMC Scholia
  20. Yanagawa S, van Leeuwen F, Wodarz A, Klingensmith J, Nusse R.; ''The dishevelled protein is modified by wingless signaling in Drosophila.''; PubMed Europe PMC Scholia
  21. Mukai A, Yamamoto-Hino M, Awano W, Watanabe W, Komada M, Goto S.; ''Balanced ubiquitylation and deubiquitylation of Frizzled regulate cellular responsiveness to Wg/Wnt.''; PubMed Europe PMC Scholia
  22. Gao ZH, Seeling JM, Hill V, Yochum A, Virshup DM.; ''Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex.''; PubMed Europe PMC Scholia
  23. Kawano Y, Kypta R.; ''Secreted antagonists of the Wnt signalling pathway.''; PubMed Europe PMC Scholia
  24. Guo L, Zhong D, Lau S, Liu X, Dong XY, Sun X, Yang VW, Vertino PM, Moreno CS, Varma V, Dong JT, Zhou W.; ''Sox7 Is an independent checkpoint for beta-catenin function in prostate and colon epithelial cells.''; PubMed Europe PMC Scholia
  25. Mao B, Niehrs C.; ''Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling.''; PubMed Europe PMC Scholia
  26. Brott BK, Sokol SY.; ''Regulation of Wnt/LRP signaling by distinct domains of Dickkopf proteins.''; PubMed Europe PMC Scholia
  27. Sierra J, Yoshida T, Joazeiro CA, Jones KA.; ''The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes.''; PubMed Europe PMC Scholia
  28. Fagotto F, Glück U, Gumbiner BM.; ''Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of beta-catenin.''; PubMed Europe PMC Scholia
  29. MacDonald BT, Yokota C, Tamai K, Zeng X, He X.; ''Wnt signal amplification via activity, cooperativity, and regulation of multiple intracellular PPPSP motifs in the Wnt co-receptor LRP6.''; PubMed Europe PMC Scholia
  30. Xing Y, Clements WK, Le Trong I, Hinds TR, Stenkamp R, Kimelman D, Xu W.; ''Crystal structure of a beta-catenin/APC complex reveals a critical role for APC phosphorylation in APC function.''; PubMed Europe PMC Scholia
  31. Korinek V, Barker N, Willert K, Molenaar M, Roose J, Wagenaar G, Markman M, Lamers W, Destree O, Clevers H.; ''Two members of the Tcf family implicated in Wnt/beta-catenin signaling during embryogenesis in the mouse.''; PubMed Europe PMC Scholia
  32. Klimowski LK, Garcia BA, Shabanowitz J, Hunt DF, Virshup DM.; ''Site-specific casein kinase 1epsilon-dependent phosphorylation of Dishevelled modulates beta-catenin signaling.''; PubMed Europe PMC Scholia
  33. Saito-Diaz K, Chen TW, Wang X, Thorne CA, Wallace HA, Page-McCaw A, Lee E.; ''The way Wnt works: components and mechanism.''; PubMed Europe PMC Scholia
  34. Korkut C, Ataman B, Ramachandran P, Ashley J, Barria R, Gherbesi N, Budnik V.; ''Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless.''; PubMed Europe PMC Scholia
  35. Rodriguez J, Esteve P, Weinl C, Ruiz JM, Fermin Y, Trousse F, Dwivedy A, Holt C, Bovolenta P.; ''SFRP1 regulates the growth of retinal ganglion cell axons through the Fz2 receptor.''; PubMed Europe PMC Scholia
  36. MacDonald BT, Tamai K, He X.; ''Wnt/beta-catenin signaling: components, mechanisms, and diseases.''; PubMed Europe PMC Scholia
  37. van Amerongen R, van der Gulden H, Bleeker F, Jonkers J, Berns A.; ''Characterization and functional analysis of the murine Frat2 gene.''; PubMed Europe PMC Scholia
  38. Jonkers J, Korswagen HC, Acton D, Breuer M, Berns A.; ''Activation of a novel proto-oncogene, Frat1, contributes to progression of mouse T-cell lymphomas.''; PubMed Europe PMC Scholia
  39. Malinauskas T, Aricescu AR, Lu W, Siebold C, Jones EY.; ''Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1.''; PubMed Europe PMC Scholia
  40. Willert K, Brink M, Wodarz A, Varmus H, Nusse R.; ''Casein kinase 2 associates with and phosphorylates dishevelled.''; PubMed Europe PMC Scholia
  41. Townsley FM, Cliffe A, Bienz M.; ''Pygopus and Legless target Armadillo/beta-catenin to the nucleus to enable its transcriptional co-activator function.''; PubMed Europe PMC Scholia
  42. Wu X, Tu X, Joeng KS, Hilton MJ, Williams DA, Long F.; ''Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling.''; PubMed Europe PMC Scholia
  43. Wu CH, Nusse R.; ''Ligand receptor interactions in the Wnt signaling pathway in Drosophila.''; PubMed Europe PMC Scholia
  44. Tamai K, Zeng X, Liu C, Zhang X, Harada Y, Chang Z, He X.; ''A mechanism for Wnt coreceptor activation.''; PubMed Europe PMC Scholia
  45. Sánchez-Hernández D, Sierra J, Ortigão-Farias JR, Guerrero I.; ''The WIF domain of the human and Drosophila Wif-1 secreted factors confers specificity for Wnt or Hedgehog.''; PubMed Europe PMC Scholia
  46. Ye X, Wu F, Wu C, Wang P, Jung K, Gopal K, Ma Y, Li L, Lai R.; ''β-Catenin, a Sox2 binding partner, regulates the DNA binding and transcriptional activity of Sox2 in breast cancer cells.''; PubMed Europe PMC Scholia
  47. Kimelman D, Xu W.; ''beta-catenin destruction complex: insights and questions from a structural perspective.''; PubMed Europe PMC Scholia
  48. Fujii N, You L, Xu Z, Uematsu K, Shan J, He B, Mikami I, Edmondson LR, Neale G, Zheng J, Guy RK, Jablons DM.; ''An antagonist of dishevelled protein-protein interaction suppresses beta-catenin-dependent tumor cell growth.''; PubMed Europe PMC Scholia
  49. van Amerongen R, Berns A.; ''Re-evaluating the role of Frat in Wnt-signal transduction.''; PubMed Europe PMC Scholia
  50. Keeble TR, Halford MM, Seaman C, Kee N, Macheda M, Anderson RB, Stacker SA, Cooper HM.; ''The Wnt receptor Ryk is required for Wnt5a-mediated axon guidance on the contralateral side of the corpus callosum.''; PubMed Europe PMC Scholia
  51. Jiang X, Hao HX, Growney JD, Woolfenden S, Bottiglio C, Ng N, Lu B, Hsieh MH, Bagdasarian L, Meyer R, Smith TR, Avello M, Charlat O, Xie Y, Porter JA, Pan S, Liu J, McLaughlin ME, Cong F.; ''Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma.''; PubMed Europe PMC Scholia
  52. Leung JY, Kolligs FT, Wu R, Zhai Y, Kuick R, Hanash S, Cho KR, Fearon ER.; ''Activation of AXIN2 expression by beta-catenin-T cell factor. A feedback repressor pathway regulating Wnt signaling.''; PubMed Europe PMC Scholia
  53. Kim KA, Kakitani M, Zhao J, Oshima T, Tang T, Binnerts M, Liu Y, Boyle B, Park E, Emtage P, Funk WD, Tomizuka K.; ''Mitogenic influence of human R-spondin1 on the intestinal epithelium.''; PubMed Europe PMC Scholia
  54. Yamamoto H, Sakane H, Yamamoto H, Michiue T, Kikuchi A.; ''Wnt3a and Dkk1 regulate distinct internalization pathways of LRP6 to tune the activation of beta-catenin signaling.''; PubMed Europe PMC Scholia
  55. Ahn VE, Chu ML, Choi HJ, Tran D, Abo A, Weis WI.; ''Structural basis of Wnt signaling inhibition by Dickkopf binding to LRP5/6.''; PubMed Europe PMC Scholia
  56. Chen G, Courey AJ.; ''Groucho/TLE family proteins and transcriptional repression.''; PubMed Europe PMC Scholia
  57. Voges D, Zwickl P, Baumeister W.; ''The 26S proteasome: a molecular machine designed for controlled proteolysis.''; PubMed Europe PMC Scholia
  58. Kessler R, Hausmann G, Basler K.; ''The PHD domain is required to link Drosophila Pygopus to Legless/beta-catenin and not to histone H3.''; PubMed Europe PMC Scholia
  59. Bax B, Carter PS, Lewis C, Guy AR, Bridges A, Tanner R, Pettman G, Mannix C, Culbert AA, Brown MJ, Smith DG, Reith AD.; ''The structure of phosphorylated GSK-3beta complexed with a peptide, FRATtide, that inhibits beta-catenin phosphorylation.''; PubMed Europe PMC Scholia
  60. Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T, Takada S.; ''Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion.''; PubMed Europe PMC Scholia
  61. Bauer A, Huber O, Kemler R.; ''Pontin52, an interaction partner of beta-catenin, binds to the TATA box binding protein.''; PubMed Europe PMC Scholia
  62. Li B, Rhéaume C, Teng A, Bilanchone V, Munguia JE, Hu M, Jessen S, Piccolo S, Waterman ML, Dai X.; ''Developmental phenotypes and reduced Wnt signaling in mice deficient for pygopus 2.''; PubMed Europe PMC Scholia
  63. Wilson BG, Roberts CW.; ''SWI/SNF nucleosome remodellers and cancer.''; PubMed Europe PMC Scholia
  64. Semënov M, Tamai K, He X.; ''SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor.''; PubMed Europe PMC Scholia
  65. Valenta T, Hausmann G, Basler K.; ''The many faces and functions of β-catenin.''; PubMed Europe PMC Scholia
  66. Sansom OJ, Meniel VS, Muncan V, Phesse TJ, Wilkins JA, Reed KR, Vass JK, Athineos D, Clevers H, Clarke AR.; ''Myc deletion rescues Apc deficiency in the small intestine.''; PubMed Europe PMC Scholia
  67. Li L, Yuan H, Weaver CD, Mao J, Farr GH, Sussman DJ, Jonkers J, Kimelman D, Wu D.; ''Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1.''; PubMed Europe PMC Scholia
  68. Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destrée O, Clevers H.; ''XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos.''; PubMed Europe PMC Scholia
  69. Krieghoff E, Behrens J, Mayr B.; ''Nucleo-cytoplasmic distribution of beta-catenin is regulated by retention.''; PubMed Europe PMC Scholia
  70. Lévy L, Wei Y, Labalette C, Wu Y, Renard CA, Buendia MA, Neuveut C.; ''Acetylation of beta-catenin by p300 regulates beta-catenin-Tcf4 interaction.''; PubMed Europe PMC Scholia
  71. Saitoh T, Moriwaki J, Koike J, Takagi A, Miwa T, Shiokawa K, Katoh M.; ''Molecular cloning and characterization of FRAT2, encoding a positive regulator of the WNT signaling pathway.''; PubMed Europe PMC Scholia
  72. Cheng Z, Biechele T, Wei Z, Morrone S, Moon RT, Wang L, Xu W.; ''Crystal structures of the extracellular domain of LRP6 and its complex with DKK1.''; PubMed Europe PMC Scholia
  73. Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, Okamura H, Woodgett J, He X.; ''A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation.''; PubMed Europe PMC Scholia
  74. Gu B, Sun P, Yuan Y, Moraes RC, Li A, Teng A, Agrawal A, Rhéaume C, Bilanchone V, Veltmaat JM, Takemaru K, Millar S, Lee EY, Lewis MT, Li B, Dai X.; ''Pygo2 expands mammary progenitor cells by facilitating histone H3 K4 methylation.''; PubMed Europe PMC Scholia
  75. Sun Y, Kolligs FT, Hottiger MO, Mosavin R, Fearon ER, Nabel GJ.; ''Regulation of beta -catenin transformation by the p300 transcriptional coactivator.''; PubMed Europe PMC Scholia
  76. Bernatik O, Ganji RS, Dijksterhuis JP, Konik P, Cervenka I, Polonio T, Krejci P, Schulte G, Bryja V.; ''Sequential activation and inactivation of Dishevelled in the Wnt/beta-catenin pathway by casein kinases.''; PubMed Europe PMC Scholia
  77. Yamamoto H, Komekado H, Kikuchi A.; ''Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin.''; PubMed Europe PMC Scholia
  78. Bovolenta P, Esteve P, Ruiz JM, Cisneros E, Lopez-Rios J.; ''Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease.''; PubMed Europe PMC Scholia
  79. Bastide P, Darido C, Pannequin J, Kist R, Robine S, Marty-Double C, Bibeau F, Scherer G, Joubert D, Hollande F, Blache P, Jay P.; ''Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium.''; PubMed Europe PMC Scholia
  80. Juhlin CC, Haglund F, Villablanca A, Forsberg L, Sandelin K, Bränström R, Larsson C, Höög A.; ''Loss of expression for the Wnt pathway components adenomatous polyposis coli and glycogen synthase kinase 3-beta in parathyroid carcinomas.''; PubMed Europe PMC Scholia
  81. Hao HX, Xie Y, Zhang Y, Charlat O, Oster E, Avello M, Lei H, Mickanin C, Liu D, Ruffner H, Mao X, Ma Q, Zamponi R, Bouwmeester T, Finan PM, Kirschner MW, Porter JA, Serluca FC, Cong F.; ''ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner.''; PubMed Europe PMC Scholia
  82. Lyu J, Yamamoto V, Lu W.; ''Cleavage of the Wnt receptor Ryk regulates neuronal differentiation during cortical neurogenesis.''; PubMed Europe PMC Scholia
  83. Takash W, Cañizares J, Bonneaud N, Poulat F, Mattéi MG, Jay P, Berta P.; ''SOX7 transcription factor: sequence, chromosomal localisation, expression, transactivation and interference with Wnt signalling.''; PubMed Europe PMC Scholia
  84. Zeng X, Huang H, Tamai K, Zhang X, Harada Y, Yokota C, Almeida K, Wang J, Doble B, Woodgett J, Wynshaw-Boris A, Hsieh JC, He X.; ''Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions.''; PubMed Europe PMC Scholia
  85. Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M, Wrana JL.; ''Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration.''; PubMed Europe PMC Scholia
  86. Keeble TR, Cooper HM.; ''Ryk: a novel Wnt receptor regulating axon pathfinding.''; PubMed Europe PMC Scholia
  87. Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, Niehrs C.; ''Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation.''; PubMed Europe PMC Scholia
  88. Park JI, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, Chang W, Meng Z, Cheung P, Ji H, McLaughlin M, Veenstra TD, Nusse R, McCrea PD, Artandi SE.; ''Telomerase modulates Wnt signalling by association with target gene chromatin.''; PubMed Europe PMC Scholia
  89. Tauriello DV, Jordens I, Kirchner K, Slootstra JW, Kruitwagen T, Bouwman BA, Noutsou M, Rüdiger SG, Schwamborn K, Schambony A, Maurice MM.; ''Wnt/β-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled.''; PubMed Europe PMC Scholia
  90. He X, Semenov M, Tamai K, Zeng X.; ''LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way.''; PubMed Europe PMC Scholia
  91. Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A.; ''Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin.''; PubMed Europe PMC Scholia
  92. Peters JM, McKay RM, McKay JP, Graff JM.; ''Casein kinase I transduces Wnt signals.''; PubMed Europe PMC Scholia
  93. Chen Y, Shi L, Zhang L, Li R, Liang J, Yu W, Sun L, Yang X, Wang Y, Zhang Y, Shang Y.; ''The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer.''; PubMed Europe PMC Scholia
  94. Johannes L, Wunder C.; ''The SNXy flavours of endosomal sorting.''; PubMed Europe PMC Scholia
  95. Schwarz-Romond T, Fiedler M, Shibata N, Butler PJ, Kikuchi A, Higuchi Y, Bienz M.; ''The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization.''; PubMed Europe PMC Scholia
  96. Chu ML, Ahn VE, Choi HJ, Daniels DL, Nusse R, Weis WI.; ''structural Studies of Wnts and identification of an LRP6 binding site.''; PubMed Europe PMC Scholia
  97. Pinto M, Lobe CG.; ''Products of the grg (Groucho-related gene) family can dimerize through the amino-terminal Q domain.''; PubMed Europe PMC Scholia
  98. Wilkins JA, Sansom OJ.; ''C-Myc is a critical mediator of the phenotypes of Apc loss in the intestine.''; PubMed Europe PMC Scholia
  99. Takemaru K, Yamaguchi S, Lee YS, Zhang Y, Carthew RW, Moon RT.; ''Chibby, a nuclear beta-catenin-associated antagonist of the Wnt/Wingless pathway.''; PubMed Europe PMC Scholia
  100. Bourhis E, Wang W, Tam C, Hwang J, Zhang Y, Spittler D, Huang OW, Gong Y, Estevez A, Zilberleyb I, Rouge L, Chiu C, Wu Y, Costa M, Hannoush RN, Franke Y, Cochran AG.; ''Wnt antagonists bind through a short peptide to the first β-propeller domain of LRP5/6.''; PubMed Europe PMC Scholia
  101. Takahashi A, Tsutsumi R, Kikuchi I, Obuse C, Saito Y, Seidi A, Karisch R, Fernandez M, Cho T, Ohnishi N, Rozenblatt-Rosen O, Meyerson M, Neel BG, Hatakeyama M.; ''SHP2 tyrosine phosphatase converts parafibromin/Cdc73 from a tumor suppressor to an oncogenic driver.''; PubMed Europe PMC Scholia
  102. Angers S, Thorpe CJ, Biechele TL, Goldenberg SJ, Zheng N, MacCoss MJ, Moon RT.; ''The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-beta-catenin pathway by targeting Dishevelled for degradation.''; PubMed Europe PMC Scholia
  103. Biechele S, Cox BJ, Rossant J.; ''Porcupine homolog is required for canonical Wnt signaling and gastrulation in mouse embryos.''; PubMed Europe PMC Scholia
  104. Wawrzak D, Métioui M, Willems E, Hendrickx M, de Genst E, Leyns L.; ''Wnt3a binds to several sFRPs in the nanomolar range.''; PubMed Europe PMC Scholia
  105. Qin Y, Li L, Pan W, Wu D.; ''Regulation of phosphatidylinositol kinases and metabolism by Wnt3a and Dvl.''; PubMed Europe PMC Scholia
  106. Bartscherer K, Pelte N, Ingelfinger D, Boutros M.; ''Secretion of Wnt ligands requires Evi, a conserved transmembrane protein.''; PubMed Europe PMC Scholia
  107. Jho E, Lomvardas S, Costantini F.; ''A GSK3beta phosphorylation site in axin modulates interaction with beta-catenin and Tcf-mediated gene expression.''; PubMed Europe PMC Scholia
  108. Kadoya T, Kishida S, Fukui A, Hinoi T, Michiue T, Asashima M, Kikuchi A.; ''Inhibition of Wnt signaling pathway by a novel axin-binding protein.''; PubMed Europe PMC Scholia
  109. Hamada F, Bienz M.; ''The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF.''; PubMed Europe PMC Scholia
  110. Carmon KS, Gong X, Lin Q, Thomas A, Liu Q.; ''R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling.''; PubMed Europe PMC Scholia
  111. Fradkin LG, Dura JM, Noordermeer JN.; ''Ryks: new partners for Wnts in the developing and regenerating nervous system.''; PubMed Europe PMC Scholia
  112. Voronina VA, Takemaru K, Treuting P, Love D, Grubb BR, Hajjar AM, Adams A, Li FQ, Moon RT.; ''Inactivation of Chibby affects function of motile airway cilia.''; PubMed Europe PMC Scholia
  113. Zhang L, Gao X, Wen J, Ning Y, Chen YG.; ''Dapper 1 antagonizes Wnt signaling by promoting dishevelled degradation.''; PubMed Europe PMC Scholia
  114. Freemantle SJ, Portland HB, Ewings K, Dmitrovsky F, DiPetrillo K, Spinella MJ, Dmitrovsky E.; ''Characterization and tissue-specific expression of human GSK-3-binding proteins FRAT1 and FRAT2.''; PubMed Europe PMC Scholia
  115. Lu W, Yamamoto V, Ortega B, Baltimore D.; ''Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth.''; PubMed Europe PMC Scholia
  116. Yeh TY, Meyer TN, Schwesinger C, Tsun ZY, Lee RM, Chi NW.; ''Tankyrase recruitment to the lateral membrane in polarized epithelial cells: regulation by cell-cell contact and protein poly(ADP-ribosyl)ation.''; PubMed Europe PMC Scholia
  117. Schwab KR, Patterson LT, Hartman HA, Song N, Lang RA, Lin X, Potter SS.; ''Pygo1 and Pygo2 roles in Wnt signaling in mammalian kidney development.''; PubMed Europe PMC Scholia
  118. Daniels DL, Weis WI.; ''ICAT inhibits beta-catenin binding to Tcf/Lef-family transcription factors and the general coactivator p300 using independent structural modules.''; PubMed Europe PMC Scholia
  119. Poy F, Lepourcelet M, Shivdasani RA, Eck MJ.; ''Structure of a human Tcf4-beta-catenin complex.''; PubMed Europe PMC Scholia
  120. Graham TA, Clements WK, Kimelman D, Xu W.; ''The crystal structure of the beta-catenin/ICAT complex reveals the inhibitory mechanism of ICAT.''; PubMed Europe PMC Scholia
  121. Topol L, Chen W, Song H, Day TF, Yang Y.; ''Sox9 inhibits Wnt signaling by promoting beta-catenin phosphorylation in the nucleus.''; PubMed Europe PMC Scholia
  122. Bauer A, Chauvet S, Huber O, Usseglio F, Rothbächer U, Aragnol D, Kemler R, Pradel J.; ''Pontin52 and reptin52 function as antagonistic regulators of beta-catenin signalling activity.''; PubMed Europe PMC Scholia
  123. Burstein E, Ganesh L, Dick RD, van De Sluis B, Wilkinson JC, Klomp LW, Wijmenga C, Brewer GJ, Nabel GJ, Duckett CS.; ''A novel role for XIAP in copper homeostasis through regulation of MURR1.''; PubMed Europe PMC Scholia
  124. Hsieh JC, Kodjabachian L, Rebbert ML, Rattner A, Smallwood PM, Samos CH, Nusse R, Dawid IB, Nathans J.; ''A new secreted protein that binds to Wnt proteins and inhibits their activities.''; PubMed Europe PMC Scholia
  125. Schuldt A.; ''Membrane trafficking: a GSK3 lockdown.''; PubMed Europe PMC Scholia
  126. Kim W, Kim M, Jho EH.; ''Wnt/β-catenin signalling: from plasma membrane to nucleus.''; PubMed Europe PMC Scholia
  127. Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D.; ''Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling.''; PubMed Europe PMC Scholia
  128. Bafico A, Gazit A, Pramila T, Finch PW, Yaniv A, Aaronson SA.; ''Interaction of frizzled related protein (FRP) with Wnt ligands and the frizzled receptor suggests alternative mechanisms for FRP inhibition of Wnt signaling.''; PubMed Europe PMC Scholia
  129. Berndt JD, Aoyagi A, Yang P, Anastas JN, Tang L, Moon RT.; ''Mindbomb 1, an E3 ubiquitin ligase, forms a complex with RYK to activate Wnt/β-catenin signaling.''; PubMed Europe PMC Scholia
  130. Glinka A, Dolde C, Kirsch N, Huang YL, Kazanskaya O, Ingelfinger D, Boutros M, Cruciat CM, Niehrs C.; ''LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling.''; PubMed Europe PMC Scholia
  131. Ikeda S, Kishida M, Matsuura Y, Usui H, Kikuchi A.; ''GSK-3beta-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by beta-catenin and protein phosphatase 2A complexed with Axin.''; PubMed Europe PMC Scholia
  132. de Lau W, Barker N, Low TY, Koo BK, Li VS, Teunissen H, Kujala P, Haegebarth A, Peters PJ, van de Wetering M, Stange DE, van Es JE, Guardavaccaro D, Schasfoort RB, Mohri Y, Nishimori K, Mohammed S, Heck AJ, Clevers H.; ''Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling.''; PubMed Europe PMC Scholia
  133. Yokoya F, Imamoto N, Tachibana T, Yoneda Y.; ''beta-catenin can be transported into the nucleus in a Ran-unassisted manner.''; PubMed Europe PMC Scholia
  134. Zhang N, Wei P, Gong A, Chiu WT, Lee HT, Colman H, Huang H, Xue J, Liu M, Wang Y, Sawaya R, Xie K, Yung WK, Medema RH, He X, Huang S.; ''FoxM1 promotes β-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis.''; PubMed Europe PMC Scholia
  135. Li FQ, Mofunanya A, Fischer V, Hall J, Takemaru K.; ''Nuclear-cytoplasmic shuttling of Chibby controls beta-catenin signaling.''; PubMed Europe PMC Scholia
  136. Ekici AB, Hilfinger D, Jatzwauk M, Thiel CT, Wenzel D, Lorenz I, Boltshauser E, Goecke TW, Staatz G, Morris-Rosendahl DJ, Sticht H, Hehr U, Reis A, Rauch A.; ''Disturbed Wnt Signalling due to a Mutation in CCDC88C Causes an Autosomal Recessive Non-Syndromic Hydrocephalus with Medial Diverticulum.''; PubMed Europe PMC Scholia
  137. Mao J, Wang J, Liu B, Pan W, Farr GH, Flynn C, Yuan H, Takada S, Kimelman D, Li L, Wu D.; ''Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway.''; PubMed Europe PMC Scholia
  138. Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, Karsten U, van de Wetering M, Clevers H, Schlag PM, Birchmeier W, Behrens J.; ''Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors.''; PubMed Europe PMC Scholia
  139. Takemaru KI, Moon RT.; ''The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression.''; PubMed Europe PMC Scholia
  140. Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan CW, Wei S, Hao W, Kilgore J, Williams NS, Roth MG, Amatruda JF, Chen C, Lum L.; ''Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer.''; PubMed Europe PMC Scholia
  141. Levanon D, Goldstein RE, Bernstein Y, Tang H, Goldenberg D, Stifani S, Paroush Z, Groner Y.; ''Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors.''; PubMed Europe PMC Scholia
  142. Hecht A, Vleminckx K, Stemmler MP, van Roy F, Kemler R.; ''The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates.''; PubMed Europe PMC Scholia
  143. Iguchi H, Urashima Y, Inagaki Y, Ikeda Y, Okamura M, Tanaka T, Uchida A, Yamamoto TT, Kodama T, Sakai J.; ''SOX6 suppresses cyclin D1 promoter activity by interacting with beta-catenin and histone deacetylase 1, and its down-regulation induces pancreatic beta-cell proliferation.''; PubMed Europe PMC Scholia
  144. Sakanaka C, Leong P, Xu L, Harrison SD, Williams LT.; ''Casein kinase iepsilon in the wnt pathway: regulation of beta-catenin function.''; PubMed Europe PMC Scholia
  145. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW.; ''Identification of c-MYC as a target of the APC pathway.''; PubMed Europe PMC Scholia
  146. Rothbächer U, Laurent MN, Deardorff MA, Klein PS, Cho KW, Fraser SE.; ''Dishevelled phosphorylation, subcellular localization and multimerization regulate its role in early embryogenesis.''; PubMed Europe PMC Scholia
  147. Wei Q, Yokota C, Semenov MV, Doble B, Woodgett J, He X.; ''R-spondin1 is a high affinity ligand for LRP6 and induces LRP6 phosphorylation and beta-catenin signaling.''; PubMed Europe PMC Scholia
  148. Daniels DL, Weis WI.; ''Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation.''; PubMed Europe PMC Scholia
  149. Semënov MV, Snyder M.; ''Human dishevelled genes constitute a DHR-containing multigene family.''; PubMed Europe PMC Scholia
  150. Bányai L, Kerekes K, Patthy L.; ''Characterization of a Wnt-binding site of the WIF-domain of Wnt inhibitory factor-1.''; PubMed Europe PMC Scholia
  151. Moumen M, Chiche A, Decraene C, Petit V, Gandarillas A, Deugnier MA, Glukhova MA, Faraldo MM.; ''Myc is required for β-catenin-mediated mammary stem cell amplification and tumorigenesis.''; PubMed Europe PMC Scholia
  152. Song N, Schwab KR, Patterson LT, Yamaguchi T, Lin X, Potter SS, Lang RA.; ''pygopus 2 has a crucial, Wnt pathway-independent function in lens induction.''; PubMed Europe PMC Scholia
  153. Pan W, Choi SC, Wang H, Qin Y, Volpicelli-Daley L, Swan L, Lucast L, Khoo C, Zhang X, Li L, Abrams CS, Sokol SY, Wu D.; ''Wnt3a-mediated formation of phosphatidylinositol 4,5-bisphosphate regulates LRP6 phosphorylation.''; PubMed Europe PMC Scholia
  154. Huang H, He X.; ''Wnt/beta-catenin signaling: new (and old) players and new insights.''; PubMed Europe PMC Scholia
  155. Bafico A, Liu G, Yaniv A, Gazit A, Aaronson SA.; ''Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow.''; PubMed Europe PMC Scholia
  156. Liu G, Bafico A, Harris VK, Aaronson SA.; ''A novel mechanism for Wnt activation of canonical signaling through the LRP6 receptor.''; PubMed Europe PMC Scholia
  157. Kishida M, Hino Si, Michiue T, Yamamoto H, Kishida S, Fukui A, Asashima M, Kikuchi A.; ''Synergistic activation of the Wnt signaling pathway by Dvl and casein kinase Iepsilon.''; PubMed Europe PMC Scholia
  158. Sinner D, Kordich JJ, Spence JR, Opoka R, Rankin S, Lin SC, Jonatan D, Zorn AM, Wells JM.; ''Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells.''; PubMed Europe PMC Scholia
  159. Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F.; ''Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway.''; PubMed Europe PMC Scholia
  160. Bourhis E, Tam C, Franke Y, Bazan JF, Ernst J, Hwang J, Costa M, Cochran AG, Hannoush RN.; ''Reconstitution of a frizzled8.Wnt3a.LRP6 signaling complex reveals multiple Wnt and Dkk1 binding sites on LRP6.''; PubMed Europe PMC Scholia
  161. Su Y, Fu C, Ishikawa S, Stella A, Kojima M, Shitoh K, Schreiber EM, Day BW, Liu B.; ''APC is essential for targeting phosphorylated beta-catenin to the SCFbeta-TrCP ubiquitin ligase.''; PubMed Europe PMC Scholia
  162. Goodman RM, Thombre S, Firtina Z, Gray D, Betts D, Roebuck J, Spana EP, Selva EM.; ''Sprinter: a novel transmembrane protein required for Wg secretion and signaling.''; PubMed Europe PMC Scholia
  163. Binnerts ME, Kim KA, Bright JM, Patel SM, Tran K, Zhou M, Leung JM, Liu Y, Lomas WE, Dixon M, Hazell SA, Wagle M, Nie WS, Tomasevic N, Williams J, Zhan X, Levy MD, Funk WD, Abo A.; ''R-Spondin1 regulates Wnt signaling by inhibiting internalization of LRP6.''; PubMed Europe PMC Scholia
  164. Shilatifard A.; ''Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression.''; PubMed Europe PMC Scholia
  165. Belenkaya TY, Han C, Standley HJ, Lin X, Houston DW, Heasman J, Lin X.; ''pygopus Encodes a nuclear protein essential for wingless/Wnt signaling.''; PubMed Europe PMC Scholia
  166. Wolf D, Rodova M, Miska EA, Calvet JP, Kouzarides T.; ''Acetylation of beta-catenin by CREB-binding protein (CBP).''; PubMed Europe PMC Scholia
  167. Feng Y, Lee N, Fearon ER.; ''TIP49 regulates beta-catenin-mediated neoplastic transformation and T-cell factor target gene induction via effects on chromatin remodeling.''; PubMed Europe PMC Scholia
  168. Semënov MV, Tamai K, Brott BK, Kühl M, Sokol S, He X.; ''Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6.''; PubMed Europe PMC Scholia
  169. Cong F, Varmus H.; ''Nuclear-cytoplasmic shuttling of Axin regulates subcellular localization of beta-catenin.''; PubMed Europe PMC Scholia
  170. Tomson BN, Arndt KM.; ''The many roles of the conserved eukaryotic Paf1 complex in regulating transcription, histone modifications, and disease states.''; PubMed Europe PMC Scholia
  171. Willert K, Nusse R.; ''Wnt proteins.''; PubMed Europe PMC Scholia
  172. Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W.; ''Functional interaction of beta-catenin with the transcription factor LEF-1.''; PubMed Europe PMC Scholia
  173. Fraser E, Young N, Dajani R, Franca-Koh J, Ryves J, Williams RS, Yeo M, Webster MT, Richardson C, Smalley MJ, Pearl LH, Harwood A, Dale TC.; ''Identification of the Axin and Frat binding region of glycogen synthase kinase-3.''; PubMed Europe PMC Scholia
  174. Veverka V, Henry AJ, Slocombe PM, Ventom A, Mulloy B, Muskett FW, Muzylak M, Greenslade K, Moore A, Zhang L, Gong J, Qian X, Paszty C, Taylor RJ, Robinson MK, Carr MD.; ''Characterization of the structural features and interactions of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation.''; PubMed Europe PMC Scholia
  175. Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, Niehrs C.; ''LDL-receptor-related protein 6 is a receptor for Dickkopf proteins.''; PubMed Europe PMC Scholia
  176. Thomas GM, Frame S, Goedert M, Nathke I, Polakis P, Cohen P.; ''A GSK3-binding peptide from FRAT1 selectively inhibits the GSK3-catalysed phosphorylation of axin and beta-catenin.''; PubMed Europe PMC Scholia
  177. Tago K, Nakamura T, Nishita M, Hyodo J, Nagai S, Murata Y, Adachi S, Ohwada S, Morishita Y, Shibuya H, Akiyama T.; ''Inhibition of Wnt signaling by ICAT, a novel beta-catenin-interacting protein.''; PubMed Europe PMC Scholia
  178. Brantjes H, Barker N, van Es J, Clevers H.; ''TCF: Lady Justice casting the final verdict on the outcome of Wnt signalling.''; PubMed Europe PMC Scholia
  179. Valenta T, Gay M, Steiner S, Draganova K, Zemke M, Hoffmans R, Cinelli P, Aguet M, Sommer L, Basler K.; ''Probing transcription-specific outputs of β-catenin in vivo.''; PubMed Europe PMC Scholia
  180. Bao R, Christova T, Song S, Angers S, Yan X, Attisano L.; ''Inhibition of tankyrases induces Axin stabilization and blocks Wnt signalling in breast cancer cells.''; PubMed Europe PMC Scholia
  181. Li FQ, Mofunanya A, Harris K, Takemaru K.; ''Chibby cooperates with 14-3-3 to regulate beta-catenin subcellular distribution and signaling activity.''; PubMed Europe PMC Scholia
  182. Chen G, Nguyen PH, Courey AJ.; ''A role for Groucho tetramerization in transcriptional repression.''; PubMed Europe PMC Scholia
  183. Ishida-Takagishi M, Enomoto A, Asai N, Ushida K, Watanabe T, Hashimoto T, Kato T, Weng L, Matsumoto S, Asai M, Murakumo Y, Kaibuchi K, Kikuchi A, Takahashi M.; ''The Dishevelled-associating protein Daple controls the non-canonical Wnt/Rac pathway and cell motility.''; PubMed Europe PMC Scholia
  184. Städeli R, Basler K.; ''Dissecting nuclear Wingless signalling: recruitment of the transcriptional co-activator Pygopus by a chain of adaptor proteins.''; PubMed Europe PMC Scholia
  185. Wöhrle S, Wallmen B, Hecht A.; ''Differential control of Wnt target genes involves epigenetic mechanisms and selective promoter occupancy by T-cell factors.''; PubMed Europe PMC Scholia
  186. Sakamoto I, Kishida S, Fukui A, Kishida M, Yamamoto H, Hino S, Michiue T, Takada S, Asashima M, Kikuchi A.; ''A novel beta-catenin-binding protein inhibits beta-catenin-dependent Tcf activation and axis formation.''; PubMed Europe PMC Scholia
  187. Henderson BR, Fagotto F.; ''The ins and outs of APC and beta-catenin nuclear transport.''; PubMed Europe PMC Scholia
  188. Brantjes H, Roose J, van De Wetering M, Clevers H.; ''All Tcf HMG box transcription factors interact with Groucho-related co-repressors.''; PubMed Europe PMC Scholia
  189. Waaler J, Machon O, Tumova L, Dinh H, Korinek V, Wilson SR, Paulsen JE, Pedersen NM, Eide TJ, Machonova O, Gradl D, Voronkov A, von Kries JP, Krauss S.; ''A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice.''; PubMed Europe PMC Scholia
  190. Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC.; ''Structural basis of Wnt recognition by Frizzled.''; PubMed Europe PMC Scholia
  191. Ferkey DM, Kimelman D.; ''Glycogen synthase kinase-3 beta mutagenesis identifies a common binding domain for GBP and Axin.''; PubMed Europe PMC Scholia
  192. Sakane H, Yamamoto H, Kikuchi A.; ''LRP6 is internalized by Dkk1 to suppress its phosphorylation in the lipid raft and is recycled for reuse.''; PubMed Europe PMC Scholia
  193. Farr GH, Ferkey DM, Yost C, Pierce SB, Weaver C, Kimelman D.; ''Interaction among GSK-3, GBP, axin, and APC in Xenopus axis specification.''; PubMed Europe PMC Scholia
  194. Mazieres J, He B, You L, Xu Z, Lee AY, Mikami I, Reguart N, Rosell R, McCormick F, Jablons DM.; ''Wnt inhibitory factor-1 is silenced by promoter hypermethylation in human lung cancer.''; PubMed Europe PMC Scholia
  195. Hoffmans R, Basler K.; ''Identification and in vivo role of the Armadillo-Legless interaction.''; PubMed Europe PMC Scholia
  196. Dajani R, Fraser E, Roe SM, Yeo M, Good VM, Thompson V, Dale TC, Pearl LH.; ''Structural basis for recruitment of glycogen synthase kinase 3beta to the axin-APC scaffold complex.''; PubMed Europe PMC Scholia
  197. Davidson G, Wu W, Shen J, Bilic J, Fenger U, Stannek P, Glinka A, Niehrs C.; ''Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction.''; PubMed Europe PMC Scholia
  198. Cairo S, Armengol C, Buendia MA.; ''Activation of Wnt and Myc signaling in hepatoblastoma.''; PubMed Europe PMC Scholia
  199. Walf-Vorderwülbecke V, de Boer J, Horton SJ, van Amerongen R, Proost N, Berns A, Williams O.; ''Frat2 mediates the oncogenic activation of Rac by MLL fusions.''; PubMed Europe PMC Scholia
  200. Arce L, Pate KT, Waterman ML.; ''Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression.''; PubMed Europe PMC Scholia
  201. Melichar HJ, Narayan K, Der SD, Hiraoka Y, Gardiol N, Jeannet G, Held W, Chambers CA, Kang J.; ''Regulation of gammadelta versus alphabeta T lymphocyte differentiation by the transcription factor SOX13.''; PubMed Europe PMC Scholia
  202. Akiyama H, Lyons JP, Mori-Akiyama Y, Yang X, Zhang R, Zhang Z, Deng JM, Taketo MM, Nakamura T, Behringer RR, McCrea PD, de Crombrugghe B.; ''Interactions between Sox9 and beta-catenin control chondrocyte differentiation.''; PubMed Europe PMC Scholia
  203. Kim S, Jho EH.; ''The protein stability of Axin, a negative regulator of Wnt signaling, is regulated by Smad ubiquitination regulatory factor 2 (Smurf2).''; PubMed Europe PMC Scholia
  204. Miyazaki K, Fujita T, Ozaki T, Kato C, Kurose Y, Sakamoto M, Kato S, Goto T, Itoyama Y, Aoki M, Nakagawara A.; ''NEDL1, a novel ubiquitin-protein isopeptide ligase for dishevelled-1, targets mutant superoxide dismutase-1.''; PubMed Europe PMC Scholia
  205. Cheyette BN, Waxman JS, Miller JR, Takemaru K, Sheldahl LC, Khlebtsova N, Fox EP, Earnest T, Moon RT.; ''Dapper, a Dishevelled-associated antagonist of beta-catenin and JNK signaling, is required for notochord formation.''; PubMed Europe PMC Scholia
  206. Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, Finan PM, Tallarico JA, Bouwmeester T, Porter JA, Bauer A, Cong F.; ''Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling.''; PubMed Europe PMC Scholia
  207. Chen G, Fernandez J, Mische S, Courey AJ.; ''A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development.''; PubMed Europe PMC Scholia
  208. Kim JH, Kim B, Cai L, Choi HJ, Ohgi KA, Tran C, Chen C, Chung CH, Huber O, Rose DW, Sawyers CL, Rosenfeld MG, Baek SH.; ''Transcriptional regulation of a metastasis suppressor gene by Tip60 and beta-catenin complexes.''; PubMed Europe PMC Scholia
  209. Herr P, Hausmann G, Basler K.; ''WNT secretion and signalling in human disease.''; PubMed Europe PMC Scholia
  210. Niehrs C, Acebron SP.; ''Wnt signaling: multivesicular bodies hold GSK3 captive.''; PubMed Europe PMC Scholia
  211. Surmann-Schmitt C, Widmann N, Dietz U, Saeger B, Eitzinger N, Nakamura Y, Rattel M, Latham R, Hartmann C, von der Mark H, Schett G, von der Mark K, Stock M.; ''Wif-1 is expressed at cartilage-mesenchyme interfaces and impedes Wnt3a-mediated inhibition of chondrogenesis.''; PubMed Europe PMC Scholia
  212. Kansara M, Tsang M, Tsang M, Kodjabachian L, Sims NA, Trivett MK, Ehrich M, Dobrovic A, Slavin J, Choong PF, Choong PF, Simmons PJ, Dawid IB, Thomas DM.; ''Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice.''; PubMed Europe PMC Scholia
  213. Schmitt AM, Shi J, Wolf AM, Lu CC, King LA, Zou Y.; ''Wnt-Ryk signalling mediates medial-lateral retinotectal topographic mapping.''; PubMed Europe PMC Scholia
  214. van Amerongen R, Nawijn M, Franca-Koh J, Zevenhoven J, van der Gulden H, Jonkers J, Berns A.; ''Frat is dispensable for canonical Wnt signaling in mammals.''; PubMed Europe PMC Scholia
  215. Hino S, Michiue T, Asashima M, Kikuchi A.; ''Casein kinase I epsilon enhances the binding of Dvl-1 to Frat-1 and is essential for Wnt-3a-induced accumulation of beta-catenin.''; PubMed Europe PMC Scholia
  216. Willert K, Shibamoto S, Nusse R.; ''Wnt-induced dephosphorylation of axin releases beta-catenin from the axin complex.''; PubMed Europe PMC Scholia
  217. Galbán S, Duckett CS.; ''XIAP as a ubiquitin ligase in cellular signaling.''; PubMed Europe PMC Scholia
  218. Xing Y, Clements WK, Kimelman D, Xu W.; ''Crystal structure of a beta-catenin/axin complex suggests a mechanism for the beta-catenin destruction complex.''; PubMed Europe PMC Scholia
  219. Hoffmans R, Städeli R, Basler K.; ''Pygopus and legless provide essential transcriptional coactivator functions to armadillo/beta-catenin.''; PubMed Europe PMC Scholia
  220. Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F, Saint-Jeannet JP, He X.; ''LDL-receptor-related proteins in Wnt signal transduction.''; PubMed Europe PMC Scholia
  221. Mosimann C, Hausmann G, Basler K.; ''Parafibromin/Hyrax activates Wnt/Wg target gene transcription by direct association with beta-catenin/Armadillo.''; PubMed Europe PMC Scholia
  222. Barrott JJ, Cash GM, Smith AP, Barrow JR, Murtaugh LC.; ''Deletion of mouse Porcn blocks Wnt ligand secretion and reveals an ectodermal etiology of human focal dermal hypoplasia/Goltz syndrome.''; PubMed Europe PMC Scholia
  223. Kim KA, Zhao J, Andarmani S, Kakitani M, Oshima T, Binnerts ME, Abo A, Tomizuka K, Funk WD.; ''R-Spondin proteins: a novel link to beta-catenin activation.''; PubMed Europe PMC Scholia
  224. Wu W, Glinka A, Delius H, Niehrs C.; ''Mutual antagonism between dickkopf1 and dickkopf2 regulates Wnt/beta-catenin signalling.''; PubMed Europe PMC Scholia
  225. Lui TT, Lacroix C, Ahmed SM, Goldenberg SJ, Leach CA, Daulat AM, Angers S.; ''The ubiquitin-specific protease USP34 regulates axin stability and Wnt/β-catenin signaling.''; PubMed Europe PMC Scholia
  226. Liu Y, Shi J, Lu CC, Wang ZB, Lyuksyutova AI, Song XJ, Zou Y.; ''Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract.''; PubMed Europe PMC Scholia
  227. Thompson B, Townsley F, Rosin-Arbesfeld R, Musisi H, Bienz M.; ''A new nuclear component of the Wnt signalling pathway.''; PubMed Europe PMC Scholia
  228. Sustmann C, Flach H, Ebert H, Eastman Q, Grosschedl R.; ''Cell-type-specific function of BCL9 involves a transcriptional activation domain that synergizes with beta-catenin.''; PubMed Europe PMC Scholia
  229. van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J, Ypma A, Hursh D, Jones T, Bejsovec A, Peifer M, Mortin M, Clevers H.; ''Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF.''; PubMed Europe PMC Scholia
  230. Malik HS, Eickbush TH, Goldfarb DS.; ''Evolutionary specialization of the nuclear targeting apparatus.''; PubMed Europe PMC Scholia
  231. Taelman VF, Dobrowolski R, Plouhinec JL, Fuentealba LC, Vorwald PP, Gumper I, Sabatini DD, De Robertis EM.; ''Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes.''; PubMed Europe PMC Scholia
  232. Bänziger C, Soldini D, Schütt C, Zipperlen P, Hausmann G, Basler K.; ''Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells.''; PubMed Europe PMC Scholia
  233. Wong HC, Bourdelas A, Krauss A, Lee HJ, Shao Y, Wu D, Mlodzik M, Shi DL, Zheng J.; ''Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled.''; PubMed Europe PMC Scholia
  234. Li L, Mao J, Sun L, Liu W, Wu D.; ''Second cysteine-rich domain of Dickkopf-2 activates canonical Wnt signaling pathway via LRP-6 independently of dishevelled.''; PubMed Europe PMC Scholia
  235. Zorn AM, Barish GD, Williams BO, Lavender P, Klymkowsky MW, Varmus HE.; ''Regulation of Wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin.''; PubMed Europe PMC Scholia
  236. Cong F, Schweizer L, Varmus H.; ''Wnt signals across the plasma membrane to activate the beta-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP.''; PubMed Europe PMC Scholia
  237. Niehrs C.; ''Function and biological roles of the Dickkopf family of Wnt modulators.''; PubMed Europe PMC Scholia
  238. Yost C, Farr GH, Pierce SB, Ferkey DM, Chen MM, Kimelman D.; ''GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis.''; PubMed Europe PMC Scholia
  239. Fiedler M, Sánchez-Barrena MJ, Nekrasov M, Mieszczanek J, Rybin V, Müller J, Evans P, Bienz M.; ''Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex.''; PubMed Europe PMC Scholia
  240. Neufeld KL.; ''Nuclear APC.''; PubMed Europe PMC Scholia
  241. Thompson BA, Tremblay V, Lin G, Bochar DA.; ''CHD8 is an ATP-dependent chromatin remodeling factor that regulates beta-catenin target genes.''; PubMed Europe PMC Scholia
  242. Omer CA, Miller PJ, Diehl RE, Kral AM.; ''Identification of Tcf4 residues involved in high-affinity beta-catenin binding.''; PubMed Europe PMC Scholia
  243. Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, Delius H, Hoppe D, Stannek P, Walter C, Glinka A, Niehrs C.; ''Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling.''; PubMed Europe PMC Scholia
  244. Parker DS, Ni YY, Chang JL, Li J, Cadigan KM.; ''Wingless signaling induces widespread chromatin remodeling of target loci.''; PubMed Europe PMC Scholia
  245. Luo W, Peterson A, Garcia BA, Coombs G, Kofahl B, Heinrich R, Shabanowitz J, Hunt DF, Yost HJ, Virshup DM.; ''Protein phosphatase 1 regulates assembly and function of the beta-catenin degradation complex.''; PubMed Europe PMC Scholia
  246. Lin YC, You L, Xu Z, He B, Mikami I, Thung E, Chou J, Kuchenbecker K, Kim J, Raz D, Yang CT, Chen JK, Jablons DM.; ''Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines.''; PubMed Europe PMC Scholia
  247. Bernard P, Sim H, Knower K, Vilain E, Harley V.; ''Human SRY inhibits beta-catenin-mediated transcription.''; PubMed Europe PMC Scholia
  248. Chen S, Bubeck D, MacDonald BT, Liang WX, Mao JH, Malinauskas T, Llorca O, Aricescu AR, Siebold C, He X, Jones EY.; ''Structural and functional studies of LRP6 ectodomain reveal a platform for Wnt signaling.''; PubMed Europe PMC Scholia
  249. Jessen S, Gu B, Dai X.; ''Pygopus and the Wnt signaling pathway: a diverse set of connections.''; PubMed Europe PMC Scholia
  250. Song H, Hasson P, Paroush Z, Courey AJ.; ''Groucho oligomerization is required for repression in vivo.''; PubMed Europe PMC Scholia
  251. Barker N, Hurlstone A, Musisi H, Miles A, Bienz M, Clevers H.; ''The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation.''; PubMed Europe PMC Scholia
  252. Willis TG, Zalcberg IR, Coignet LJ, Wlodarska I, Stul M, Jadayel DM, Bastard C, Treleaven JG, Catovsky D, Silva ML, Dyer MJ.; ''Molecular cloning of translocation t(1;14)(q21;q32) defines a novel gene (BCL9) at chromosome 1q21.''; PubMed Europe PMC Scholia
  253. Gu B, Watanabe K, Dai X.; ''Pygo2 regulates histone gene expression and H3 K56 acetylation in human mammary epithelial cells.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
123314view11:20, 15 July 2022EgonwTyped a datanode (and added missing label)
101086view21:24, 31 October 2018ReactomeTeamreactome version 65
100615view19:59, 31 October 2018ReactomeTeamreactome version 64
100166view16:43, 31 October 2018ReactomeTeamreactome version 63
99716view15:11, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
93772view13:35, 16 August 2017ReactomeTeamreactome version 61
93297view11:19, 9 August 2017ReactomeTeamreactome version 61
88408view11:45, 5 August 2016FehrhartOntology Term : 'Wnt signaling pathway' added !
86382view09:16, 11 July 2016ReactomeTeamreactome version 56
83113view09:59, 18 November 2015ReactomeTeamVersion54
81447view12:58, 21 August 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
26S proteasomeComplexR-HSA-68819 (Reactome)
ADPMetaboliteCHEBI:16761 (ChEBI)
AMER1 ProteinQ5JTC6 (Uniprot-TrEMBL)
AMER1ProteinQ5JTC6 (Uniprot-TrEMBL)
APC ProteinP25054 (Uniprot-TrEMBL)
APC:CTBP:CTNNB1:BTRCComplexR-HSA-3361756 (Reactome)
APCProteinP25054 (Uniprot-TrEMBL)
ASH2L ProteinQ9UBL3 (Uniprot-TrEMBL)
ASH2LProteinQ9UBL3 (Uniprot-TrEMBL)
ATPMetaboliteCHEBI:15422 (ChEBI)
AXIN1 ProteinO15169 (Uniprot-TrEMBL)
AXIN2 ProteinQ9Y2T1 (Uniprot-TrEMBL)
AXIN2 gene ProteinENSG00000168646 (Ensembl)
AXIN2 geneGeneProductENSG00000168646 (Ensembl)
AXIN2ProteinQ9Y2T1 (Uniprot-TrEMBL)
AXIN:SMURF2ComplexR-HSA-4641136 (Reactome)
AXIN:TNKSComplexR-HSA-3640822 (Reactome)
AXINComplexR-HSA-3640819 (Reactome)
Ac-CoAMetaboliteCHEBI:15351 (ChEBI)
AcK-HIST1H4 ProteinP62805 (Uniprot-TrEMBL)
AdoHcyMetaboliteCHEBI:16680 (ChEBI)
AdoMetMetaboliteCHEBI:15414 (ChEBI)
BCL9 ProteinO00512 (Uniprot-TrEMBL)
BCL9L ProteinQ86UU0 (Uniprot-TrEMBL)
BCL9ComplexR-HSA-3305844 (Reactome)
BTRC ProteinQ9Y297 (Uniprot-TrEMBL)
BTRCProteinQ9Y297 (Uniprot-TrEMBL)
CAV1 ProteinQ03135 (Uniprot-TrEMBL)
CBY1 ProteinQ9Y3M2 (Uniprot-TrEMBL)
CBY1:CTNNB1ComplexR-HSA-3769380 (Reactome)
CBY1ProteinQ9Y3M2 (Uniprot-TrEMBL)
CCDC88C ProteinQ9P219 (Uniprot-TrEMBL)
CCDC88CProteinQ9P219 (Uniprot-TrEMBL)
CDC73 ProteinQ6P1J9 (Uniprot-TrEMBL)
CDC73ProteinQ6P1J9 (Uniprot-TrEMBL)
CHD8 ProteinQ9HCK8 (Uniprot-TrEMBL)
CHD8ProteinQ9HCK8 (Uniprot-TrEMBL)
CREBBP ProteinQ92793 (Uniprot-TrEMBL)
CREBBP, EP300ComplexR-HSA-1027362 (Reactome)
CSNK1A1 ProteinP48729 (Uniprot-TrEMBL)
CSNK1A1ProteinP48729 (Uniprot-TrEMBL)
CSNK1EProteinP49674 (Uniprot-TrEMBL)
CSNK1G2ProteinP78368 (Uniprot-TrEMBL)
CSNK2A1 ProteinP68400 (Uniprot-TrEMBL)
CSNK2A2 ProteinP19784 (Uniprot-TrEMBL)
CSNK2B ProteinP67870 (Uniprot-TrEMBL)
CTBP1 ProteinQ13363 (Uniprot-TrEMBL)
CTBP1ProteinQ13363 (Uniprot-TrEMBL)
CTNNB1 ProteinP35222 (Uniprot-TrEMBL)
CTNNB1:AXIN:GSK3:CK1alpha:ub-APC:PP2A:AMER1 complexComplexR-HSA-4416737 (Reactome)
CTNNB1:CHD8ComplexR-HSA-5368504 (Reactome)
CTNNB1:SRY,SOX2,SOX3,SOX4,SOX6,SOX7,SOX9,SOX17ComplexR-HSA-5626915 (Reactome)
CTNNB1ProteinP35222 (Uniprot-TrEMBL)
CTNNBIP1 ProteinQ9NSA3 (Uniprot-TrEMBL)
CTNNBIP1:CTNNB1ComplexR-HSA-3772415 (Reactome)
CTNNBIP1ProteinQ9NSA3 (Uniprot-TrEMBL)
CUL3 ProteinQ13618 (Uniprot-TrEMBL)
CUL3:KLHL12:RBX1ComplexR-HSA-1504195 (Reactome)
CXXC4 ProteinQ9H2H0 (Uniprot-TrEMBL)
CXXC4ProteinQ9H2H0 (Uniprot-TrEMBL)
Casein kinase IIComplexR-HSA-201711 (Reactome)
CoA-SHMetaboliteCHEBI:15346 (ChEBI)
DACT1 ProteinQ9NYF0 (Uniprot-TrEMBL)
DACT1ProteinQ9NYF0 (Uniprot-TrEMBL)
DKK1 ProteinO94907 (Uniprot-TrEMBL)
DKK2 ProteinQ9UBU2 (Uniprot-TrEMBL)
DKK4 ProteinQ9UBT3 (Uniprot-TrEMBL)
DKKComplexR-HSA-3769325 (Reactome)
DVL1 ProteinO14640 (Uniprot-TrEMBL)
DVL1:HECW1ComplexR-HSA-4641154 (Reactome)
DVL1ProteinO14640 (Uniprot-TrEMBL)
DVL2 ProteinO14641 (Uniprot-TrEMBL)
DVL2:DACT1ComplexR-HSA-4641149 (Reactome)
DVL2ProteinO14641 (Uniprot-TrEMBL)
DVL3 ProteinQ92997 (Uniprot-TrEMBL)
DVL:CCDC88CComplexR-HSA-5368505 (Reactome)
DVL:CUL3:KLHL12:RBX1ComplexR-HSA-1504210 (Reactome)
DVL:CXXC4ComplexR-HSA-5368508 (Reactome)
DVLComplexR-HSA-1504201 (Reactome)
DVLComplexR-HSA-201725 (Reactome)
Degradation of

beta-catenin by the

destruction complex
PathwayR-HSA-195253 (Reactome) The beta-catenin destruction complex plays a key role in the canonical Wnt signaling pathway. In the absence of Wnt signaling, this complex controls the levels of cytoplamic beta-catenin. Beta-catenin associates with and is phosphorylated by the destruction complex. Phosphorylated beta-catenin is recognized and ubiquitinated by the SCF-beta TrCP ubiquitin ligase complex and is subsequently degraded by the proteasome (reviewed in Kimelman and Xu, 2006).
EP300 ProteinQ09472 (Uniprot-TrEMBL)
FRAT1 ProteinQ92837 (Uniprot-TrEMBL)
FRAT1,2:GSK3betaComplexR-HSA-1226052 (Reactome)
FRAT1,2ComplexR-HSA-1226058 (Reactome)
FRAT2 ProteinO75474 (Uniprot-TrEMBL)
FZD1 ProteinQ9UP38 (Uniprot-TrEMBL)
FZD2 ProteinQ14332 (Uniprot-TrEMBL)
FZD4 ProteinQ9ULV1 (Uniprot-TrEMBL)
FZD5 ProteinQ13467 (Uniprot-TrEMBL)
FZD6 ProteinO60353 (Uniprot-TrEMBL)
FZD8 ProteinQ9H461 (Uniprot-TrEMBL)
GSK3B ProteinP49841 (Uniprot-TrEMBL)
GSK3B:AXIN1ComplexR-HSA-1504204 (Reactome)
GSK3BProteinP49841 (Uniprot-TrEMBL)
H2AFB1 ProteinP0C5Y9 (Uniprot-TrEMBL)
H2AFJ ProteinQ9BTM1 (Uniprot-TrEMBL)
H2AFV ProteinQ71UI9 (Uniprot-TrEMBL)
H2AFX ProteinP16104 (Uniprot-TrEMBL)
H2AFZ ProteinP0C0S5 (Uniprot-TrEMBL)
H2BFS ProteinP57053 (Uniprot-TrEMBL)
H2OMetaboliteCHEBI:15377 (ChEBI)
H3F3A ProteinP84243 (Uniprot-TrEMBL)
HDAC1 ProteinQ13547 (Uniprot-TrEMBL)
HDAC1ProteinQ13547 (Uniprot-TrEMBL)
HECW1 ProteinQ76N89 (Uniprot-TrEMBL)
HECW1ProteinQ76N89 (Uniprot-TrEMBL)
HIST1H2AB ProteinP04908 (Uniprot-TrEMBL)
HIST1H2AC ProteinQ93077 (Uniprot-TrEMBL)
HIST1H2AD ProteinP20671 (Uniprot-TrEMBL)
HIST1H2AJ ProteinQ99878 (Uniprot-TrEMBL)
HIST1H2BA ProteinQ96A08 (Uniprot-TrEMBL)
HIST1H2BB ProteinP33778 (Uniprot-TrEMBL)
HIST1H2BC ProteinP62807 (Uniprot-TrEMBL)
HIST1H2BD ProteinP58876 (Uniprot-TrEMBL)
HIST1H2BH ProteinQ93079 (Uniprot-TrEMBL)
HIST1H2BJ ProteinP06899 (Uniprot-TrEMBL)
HIST1H2BK ProteinO60814 (Uniprot-TrEMBL)
HIST1H2BL ProteinQ99880 (Uniprot-TrEMBL)
HIST1H2BM ProteinQ99879 (Uniprot-TrEMBL)
HIST1H2BN ProteinQ99877 (Uniprot-TrEMBL)
HIST1H2BO ProteinP23527 (Uniprot-TrEMBL)
HIST1H3A ProteinP68431 (Uniprot-TrEMBL)
HIST1H4 ProteinP62805 (Uniprot-TrEMBL)
HIST2H2AA3 ProteinQ6FI13 (Uniprot-TrEMBL)
HIST2H2AC ProteinQ16777 (Uniprot-TrEMBL)
HIST2H2BE ProteinQ16778 (Uniprot-TrEMBL)
HIST2H3A ProteinQ71DI3 (Uniprot-TrEMBL)
HIST3H2BB ProteinQ8N257 (Uniprot-TrEMBL)
HIST3H3 ProteinQ16695 (Uniprot-TrEMBL)
K63polyUb-APC ProteinP25054 (Uniprot-TrEMBL)
K63polyUb-APCProteinP25054 (Uniprot-TrEMBL)
KAT5 ProteinQ92993 (Uniprot-TrEMBL)
KAT5ProteinQ92993 (Uniprot-TrEMBL)
KLHL12 ProteinQ53G59 (Uniprot-TrEMBL)
KMT2D ProteinO14686 (Uniprot-TrEMBL)
KMT2DProteinO14686 (Uniprot-TrEMBL)
KRM1 ProteinQ96MU8 (Uniprot-TrEMBL)
KRM1/2ComplexR-HSA-3769333 (Reactome)
KRM2 ProteinQ8NCW0 (Uniprot-TrEMBL)
KRM:DKK:LRP5/6ComplexR-HSA-3769399 (Reactome)
KRM:DKK:LRP5/6ComplexR-HSA-5368514 (Reactome)
LEF1 ProteinQ9UJU2 (Uniprot-TrEMBL)
LEO1 ProteinQ8WVC0 (Uniprot-TrEMBL)
LEO1ProteinQ8WVC0 (Uniprot-TrEMBL)
LGR4 ProteinQ9BXB1 (Uniprot-TrEMBL)
LGR5 ProteinO75473 (Uniprot-TrEMBL)
LGR6 ProteinQ9HBX8 (Uniprot-TrEMBL)
LGRComplexR-HSA-4641170 (Reactome)
LRP5 ProteinO75197 (Uniprot-TrEMBL)
LRP5/6ComplexR-HSA-201719 (Reactome)
LRP6 ProteinO75581 (Uniprot-TrEMBL)
MEN1 ProteinO00255 (Uniprot-TrEMBL)
MEN1ProteinO00255 (Uniprot-TrEMBL)
MYC gene ProteinENSG00000136997 (Ensembl)
MYC gene: H2B K121ub nucleosomeComplexR-HSA-3364023 (Reactome)
MYC gene:H2B K121ub H3K4me3 nucleosomeComplexR-HSA-3364034 (Reactome)
MYC geneGeneProductENSG00000136997 (Ensembl)
MYCProteinP01106 (Uniprot-TrEMBL)
Me3K5-H3F3A ProteinP84243 (Uniprot-TrEMBL)
Me3K5-HIST1H3A ProteinP68431 (Uniprot-TrEMBL)
Me3K5-HIST2H3A ProteinQ71DI3 (Uniprot-TrEMBL)
Me3K5-HIST3H3 ProteinQ16695 (Uniprot-TrEMBL)
N4GlycoAsn-PalmS WNT3AProteinP56704 (Uniprot-TrEMBL)
N4GlycoAsn-PalmS WNT1 ProteinP04628 (Uniprot-TrEMBL)
N4GlycoAsn-PalmS WNT3 ProteinP56703 (Uniprot-TrEMBL)
N4GlycoAsn-PalmS WNT3A ProteinP56704 (Uniprot-TrEMBL)
N4GlycoAsn-PalmS WNT4 ProteinP56705 (Uniprot-TrEMBL)
N4GlycoAsn-PalmS WNT5A(36-380) ProteinP41221 (Uniprot-TrEMBL)
N4GlycoAsn-PalmS WNT8A ProteinQ9H1J5 (Uniprot-TrEMBL)
N4GlycoAsn-PalmS WNT8B ProteinQ93098 (Uniprot-TrEMBL)
N4GlycoAsn-PalmS WNT9A ProteinO14904 (Uniprot-TrEMBL)
N4GlycoAsn-PalmS-WNT3A:FZD:LRP5/6:ZNRF3/RNF43ComplexR-HSA-4641177 (Reactome)
N4GlycoAsn-PalmS-WNT3A:FZD:LRP5/6ComplexR-HSA-4641176 (Reactome)
N4GlycoAsn-PalmS-WNT3A:ub-FZD:LRP5/6:ZNRF3/RNF43ComplexR-HSA-4641191 (Reactome)
N4GlycoAsn-PalmS-WNT3A:ub-FZD:LRP5/6ComplexR-HSA-4641185 (Reactome)
NAD+MetaboliteCHEBI:15846 (ChEBI)
NAMMetaboliteCHEBI:17154 (ChEBI)
PI(4,5)P2MetaboliteCHEBI:18348 (ChEBI)
PI4PMetaboliteCHEBI:17526 (ChEBI)
PIP5K1B ProteinO14986 (Uniprot-TrEMBL)
PIP5K1BProteinO14986 (Uniprot-TrEMBL)
PP2AComplexR-HSA-196206 (Reactome)
PPP2CA ProteinP67775 (Uniprot-TrEMBL)
PPP2CB ProteinP62714 (Uniprot-TrEMBL)
PPP2R1A ProteinP30153 (Uniprot-TrEMBL)
PPP2R1B ProteinP30154 (Uniprot-TrEMBL)
PPP2R5A ProteinQ15172 (Uniprot-TrEMBL)
PPP2R5B ProteinQ15173 (Uniprot-TrEMBL)
PPP2R5C ProteinQ13362 (Uniprot-TrEMBL)
PPP2R5D ProteinQ14738 (Uniprot-TrEMBL)
PPP2R5E ProteinQ16537 (Uniprot-TrEMBL)
PSMA1 ProteinP25786 (Uniprot-TrEMBL)
PSMA2 ProteinP25787 (Uniprot-TrEMBL)
PSMA3 ProteinP25788 (Uniprot-TrEMBL)
PSMA4 ProteinP25789 (Uniprot-TrEMBL)
PSMA5 ProteinP28066 (Uniprot-TrEMBL)
PSMA6 ProteinP60900 (Uniprot-TrEMBL)
PSMA7 ProteinO14818 (Uniprot-TrEMBL)
PSMA8 ProteinQ8TAA3 (Uniprot-TrEMBL)
PSMB1 ProteinP20618 (Uniprot-TrEMBL)
PSMB10 ProteinP40306 (Uniprot-TrEMBL)
PSMB11 ProteinA5LHX3 (Uniprot-TrEMBL)
PSMB2 ProteinP49721 (Uniprot-TrEMBL)
PSMB3 ProteinP49720 (Uniprot-TrEMBL)
PSMB4 ProteinP28070 (Uniprot-TrEMBL)
PSMB5 ProteinP28074 (Uniprot-TrEMBL)
PSMB6 ProteinP28072 (Uniprot-TrEMBL)
PSMB7 ProteinQ99436 (Uniprot-TrEMBL)
PSMB8 ProteinP28062 (Uniprot-TrEMBL)
PSMB9 ProteinP28065 (Uniprot-TrEMBL)
PSMC1 ProteinP62191 (Uniprot-TrEMBL)
PSMC2 ProteinP35998 (Uniprot-TrEMBL)
PSMC3 ProteinP17980 (Uniprot-TrEMBL)
PSMC4 ProteinP43686 (Uniprot-TrEMBL)
PSMC5 ProteinP62195 (Uniprot-TrEMBL)
PSMC6 ProteinP62333 (Uniprot-TrEMBL)
PSMD1 ProteinQ99460 (Uniprot-TrEMBL)
PSMD10 ProteinO75832 (Uniprot-TrEMBL)
PSMD11 ProteinO00231 (Uniprot-TrEMBL)
PSMD12 ProteinO00232 (Uniprot-TrEMBL)
PSMD13 ProteinQ9UNM6 (Uniprot-TrEMBL)
PSMD14 ProteinO00487 (Uniprot-TrEMBL)
PSMD2 ProteinQ13200 (Uniprot-TrEMBL)
PSMD3 ProteinO43242 (Uniprot-TrEMBL)
PSMD4 ProteinP55036 (Uniprot-TrEMBL)
PSMD5 ProteinQ16401 (Uniprot-TrEMBL)
PSMD6 ProteinQ15008 (Uniprot-TrEMBL)
PSMD7 ProteinP51665 (Uniprot-TrEMBL)
PSMD8 ProteinP48556 (Uniprot-TrEMBL)
PSMD9 ProteinO00233 (Uniprot-TrEMBL)
PSME1 ProteinQ06323 (Uniprot-TrEMBL)
PSME2 ProteinQ9UL46 (Uniprot-TrEMBL)
PSME3 ProteinP61289 (Uniprot-TrEMBL)
PSME4 ProteinQ14997 (Uniprot-TrEMBL)
PSMF1 ProteinQ92530 (Uniprot-TrEMBL)
PYGO1 ProteinQ9Y3Y4 (Uniprot-TrEMBL)
PYGO2 ProteinQ9BRQ0 (Uniprot-TrEMBL)
PYGOComplexR-HSA-3322379 (Reactome)
RBBP5 ProteinQ15291 (Uniprot-TrEMBL)
RBBP5ProteinQ15291 (Uniprot-TrEMBL)
RBX1 ProteinP62877 (Uniprot-TrEMBL)
RNF146 ProteinQ9NTX7 (Uniprot-TrEMBL)
RNF146ProteinQ9NTX7 (Uniprot-TrEMBL)
RNF43 ProteinQ68DV7 (Uniprot-TrEMBL)
RPS27A(1-76) ProteinP62979 (Uniprot-TrEMBL)
RSPO1 ProteinQ2MKA7 (Uniprot-TrEMBL)
RSPO2 ProteinQ6UXX9 (Uniprot-TrEMBL)
RSPO3 ProteinQ9BXY4 (Uniprot-TrEMBL)
RSPO4 ProteinQ2I0M5 (Uniprot-TrEMBL)
RSPO:LGR:ZNRF3,RNF43ComplexR-HSA-4641203 (Reactome)
RSPO:LGR:ub-ZNRF3,RNF43ComplexR-HSA-4641211 (Reactome)
RSPO:LGRComplexR-HSA-4641201 (Reactome)
RSPOComplexR-HSA-4641198 (Reactome)
RUNX3 ProteinQ13761 (Uniprot-TrEMBL)
RUNX3:TCF7L2,(LEF1,TCF7L1)ComplexR-HSA-8951528 (Reactome)
RUVBL1 ProteinQ9Y265 (Uniprot-TrEMBL)
RUVBL1ProteinQ9Y265 (Uniprot-TrEMBL)
RYK ProteinP34925 (Uniprot-TrEMBL)
RYK-binding WNTsComplexR-HSA-5323535 (Reactome)
RYK:WNTsComplexR-HSA-5323537 (Reactome)
RYKProteinP34925 (Uniprot-TrEMBL)
RibC-AXIN1 ProteinO15169 (Uniprot-TrEMBL)
RibC-AXIN2 ProteinQ9Y2T1 (Uniprot-TrEMBL)
RibC-AXIN:TNKS:RNF146ComplexR-HSA-3640845 (Reactome)
RibC-AXIN:TNKSComplexR-HSA-3772504 (Reactome)
SFRP1 ProteinQ8N474 (Uniprot-TrEMBL)
SFRP2 ProteinQ96HF1 (Uniprot-TrEMBL)
SHFM1 ProteinP60896 (Uniprot-TrEMBL)
SMARCA4 ProteinP51532 (Uniprot-TrEMBL)
SMARCA4ProteinP51532 (Uniprot-TrEMBL)
SMURF2 ProteinQ9HAU4 (Uniprot-TrEMBL)
SMURF2ProteinQ9HAU4 (Uniprot-TrEMBL)
SOST ProteinQ9BQB4 (Uniprot-TrEMBL)
SOST:LRP5/6ComplexR-HSA-3769334 (Reactome)
SOSTProteinQ9BQB4 (Uniprot-TrEMBL)
SOX13 ProteinQ9UN79 (Uniprot-TrEMBL)
SOX17 ProteinQ9H6I2 (Uniprot-TrEMBL)
SOX2 ProteinP48431 (Uniprot-TrEMBL)
SOX3 ProteinP41225 (Uniprot-TrEMBL)
SOX4 ProteinQ06945 (Uniprot-TrEMBL)
SOX4,SOX13,SOX17ComplexR-HSA-5665611 (Reactome)
SOX6 ProteinP35712 (Uniprot-TrEMBL)
SOX7 ProteinQ9BT81 (Uniprot-TrEMBL)
SOX9 ProteinP48436 (Uniprot-TrEMBL)
SRY ProteinQ05066 (Uniprot-TrEMBL)
SRY,SOX2,SOX3,SOX4,SOX6,SOX7,SOX9,SOX17ComplexR-HSA-5626912 (Reactome)
TCF/LEF:CTNNB1:APC:CTBP:BTRCComplexR-HSA-3361754 (Reactome)
TCF/LEF:CTNNB1:AXIN2 geneComplexR-HSA-4411391 (Reactome)
TCF/LEF:CTNNB1:BCL9:PYGO:SET1-like complexComplexR-HSA-3361369 (Reactome)
TCF/LEF:CTNNB1:BCL9:PYGOComplexR-HSA-201917 (Reactome)
TCF/LEF:CTNNB1:CBP/p300ComplexR-HSA-3322396 (Reactome)
TCF/LEF:CTNNB1:PAF1-like complexComplexR-HSA-3322393 (Reactome)
TCF/LEF:CTNNB1:RUVBL1:TRRAP:KAT5ComplexR-HSA-3451129 (Reactome)
TCF/LEF:CTNNB1:SMARCA4:TERTComplexR-HSA-3322391 (Reactome)
TCF/LEF:CTNNB1:SOX4,SOX13,SOX17ComplexR-HSA-5665607 (Reactome)
TCF/LEF:CTNNB1ComplexR-HSA-3299548 (Reactome)
TCF/LEF:CTNNB1ComplexR-HSA-4411394 (Reactome)
TCF/LEF:TLE:HDAC1ComplexR-HSA-3299555 (Reactome)
TCF4 gene ProteinENSG00000196628 (Ensembl)
TCF4 gene:acetyl H4 nucleosomeComplexR-HSA-3451134 (Reactome)
TCF4 gene:nucleosomeComplexR-HSA-3451116 (Reactome)
TCF7 ProteinP36402 (Uniprot-TrEMBL)
TCF7L1 ProteinQ9HCS4 (Uniprot-TrEMBL)
TCF7L1/TCF7L2/LEF1:CTNNB1:MYC geneComplexR-HSA-4411387 (Reactome)
TCF7L1/TCF7L2/LEF1:CTNNB1ComplexR-HSA-4411378 (Reactome)
TCF7L2 ProteinQ9NQB0 (Uniprot-TrEMBL)
TERT ProteinO14746 (Uniprot-TrEMBL)
TERTProteinO14746 (Uniprot-TrEMBL)
TLE tetramerComplexR-HSA-3299565 (Reactome)
TLE1 ProteinQ04724 (Uniprot-TrEMBL)
TLE1:HDAC1ComplexR-HSA-3299553 (Reactome)
TLE2 ProteinQ04725 (Uniprot-TrEMBL)
TLE3 ProteinQ04726 (Uniprot-TrEMBL)
TLE4 ProteinQ04727 (Uniprot-TrEMBL)
TLE:XIAPComplexR-HSA-3322390 (Reactome)
TNKS ProteinO95271 (Uniprot-TrEMBL)
TNKS1/2:XAV939ComplexR-HSA-5262603 (Reactome)
TNKS1/2ComplexR-HSA-3640826 (Reactome)
TNKS2 ProteinQ9H2K2 (Uniprot-TrEMBL)
TRRAP ProteinQ9Y4A5 (Uniprot-TrEMBL)
TRRAPProteinQ9Y4A5 (Uniprot-TrEMBL)
UBA52(1-76) ProteinP62987 (Uniprot-TrEMBL)
UBB(1-76) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(153-228) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(77-152) ProteinP0CG47 (Uniprot-TrEMBL)
UBC(1-76) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(153-228) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(229-304) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(305-380) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(381-456) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(457-532) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(533-608) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(609-684) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(77-152) ProteinP0CG48 (Uniprot-TrEMBL)
USP34ProteinQ70CQ2 (Uniprot-TrEMBL)
USP8ProteinP40818 (Uniprot-TrEMBL)
Ub-121-H2BFS ProteinP57053 (Uniprot-TrEMBL)
Ub-121-HIST1H2BB ProteinP33778 (Uniprot-TrEMBL)
Ub-121-HIST1H2BC ProteinP62807 (Uniprot-TrEMBL)
Ub-121-HIST1H2BD ProteinP58876 (Uniprot-TrEMBL)
Ub-121-HIST1H2BH ProteinQ93079 (Uniprot-TrEMBL)
Ub-121-HIST1H2BJ ProteinP06899 (Uniprot-TrEMBL)
Ub-121-HIST1H2BK ProteinO60814 (Uniprot-TrEMBL)
Ub-121-HIST1H2BL ProteinQ99880 (Uniprot-TrEMBL)
Ub-121-HIST1H2BM ProteinQ99879 (Uniprot-TrEMBL)
Ub-121-HIST1H2BN ProteinQ99877 (Uniprot-TrEMBL)
Ub-121-HIST1H2BO ProteinP23527 (Uniprot-TrEMBL)
Ub-121-HIST2H2BE ProteinQ16778 (Uniprot-TrEMBL)
Ub-121-HIST3H2BB ProteinQ8N257 (Uniprot-TrEMBL)
Ub-122-HIST1H2BA ProteinQ96A08 (Uniprot-TrEMBL)
Ub-RibC-AXIN1 ProteinO15169 (Uniprot-TrEMBL)
Ub-RibC-AXIN2 ProteinQ9Y2T1 (Uniprot-TrEMBL)
Ub-RibC-AXIN:TNKS:RNF146ComplexR-HSA-3640854 (Reactome)
Ub-TLE1 ProteinQ04724 (Uniprot-TrEMBL)
Ub-TLE2 ProteinQ04725 (Uniprot-TrEMBL)
Ub-TLE3 ProteinQ04726 (Uniprot-TrEMBL)
Ub-TLE4 ProteinQ04727 (Uniprot-TrEMBL)
UbComplexR-HSA-113595 (Reactome)
UbComplexR-HSA-68524 (Reactome)
WIF1 ProteinQ9Y5W5 (Uniprot-TrEMBL)
WIF1-binding WNTsComplexR-HSA-3769336 (Reactome)
WIF1:WNTComplexR-HSA-3769337 (Reactome)
WIF1ProteinQ9Y5W5 (Uniprot-TrEMBL)
WNT ligand

biogenesis and

trafficking
PathwayR-HSA-3238698 (Reactome) 19 WNT proteins have been identified in human cells. The WNTs are members of a conserved metazoan family of secreted morphogens that activate several signaling pathways in the responding cell: the canonical (beta-catenin) WNT signaling cascade and several non-canonical pathways, including the planar cell polarity (PCP), the regulation of intracellular calcium signaling and activation of JNK kinases. WNT proteins exist in a gradient outside the secreting cell and are able to act over both short and long ranges to promote proliferation, changes in cell migration and polarity and tissue homeostasis, among others (reviewed in Saito-Diaz et al, 2012; Willert and Nusse, 2012).


The WNTs are ~40kDa proteins with 23 conserved cysteine residues in the N-terminal that may form intramolecular disulphide bonds. They also contain an N-terminal signal sequence and a number of N-linked glycosylation sites (Janda et al, 2012). In addition to being glycosylated, WNTs are also lipid-modified in the endoplasmic reticulum by a WNT-specific O-acyl-transferase, Porcupine (PORCN), contributing to their characteristic hydrophobicity. PORCN-dependent palmitoylation is required for the secretion of WNT as well as its signaling activity, as either depletion of PORCN or mutation of the conserved serine acylation site results in the intracellular accumulation of WNT ligand (Takada et al, 2006; Barrott et al, 2011; Biechele et al, 2011; reviewed in Willert and Nusse, 2012).


Secretion of WNT requires a number of other dedicated factors including the sorting receptor Wntless (WLS) (also knownas Evi, Sprinter, and GPR177), which binds WNT and escorts it to the cell surface (Banziger et al, 2006; Bartscherer et al, 2006; Goodman et al, 2006). A WNT-specific retromer containing SNX3 is subsequently required for the recycling of WLS back to the Golgi (reviewed in Herr et al, 2012; Johannes and Wunder, 2011). Once at the cell surface, WNT makes extensive contacts with components of the extracellular matrix such as heparan sulphate proteoglycans (HSPGs) and may be bound by any of a number of regulatory proteins, including WIFs and SFRPs. The diffusion of the WNT ligand may be aided by its packing either into WNT multimers, exosomes or onto lipoprotein particles to shield the hydrophobic lipid adducts from the aqueous extracellular environment (Gross et al, 2012; Luga et al, 2012, Korkut et al, 2009; reviewed in Willert and Nusse, 2012).

WNT3A:FZD5:p-LRP6:GSK3B:AXIN:CAV1ComplexR-HSA-5368519 (Reactome)
WNT3A:FZD5:p-LRP6:GSK3B:AXIN:CAV1ComplexR-HSA-5368521 (Reactome)
WNT3A:sFRPComplexR-HSA-3772418 (Reactome)
WNT:FZD:LRP5/6:DVL:AXIN:GSK3BComplexR-HSA-1504184 (Reactome)
WNT:FZD:LRP5/6:DVLComplexR-HSA-1504192 (Reactome)
WNT:FZD:LRP5/6ComplexR-HSA-1458876 (Reactome)
WNT:FZD:p10S/T-LRP5/6:DVL:AXIN:GSK3BComplexR-HSA-1458890 (Reactome)
WNT:FZD:p5S/T-LRP5/6:DVL:AXIN:GSK3BComplexR-HSA-1458897 (Reactome)
XAV939MetaboliteCHEBI:62878 (ChEBI)
XIAP ProteinP98170 (Uniprot-TrEMBL)
XIAPProteinP98170 (Uniprot-TrEMBL)
XPO1 ProteinO14980 (Uniprot-TrEMBL)
XPO1:YWHAZ:p-S20-CBY1:CTNNB1ComplexR-HSA-3769387 (Reactome)
XPO1:YWHAZ:p-S20-CBY1:CTNNB1ComplexR-HSA-3769388 (Reactome)
XPO1ProteinO14980 (Uniprot-TrEMBL)
YWHAZ ProteinP63104 (Uniprot-TrEMBL)
YWHAZ:p-S20-CBY:CTNNB1ComplexR-HSA-3769389 (Reactome)
YWHAZProteinP63104 (Uniprot-TrEMBL)
ZNRF3 ProteinQ9ULT6 (Uniprot-TrEMBL)
ZNRF3,RNF43ComplexR-HSA-5323542 (Reactome)
canonical FZD receptorsComplexR-HSA-1504202 (Reactome)
canonical WNTsComplexR-HSA-1504197 (Reactome)
p-2S,S1490,2T-LRP6 ProteinO75581 (Uniprot-TrEMBL)
p-3S,2T-LRP5 ProteinO75197 (Uniprot-TrEMBL)
p-4S,3T,T1479,S1490,T1493-LRP6 ProteinO75581 (Uniprot-TrEMBL)
p-5S,5T-LRP5 ProteinO75197 (Uniprot-TrEMBL)
p-AKT1/2ComplexR-HSA-3769360 (Reactome)
p-DVL2 ProteinO14641 (Uniprot-TrEMBL)
p-DVL3 ProteinQ92997 (Uniprot-TrEMBL)
p-DVLComplexR-HSA-201689 (Reactome)
p-LRP6 ProteinO75581 (Uniprot-TrEMBL)
p-S-DVL1 ProteinO14640 (Uniprot-TrEMBL)
p-S33,S37,T41,S45 CTNNB1:p-AXIN:CK1alpha:GSK3B:phospho-ub-APC (20 aa repeat region):PP2A:AMER1 complexComplexR-HSA-195297 (Reactome) In this complex Axin is bound to beta-catenin.
p-S33,S37,T41,S45 CTNNB1 ProteinP35222 (Uniprot-TrEMBL)
p-T308,S473-AKT1 ProteinP31749 (Uniprot-TrEMBL)
p-T309,S474-AKT2 ProteinP31751 (Uniprot-TrEMBL)
p-T519,S524,S531-AXIN1 ProteinO15169 (Uniprot-TrEMBL)
p-ub-APC ProteinP25054 (Uniprot-TrEMBL)
pS20-CBY1 ProteinQ9Y3M2 (Uniprot-TrEMBL)
pS20-CBY1:CTNNB1ComplexR-HSA-3769358 (Reactome)
pp-DVL1 ProteinO14640 (Uniprot-TrEMBL)
pp-DVL2 ProteinO14641 (Uniprot-TrEMBL)
pp-DVL3 ProteinQ92997 (Uniprot-TrEMBL)
pp-DVLComplexR-HSA-3772407 (Reactome)
ppDVL:PIP5K1BComplexR-HSA-3772421 (Reactome)
sFRPComplexR-HSA-3772405 (Reactome)
ub-AXIN1 ProteinO15169 (Uniprot-TrEMBL)
ub-AXIN2 ProteinQ9Y2T1 (Uniprot-TrEMBL)
ub-AXIN:SMURF2ComplexR-HSA-4641139 (Reactome)
ub-DVL1 ProteinO14640 (Uniprot-TrEMBL)
ub-DVL1:HECW1ComplexR-HSA-4641160 (Reactome)
ub-DVL2 ProteinO14641 (Uniprot-TrEMBL)
ub-DVL3 ProteinQ92997 (Uniprot-TrEMBL)
ub-DVL:CUL3:KLHL12:RBX1ComplexR-HSA-4652690 (Reactome)
ub-FZD4 ProteinQ9ULV1 (Uniprot-TrEMBL)
ub-FZD5 ProteinQ13467 (Uniprot-TrEMBL)
ub-FZD6 ProteinO60353 (Uniprot-TrEMBL)
ub-FZD8 ProteinQ9H461 (Uniprot-TrEMBL)
ub-RNF43 ProteinQ68DV7 (Uniprot-TrEMBL)
ub-TLE:XIAPComplexR-HSA-3322386 (Reactome)
ub-TLEComplexR-HSA-3322385 (Reactome)
ub-ZNRF3 ProteinQ9ULT6 (Uniprot-TrEMBL)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
26S proteasomemim-catalysisR-HSA-1504193 (Reactome)
26S proteasomemim-catalysisR-HSA-3640874 (Reactome)
26S proteasomemim-catalysisR-HSA-4641256 (Reactome)
26S proteasomemim-catalysisR-HSA-4641260 (Reactome)
ADPArrowR-HSA-201677 (Reactome)
ADPArrowR-HSA-201691 (Reactome)
ADPArrowR-HSA-201717 (Reactome)
ADPArrowR-HSA-3769394 (Reactome)
ADPArrowR-HSA-3772435 (Reactome)
ADPArrowR-HSA-3772436 (Reactome)
AMER1ArrowR-HSA-201685 (Reactome)
APC:CTBP:CTNNB1:BTRCArrowR-HSA-3361751 (Reactome)
APCR-HSA-3364042 (Reactome)
ASH2LArrowR-HSA-3364042 (Reactome)
ASH2LR-HSA-3364014 (Reactome)
ATPR-HSA-201677 (Reactome)
ATPR-HSA-201691 (Reactome)
ATPR-HSA-201717 (Reactome)
ATPR-HSA-3769394 (Reactome)
ATPR-HSA-3772435 (Reactome)
ATPR-HSA-3772436 (Reactome)
AXIN2 geneR-HSA-4411351 (Reactome)
AXIN2 geneR-HSA-4411372 (Reactome)
AXIN2ArrowR-HSA-4411372 (Reactome)
AXIN:SMURF2ArrowR-HSA-4641134 (Reactome)
AXIN:SMURF2R-HSA-4641129 (Reactome)
AXIN:SMURF2mim-catalysisR-HSA-4641129 (Reactome)
AXIN:TNKSArrowR-HSA-3640862 (Reactome)
AXIN:TNKSR-HSA-3640858 (Reactome)
AXIN:TNKSmim-catalysisR-HSA-3640858 (Reactome)
AXINR-HSA-3640862 (Reactome)
AXINR-HSA-4641134 (Reactome)
Ac-CoAR-HSA-3451147 (Reactome)
AdoHcyArrowR-HSA-3364026 (Reactome)
AdoMetR-HSA-3364026 (Reactome)
BCL9ArrowR-HSA-3364042 (Reactome)
BCL9R-HSA-201712 (Reactome)
BTRCR-HSA-3364042 (Reactome)
CBY1:CTNNB1ArrowR-HSA-3769383 (Reactome)
CBY1:CTNNB1R-HSA-3769394 (Reactome)
CBY1R-HSA-3769383 (Reactome)
CCDC88CR-HSA-5368588 (Reactome)
CDC73R-HSA-3322424 (Reactome)
CHD8R-HSA-5368580 (Reactome)
CREBBP, EP300R-HSA-3322427 (Reactome)
CSNK1A1ArrowR-HSA-201685 (Reactome)
CSNK1Emim-catalysisR-HSA-3772435 (Reactome)
CSNK1G2mim-catalysisR-HSA-201691 (Reactome)
CTBP1R-HSA-3364042 (Reactome)
CTNNB1:AXIN:GSK3:CK1alpha:ub-APC:PP2A:AMER1 complexArrowR-HSA-3601585 (Reactome)
CTNNB1:AXIN:GSK3:CK1alpha:ub-APC:PP2A:AMER1 complexR-HSA-201685 (Reactome)
CTNNB1:CHD8ArrowR-HSA-5368580 (Reactome)
CTNNB1:SRY,SOX2,SOX3,SOX4,SOX6,SOX7,SOX9,SOX17ArrowR-HSA-5626938 (Reactome)
CTNNB1ArrowR-HSA-201669 (Reactome)
CTNNB1ArrowR-HSA-201685 (Reactome)
CTNNB1R-HSA-201669 (Reactome)
CTNNB1R-HSA-3299569 (Reactome)
CTNNB1R-HSA-3769383 (Reactome)
CTNNB1R-HSA-3772430 (Reactome)
CTNNB1R-HSA-5368580 (Reactome)
CTNNB1R-HSA-5626938 (Reactome)
CTNNBIP1:CTNNB1ArrowR-HSA-3772430 (Reactome)
CTNNBIP1R-HSA-3772430 (Reactome)
CUL3:KLHL12:RBX1ArrowR-HSA-1504193 (Reactome)
CUL3:KLHL12:RBX1R-HSA-1504213 (Reactome)
CXXC4R-HSA-5368582 (Reactome)
Casein kinase IImim-catalysisR-HSA-201717 (Reactome)
CoA-SHArrowR-HSA-3451147 (Reactome)
DACT1R-HSA-4641147 (Reactome)
DKKR-HSA-3769401 (Reactome)
DVL1:HECW1ArrowR-HSA-4641155 (Reactome)
DVL1:HECW1R-HSA-4641159 (Reactome)
DVL1:HECW1mim-catalysisR-HSA-4641159 (Reactome)
DVL1R-HSA-4641155 (Reactome)
DVL2:DACT1ArrowR-HSA-4641147 (Reactome)
DVL2R-HSA-4641147 (Reactome)
DVL:CCDC88CArrowR-HSA-5368588 (Reactome)
DVL:CUL3:KLHL12:RBX1ArrowR-HSA-1504213 (Reactome)
DVL:CUL3:KLHL12:RBX1R-HSA-1504190 (Reactome)
DVL:CUL3:KLHL12:RBX1mim-catalysisR-HSA-1504190 (Reactome)
DVL:CXXC4ArrowR-HSA-5368582 (Reactome)
DVLR-HSA-1504213 (Reactome)
DVLR-HSA-201717 (Reactome)
DVLR-HSA-5368582 (Reactome)
DVLR-HSA-5368588 (Reactome)
FRAT1,2:GSK3betaArrowR-HSA-5323526 (Reactome)
FRAT1,2R-HSA-5323526 (Reactome)
GSK3B:AXIN1ArrowR-HSA-201685 (Reactome)
GSK3B:AXIN1R-HSA-1504186 (Reactome)
GSK3BR-HSA-5323526 (Reactome)
H2OR-HSA-3640872 (Reactome)
H2OR-HSA-4641236 (Reactome)
HDAC1ArrowR-HSA-3299569 (Reactome)
HECW1ArrowR-HSA-4641260 (Reactome)
HECW1R-HSA-4641155 (Reactome)
K63polyUb-APCArrowR-HSA-201685 (Reactome)
KAT5R-HSA-3451153 (Reactome)
KMT2DArrowR-HSA-3364042 (Reactome)
KMT2DR-HSA-3364014 (Reactome)
KRM1/2R-HSA-3769401 (Reactome)
KRM:DKK:LRP5/6ArrowR-HSA-3769401 (Reactome)
KRM:DKK:LRP5/6ArrowR-HSA-5368586 (Reactome)
KRM:DKK:LRP5/6R-HSA-5368586 (Reactome)
KRM:DKK:LRP5/6TBarR-HSA-1458875 (Reactome)
LEO1R-HSA-3322424 (Reactome)
LGRR-HSA-4641206 (Reactome)
LRP5/6R-HSA-1458875 (Reactome)
LRP5/6R-HSA-3769397 (Reactome)
LRP5/6R-HSA-3769401 (Reactome)
MEN1ArrowR-HSA-3364042 (Reactome)
MEN1R-HSA-3364014 (Reactome)
MYC gene: H2B K121ub nucleosomeR-HSA-3364026 (Reactome)
MYC gene:H2B K121ub H3K4me3 nucleosomeArrowR-HSA-3364026 (Reactome)
MYC geneR-HSA-4411357 (Reactome)
MYC geneR-HSA-4411367 (Reactome)
MYCArrowR-HSA-4411357 (Reactome)
N4GlycoAsn-PalmS WNT3AR-HSA-3772441 (Reactome)
N4GlycoAsn-PalmS-WNT3A:FZD:LRP5/6:ZNRF3/RNF43ArrowR-HSA-4641249 (Reactome)
N4GlycoAsn-PalmS-WNT3A:FZD:LRP5/6:ZNRF3/RNF43R-HSA-4641253 (Reactome)
N4GlycoAsn-PalmS-WNT3A:FZD:LRP5/6:ZNRF3/RNF43mim-catalysisR-HSA-4641253 (Reactome)
N4GlycoAsn-PalmS-WNT3A:FZD:LRP5/6ArrowR-HSA-4641236 (Reactome)
N4GlycoAsn-PalmS-WNT3A:FZD:LRP5/6R-HSA-4641249 (Reactome)
N4GlycoAsn-PalmS-WNT3A:ub-FZD:LRP5/6:ZNRF3/RNF43ArrowR-HSA-4641253 (Reactome)
N4GlycoAsn-PalmS-WNT3A:ub-FZD:LRP5/6R-HSA-4641236 (Reactome)
NAD+R-HSA-3640858 (Reactome)
NAMArrowR-HSA-3640858 (Reactome)
PI(4,5)P2ArrowR-HSA-3772436 (Reactome)
PI4PR-HSA-3772436 (Reactome)
PIP5K1BR-HSA-3772434 (Reactome)
PP2AArrowR-HSA-201685 (Reactome)
PYGOArrowR-HSA-3364042 (Reactome)
PYGOR-HSA-201712 (Reactome)
R-HSA-1458875 (Reactome) The canonical WNT signaling pathway is initiated when WNT ligands bind to the 7 pass transmembrane receptor Frizzled (FZD) proteins (reviewed in Saito-Diaz et al, 2013). The single pass low-density lipoprotein receptor-related protein (LRP) 5/6 membrane proteins are thought to act as co-receptors with FZD proteins for WNTs, although the details are not fully worked out and a FZD:LRP interaction has not been demonstrated with endogenous proteins in vivo (reviewed in He et al, 2004). LRP5/6 have also been shown to bind directly to a subset of WNT proteins, although the data is conflicting (see for instance Tamai et al, 2000; Semenov et al, 2001; Cong et al, 2004; Wu and Nusse, 2002; Mao et al, 2001). Recent crystal structures have demonstrated direct binding of purified WNT proteins to LRP6 and FZD8 in vitro (Ahn et al, 2011; Janda et al, 2012; Chu et al, 2013), but it is not clear whether the LRP and FZD receptors bind WNTs independently, sequentially or cooperatively in vivo (reviewed in He et al, 2004; Saito-Diaz et al, 2013).
R-HSA-1504186 (Reactome) The DIX domains of DVL and AXIN interact and this interaction brings GSK3beta:AXIN1 to the receptor complex (Schwarz-Romond et al, 2007). Subsequently, sequential phosphorylation of LRP5/6 by GSK3beta and CSNK1 generates high affinity AXIN binding sites and functions to amplify recruitment to the membrane (Mao et al, 2001; Zeng et al, 2008). In some models, this recruitment of AXIN to the membrane is facilitated by clustering of DVL and/or LRP5/6 into a 'signalosome' (Bilic et al, 2007).
R-HSA-1504188 (Reactome) DVL is recruited to the plasma membrane through a direct interaction between its PDZ domain and a conserved motif of FZD located after the seventh transmembrane region. Recruitment of DVL to the receptor complex is thought to initiate recruitment of AXIN and GSK3beta (Fujii et al, 2007; Wong et al, 2003; Zeng et al, 2008; Tauriello et al, 2012).
R-HSA-1504190 (Reactome) CUL3:KLHL12:RBX1 polyubiquitinates Dishevelled, targeting it for degradation by the proteasome (Angers et al, 2006).
R-HSA-1504193 (Reactome) Ubiquitinated Dishevelled is degraded by the proteasome.
R-HSA-1504213 (Reactome) In response to WNT signaling, DVL is recruited to the CUL3:KLHL12:RBX1 ubiquitin ligase complex and is subsequently polyubiquitinated and degraded. The BTB domains of the adaptor protein KLHL12 bind constitutively to CUL3 while its Kelch domains mediate a WNT-dependent interaction with the C-terminus of DVL (Angers et al, 2006).
R-HSA-201669 (Reactome) Although it is well established that stabilized beta-catenin is translocated to the nucleus upon WNT pathway activation, the mechanisms that control beta-catenin localization are not fully elucidated. Beta-catenin has neither an NLS nor an NES, and its localization likely arises as the result of a complicated balance between shuttling and retention in both the nucleus and the cytoplasm (reviewed in MacDonald et al, 2009, Saito-Diaz et al, 2013). Nuclear entry of beta-catenin is independent of importins and RanGTPase (Fagotto et al, 1998; Yokoya et al, 1999) and beta-catenin has been suggested to interact directly with the nuclear pore complex by virtue of the structural similarity of its ARM domains to the importin-beta HEAT repeats (Kutay et al, 1997; Malik et al, 1997). Beta-catenin may also 'piggy-back' into the nucleus in complex with other proteins such as FOXM1 (Zhang et al, 2011 ) or BCL9 (Townsley et al, 2004). Once in the nucleus, interaction with TCF, BCL9 and Pygopus may function as an anchor for beta-catenin (Tolwinski and Wieschaus, 2001; Townsley et al, 2004; Krieghoff et al, 2006). Many of the components of the destruction complex, including APC and AXIN are also found in the nucleus and are thought to contribute to beta-catenin localization (Henderson and Fagotto, 2002; Cong and Varmus, 2004). Finally, recent work has revealed a role for Rac1 GTPase and Jun N-terminal kinase 2 (JNK2) in the nuclear localization of beta-catenin upon WNT pathway activation, although the mechanism for this remains to be elucidated (Wu et al, 2008).
R-HSA-201677 (Reactome) LRP5/6 contains 5 PPP(S/T)PxS motifs in its intracellular domain which have been shown to be phosphorylated by a membrane-associated pool of GSK3beta. Individual phosphorylation of each of these motifs promotes interaction with AXIN and stimulates WNT signaling as assessed by activation of a TCF/beta-catenin responsive reporter (Tamai et al, 2004; Zeng et al, 2005; MacDonald et al, 2008). In the context of full length LRP6, phosphorylation of the five motifs shows cooperative stimulation of AXIN binding and WNT signaling. GSK3beta-mediated phosphorylation of LRP6 is thought to prime the receptor for subsequent phosphorylation by CSNK1 (Zeng et al, 2005; reviewed in He et al, 2004).
R-HSA-201685 (Reactome) Stimulation of the WNT pathway results in the recruitment of the GSK3beta:AXIN complex to the membrane (Willert et al, 1999; Schwarz Romond et al, 2007; Bilic et al, 2007; reviewed in Saito-Diaz et al, 2013). Activation of WNT signaling is believed to transiently inhibit GSK3beta kinase activity preventing its phosphorylation of beta-catenin (described in detail in the pathway "Degradation of beta-catenin by the destruction complex"; Piao et al, 2008; reviewed in Saito-Diaz et al, 2013). Inhibition of GSK3beta activity also prevents phosphorylation of AXIN allowing the constitutive dephosphorylation of AXIN at GSK3beta-dependent phosphorylation sites by PP2A predominate. This is believed to weaken the interaction between AXIN and beta-catenin (Willert et al, 1999). AXIN has also been shown to be dephosphorylated by PP1 at several serinve residues initially phosphorylated by CSNK1. The dephosphorylation by PP1 weakens the interaction between AXIN-GSK3beta and inhibits beta-catenin phosphorylation/degradation (Luo et al, 2007; reviewed in Huang et al, 2008). A recent study suggests that sustained inactivation of GSK3beta may result from its sequestration in multivesicular bodies (Taelman et al, 2010; reviewed in Niehrs and Acebon, 2010; Schuldt, 2011). Together, these changes destabilize the destruction complex and allow beta-catenin to accumulate.
R-HSA-201691 (Reactome) After being phosphorylated by GSK3beta on the PPPSP motifs, LRP6 (and by extension LRP5) is phosphorylated at up to 5 sites by a member of the CSNK1 family (Davidson et al, 2005). One screen identified CSNK1gamma as a candidate kinase, while another study showed that CSNK1alpha, delta and epsilon contribute to this phosphorylation step (Davidson et al, 2005; Zeng et al, 2005). This sequential phosphorylation of LRP5/6 by GSK3beta and CSNK1 generates a high affinity binding site for AXIN, thereby amplifying the recruitment of AXIN to the membrane. This is thought to promote the disassembly of the destruction complex, and the activation of WNT signaling (Mao et al, 2001; Tamai et al, 2004; Bilic et al, 2007; reviewed in He et al, 2004).
R-HSA-201712 (Reactome) Once tethered at WNT promoters, beta-catenin is a scaffold for the recruitment of a variety of transcriptional activators. The C-terminal end of beta-catenin interacts with a wide range of general transcriptional activators and chromatin remodelers, while the N-terminal region recruits more WNT-specific activators including BCL9 and Pygopus (reviewed in Jessen et al, 2008). BCL9 proteins (2 in vertebrates, BCL9 and BCL9L) interact with both beta-catenin and the putative activator Pygo (also 2 in vertebrates, Pygo1 and Pygo2) and in this way function as a bridging molecule to promote WNT-dependent transcription (reviewed in Valenta et al, 2012).
BCL9 was identified as the gene overexpressed in a B cell acute lymphoblastic leukemia cell line (Willis et al, 1998) and was subsequently found to be homologous to Legless (Lgs), a Drosophila gene identified in a number of screens for components of the WNT signalling pathway (Kramps et al, 2002; Belenkaya et al, 2002; Thompson et al, 2002). Lgs and BCL9 have no recognizable protein motifs and share sequence similarity only in three short stretches of 30 amino acids termed homology domains (HD) 1-3 (Kramps et al, 2002; reviewed in Valenta et al, 2012). HD1 mediates the interaction with the N-terminal ARM domain of beta-catenin while HD2 is required for the recruitment of Pygo through its C-terminal plant homology domain (PHD) (Kramps et al, 2002; Sampietro et al, 2006, Sierra et al, 2006). Replacement of the PHD domain of Pygo with the beta-catenin-interacting HD2 domain of Lgs rescues the phenotype of both lgs and pygo deletion in Drosophila suggesting that the primary role of Lgs is the recruitment of Pygo (Kramps et al, 2002). Transcriptional activation by Pygo depends on the conserved tripeptide NPF in the N-terminal homology domain (NHD) (Kramps et al, 2002; Hoffmans and Basler, 2004; Hoffmans et al, 2005; Städeli and Basler, 2005).
In Drosophila, Lgs is essential for Wg signalling, and deletion of either Lgs or Pygo phenocopies armadillo (the Drosophila beta-catenin homologue) null mutants (Kramps et al, 2002; Thompson et al, 2002). In mammals, the requirement and roles for BCL9 and Pygo are both less strict and less completely understood. Unlike in Drosophila, disruption of the BCL9/Pygo branch in mammals has less impact on transcriptional activation than abrogation of beta-catenin-dependent signalling through the C-terminal tail (Valenta et al, 2011). Ablation of pygopus genes in mice does not phenocopy with loss of Wnt signaling (Song et al, 2007; Schwab et al, 2007; Li et al, 2007), and disruption of the BCL9/BCL9L beta-catenin interaction results in embryonic lethality three days later than in the case of complete disruption of beta-catenin-dependent transcription (Valenta et al, 2011). Mammalian BCL9 also has Pygo-independent roles in WNT signaling and has been shown to interact directly with other transcriptional co-activators such as CBP/p300 or TRRAP/GCN5 through its C-terminus (Sustmann et al, 2008). Finally, the PHD of Pygo is able to bind methylated histones, which may contribute to context-specific roles of the protein (Gu et al, 2009; Fielder et al, 2008; Kessler et al, 2009; Gu et al, 2012).
R-HSA-201717 (Reactome) DVL proteins from Drosophila, Xenopus, mouse and human cells have been shown to be phosphorylated, however the role of phosphorylation remains incompletely understood (Willert et al, 1997; Semenov and Synder, 1997; Yanagawa et al, 1995; Rothbächer et al, 2000). CSNK2 was identified as a DVL-associated kinase in Drosophila cells, and was shown to mediate the phosphorylation of serine and threonine residues in vitro (Willert et al, 1997). CSNK2-mediated phosphorylation of DVL may be constitutive, as DVL exists as a phosphoprotein even in the absence of WNT signaling (Bernatik et al, 2011). The association between DVL and CSNK2 may be enhanced upon WNT signaling, leading to increased levels of DVL phosphorylation (Willert et al, 2007).
R-HSA-3299569 (Reactome) TCF7 (TCF1), LEF1, TCF7L1 (TCF3) and TCF7L2 (TCF4) are HMG box-containing DNA-binding proteins that recognize WNT-responsive elements (WREs) in the promoters of WNT target genes. The WRE consensus sequence is CCTTTGWW, where W represents either T or A (reviewed in Brantjes et al, 2002). In the absence of a WNT signal, promoter-bound TCF/LEF is bound by one of four Groucho homologues, TLE1, 2, 3 or 4 (Levanon et al, 1998; Brantjes et al, 2001; Daniels and Weis, 2005). Groucho/TLE proteins are co-repressors for a variety of DNA-binding transcription factors and mediate repression at least in part through their interaction with histone deacetylases such as RPD3/HDAC1 (Arce et al, 2009; Brantjes et al, 2001; Chen et al, 1999; reviewed in Chen and Courey, 2000). Groucho proteins have been shown to homo-tetramerize through a glutamine rich Q domain at the N-terminus, and this oligomerization is required for repression. The Q domain is also sufficient for interaction with TCF/LEF proteins (Brantjes et al, 2001; Chen et al, 1998; Pinto and Lobe, 1996; Song et al, 2004). Studies with purified proteins have shown that human TLE1 and 2 bind to an amino-terminal truncated form of LEF1(69-397) with an affinity comparable to that for full length LEF1 (Daniels and Weis, 2005)
Evidence suggests that upon activation of the WNT pathway, TLE proteins are displaced from TCF/LEF complexes by competition with nuclear beta-catenin. A primary N-terminal beta-catenin binding site has been defined on TCF/LEF. Beta-catenin binds this region of TCF/LEF through ARM domains 3-8; beta-catenin residues D19 and E27 are essential for this interaction (van de Wetering et al, 1997; Graham et al, 2000). The beta-catenin binding site on TCF/LEF does not overlap with the putative TLE binding site and is not required for TLE binding (Daniels and Weis, 2005; Poy et al, 2001; Graham et al, 2000; von Kries et al, 2000; Omer et al, 1999; Korinek et al, 1998; Behrens et al, 1996; Molenaar et al, 1996, van de Wetering et al, 1997). Limited proteolysis and competition studies with purified proteins suggests that TLEs and beta-catenin share a secondary C-terminal binding site on LEF-1; competition for this binding site is proposed to trigger the switch from repressive to activating complexes at the promoters of WNT target genes, though this may not be universally true at all WNT-responsive promoters (Daniels and Weis, 2005).
R-HSA-3322422 (Reactome) SMARCA4, one of two ATPase components of SWI/SNF chromatin remodelling complexes, was identified in a two-hybrid screen for beta-catenin interactors that activate TCF/LEF-dependent transcription (Barker et al, 2001; Wilson and Roberts, 2011). SMARCA4 co-immunoprecipitates with beta-catenin when both tagged proteins are expressed in HEK293 cells; likewise, tagged SMARCA4 co-precipitates endogenous beta-catenin from a colon carcinoma cell line. Expression of SMARCA4 enhances the expression of a TCF reporter in a manner that depends on a functional ATPase domain, indicating a probable role for chromatin remodelling at WNT-responsive promoters (Barker et al, 2001). By ChIP, SMARCA4 and beta-catenin are associated with WNT-responsive promoters upon WNT pathway stimulation; this study also identified TERT, a telomerase reverse transcriptase, as SMARCA4-interacting protein that is present at WNT promoters (Park et al, 2009).
R-HSA-3322424 (Reactome) The C-terminal region of beta-catenin (ARM repeat 12 through the C-terminal domain) interacts directly with CDC73/Parafibromin, a component of the PAF1 complex (Mosimann et al, 2006). PAF1 is a conserved protein complex that affects aspects of RNA polymerase II transcription including histone modification, transcription elongation and RNA 3' end formation, among others (reviewed in Tomson and Arndt, 2013). In humans, the PAF1 complex consists of CDC73, PAF1, LEO1, CTR9, RTF1 and WDR61. Endogenous beta-catenin from HEK293 and HeLa cells can be co-immunoprecipitated with either CDC73 or LEO1, suggesting that the whole PAF1 complex may be associated with beta-catenin in vivo (Mosimann et al, 2006). The interaction between beta-catenin and CDC73 may be regulated by SHP2-mediated dephosphorylation of CDC73 (Takahashi et al, 2011). Overexpression of CDC73 stimulates expression of a WNT-responsive reporter in HEK293 cells; this enhancement is abrogated when hPYGO2 is depleted or the interaction between beta-catenin and BCL9 is disrupted. These results, which suggest that BCL9-PYGO may act in parallel to CDC73, are supported by the observation that CDC73 and beta-catenin coprecipitate with BCL9 and PYGO2 in HEK293 cells (Mosimann et al, 2006). CDC73 is frequently mutated in parathyroid carcinomas, and these tumors demonstrate aberrant WNT signaling (Juhlin et al, 2009).
R-HSA-3322427 (Reactome) CBP (CREB-binding protein) and the closely related p300 are histone acetyltransferases that are recruited to WNT-responsive promoters through interactions with the C-terminal half of beta-catenin (Hecht et al, 2000; Takemura and Moon, 2000; Sun et al, 2000). Although recruitment is WNT-signaling dependent and results in activation of several WNT target genes, the precise role of CBP and p300 is not yet clear. In Drosophila, recruitment of CBP can affect the acetylation of histones H3 and H4 up to 30kb away from WREs, possibly aided by the DNA bending induced by TCFs (Parker et al, 2008); in other instances, the intrinsic HAT activity has been shown to acetylate beta-catenin (Levy et al, 2004; Wolf et al, 2002), or to be dispensable for the transcriptional activation activity of CBP/p300 at WREs (Hecht et al, 2000).
R-HSA-3322429 (Reactome) XIAP has been shown to ubiquitinate all human isoforms of TLE in vitro, likely in the conserved Q domain. Ubiquitination does not appear to affect the stability, localization or tetramerization of TLE; rather ubiquitination affects the interaction with TCF/LEF. Ubiquitinated TLE3 is not able to bind TCF7L2 (TCF4) in vitro and addition of XIAP to TLE3-TCF7L2 complexes promotes the dissociation of TLE from TCF7L2. Although XIAP ubiquitinates TLE in a constitutive manner, XIAP only co-immunoprecipitates with TCF7L2 upon activation of the WNT signalling pathway. These data support a model where XIAP regulates the interaction between TLE and TCF/LEF by limiting the pool of free nuclear TLE that is available for binding, and by potentially disrupting existing repression complexes at WNT-responsive promoters. By disrupting the interaction between TLE and TCF/LEF, XIAP may facilitate the recruitment of beta-catenin and the establishment of an activation complex at WNT-responsive promoters (Hanson et al, 2012)
R-HSA-3322431 (Reactome) XIAP (X-linked inhibitor of apoptosis) has three BIR domains with known roles in the degradation of caspases and a C-terminal E3 ligase domain with both anti-apoptotic and non-apoptotic roles (Galban and Duckett, 2010; Burstein et al, 2004). The Drosophila homologue DAIP1 was recently identified in a screen in S2 cells for regulators of Wg signalling (Hanson et al, 2012). Knockdown of XIAP in HEK293 cells reduces WNT3a-induced reporter activity and expression of endogenous WNT target genes without affecting beta-catenin levels or localization. In vitro studies show that XIAP can ubiquitinate all human TLE isoforms, including the truncated isoform Amino-terminal enhancer of split (AES). TLE3 co-immunoprecipitates with XIAP from HEK293 cells in both the presence and absence of WNT signalling, consistent with a constitutive role for XIAP in TLE regulation. XIAP may act either by ubiquitinating free nuclear TLE to reduce the amount available to interact with TCF/LEFs or by ubiquitinating TLE in the context of TCF/LEF transcriptional complexes to promote its dissociation, or both. In support of the latter model, XIAP is pulled down with TCF7L2 (TCF4) in a WNT-dependent manner, and knockdown of XIAP reduces the amount of beta-catenin that co-immunoprecipitates with TCF7L2 (TCF4) upon WNT pathway activation (Hanson et al, 2012).
R-HSA-3322434 (Reactome) After ubiquitinating TLE, XIAP presumably dissociates. The model proposed by Hanson et al suggests the existence of an as-yet unidentified deubiquitinase that removes the ubiquitin from TLE to allow it to rebind to TCF/LEF.
R-HSA-3361751 (Reactome) Displacement of the APC:CTBP:beta-catenin:betaTrCP complex allows subsequent recruitment of TLE:HDAC1 to TCF/LEF, re-establishing a repression complex (Sierra et al, 2006)
R-HSA-3364014 (Reactome) A number of SET1-type complex proteins are pulled down from HeLa and SW480 extracts by a fragment of beta-catenin consisting of ARM repeats 11 and 12 and the adjacent C-terminal activation domain (Sierra et al, 2006). SET1 complexes are histone methyltransferases that promote H3K4 trimethylation in a manner that depends on prior ubiquitination of H2B; H3K4 is a mark associated with active chromatin (reviewed in Shilatifard, 2006). ChIP experiments show that SET1 complex members MLL2, MEN1, RBBP5 and ASH2L cycle on and off the MYC promoter in vivo in a complex with BCL9, PYGO and beta-catenin. Recruitment of the SET proteins correlates with increased H3K4me3 and transcription of the MYC gene, and endogenous mMYC mRNA levels decline somewhat in the presence of MLL2 siRNA. These data suggest that the C-terminal of beta-catenin interacts with a functional histone H3 methyltransferase complex that activates WNT-target gene transcription (Sierra et al, 2006).
R-HSA-3364026 (Reactome) The recruitment of SET1-type complexes at the MYC enhancer correlates with increased H3K4 trimethylation in vivo, a mark associated with active chromatin (Sierra et al, 2006). Studies in yeast have shown that H3K4 trimethylation depends on previous H2B ubiquitination by Rad6 and Bre1, which in turn are recruited to DNA by the Paf1 complex (reviewed in Shilatifard, 2006). In this context, the identification of Paf1 components as interactors with the C-terminal activation domain of beta-catenin is intriguing (Sierra et al, 2006)
R-HSA-3364042 (Reactome) Studies in mouse myoblast and colorectal cancer cell lines show that APC, beta-TrCP and the CTBP corepressor are present at the MYC enhancer at times when beta-catenin and its associated coactivators are also present. Binding of APC is correlated with dissociation of the activator complex and precedes recruitment of TLE1 and HDAC1, suggesting that APC may promote the exchange between activator and repressor complexes at the enhancer (Sierra et al, 2006). CSNK1gamma phosphorylation of APC strongly increases its affinity for beta-catenin, and a phosphorylated APC fragment disrupts the formation of a DNA:LEF1:beta-catenin complex by EMSA, consistent with previous reports (Xing et al, 2003; Xing et al, 2004; Sierra et al, 2006). Because beta-catenin is unable to simultaneously bind APC and TCF/LEF, however, the mechanism of APC recruitment to the enhancer complex is unclear (Sierra et al, 2006). Full-length APC associates with CTBP in vitro and in vivo (Hamada and Bienz, 2004; Sierra et al, 2006) while Class I and Class II mutant APC proteins, which are commonly found in colorectal cancers, do not (Sierra et al, 2006; reviewed in Neufeld, 2009). CTBP repressor functions may therefore include facilitating the exchange of coactivator and corepressor complexes at WNT target genes.
R-HSA-3451147 (Reactome) TIP49, TRRAP, TCF7L2 (TCF4) and KAT5 are present at the ITF-2 promoter in vivo in HEK293 cells as assessed by ChIP. Expression of a dominant negative form of TIP49 in rat epithelial cells is associated with a decrease in both histone H4 acetylation at the ITF-2 promoter and in ITF-2 gene expression. These results suggest that a TIP49-containing HAT complex may play a role in promoting WNT-responsive ITF-2 expression, although more functional studies will be required to elucidate the mechanism (Feng et al, 2003).
R-HSA-3451153 (Reactome) Pulldown experiments in colorectal cancer cells show an interaction between the C-terminal region of beta-catenin (ARM domains 11 and 12 through the C terminal) with a number of TRRAP-KAT5 HAT complex members including TRRAP, TIP49, p400 and KAT5 (TIP60), among others (Sierra et al, 2006; Bauer et al, 1998; Bauer et al, 2000; Feng et al, 2003). KAT5 and TIP49 have been shown to directly regulate WNT target genes in vivo and are associated with increased H4 acetylation (Bauer et al, 2000; Feng et al, 2003; Kim et al, 2005).
R-HSA-3601585 (Reactome) AXIN is believed to be dephosphorylated upon WNT pathway stimulation, decreasing its affinity for beta-catenin (Willert et al, 1999; Jho et al 1999). AXIN has been shown to be a direct target of GSK3beta in vitro (Ikeda et al, 1998; Jho et al, 1999). In the absence of a WNT signal AXIN is phosphorylated at Thr519 and Ser524 by GSK3beta and at Ser531 by an unknown kinase. Mutation of these sites decreases the binding to beta-catenin and results in increased TCF-dependent signaling (Jho et al, 1999).


The destruction complex phosphatase PP2A has been implicated as both a positive and negative regulator of WNT and is a candidate for the WNT-dependent dephosphorylation of AXIN (Willert et al, 1999; reviewed in Kimelman and Xu, 2006; MacDonald et al, 2009). Stimulation of the WNT pathway leads to changes in AXIN mobility that are reproduced in vitro by dephosphorylation of immunoprecipitated AXIN by PP2A. Consistent with this, treatment of cells with the PP2A inhibitor okadaic acid blocks the dephosphorylation of AXIN upon treatment with WNT3A (Willert et al, 1999). Stimulation of the WNT pathway results in the recovery of less AXIN in a beta-catenin pulldown, and the AXIN that is isolated in this way is exclusively the phosphorylated form (Willert et al, 1999). In addition to dephosphorylating AXIN, PP2A has also been shown to dephosphorylate beta-catenin itself, as well as APC (Su et al, 2008; Ikeda et al, 2000).

Another candidate for the dephosphorylation of AXIN is PP1. PP1 interacts with AXIN and PP1-dependent dephosphorylation of AXIN decreases the AXIN-GSK3beta interaction and inhibits beta-catenin phosphorylation (Luo et al, 2007).

R-HSA-3640844 (Reactome) RNF146 is an E3 RING ubiquitin ligase that was identified as a positive regulator of WNT signalling (Callow et al, 2011; Zhang et al, 2011). Depletion of RNF146 increases the levels of AXIN and decreases expression of WNT target genes and WNT-responsive reporters in a WNT-independent manner (Zhang et al, 2011; Callow et al, 2011). RNF146 binds directly to poly-ADP-ribose groups through its WWE domain and ubiquitinates substrates in a tankyrase-dependent manner (Zhang et al, 2011). AXIN, Tankyrase and RNF146 are thought to exist in a complex (Callow et al, 2011) and RNF146 mediates the tankyrase-dependent ubiquitination of all three proteins to promote their degradation (Callow et al, 2011; Zhang et al, 2011). In this reaction, only the targeted degradation of AXIN is depicted.
R-HSA-3640858 (Reactome) TNKS1 and 2 function redundantly to control AXIN protein levels through the addition of poly-ADP-ribosyl groups (PARSylation), which may lead to subsequent ubiquitination and degradation by the proteasome. In HEK293, SW480 and breast cancer cell lines, depletion of TNKS1 and 2 increases the protein levels of AXIN1 and AXIN2 resulting in increased beta-catenin phosphorylation, decreased beta-catenin abundance and decreased expression of WNT targets and WNT-responsive reporters (Huang et al, 2009; Callow et al, 2011; Waaler et al, 2012; Bao et al, 2012). In vitro, TNKS2 catalyzes the addition of ADP-ribosyl groups to the TBD fragment of AXIN1, while in vivo, both exogenous GST-AXIN1 and endogenous AXIN1 are PARSylated in a TNKS-dependent manner (Huang et al, 2009; Callow et al, 2011; Zhang et al, 2011). PARSylation is likely required for the subsequent proteasome-mediated degradation of AXIN, as the increase in levels of polyubiquitinated AXIN1 and 2 seen upon treatment of cells with the proteasome inhibitor MG132 is lost if cells are simultaneously treated with an inhibitor of TNKS1 and 2 (Huang et al, 2009). Although in this reaction, TNKS is shown PARSylating unbound AXIN, it is likely that this regulation occurs at the level of the destruction complex. Also not shown in this reaction is the ability of TNKS to catalyze autoPARSylation reactions, which ultimately lead to its own degradation (Yeh et al, 2006; Huang et al, 2009; Zhang et al, 2011).
R-HSA-3640861 (Reactome) RNF146 has in vitro and in vivo ubiquitination activity against AXIN, Tankyrase and itself (Callow et al, 2011; Zhang et al, 2011).
R-HSA-3640862 (Reactome) Several recent chemical screens have identified inhibitors of the poly-ADP ribosylation enzymes tankyrase (TNKS) 1 and 2 as regulators of WNT signalling (Huang et al, 2009; Chen et al, 2009; Waaler et al, 2012). Endogenous TNKS1 and 2 associate with AXIN2 in SW480 cells as assessed by co-immunoprecipitation. Both AXIN1 and AXIN2 interact strongly with TNKS1/2 by two-hybrid, and deletion analysis shows that amino acids 19-30 of AXIN1 are necessary and sufficient for binding to TNKS1. This region, termed the tankyrase-binding-domain (TBD) is necessary and sufficient for the interaction in GST-pulldown and co-immunoprecipitation studies (Huang et al, 2009).
R-HSA-3640872 (Reactome) UBP34 (also known as USP34) is a ubiquitin protease that co-precipitates in AXIN-containing complexes. In vitro studies show that the core domain of UBP34 is able to deubiquitinate AXIN purified from HEK293 transfected cells, and knockdown of UBP34 reduces AXIN1 protein levels in vivo. Treatment of UBP34-knockdown cells with the tankyrase inhibitor XAV939 reverses the degradation of AXIN, suggesting that the activity of UBP34 counteracts the tankyrase-dependent ubiquitination and degradation of AXIN. UBP34 plays a not-fully characterized role in the nuclear accumulation of AXIN, where AXIN is thought to positively regulate beta-catenin mediated transcription (Lui et al, 2011).
R-HSA-3640874 (Reactome) In the presence of the proteasome inhibitor MG132, polyubiquitinated forms of AXIN accumulate (Huang et al, 2009; Zhang et al, 2011; Callow et al, 2011). This effect is abrogated by co-treatment of cells with both MG132 and inhibitors of tankyrase activity, suggesting that both PARSylation and ubiquitination are required for AXIN degradation (Huang et al, 2009).
R-HSA-3769370 (Reactome) WNT Inhibitory factor 1 (WIF1) is a secreted antagonist of WNT signaling that acts by binding to WNTs in the extracellular space and inhibiting their interaction with the FZD receptor complex (Hsieh et al, 1999; Surmann-Schmitt et al, 2009; Malinauskas et al, 2011; Banyai et al, 2012). WIF1 consists of a WIF domain (WD; also present in RYK receptors) and 5 EGF domains (Patthy 2000; Hsieh et al, 1999). Functional studies show that the WD contributes most of the WNT-binding activity while the EGF repeats make contact with components of the extracellular matrix such as HSPGs and glypicans (Hsieh et al, 1999; Malinauskas et al, 2011; Sanchez-Hernandez et al, 2012). WIF1 is downregulated in some cancers, and overexpression of human WIF1 has been shown to inhibit growth of lung and bladder cancer cells (Mazieres et al, 2004; Kansara et al, 2009; Lin et al, 2006; Tang et al, 2009)
R-HSA-3769383 (Reactome) Chibby (CBY1) is a conserved 126 amino acid protein that acts as an antagonist to the canonical WNT signaling pathway. CBY1 binds to the C-terminal region of beta-catenin and inhibits beta-catenin-dependent signaling by competing for the TCF/LEF binding sites and by promoting beta-catenin nuclear export (Takemaru et al, 2003; Li et al, 2008; Li et al, 2010). Endogenous CBY1 and beta-catenin co-immunoprecipitate from HEK293 cells and overexpression of CBY1 reduces expression of a beta-catenin dependent reporter gene, supporting a functional role for the CBY1-beta-catenin interaction in vivo (Takemaru et al, 2003). Studies with CBY1 knockout mice show only a slight effect on expression of WNT-dependent target genes, however; more work will be required to fully elucidate the role of CBY1 in regulating endogenous WNT signaling (Veronina et al, 2009).
R-HSA-3769391 (Reactome) CBY1 contains both NLS and NES sequences and continuously shuttles between the cytoplasm and the nucleus. Treatment of cells with leptomycin B (LMB), an inhibitor of XPO1-mediated nuclear export, results in nuclear accumulation of both CBY1 and 14-3-3/YWHAZ proteins (Li et al, 2008; Li et al, 2010). Consistent with this, CBY1 binds to XPO1 in an NES-dependent manner. 14-3-3/YWHAZ enhances the CBY1-XPO1 interaction, possibly by inducing a conformational change that exposes the adjacent NES sequence. Binding of 14-3-3/YWHAZ also inhibits the interaction of CBY1 with alpha-importin, additionally favouring its cytoplasmic localization. CBY1 NES mutants that are incapable of nuclear export show reduced ability to repress a beta-catenin-dependent reporter, and knockdown of endogenous CBY1 causes an accumulation of beta-catenin in the nucleus. These data support a role for CBY1 in the nuclear export of beta-catenin (Li et al, 2010). Despite growing evidence for a role for CBY1 in regulating WNT signaling, a formal requirement for CBY1 in vivo is still lacking.
R-HSA-3769392 (Reactome) 14-3-3/YWHAZ and XPO1 both contribute to the CBY1-mediated nuclear export of beta-catenin (Li et al, 2008; Li et al, 2010). The fate of the tripartite beta-catenin:CBY1:14-3-3/YWHAZ complex in the cytoplasm is unknown, although it may represent a reservoir of beta-catenin available for further signaling. CBY1 may remain associated with 14-3-3/YWHAZ in the cytoplasm, as 14-3-3/YWHAZ binding inhibits binding of alpha-importin to CBY1 (Li et al, 2010) . This suggests the presence of a phosphatase that dephosphorylates S20 on CBY1 to allow binding with alpha-importin and reimport into the nucleus.
R-HSA-3769393 (Reactome) 14-3-3 proteins, represented here as YWHAZ, bind directly to CBY1 after AKT-dependent phosphorylation of CBY1 serine 20. Tagged versions of beta-catenin, CBY1 and 14-3-3/YWHAZ expressed in HEK293 cells co-immunoprecipitate in a CBY1-phosphorylation dependent manner. 14-3-3/YWHAZ binding promotes sequestration of CBY1 and beta-catenin in the cytoplasm, thus antagonizing beta-catenin-dependent transcription (Li et al, 2008).
R-HSA-3769394 (Reactome) CBY1 is phosphorylated in vitro at serine 20 by AKT1 and AKT2. In vivo, this phosphorylation is required for the export of beta-catenin from the nucleus, facilitated by the binding of 14-3-3/YWHAZ proteins to the pS20 residue of CBY1 (Li et al, 2008).
R-HSA-3769397 (Reactome) SOST is a secreted antagonist of WNT signaling that acts by binding to LRP5/6 (Li et al, 2005; Semenov et al, 2005; Veverka et al, 2005). Binding of SOST requires the first two YWTD EGF repeats of LRP5/6 and appears to inhibit WNT signaling by preventing the formation of the LRP5/6:FZD receptor complex (Li et al, 2005; Semenov et al, 2005).
R-HSA-3769401 (Reactome) DKK1, 2 and 4 are secreted antagonists of WNT signaling that act by binding to LRP5/6 and preventing the formation of an LRP:FZD receptor complex (Semenov et al, 2001; Mao et al, 2001; Bafico et al, 2001; reviewed in Niehrs, 2006). LRP6 has multiple independent WNT binding sites on its surface that are bound by different subsets of WNT proteins (Bourhis et al, 2010; Bourhis et al, 2011). Structural studies show that full length DKK1 binds to an LRP6 site that overlaps with both of these regions, suggesting that WNT and DKK proteins compete for receptor binding (Chen et al, 2011; Ahn et al, 2011; Cheng et al, 2011). Binding of DKK1 is postulated to stabilize LRP6 in an autoinhibited conformation that is relieved upon WNT-binding (Liu et al, 2003; Ahn et al, 2011). In some instances, DKK-mediated inhibition of WNT signaling may be enhanced by the concurrent binding of the single pass transmembrane proteins Kremen1 and 2, although their presence is not absolutely required (Mao et al, 2002; Mao and Niehrs, 2003; Wang et al, 2008). In some cases, DKK2 may also function as a WNT agonist (Brott and Sokol, 2002; Wu et al, 2000; Mao and Nierhs, 2003; Li et al, 2007).
R-HSA-3772430 (Reactome) CTNNBIP1 (also known as ICAT) is an 81 amino-acid protein that was identified in a two-hybrid screen to identify beta-catenin interacting partners (Tago et al, 2000). CTNNBIP1 binds directly to beta-catenin in vitro and in vivo and interferes with the formation of a TCF/LEF:beta-catenin complex (Tago et al, 2000; Daniels and Weiss et al, 2002; Graham et al, 2002). Expression of CTNNBIP1 abrogates expression of a WNT-dependent reporter gene (Tago et al, 2000).
R-HSA-3772434 (Reactome) DVL1 and 3 have been shown to co-immunoprecipitate with PIP5KB in HEK293 cells. This interaction is mediated by the N-terminal half of the kinase and the PDZ and DIX domain of DVL and recruits PIPK5B to the receptor complex. The interaction of DVL and PIP5KB is required for the WNT3A-dependent phosphorylation of LRP6 at serine 1490 and threonine 1479, as well as and the subsequent formation of the signalosome and recruitment of AXIN (Pan et al, 2008).
R-HSA-3772435 (Reactome) CSNK1E and DVL physically interact in vivo and CSNK1E phosphorylates DVL in response to WNT signaling (Peters et al, 1999; Sakanaka et al, 1999; Kishida et al, 2001; Gao et al, 2002; Hino et al, 2003; Klimowski et al, 2006; Bernatik et al, 2011). Phosphorylation by CSNK1E in the PDZ domain of DVL appears to be required for the recruitment of AXIN and the subsequent phosphorylation of LRP6 (Bernatik et al, 2011).
R-HSA-3772436 (Reactome) Stimulation of the WNT pathway controls the activity of PIP5KB in a FZD- and DVL-dependent manner (Pan et al, 2008; Bilic et al, 2007; Cong et al, 2004; Qin et al, 2009). Activation of PIP5KB results in the formation of PI(4,5)P2 at the plasma membrane, which is required through an unclear mechanism for the phosphorylation of LRP6 at serine 1490, LRP6 aggregation into 'signalosomes' and LRP6 phosphorylation at threonine 1479. These events are required for the recruitment of AXIN to the plasma membrane (Pan et al, 2008; Qin et al, 2009).
R-HSA-3772441 (Reactome) Mammalian genomes encode 5 secreted Frizzled related proteins (sFRPs) that are proposed to antagonize WNT signaling by binding directly to WNT ligands. Binding is mediated by a cysteine-rich-domain in the N-terminal that is homologous to the one found in FZD receptors and which is also found in the alternative WNT receptors ROR1 and ROR2 (reviewed in Kawano and Kupta, 2003; Boloventa et al, 2008). Direct binding of sFRP1, 2, 3 and 4 to Wnt3a has been demonstrated by surface plasmon resonance, but only sFRP1 and 2 were shown to inhibit Wtn3a-dependent signaling in mouse ES cells (Wawrzak et al, 2007). In addition to binding to WNT ligands, sFRPs are proposed to antagonize WNT signaling in a number of other ways. sFRPs have been shown to bind directly to FZD proteins by virtue of the CRDs: this interaction is postulated to block WNT signaling by inhibiting the WNT:FZD interaction (Bafico et al, 1999; Rodgriguez et al, 2005).
R-HSA-4411351 (Reactome) All four vertebrate TCF/LEF proteins have been demonstrated to bind to the AXIN2 gene in vivo and to mediate beta-catenin dependent transcription (Leung et al, 2002; Jho et al, 2002; Lustig et al, 2002, Wohrle et al, 2007; Park et al, 2009)
R-HSA-4411357 (Reactome) TCF7L1 (also known as TCF3), TCF7L3 (also known as LEF1) and TCF7L2 (also known as TCF4) have been demonstrated to bind to the MYC gene in vivo and in vitro and to mediate beta-catenin dependent transcription (Park et al, 2009; He et al, 1998; Sierra et al, 2006). Aberrant beta-catenin dependent activation of the MYC gene contributes to oncogenic signaling and cellular proliferation in colorectal and other cancers (see for instance Sansom et al, 2007; Moumen et al, 2013; reviewed in Wilkins and Sansom, 2008; Cairo et al, 2012).
Binding of RUNX3 to the CTNNB1:TCF7L2 and possibly to the CTNNB1:LEF1 and TCF7L1 complexes, prevents binding of CTNNB1 complexes to the MYC promoter, thus negatively regulating MYC transcription (Ito et al. 2008).
R-HSA-4411367 (Reactome) TCF7L1 (also known as TCF3), TCF7L3 (also known as LEF1) and TCF7L2 (also known as TCF4) have been demonstrated to bind to the MYC gene in vivo and in vitro and to mediate beta-catenin dependent transcription (Park et al, 2009; He et al, 1998; Sierra et al, 2006). Aberrant beta-catenin dependent activation of the MYC gene contributes to oncogenic signaling and cellular proliferation in colorectal and other cancers (see for instance Sansom et al, 2007; Moumen et al, 2013; reviewed in Wilkins and Sansom, 2008; Cairo et al, 2012).
Binding of RUNX3 to the CTNNB1:TCF7L2 and possibly to the CTNNB1:LEF1 and TCF7L1 complexes, prevents binding of CTNNB1 complexes to the MYC promoter, thus negatively regulating MYC transcription (Ito et al. 2008).
R-HSA-4411372 (Reactome) Each of the four TCF/LEF transcription factors have been shown to bind to the AXIN2 promoter in conjunction with beta-catenin to activate transcription (Park et al, 2009; Lustig et al, 2002; Jho et al, 2002, Leung et al 2002; Wohrle et al, 2007).
R-HSA-4641129 (Reactome) SMURF2 has been shown to ubiquitinate AXIN at lysine 505 both in vitro and in vivo in a manner that depends on the interaction between the two proteins (Kim and Jho, 2012).
R-HSA-4641134 (Reactome) SMURF2 is an E3 ubiquitin ligase for AXIN and promotes its ubiquitin-mediated degradation. Ectopic SMURF2 immunoprecipitates both exogenously expressed and endogenous AXIN. AXIN is polyubiquitinated by SMURF2 at lysine 505 both in vitro and in vivo (Kim and Jho, 2012).
R-HSA-4641147 (Reactome) DACT1, also known as DAPPER1, was identified in Xenopus as a negative regulator of WNT canonical and non-canonical signaling. In Xenopus, DACT1 has been shown to form a complex with GSK3beta, AXIN, CSNK1 and beta-catenin when co-expressed in HEK293 cells with DVL, and expression of DACT1 negatively regulates expression of beta-catenin target genes (Cheyette et al, 2002). In human cells, DACT1 co-precipitates with DVL2, an interaction mediated by the DIX domain of DVL2 and the C-terminal region of DACT1. siRNA depletion of DACT1 results in higher expression of beta-catenin dependent reporters and increased protein levels of DVL2, suggesting that DACT1 restricts beta-catenin-dependent signaling by promoting the degradation of DVL2. Consistent with this, lysosome inhibitors block DACT1-induced degradation of DVL2 (Zhang et al, 2006).
R-HSA-4641155 (Reactome) HECW1, also known as NEDL1, is an HECT E3 ligase that co-immunoprecipitates with DVL1 upon cotransfection in Neuro2 cells and targets it for proteasomal degradation (Miyazaki et al, 2004).
R-HSA-4641159 (Reactome) DVL1 is ubiquitinated by HECW1 in Neuro2 cells.
R-HSA-4641205 (Reactome) RSPO1-4 increase the levels of FZD and LRP6 receptors and decrease the amount of ZNRF3 at the plasma membrane. RSPO-induced internalization of ZNRF3 depends on LGR and the ubiquitin ligase activity of ZNRF3, and RSPO has been shown to bind directly to the extracellular region of ZNRF3 in an LGR-independent manner. These data are consistent with a model where RSPO promotes an interaction between ZNRF3 and LGR proteins that is required for downregulation of the ubiquitin ligase. In support of this model, artificial dimerization of ZNRF3 and LGR bypasses the requirement for RSPO in ZNRF3 internalization (Hao et al, 2012).
R-HSA-4641206 (Reactome) There are four human RSpondin genes in humans whose products are secreted agonists of canonical and non-canonical WNT signaling (Kim et al, 2005; Glinka et al, 2007; reviewed in Kim et al, 2006). RSPO proteins enhance signaling in the presence of WNT ligand and have been shown to bind to the leucine-rich repeat containing G protein coupled receptors (LGR) 4, 5 and 6 (Kim et al, 2005; Binnerts et al, 2007; Carmon et al, 2011; de Lau et al, 2011). RSPO:LGR complexes are postulated to potentiate WNT-dependent signaling in a number of potentially overlapping mechanisms. RSPO proteins enhance WNT-mediated phosphorylation of LRP6 in HEK293 cells (Wei et al, 2007; Binnerts et al, 2007; Carmon et al, 2011). A recent report suggests that this effect may be mediated in part by downregulating the levels of ZNFR3 at the plasma membrane. ZNFR3 is an E3 ubiquitin ligase that has been shown to ubiquitinate FZD and to promote internalization of FZD and LRP6. In the presence of RSPO:LGR, ZNFR3 itself is targeted for internalization, allowing enhanced signaling through the WNT receptor complex (Yao et al, 2012).
R-HSA-4641236 (Reactome) USP8 is a deubiquitinase that enhances WNT signaling by deubiquitinating the FZD receptor and promoting its recycling to the cell surface (Mukai et al, 2010).
R-HSA-4641246 (Reactome) Mutation of the RING domain of ZNRF3 abrogates membrane clearance of the ubiquitin ligase, suggesting that its internalization depends on auto-ubiquitination (Hao et al, 2012).
R-HSA-4641249 (Reactome) ZNFR3 and RNF43 are plasma membrane E3 RING domain ubiquitin ligases that have been shown to ubiquitinate FZD proteins to promote their downregulation (Hao et al, 2012). Inhibition of ZNRF3 or RNF43 increases the protein level of FZD and LRP6 at the plasma membrane, and stably expressed ZNRF3 can be co-immunoprecipitated with endogenous LRP6 and FZD6 (Hao et al, 2012; Jiang et al 2013). Turnover of the LRP6 and FZD receptors appears to be regulated by multiubiquitination and is abrogated upon treatment with lysosomal inhibitors (Mukai et al, 2010).
R-HSA-4641253 (Reactome) ZNRF3 has been shown to ubiquitinate FZD4 in vivo, and inhibition of ZNRF3/RNF43 increases the protein levels of LRP6 and FZD8 at the cell surface (Hao et al, 2012; Jiang et al, 2013). Degradation of FZD and LRP is abrogated upon treatment of cells with bafilomycin A1 but not with MG132, suggesting that degradation of the receptors occurs in the lysosome. Consistent with this, mutational analysis suggests that FZD4 is multi-monoubiquitinated (Mukai et al, 2010).
R-HSA-4641256 (Reactome) After ubiquitination by SMURF2, AXIN is degraded by the proteasome.
R-HSA-4641260 (Reactome) After ubiquitination by HECW1, DVL1 is degraded by the proteasome.
R-HSA-5262606 (Reactome) XAV939 binds to the catalytic sites of tankyrase 1 and 2 and inhibits the ADP-ribosylation of AXIN1 and 2. Treatment of cells with XAV939 significantly increases the protein, but not the mRNA levels of AXIN1 and 2 and supports a strong increase in the level of GSK3beta-AXIN complexes. These cells also show increased phosphorylation of beta-catenin, decreased beta-catenin protein levels and a corresponding decrease in beta-catenin dependent transcription. Treatment of DLD-1 cells with XAV939 has also been shown to inhibit proliferation (Huang et al, 2009). XAV939 has not been tested in a clinical setting.
R-HSA-5323526 (Reactome) The FRAT genes, which were initially identified as a target of Frequent Rearrangement in Advanced T-cell lymphoma, encode potent activators of canonical WNT signaling and are highly conserved in vertebrates. Xenopus and zebrafish each have one FRAT gene, while the human and mouse genomes contains two and three, respectively (Jonkers et al, 1997; reviewed in van Amerongen and Berns, 2005). Frat proteins activate WNT signaling by binding to GSK3beta and inhibiting its phosphorylation of beta-catenin (Yost et al, 1998; van Amerongen et al, 2004). The interaction with GSK3beta is mediated by a highly conserved IKEA box in the C-terminal domain of FRAT (Yost et al, 1998; van Amerongen et al, 2004; Thomas et al, 1999). This region of FRAT is able to compete with AXIN for binding to GSK3beta, suggesting a model where FRAT is able to destabilize the destruction complex by abrogating the GSK3beta-AXIN interaction (Farr et al, 2000; Thomas et al, 1999; Fraser at el, 2002; Ferkey et al, 2002). This model is supported by structural studies showing that AXIN and FRAT bind to the same region on the surface of GSK3beta (Bax et al, 2001; Dajani et al, 2003). Endogenous FRAT1 has also been shown to interact with DVL3, and this reaction persists in a FRAT1 mutant lacking the GSK3beta-interacting domain (Li et al, 1999). FRAT proteins may thus help bridge between GSK3beta’s role in the destruction complex and its role in activating signaling in response to WNT.

Despite the apparent importance of FRAT proteins in beta-catenin-dependent signaling, a triple FRAT knockout mouse shows no readily evident defects in canonical signaling and, unlike the GBP knockout in Xenopus, no overt phenotypic defects (van Amerongen et al, 2005; Yost et al, 1989). The in vivo role and significance of the FRAT proteins in WNT signaling remains to be resolved; it is worth noting, however, that FRAT proteins have also recently been shown to be involved in non-canonical WNT signaling in a GSK3beta-independent manner. It is possible that it is through this non-canonical role that FRAT proteins contribute to oncogenesis (van Amerongen et al, 2010; Walf-Vorderwülbecke et al, 2012).
R-HSA-5323545 (Reactome) RYK is an atypical receptor tyrosine kinase-like receptor that is required for craniofacial and skeletal development, axon guidance and neuronal differentiation. RYK has an extracellular WNT-binding WIF domain, a putative tetrabasic cleavage site, an intracellular PDZ domain and a cytosolic RTK-like catalytic site that is rendered inactive by a number of substitutions at conserved positions (reviewed in Fradkin et al, 2010; Keeble et al, 2006a). The WIF domain of RYK has been shown to interact with WNT1, 3, 3A and 5A and signaling through RYK is believed to contribute to both canonical and non-canonical WNT pathways (Lu et al, 2004; Keeble et al, 2006b; Liu et al, 2005; Macheda et al, 2012; Schmitt et al, 2006; reviewed in Keeble et al, 2006a).

Expression of a beta-catenin-dependent reporter gene has been demonstrated after RYK-binding by WNT1 and WNT3A, however the details of downstream signaling remain to be clarified (Lu et al, 2004; Berndt et al, 2011). Signaling through RYK may occur in the context of a RYK-FZD co-receptor and appears to involve the recruitment of DVL (Lu et al, 2004). The E3 ligase Mindbomb (MIB1) was also identified as a RYK-interacting protein that contributes to canonical WNT signaling, possibly by regulating the levels of RYK at the cell surface (Berndt et al, 2011). Finally, RYK has been shown to be cleaved by gamma-secretase in response to WNT3, liberating a intracellular domain (ICD) that translocates to the nucleus and that is required for neuronal differentitation (Lyu et al, 2008). The significance of these findings is not yet fully clear.
R-HSA-5368580 (Reactome) CHD8 is a ATP-dependent chromatin remodeling factor that binds directly to beta-catenin to repress transcription of WNT target genes (Thompson et al, 2008; Sakamoto et al, 2000). ChIP studies show that CHD8 is recruited to the promoters of several beta-catenin-responsive targets, and knockdown of CHD8 results in induction of these target genes in vivo (Thompson et al, 2008). An N-terminal fragment of CHD was independently identified as the rat protein Duplin. Duplin was shown to negatively regulate WNT target gene expression by competing with TCF7L2 for beta-catenin binding (Sakamoto et al, 2000; Kobayashi et al, 2002). A corresponding fragment of CHD8 has not been identified in human cells and its significance is not clear.
R-HSA-5368582 (Reactome) CXXC4 binds to DVL to negatively regulate WNT-dependent gene expression. CXXC4 competes with AXIN for DVL binding, and expression of CXXC4 abrogates the expression of a WNT-dependent reporter gene in L cells (Hino et al, 2001). In Xenopus, the CXXC4 homologue is expressed in neural tissue during and after the neurula stage and is required for anterior neural development (Michiue et al, 2004).
R-HSA-5368586 (Reactome) Binding of DKK1 to LRP6 induces the clathrin-mediated endocytosis of LRP6, preventing the WNT3-dependent phosphorylation of LRP and thereby attenuating WNT signaling (Sakane et al, 2010; Yamamoto et al, 2008). The DKK:LRP:KRM complex traffics to the early endosome in a RAB5-dependent manner. The LRP receptor can subsequently recycle back to the plasma membrane in a RAB11-dependent manner, while DKK may be degraded in the lysosome (Sakane et al, 2010)
R-HSA-5368588 (Reactome) CCDC88C was identified as Dapple in a screen of mouse brain cDNAs for DVL1-interacting proteins (Oshita et al, 2003). CCDC88C binds to the PDZ domain of DVL through the three amino acids Gly-Cys-Val at the C-terminus, and this interaction negatively regulates canonical WNT signaling (Oshita et al, 2003; Ekici et al, 2010). Interaction between DVL and CCDC88C also regulates signaling in the non-canonical WNT pathway, where the interaction is required for aPKC-mediated RAC activation, lamellipodia formation and cell migration (Ishida-Takagisha et al, 2012).
R-HSA-5368596 (Reactome) After stimulation by WNT3A, FZD5 and phosphorylated LRP6 are internalized from lipid rafts in a caveolin- and RAB5-dependent manner (Yamamoto et al, 2006; Yamamoto et al, 2008). Recruitment of CAV1 to the activated receptor complex inhibits the binding of beta-catenin to AXIN in the destruction complex, resulting in the accumulation of cytosolic beta-catenin and the induction of WNT-dependent signaling (Yamamoto et al, 2006; Yamamoto et al, 2008).
R-HSA-5626938 (Reactome) SOX protein family members are the transcription factors that regulate many different development processes and also control homeostasis in adult tissues. SOX proteins can be either transcriptional activators or repressors depending on the cellular context and their associated interacting proteins (Kormish et al. 2010). There are over twenty SOX proteins encoded in mammalian genome of which many of these can physically interact with beta-catenin and TCF (T-cell factor) transcription factors and modulate the Wnt signaling. Evidences suggest that SOX proteins have widespread role in modulating Wnt signaling in development and disease. In most cases SOX proteins repress WNT transcriptional responses, however some SOX proteins appear to enhance WNT-regulated gene expression. The precise mechanism by which SOX proteins regulate beta-catenin/TCF activity are still unclear. Differential recruitment of transcriptional co-activators or co-repressors is one mechanism by which SOX factors can either enhance or repress Wnt-target gene transcription. Another mechanism by which some SOX proteins repress Wnt signaling is by promoting proteosome-mediated beta-catenin degradation (Kormish et al. 2010).
Human SRY binds beta-catenin through a N-terminal domain (Bernard et al. 2008), SOX6 interacts via a centrally located leucine zipper (LZ/Q) element (Iguchi et al. 2007), and mammalian SOX7, SOX9 and SOX17 all bind beta-catenin via their C-terminal regions (Zorn et al., 1999; Takash et al., 2001; Akiyama et al., 2004; Sinner et al., 2007, Kormish et al. 2010). SRY and SOX9 function in part by suppressing canonical Wnt signaling by promoting beta-catenin phosphorylation in the nucleus (Topol et al. 2009). SOX9 and SRY are involved in the regulation of mammalian sex determination and mutation in human SRY and SOX9 results in sex reversal, with female development in XY individuals (Bernard et al. 2008). SOX2 binds beta-catenin and promotes cell proliferation by transcriptionally activating the Wnt target Cyclin D1 gene in breast cancer cells (Chen et al., 2008), whereas SOX6 represses Cyclin D1 transcription in pancreatic cells (Iguchi et al., 2007). SOX7 and SOX17 reduce cyclin-D1 expression and repress proliferation by stimulating beta-catenin degradation (Sinner et al. 2007, Zhang et al. 2008, 2009).
R-HSA-5665608 (Reactome) In vitro protein binding experiments have shown that mammalian SOX4, SOX13 and SOX17 can directly interact with TCF (T-cell factor) (Sinner at al. 2007). SOX4 and SOX17 can interact with either TCF or beta-catenin protein. They have opposite effects on Wnt signalling, SOX4 enhances while SOX17 represses Wnt activity (Sinner et al. 2007). SOX13 is known to repress Wnt signaling by interacting and sequestering TCF1 from the Wnt transcriptionally active complex (Melichar et al. 2007). SOX and TCF proteins interact with overlapping armadillo repeats with in beta-catenin and thus might compete for beta-catenin binding (Kormish et al. 2010).
RBBP5ArrowR-HSA-3364042 (Reactome)
RBBP5R-HSA-3364014 (Reactome)
RNF146ArrowR-HSA-3640874 (Reactome)
RNF146R-HSA-3640844 (Reactome)
RSPO:LGR:ZNRF3,RNF43ArrowR-HSA-4641205 (Reactome)
RSPO:LGR:ZNRF3,RNF43R-HSA-4641246 (Reactome)
RSPO:LGR:ZNRF3,RNF43mim-catalysisR-HSA-4641246 (Reactome)
RSPO:LGR:ub-ZNRF3,RNF43ArrowR-HSA-4641246 (Reactome)
RSPO:LGRArrowR-HSA-4641206 (Reactome)
RSPO:LGRR-HSA-4641205 (Reactome)
RSPOR-HSA-4641206 (Reactome)
RUNX3:TCF7L2,(LEF1,TCF7L1)TBarR-HSA-4411367 (Reactome)
RUVBL1R-HSA-3451153 (Reactome)
RYK-binding WNTsR-HSA-5323545 (Reactome)
RYK:WNTsArrowR-HSA-5323545 (Reactome)
RYKR-HSA-5323545 (Reactome)
RibC-AXIN:TNKS:RNF146ArrowR-HSA-3640844 (Reactome)
RibC-AXIN:TNKS:RNF146ArrowR-HSA-3640872 (Reactome)
RibC-AXIN:TNKS:RNF146R-HSA-3640861 (Reactome)
RibC-AXIN:TNKS:RNF146mim-catalysisR-HSA-3640861 (Reactome)
RibC-AXIN:TNKSArrowR-HSA-3640858 (Reactome)
RibC-AXIN:TNKSR-HSA-3640844 (Reactome)
SMARCA4R-HSA-3322422 (Reactome)
SMURF2ArrowR-HSA-4641256 (Reactome)
SMURF2R-HSA-4641134 (Reactome)
SOST:LRP5/6ArrowR-HSA-3769397 (Reactome)
SOST:LRP5/6TBarR-HSA-1458875 (Reactome)
SOSTR-HSA-3769397 (Reactome)
SOX4,SOX13,SOX17R-HSA-5665608 (Reactome)
SRY,SOX2,SOX3,SOX4,SOX6,SOX7,SOX9,SOX17R-HSA-5626938 (Reactome)
TCF/LEF:CTNNB1:APC:CTBP:BTRCArrowR-HSA-3364042 (Reactome)
TCF/LEF:CTNNB1:APC:CTBP:BTRCR-HSA-3361751 (Reactome)
TCF/LEF:CTNNB1:AXIN2 geneArrowR-HSA-4411351 (Reactome)
TCF/LEF:CTNNB1:AXIN2 geneArrowR-HSA-4411372 (Reactome)
TCF/LEF:CTNNB1:BCL9:PYGO:SET1-like complexArrowR-HSA-3364014 (Reactome)
TCF/LEF:CTNNB1:BCL9:PYGO:SET1-like complexR-HSA-3364042 (Reactome)
TCF/LEF:CTNNB1:BCL9:PYGO:SET1-like complexmim-catalysisR-HSA-3364026 (Reactome)
TCF/LEF:CTNNB1:BCL9:PYGOArrowR-HSA-201712 (Reactome)
TCF/LEF:CTNNB1:BCL9:PYGOR-HSA-3364014 (Reactome)
TCF/LEF:CTNNB1:CBP/p300ArrowR-HSA-3322427 (Reactome)
TCF/LEF:CTNNB1:PAF1-like complexArrowR-HSA-3322424 (Reactome)
TCF/LEF:CTNNB1:RUVBL1:TRRAP:KAT5ArrowR-HSA-3451153 (Reactome)
TCF/LEF:CTNNB1:RUVBL1:TRRAP:KAT5mim-catalysisR-HSA-3451147 (Reactome)
TCF/LEF:CTNNB1:SMARCA4:TERTArrowR-HSA-3322422 (Reactome)
TCF/LEF:CTNNB1:SOX4,SOX13,SOX17ArrowR-HSA-5665608 (Reactome)
TCF/LEF:CTNNB1ArrowR-HSA-3299569 (Reactome)
TCF/LEF:CTNNB1R-HSA-201712 (Reactome)
TCF/LEF:CTNNB1R-HSA-3322422 (Reactome)
TCF/LEF:CTNNB1R-HSA-3322424 (Reactome)
TCF/LEF:CTNNB1R-HSA-3322427 (Reactome)
TCF/LEF:CTNNB1R-HSA-3451153 (Reactome)
TCF/LEF:CTNNB1R-HSA-4411351 (Reactome)
TCF/LEF:CTNNB1R-HSA-5665608 (Reactome)
TCF/LEF:TLE:HDAC1ArrowR-HSA-3361751 (Reactome)
TCF/LEF:TLE:HDAC1R-HSA-3299569 (Reactome)
TCF4 gene:acetyl H4 nucleosomeArrowR-HSA-3451147 (Reactome)
TCF4 gene:nucleosomeR-HSA-3451147 (Reactome)
TCF7L1/TCF7L2/LEF1:CTNNB1:MYC geneArrowR-HSA-4411357 (Reactome)
TCF7L1/TCF7L2/LEF1:CTNNB1:MYC geneArrowR-HSA-4411367 (Reactome)
TCF7L1/TCF7L2/LEF1:CTNNB1R-HSA-4411367 (Reactome)
TERTR-HSA-3322422 (Reactome)
TLE tetramerArrowR-HSA-3299569 (Reactome)
TLE tetramerR-HSA-3322431 (Reactome)
TLE1:HDAC1R-HSA-3361751 (Reactome)
TLE:XIAPArrowR-HSA-3322431 (Reactome)
TLE:XIAPR-HSA-3322429 (Reactome)
TLE:XIAPmim-catalysisR-HSA-3322429 (Reactome)
TNKS1/2:XAV939ArrowR-HSA-5262606 (Reactome)
TNKS1/2ArrowR-HSA-3640874 (Reactome)
TNKS1/2R-HSA-3640862 (Reactome)
TNKS1/2R-HSA-5262606 (Reactome)
TRRAPR-HSA-3451153 (Reactome)
USP34mim-catalysisR-HSA-3640872 (Reactome)
USP8mim-catalysisR-HSA-4641236 (Reactome)
Ub-RibC-AXIN:TNKS:RNF146ArrowR-HSA-3640861 (Reactome)
Ub-RibC-AXIN:TNKS:RNF146R-HSA-3640872 (Reactome)
Ub-RibC-AXIN:TNKS:RNF146R-HSA-3640874 (Reactome)
UbArrowR-HSA-1504193 (Reactome)
UbArrowR-HSA-3640872 (Reactome)
UbArrowR-HSA-3640874 (Reactome)
UbArrowR-HSA-4641236 (Reactome)
UbArrowR-HSA-4641256 (Reactome)
UbArrowR-HSA-4641260 (Reactome)
UbR-HSA-1504190 (Reactome)
UbR-HSA-3322429 (Reactome)
UbR-HSA-3640861 (Reactome)
UbR-HSA-4641129 (Reactome)
UbR-HSA-4641159 (Reactome)
UbR-HSA-4641246 (Reactome)
UbR-HSA-4641253 (Reactome)
WIF1-binding WNTsR-HSA-3769370 (Reactome)
WIF1:WNTArrowR-HSA-3769370 (Reactome)
WIF1:WNTTBarR-HSA-1458875 (Reactome)
WIF1R-HSA-3769370 (Reactome)
WNT3A:FZD5:p-LRP6:GSK3B:AXIN:CAV1ArrowR-HSA-5368596 (Reactome)
WNT3A:FZD5:p-LRP6:GSK3B:AXIN:CAV1R-HSA-5368596 (Reactome)
WNT3A:sFRPArrowR-HSA-3772441 (Reactome)
WNT3A:sFRPTBarR-HSA-1458875 (Reactome)
WNT:FZD:LRP5/6:DVL:AXIN:GSK3BArrowR-HSA-1504186 (Reactome)
WNT:FZD:LRP5/6:DVL:AXIN:GSK3BR-HSA-201677 (Reactome)
WNT:FZD:LRP5/6:DVL:AXIN:GSK3Bmim-catalysisR-HSA-201677 (Reactome)
WNT:FZD:LRP5/6:DVLArrowR-HSA-1504188 (Reactome)
WNT:FZD:LRP5/6:DVLR-HSA-1504186 (Reactome)
WNT:FZD:LRP5/6ArrowR-HSA-1458875 (Reactome)
WNT:FZD:LRP5/6R-HSA-1504188 (Reactome)
WNT:FZD:p10S/T-LRP5/6:DVL:AXIN:GSK3BArrowR-HSA-201685 (Reactome)
WNT:FZD:p10S/T-LRP5/6:DVL:AXIN:GSK3BArrowR-HSA-201691 (Reactome)
WNT:FZD:p5S/T-LRP5/6:DVL:AXIN:GSK3BArrowR-HSA-201677 (Reactome)
WNT:FZD:p5S/T-LRP5/6:DVL:AXIN:GSK3BR-HSA-201691 (Reactome)
XAV939R-HSA-5262606 (Reactome)
XIAPArrowR-HSA-3322434 (Reactome)
XIAPR-HSA-3322431 (Reactome)
XPO1:YWHAZ:p-S20-CBY1:CTNNB1ArrowR-HSA-3769391 (Reactome)
XPO1:YWHAZ:p-S20-CBY1:CTNNB1ArrowR-HSA-3769392 (Reactome)
XPO1:YWHAZ:p-S20-CBY1:CTNNB1R-HSA-3769392 (Reactome)
XPO1R-HSA-3769391 (Reactome)
YWHAZ:p-S20-CBY:CTNNB1ArrowR-HSA-3769393 (Reactome)
YWHAZ:p-S20-CBY:CTNNB1R-HSA-3769391 (Reactome)
YWHAZR-HSA-3769393 (Reactome)
ZNRF3,RNF43R-HSA-4641205 (Reactome)
ZNRF3,RNF43R-HSA-4641249 (Reactome)
canonical FZD receptorsR-HSA-1458875 (Reactome)
canonical WNTsR-HSA-1458875 (Reactome)
p-AKT1/2mim-catalysisR-HSA-3769394 (Reactome)
p-DVLArrowR-HSA-201717 (Reactome)
p-DVLR-HSA-3772435 (Reactome)
p-S33,S37,T41,S45 CTNNB1:p-AXIN:CK1alpha:GSK3B:phospho-ub-APC (20 aa repeat region):PP2A:AMER1 complexR-HSA-3601585 (Reactome)
p-S33,S37,T41,S45 CTNNB1:p-AXIN:CK1alpha:GSK3B:phospho-ub-APC (20 aa repeat region):PP2A:AMER1 complexmim-catalysisR-HSA-3601585 (Reactome)
pS20-CBY1:CTNNB1ArrowR-HSA-3769394 (Reactome)
pS20-CBY1:CTNNB1R-HSA-3769393 (Reactome)
pp-DVLArrowR-HSA-3772435 (Reactome)
pp-DVLR-HSA-1504188 (Reactome)
pp-DVLR-HSA-3772434 (Reactome)
ppDVL:PIP5K1BArrowR-HSA-3772434 (Reactome)
ppDVL:PIP5K1Bmim-catalysisR-HSA-3772436 (Reactome)
sFRPR-HSA-3772441 (Reactome)
ub-AXIN:SMURF2ArrowR-HSA-4641129 (Reactome)
ub-AXIN:SMURF2R-HSA-4641256 (Reactome)
ub-DVL1:HECW1ArrowR-HSA-4641159 (Reactome)
ub-DVL1:HECW1R-HSA-4641260 (Reactome)
ub-DVL:CUL3:KLHL12:RBX1ArrowR-HSA-1504190 (Reactome)
ub-DVL:CUL3:KLHL12:RBX1R-HSA-1504193 (Reactome)
ub-TLE:XIAPArrowR-HSA-3322429 (Reactome)
ub-TLE:XIAPR-HSA-3322434 (Reactome)
ub-TLEArrowR-HSA-3322434 (Reactome)
Personal tools