Uptake and function of anthrax toxins (Homo sapiens)

From WikiPathways

Jump to: navigation, search
6, 11, 12, 15, 20...14, 1811, 143, 2513, 3211, 1429, 316, 14, 164, 9, 10, 17, 24...4, 5, 362, 12, 22, 26, 35...13, 326, 14, 1611, 144, 9, 10, 17, 21...7, 14, 27, 34, 371, 8, 193, 257, 14, 27, 34, 372, 12, 22, 26, 35...4, 5, 36endosome lumencytosolpagA:ANTXR1PA63 PDCD6IPpagA(197-794):ANTXR1ANTXR1-2 MAP2K6-1Ca2+ pagA(197-794) ANTXR1-2 pagA Ca2+ cya:lef:(pagA(197-794):ANTXR2 oligomer)pagA pagA(197-794) EF cya:lef:(pagA(197-794):ANTXR1 oligomer)ANTXR2-4 ANTXR2pagA(197-794):ANTXR1oligomerlefCa2+ Zn2+ cya pagA(197-794) ANTXR2-1 pagA(30-196)MAP2K3-3(27-347)MAP2K6-1(1-14)MAP2K1ANTXR2-1 MAP2K7(?-419)Zn2+ cyacAMPMAP2K7CALM1 cya:lef:(pagA(197-794):ANTXR2 oligomer)PPiMAP2K3-3(1-26)Ca2+ lef pagA(30-196)MAP2K4(1-?)lef MAP2K4PA63 lefFURIN ANTXR1-1 Zn2+ Ca2+ MAP2K1(9-393)pagA(197-794):ANTXR2oligomerpagA(197-794):ANTXR2pagA:Ca2+pagA:ANTXR2ANTXR2-4 ANTXR1-1 LF MAP2K3-3pagA(197-794) Zn2+ ANTXR2-4 FURINlef Zn2+ FURINCa2+ FURIN inhibitorsANTXR1-1 Ca2+ pagA pagA(197-794) Ca2+ ANTXR1-1 H+lef MAP2K2(1-10)MAP2K6-1(15-334)MAP2K2ANTXR1-2 ANTXR2-4 Zn2+ ATPANTXR2-1 MAP2K1(2-8)cya PA63 Ca2+ ANTXR2-4 CALM1:Ca2+pagA(197-794):ANTXR2oligomerMAP2K4(?-399)Ca2+ cya:lef:(pagA(197-794):ANTXR1 oligomer)ANTXR1-2 ANTXR2-1 Ca2+ ANTXR1-2 ANTXR1-2 Ca2+ ANTXR1-1 ANTXR1-2 ANTXR2-1 Ca2+ ANTXR2-4 PA63 ANTXR1ANTXR1-1 MAP2K7(2-?)ANTXR2-4 pagA(197-794) pagA(197-794):ANTXR1oligomerFURIN:FURINinhibitorsANTXR1-1 MAP2K2(11-400)LF cyaANTXR2-1 EF ANTXR2-1 Ca2+ 6, 1611713, 3224102427, 3721, 23112422, 3521241427, 3713, 322424241123, 246, 1623, 242423, 2424113413, 32103013, 3226216, 167713, 3211243423, 2413, 3223, 243413, 32211111246, 161122, 3513, 3234713, 3221710302171013, 32142134342413, 3213, 322130242423, 242423, 24


Description

Bacillus anthracis bacteria target cells in an infected human through the action of three secreted bacterial proteins, lef (also known as LF, lethal factor), cya (also known as EF, edema factor), and pagA (also known as PA, protective antigen) (Turk 2007; Young and Collier 2007). lef is a protease that cleaves and inactivates many MAP2K (MAP kinase kinase, MEK) proteins (Duesbery et al. 1998; Vitale et al. 2000), disrupting MAP kinase signaling pathways. cya is an adenylate cyclase that mediates the constitutive production of cAMP (Leppla 1982), a molecule normally generated transiently in tightly regulated amounts in response to extracellular signals. Both lef and cya depend on pagA to enter their target cells, a strategy characteristic of bacterial binary toxins (Barth et al. 2004). pagA binds to the target cell receptors, is cleaved by furin or other cellular proteases, and thereupon forms an oligomer that exposes binding sites for lef and cya molecules (Young and Collier 2007). This complex is taken into the target cell by clathrin mediated endocytosis and delivered to endosomes. The low pH of the endosome causes the bacterial toxin complex to rearrange: the pagA oligomer forms a pore in the endosome membrane through which lef and cya molecules enter the target cell cytosol. View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 5210891
Reactome-version 
Reactome version: 75
Reactome Author 
Reactome Author: D'Eustachio, Peter

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Burghardt I, Tritschler F, Opitz CA, Frank B, Weller M, Wick W.; ''Pirfenidone inhibits TGF-beta expression in malignant glioma cells.''; PubMed Europe PMC Scholia
  2. Wigelsworth DJ, Krantz BA, Christensen KA, Lacy DB, Juris SJ, Collier RJ.; ''Binding stoichiometry and kinetics of the interaction of a human anthrax toxin receptor, CMG2, with protective antigen.''; PubMed Europe PMC Scholia
  3. Abrami L, Lindsay M, Parton RG, Leppla SH, van der Goot FG.; ''Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway.''; PubMed Europe PMC Scholia
  4. van der Goot G, Young JA.; ''Receptors of anthrax toxin and cell entry.''; PubMed Europe PMC Scholia
  5. Abrami L, Liu S, Cosson P, Leppla SH, van der Goot FG.; ''Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process.''; PubMed Europe PMC Scholia
  6. Duesbery NS, Duesbery NS, Webb CP, Leppla SH, Gordon VM, Klimpel KR, Copeland TD, Ahn NG, Oskarsson MK, Fukasawa K, Paull KD, Vande Woude GF.; ''Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor.''; PubMed Europe PMC Scholia
  7. Bragg TS, Robertson DL.; ''Nucleotide sequence and analysis of the lethal factor gene (lef) from Bacillus anthracis.''; PubMed Europe PMC Scholia
  8. Hardes K, Becker GL, Lu Y, Dahms SO, Köhler S, Beyer W, Sandvig K, Yamamoto H, Lindberg I, Walz L, von Messling V, Than ME, Garten W, Steinmetzer T.; ''Novel Furin Inhibitors with Potent Anti-infectious Activity.''; PubMed Europe PMC Scholia
  9. Wei W, Lu Q, Chaudry GJ, Leppla SH, Cohen SN.; ''The LDL receptor-related protein LRP6 mediates internalization and lethality of anthrax toxin.''; PubMed Europe PMC Scholia
  10. Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddington RC.; ''Crystal structure of the anthrax toxin protective antigen.''; PubMed Europe PMC Scholia
  11. Vitale G, Bernardi L, Napolitani G, Mock M, Montecucco C.; ''Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor.''; PubMed Europe PMC Scholia
  12. Young JA, Collier RJ.; ''Anthrax toxin: receptor binding, internalization, pore formation, and translocation.''; PubMed Europe PMC Scholia
  13. Klimpel KR, Molloy SS, Thomas G, Leppla SH.; ''Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin.''; PubMed Europe PMC Scholia
  14. Klimpel KR, Arora N, Leppla SH.; ''Anthrax toxin lethal factor contains a zinc metalloprotease consensus sequence which is required for lethal toxin activity.''; PubMed Europe PMC Scholia
  15. Turk BE.; ''Manipulation of host signalling pathways by anthrax toxins.''; PubMed Europe PMC Scholia
  16. Vitale G, Pellizzari R, Recchi C, Napolitani G, Mock M, Montecucco C.; ''Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages.''; PubMed Europe PMC Scholia
  17. Abrami L, Kunz B, Deuquet J, Bafico A, Davidson G, van der Goot FG.; ''Functional interactions between anthrax toxin receptors and the WNT signalling protein LRP6.''; PubMed Europe PMC Scholia
  18. Pellizzari R, Guidi-Rontani C, Vitale G, Mock M, Montecucco C.; ''Anthrax lethal factor cleaves MKK3 in macrophages and inhibits the LPS/IFNgamma-induced release of NO and TNFalpha.''; PubMed Europe PMC Scholia
  19. Bergeron E, Vincent MJ, Wickham L, Hamelin J, Basak A, Nichol ST, Chrétien M, Seidah NG.; ''Implication of proprotein convertases in the processing and spread of severe acute respiratory syndrome coronavirus.''; PubMed Europe PMC Scholia
  20. Barth H, Aktories K, Popoff MR, Stiles BG.; ''Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins.''; PubMed Europe PMC Scholia
  21. Liu S, Leppla SH.; ''Cell surface tumor endothelium marker 8 cytoplasmic tail-independent anthrax toxin binding, proteolytic processing, oligomer formation, and internalization.''; PubMed Europe PMC Scholia
  22. Kintzer AF, Thoren KL, Sterling HJ, Dong KC, Feld GK, Tang II, Zhang TT, Williams ER, Berger JM, Krantz BA.; ''The protective antigen component of anthrax toxin forms functional octameric complexes.''; PubMed Europe PMC Scholia
  23. Bradley KA, Mogridge J, Mourez M, Collier RJ, Young JA.; ''Identification of the cellular receptor for anthrax toxin.''; PubMed Europe PMC Scholia
  24. Scobie HM, Rainey GJ, Bradley KA, Young JA.; ''Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor.''; PubMed Europe PMC Scholia
  25. Milne JC, Furlong D, Hanna PC, Wall JS, Collier RJ.; ''Anthrax protective antigen forms oligomers during intoxication of mammalian cells.''; PubMed Europe PMC Scholia
  26. Santelli E, Bankston LA, Leppla SH, Liddington RC.; ''Crystal structure of a complex between anthrax toxin and its host cell receptor.''; PubMed Europe PMC Scholia
  27. Pimental RA, Christensen KA, Krantz BA, Collier RJ.; ''Anthrax toxin complexes: heptameric protective antigen can bind lethal factor and edema factor simultaneously.''; PubMed Europe PMC Scholia
  28. Leppla SH.; ''Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells.''; PubMed Europe PMC Scholia
  29. Labruyère E, Mock M, Ladant D, Michelson S, Gilles AM, Laoide B, Bârzu O.; ''Characterization of ATP and calmodulin-binding properties of a truncated form of Bacillus anthracis adenylate cyclase.''; PubMed Europe PMC Scholia
  30. Leduc R, Molloy SS, Thorne BA, Thomas G.; ''Activation of human furin precursor processing endoprotease occurs by an intramolecular autoproteolytic cleavage.''; PubMed Europe PMC Scholia
  31. Leppla SH.; ''Bacillus anthracis calmodulin-dependent adenylate cyclase: chemical and enzymatic properties and interactions with eucaryotic cells.''; PubMed Europe PMC Scholia
  32. Molloy SS, Bresnahan PA, Leppla SH, Klimpel KR, Thomas G.; ''Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen.''; PubMed Europe PMC Scholia
  33. Liu S, Crown D, Miller-Randolph S, Moayeri M, Wang H, Hu H, Morley T, Leppla SH.; ''Capillary morphogenesis protein-2 is the major receptor mediating lethality of anthrax toxin in vivo.''; PubMed Europe PMC Scholia
  34. Robertson DL, Tippetts MT, Leppla SH.; ''Nucleotide sequence of the Bacillus anthracis edema factor gene (cya): a calmodulin-dependent adenylate cyclase.''; PubMed Europe PMC Scholia
  35. Kintzer AF, Sterling HJ, Tang II, Abdul-Gader A, Miles AJ, Wallace BA, Williams ER, Krantz BA.; ''Role of the protective antigen octamer in the molecular mechanism of anthrax lethal toxin stabilization in plasma.''; PubMed Europe PMC Scholia
  36. Lu Q, Wei W, Kowalski PE, Chang AC, Cohen SN.; ''EST-based genome-wide gene inactivation identifies ARAP3 as a host protein affecting cellular susceptibility to anthrax toxin.''; PubMed Europe PMC Scholia
  37. Elliott JL, Mogridge J, Collier RJ.; ''A quantitative study of the interactions of Bacillus anthracis edema factor and lethal factor with activated protective antigen.''; PubMed Europe PMC Scholia
  38. Lacy DB, Wigelsworth DJ, Melnyk RA, Harrison SC, Collier RJ.; ''Structure of heptameric protective antigen bound to an anthrax toxin receptor: a role for receptor in pH-dependent pore formation.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114793view16:29, 25 January 2021ReactomeTeamReactome version 75
113237view11:30, 2 November 2020ReactomeTeamReactome version 74
112457view15:40, 9 October 2020ReactomeTeamReactome version 73
101364view11:25, 1 November 2018ReactomeTeamreactome version 66
100902view21:00, 31 October 2018ReactomeTeamreactome version 65
100443view19:34, 31 October 2018ReactomeTeamreactome version 64
99992view16:18, 31 October 2018ReactomeTeamreactome version 63
99546view14:53, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99180view12:42, 31 October 2018ReactomeTeamreactome version 62
93943view13:46, 16 August 2017ReactomeTeamreactome version 61
93532view11:26, 9 August 2017ReactomeTeamreactome version 61
87191view08:29, 19 July 2016EgonwOntology Term : 'disease pathway' added !
86632view09:22, 11 July 2016ReactomeTeamreactome version 56
83389view11:04, 18 November 2015ReactomeTeamVersion54
81575view13:06, 21 August 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
ANTXR1-1 ProteinQ9H6X2-1 (Uniprot-TrEMBL)
ANTXR1-2 ProteinQ9H6X2-2 (Uniprot-TrEMBL)
ANTXR1ComplexR-HSA-5210019 (Reactome)
ANTXR2-1 ProteinP58335-1 (Uniprot-TrEMBL)
ANTXR2-4 ProteinP58335-4 (Uniprot-TrEMBL)
ANTXR2ComplexR-HSA-5209996 (Reactome)
ATPMetaboliteCHEBI:30616 (ChEBI)
CALM1 ProteinP0DP23 (Uniprot-TrEMBL)
CALM1:Ca2+ComplexR-HSA-3229180 (Reactome)
Ca2+ MetaboliteCHEBI:29108 (ChEBI)
EF ProteinP40136 (Uniprot-TrEMBL)
FURIN ProteinP09958 (Uniprot-TrEMBL)
FURIN inhibitorsComplexR-ALL-9683560 (Reactome)
FURIN:FURIN inhibitorsComplexR-HSA-9683552 (Reactome)
FURINProteinP09958 (Uniprot-TrEMBL)
H+MetaboliteCHEBI:15378 (ChEBI)
LF ProteinP15917 (Uniprot-TrEMBL)
MAP2K1(2-8)ProteinQ02750 (Uniprot-TrEMBL)
MAP2K1(9-393)ProteinQ02750 (Uniprot-TrEMBL)
MAP2K1ProteinQ02750 (Uniprot-TrEMBL)
MAP2K2(1-10)ProteinP36507 (Uniprot-TrEMBL)
MAP2K2(11-400)ProteinP36507 (Uniprot-TrEMBL)
MAP2K2ProteinP36507 (Uniprot-TrEMBL)
MAP2K3-3(1-26)ProteinP46734-3 (Uniprot-TrEMBL)
MAP2K3-3(27-347)ProteinP46734-3 (Uniprot-TrEMBL)
MAP2K3-3ProteinP46734-3 (Uniprot-TrEMBL)
MAP2K4(1-?)ProteinP45985 (Uniprot-TrEMBL)
MAP2K4(?-399)ProteinP45985 (Uniprot-TrEMBL)
MAP2K4ProteinP45985 (Uniprot-TrEMBL)
MAP2K6-1(1-14)ProteinP52564-1 (Uniprot-TrEMBL)
MAP2K6-1(15-334)ProteinP52564-1 (Uniprot-TrEMBL)
MAP2K6-1ProteinP52564-1 (Uniprot-TrEMBL)
MAP2K7(2-?)ProteinO14733 (Uniprot-TrEMBL)
MAP2K7(?-419)ProteinO14733 (Uniprot-TrEMBL)
MAP2K7ProteinO14733 (Uniprot-TrEMBL)
PA63 ProteinP13423 (Uniprot-TrEMBL)
PDCD6IPProteinQ8WUM4 (Uniprot-TrEMBL)
PPiMetaboliteCHEBI:29888 (ChEBI)
Zn2+ MetaboliteCHEBI:29105 (ChEBI)
cAMPMetaboliteCHEBI:17489 (ChEBI)
capric acid
cya ProteinP40136 (Uniprot-TrEMBL)
cya:lef:(pagA(197-794):ANTXR1 oligomer)ComplexR-HSA-5210915 (Reactome)
cya:lef:(pagA(197-794):ANTXR1 oligomer)ComplexR-HSA-5210940 (Reactome)
cya:lef:(pagA(197-794):ANTXR2 oligomer)ComplexR-HSA-5210937 (Reactome)
cya:lef:(pagA(197-794):ANTXR2 oligomer)ComplexR-HSA-5210954 (Reactome)
cyaProteinP40136 (Uniprot-TrEMBL)
lef ProteinP15917 (Uniprot-TrEMBL)
lefComplexR-BAN-5211343 (Reactome)
lefComplexR-BAN-5211351 (Reactome)
pagA ProteinP13423 (Uniprot-TrEMBL)
pagA(197-794) ProteinP13423 (Uniprot-TrEMBL)
pagA(197-794):ANTXR1 oligomerComplexR-HSA-5210928 (Reactome)
pagA(197-794):ANTXR1 oligomerComplexR-HSA-5210946 (Reactome)
pagA(197-794):ANTXR1ComplexR-HSA-5210006 (Reactome)
pagA(197-794):ANTXR2 oligomerComplexR-HSA-5210895 (Reactome)
pagA(197-794):ANTXR2 oligomerComplexR-HSA-5210953 (Reactome)
pagA(197-794):ANTXR2ComplexR-HSA-5210020 (Reactome)
pagA(30-196)ProteinP13423 (Uniprot-TrEMBL)
pagA:ANTXR1ComplexR-HSA-5210008 (Reactome)
pagA:ANTXR2ComplexR-HSA-5210007 (Reactome)
pagA:Ca2+ComplexR-BAN-5205716 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ANTXR1R-HSA-5210921 (Reactome)
ANTXR2R-HSA-5210918 (Reactome)
ATPR-HSA-5211224 (Reactome)
CALM1:Ca2+ArrowR-HSA-5211224 (Reactome)
FURIN inhibitorsR-HSA-9683546 (Reactome)
FURIN:FURIN inhibitorsArrowR-HSA-9683546 (Reactome)
FURIN:FURIN inhibitorsTBarR-HSA-5210912 (Reactome)
FURIN:FURIN inhibitorsTBarR-HSA-5210935 (Reactome)
FURINR-HSA-9683546 (Reactome)
FURINmim-catalysisR-HSA-5210912 (Reactome)
FURINmim-catalysisR-HSA-5210935 (Reactome)
H+ArrowR-HSA-5210943 (Reactome)
H+ArrowR-HSA-5210947 (Reactome)
MAP2K1(2-8)ArrowR-HSA-5211340 (Reactome)
MAP2K1(9-393)ArrowR-HSA-5211340 (Reactome)
MAP2K1R-HSA-5211340 (Reactome)
MAP2K2(1-10)ArrowR-HSA-5211356 (Reactome)
MAP2K2(11-400)ArrowR-HSA-5211356 (Reactome)
MAP2K2R-HSA-5211356 (Reactome)
MAP2K3-3(1-26)ArrowR-HSA-5211400 (Reactome)
MAP2K3-3(27-347)ArrowR-HSA-5211400 (Reactome)
MAP2K3-3R-HSA-5211400 (Reactome)
MAP2K4(1-?)ArrowR-HSA-5211391 (Reactome)
MAP2K4(?-399)ArrowR-HSA-5211391 (Reactome)
MAP2K4R-HSA-5211391 (Reactome)
MAP2K6-1(1-14)ArrowR-HSA-5211405 (Reactome)
MAP2K6-1(15-334)ArrowR-HSA-5211405 (Reactome)
MAP2K6-1R-HSA-5211405 (Reactome)
MAP2K7(2-?)ArrowR-HSA-5211387 (Reactome)
MAP2K7(?-419)ArrowR-HSA-5211387 (Reactome)
MAP2K7R-HSA-5211387 (Reactome)
PDCD6IPArrowR-HSA-5210943 (Reactome)
PDCD6IPArrowR-HSA-5210947 (Reactome)
PPiArrowR-HSA-5211224 (Reactome)
R-HSA-5210892 (Reactome) The enzyme components of anthrax toxins cya (also known as EF, Edema Factor - Robertson et al. 1988) and lef (also known as LF, Lethal Factor - Bragg & Robertson 1989; Klimpel et al. 1994) bind to pagA(197-794):ANTXR2 (protective antigen, large fragment: Anthrax receptor 2) oligomers on the target cell surface. Binding of the two toxins to an oligomer is competitive and as many as four toxin molecules can bind to one oligomer (Elliott et al. 2000; Pimental et al. 2004).
R-HSA-5210909 (Reactome) ANTXR1 (Anthrax Receptor 1)-bound pagA(197-794) (protective antigen, large fragment) forms oligomers in the target cell plasma membrane. Initial studies indicated that these were heptamers (Lacy et al. 2004; Santelli et al. 2004; Wigelsworth et al. 2004; Young and Collier 2007). More recent work has established that octamers also form and suggests that the octaneric structure is more stable under physiological conditions (Kintzer et al. 2009, 2010). Formation of the latter structure is thus annotated here.
R-HSA-5210912 (Reactome) Furin or a related protease at the cell surface cleaves ANTXR2-bound pagA (Anthrax Protective Antigen, full-length). The larger cleavage product, pagA(197-794), remains bound to the receptor while a smaller product, pagA(30-196), is released into the extracellular space (Klimpel et al, 1992; Molloy et al. 1992).
R-HSA-5210918 (Reactome) Extracellular pagA (PA83, full length Protective Antigen - Petosa et al. 1997) produced by Bacillus anthracis binds to either of two isoforms of ANTXR2 (Anthrax Toxin Receptor 2, also known as CMG2 - Scobie et al. 2003) in the plasma membrane of a target human cell. The physiological ligand for ANTXR2 is not known, but this receptor has been shown to be the primary receptor involved in anthrax toxin pathogenesis (Liu et al. 2009). While some studies suggest that ANTXR2 is associated with palmitoylated LRP6 (low density lipoprotein receptor related protein 6 - Abrami et al. 2008) in the plasma membrane and that the latter protein can function as a co-receptor (Wei et al. 2006), the role of LRP6 in PA83 uptake remains uncertain (reviewed by van der Goot & Young 2009) and no function for LRP6 is annotated here.
R-HSA-5210921 (Reactome) Extracellular pagA (also known as PA83 - full length Protective Antigen - Petosa et al. 1997) produced by Bacillus anthracis binds to either of two isoforms of ANTXR1 (Anthrax Toxin Receptor 1, also known as TEM8 - Bradley et al. 2001; Liu and Leppla 2003) in the plasma membrane of a target human cell. The physiological ligand for ANTXR1 is not known nor are the physiological roles of the two ANTRX1 isoforms. Although ANTXR1 can act as a relatively low affinity pagA receptor in tissue culture model systems, it does not play a primary role in anthrax toxin induced effects in mouse models (Liu et al. 2009). While some studies suggest that ANTXR1 is associated with palmitoylated LRP6 (low density lipoprotein receptor related protein 6 - Abrami et al. 2008) in the plasma membrane and that the latter molecule can function as a co-receptor (Wei et al. 2006), the role of LRP6 in PA83 uptake remains uncertain (reviewed by van der Goot & Young 2009) and no function for LRP6 is annotated here.
R-HSA-5210923 (Reactome) The enzyme components of anthrax toxins cya (also known as EF, Edema Factor - Robertson et al. 1988) and lef (also known as LF, Lethal Factor - Bragg & Robertson 1989; Klimpel et al. 1994) bind to pagA(197-794):ANTXR1 (protective antigen, large fragment: Anthrax receptor 1) oligomers on the target cell surface. Binding of the two toxins to an oligomer is competitive and as many as four toxin molecules can bind to one oligomer (Elliott et al. 2000; Pimental et al. 2004).
R-HSA-5210932 (Reactome) ANTXR2 (Anthrax Receptor 2)-bound pagA(197-794) (protective antigen, large fragment) forms oligomers in the target cell plasma membrane. Initial studies indicated that these were heptamers (Lacy et al. 2004; Santelli et al. 2004; Wigelsworth et al. 2004; Young and Collier 2007). More recent work has established that octamers also form and suggests that the octaneric structure is more stable under physiological conditions (Kintzer et al. 2009, 2010). Formation of the latter structure is thus annotated here.
R-HSA-5210935 (Reactome) Furin or a related protease at the cell surface cleaves ANTXR1-bound pagA (Anthrax Protective Antigen, full-length). The larger cleavage product, pagA(197-794), remains bound to the receptor while a smaller product, pagA(30-196), is released into the extracellular space (Klimpel et al, 1992; Molloy et al. 1992).
R-HSA-5210943 (Reactome) Through the action of vacuolar ATPase the pH of the target cell early endosome is lowered. In this environment, paga (PA63, Anthrax protective antigen, large fragment) dissociates from its receptor and forms an oligomeric channel in the endosome membrane through which the anthrax cya (EF, edema factor) and lef (LF, lethal factor) pass (Milne et al. 1994). Entry of cya and lef into the target cell cytosol is thought to be mediated by back fusion of intraluminal vesicles with the late endosomal membrane and to be positively regulated by PDCD6IP / ALIX protein (Abrami et al. 2004).
R-HSA-5210944 (Reactome) cya (Anthrax EF, edema factor) and lef (LF, lethal factor) toxins bound to pagA(197-794):ANTXR1 (protective antigen, large fragment:Anthrax receptor 1) oligomer on the plasma membrane of the target cell, are localized into clathrin coated vesicles and transported to endosomes. Depletion of target cell ARAP3 (ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 3) partly blocks endocytosis (Lu et al. 2004), but this effect may be indirect and has not been characterized at a molecular level (van der Goot & Young 2009).
R-HSA-5210947 (Reactome) Through the action of vacuolar ATPase the pH of the target cell early endosome is lowered. In this environment, pagA (197-794) (PA63, Anthrax protective antigen, large fragment) dissociates from its receptor and forms an oligomeric channel in the endosome membrane through which the anthrax cya (EF, edema factor) and lef (LF, lethal factor) pass (Milne et al. 1994). Entry of cya and lef into the target cell cytosol is thought to be mediated by back fusion of intraluminal vesicles with the late endosomal membrane and to be positively regulated by PDCD6IP / ALIX protein (Abrami et al. 2004).
R-HSA-5210959 (Reactome) cya (Anthrax EF, edema factor) and lef (LF, lethal factor) toxins bound to pagA(197-794):ANTXR2 (protective antigen, large fragment:Anthrax receptor 1) oligomer on the plasma membrane of the target cell, are localized into clathrin coated vesicles and transported to endosomes. Depletion of target cell ARAP3 (ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 3) partly blocks endocytosis (Lu et al. 2004), but this effect may be indirect and has not been characterized at a molecular level (van der Goot & Young 2009).
R-HSA-5211224 (Reactome) cya (EF, edema factor), transported to the cytosol of the target cell, catalyzes the synthesis of cAMP from ATP, in a reaction that requires target cell calmodulin (Leppla 1984; Labruyere et al. 1990).
R-HSA-5211340 (Reactome) lef (Anthrax LF, lethal factor), a zinc metalloprotease (Klimpel et al, 1994) in the target cell cytosol, cleaves MAP2K1 (MEK1, mitogen activated protein kinase kinase 1) at the N-terminus. While the kinase domain of MAP2K1 is unaffected, an aminoterminal docking domain is disrupted by the cleavage and the protein fails to interact normally with substrates (Duesbery et al. 1998; Vitale et al. 1998).
R-HSA-5211356 (Reactome) lef (Anthrax LF, lethal factor) a zinc metalloprotease (Klimpel et al, 1994) in the target cell cytosol, cleaves MAP2K2 (MEK2, mitogen activated protein kinase kinase 2). While the kinase domain of MAP2K2 is unaffected, an aminoterminal docking domain is disrupted by the cleavage (Duesbery et al. 1998; Vitale et al. 1998).
R-HSA-5211387 (Reactome) lef (Anthrax LF, lethal factor) a zinc metalloprotease (Klimpel et al, 1994) in the target cell cytosol, cleaves MAP2K7 (MEK7, mitogen activated protein kinase kinase 7) (Vitale et al. 2000).
R-HSA-5211391 (Reactome) lef (Anthrax LF, lethal factor) a zinc metalloprotease (Klimpel et al, 1994) in the target cell cytosol, cleaves MAP2K4 (MEK4, mitogen activated protein kinase kinase 4) (Vitale et al. 2000).
R-HSA-5211400 (Reactome) lef (Anthrax LF, lethal factor) a zinc metalloprotease (Klimpel et al, 1994) in the target cell cytosol, cleaves MAP2K3 (MEK3, mitogen activated protein kinase kinase 3), isoform 3 (Pellizzari et al. 1999).
R-HSA-5211405 (Reactome) lef (Anthrax LF, lethal factor) a zinc metalloprotease (Klimpel et al, 1994) in the target cell cytosol, cleaves MAP2K6 (MEK6, mitogen activated protein kinase kinase 6), isoform 1 (Vitale et al. 2000).
R-HSA-9683546 (Reactome) Furin and related proprotein convertases (PCs) cleave the multibasic motifs R-X-R/K/X-R in precursor proteins, transforming latent proproteins into biologically active proteins and peptides. Furin is present both in the intracellular secretory pathway and at the cell surface. Intracellular furin processes its multiple normal cellular targets in the Golgi and secretory vesicle compartments. Cell surface furin-mediated cleavage of coat proteins of viral pathogens including influenza A-H5N1 (bird flu), flaviviruses, and Marburg and Ebola viruses and of anthrax and botulinum toxins, enables entry into host cells to cause disease onset (Braun & Sauter 2019). Cell surface furin inhibitors capric acid, pirfenidone (Burghardt et al. 2007) and MI-1148 (Hardes et al. 2015) inhibit furin activity thereby exhibiting a protective effect against some toxins and inhibiting the spread of several pathogenic viruses (Hardes et al. 2015). Inhibitors of PCs represent a potential therapeutic anti-SARS activity (Bergeron et al. 2005, Izaguirre 2019).
cAMPArrowR-HSA-5211224 (Reactome)
cya:lef:(pagA(197-794):ANTXR1 oligomer)ArrowR-HSA-5210923 (Reactome)
cya:lef:(pagA(197-794):ANTXR1 oligomer)ArrowR-HSA-5210944 (Reactome)
cya:lef:(pagA(197-794):ANTXR1 oligomer)R-HSA-5210944 (Reactome)
cya:lef:(pagA(197-794):ANTXR1 oligomer)R-HSA-5210947 (Reactome)
cya:lef:(pagA(197-794):ANTXR1 oligomer)mim-catalysisR-HSA-5210947 (Reactome)
cya:lef:(pagA(197-794):ANTXR2 oligomer)ArrowR-HSA-5210892 (Reactome)
cya:lef:(pagA(197-794):ANTXR2 oligomer)ArrowR-HSA-5210959 (Reactome)
cya:lef:(pagA(197-794):ANTXR2 oligomer)R-HSA-5210943 (Reactome)
cya:lef:(pagA(197-794):ANTXR2 oligomer)R-HSA-5210959 (Reactome)
cya:lef:(pagA(197-794):ANTXR2 oligomer)mim-catalysisR-HSA-5210943 (Reactome)
cyaArrowR-HSA-5210943 (Reactome)
cyaArrowR-HSA-5210947 (Reactome)
cyaR-HSA-5210892 (Reactome)
cyaR-HSA-5210923 (Reactome)
cyamim-catalysisR-HSA-5211224 (Reactome)
lefArrowR-HSA-5210943 (Reactome)
lefArrowR-HSA-5210947 (Reactome)
lefR-HSA-5210892 (Reactome)
lefR-HSA-5210923 (Reactome)
lefmim-catalysisR-HSA-5211340 (Reactome)
lefmim-catalysisR-HSA-5211356 (Reactome)
lefmim-catalysisR-HSA-5211387 (Reactome)
lefmim-catalysisR-HSA-5211391 (Reactome)
lefmim-catalysisR-HSA-5211400 (Reactome)
lefmim-catalysisR-HSA-5211405 (Reactome)
pagA(197-794):ANTXR1 oligomerArrowR-HSA-5210909 (Reactome)
pagA(197-794):ANTXR1 oligomerArrowR-HSA-5210947 (Reactome)
pagA(197-794):ANTXR1 oligomerR-HSA-5210923 (Reactome)
pagA(197-794):ANTXR1ArrowR-HSA-5210935 (Reactome)
pagA(197-794):ANTXR1R-HSA-5210909 (Reactome)
pagA(197-794):ANTXR2 oligomerArrowR-HSA-5210932 (Reactome)
pagA(197-794):ANTXR2 oligomerArrowR-HSA-5210943 (Reactome)
pagA(197-794):ANTXR2 oligomerR-HSA-5210892 (Reactome)
pagA(197-794):ANTXR2ArrowR-HSA-5210912 (Reactome)
pagA(197-794):ANTXR2R-HSA-5210932 (Reactome)
pagA(30-196)ArrowR-HSA-5210912 (Reactome)
pagA(30-196)ArrowR-HSA-5210935 (Reactome)
pagA:ANTXR1ArrowR-HSA-5210921 (Reactome)
pagA:ANTXR1R-HSA-5210935 (Reactome)
pagA:ANTXR2ArrowR-HSA-5210918 (Reactome)
pagA:ANTXR2R-HSA-5210912 (Reactome)
pagA:Ca2+R-HSA-5210918 (Reactome)
pagA:Ca2+R-HSA-5210921 (Reactome)
Personal tools