DNA Double Strand Break Response (Homo sapiens)

From WikiPathways

Jump to: navigation, search
10159, 6118, 50, 57, 113, 11630, 92, 103, 107, 115135, 886067, 11695, 1005912, 20, 50, 818, 25, 27, 52, 12028, 48, 75, 9529, 31, 92, 103, 112...11, 51, 54, 76, 91...9, 104, 11611224, 74, 10212262, 71, 7647, 5559, 67, 87, 111, 12559, 67, 11655639, 65, 895578, 82, 1084, 34, 71, 11052, 11721, 12144, 98, 112322745, 4746, 76, 993, 26, 43, 69, 85...4717, 58, 73, 11445, 72, 80, 90, 10459, 6618, 67, 87, 111, 113...32254, 63, 93, 1204744, 11258nucleoplasmcytosolX-ray HIST3H2BB p-S140-H2AFX UBE2N DNA double-strand break ends Ub-6-UBA52(1-76) HIST3H3 HIST1H2BB Zn2+ Ub-614-UBC(609-684) HIST1H2BB RAD50 HIST1H4 KAT5 HIST1H2BA HIST1H2BB p-S1981,Ac-K3016-ATM HIST2H2BE UBE2V2 p-S343-NBN KAT5 HIST1H2BA HIST1H2BM HIST1H2BO HIST3H3 p-S25,S1778-TP53BP1 UBE2N DNA double-strand break ends BARD1 p-S102-WHSC1 HIST1H2BK HIST1H2BN HIST2H2BE HIST1H2BD DNA double-strand break ends HIST3H2BB p-T4827,SUMO1-HERC2 BARD1 DNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:p-T4827-HERC2:PIAS4HERC2-SUMO1 UBB(77-152) H2BFS HIST1H2BD CHEK2 DNADNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:p-4S,2T-BRCA1-A complexATPHIST1H2BD K63PolyUb-K14,K16,p-S140-H2AFX KDM4B HIST1H2BC HIST1H2BB p-S102-WHSC1 p-S343-NBN EYA3 HIST1H2BN HIST2H2BE TP53 Ub-6-UBC(1-76) WICHMRE11A DNA double-strand break ends HIST1H4 Zn2+ HIST1H2BN H2OHIST3H2BB HIST1H2BD UBE2V2 Ub-386-UBC(381-456) p-S1981,Ac-K3016-ATMH2BFS ADPUb-462-UBC(457-532) HIST1H2BH HIST3H3 MRE11A Ac-CoAHIST1H2BD HERC2-SUMO1 p-S343-NBN dsDNAHIST2H2BE HIST1H2BB KAT5 K48PolyUb-KDM4B DNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:PIAS4p-S102-WHSC1 HIST1H2BO H2BFS HIST1H2BH RNF8:Zn2+p-5T-MDC1 DSB inducing agentsSUMO1-C93-UBE2I p-S1981,Ac-K3016-ATM p-S,3T-CHEK2RAD50:MRE11ADNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-Nucleosome:p-5T-MDC1:p-S102-WHSC1H2BFS HIST1H2BA RAD50 p-EYA4 HIST1H2BB HIST3H2BB DNADSB:p-MRN:p-S1981,Ac-K3016-ATM:KAT5H2AFX-Nucleosomep-5T-MDC1 RNF168 p-S1981,Ac-K3016-ATM p-S1981,Ac-K3016-ATM KDM4A HIST1H2BL HIST1H2BJ HIST1H2BJ HIST1H2BC DNADNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:p-5S,2T-BRCA1-A complexUb-82-UBC(77-152) MDC1 HIST1H2BM HIST1H2BO HIST1H2BD ATPK63PolyUb-K14,K16,p-S140-H2AFX HIST1H2BB KAT5 DNA double-strand break ends RAD50 HIST1H2BK DNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4HIST1H2BC HIST1H2BB HIST1H2BC HIST3H3 p-T4827,SUMO1-HERC2 p-S406-FAM175A HIST1H2BD HIST1H2BH UBA52(1-76) UBE2V2 p-5T-MDC1 HIST1H2BH DNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-Nucleosome:p-5T-MDC1HIST1H2BA p-S1981,Ac-K3016-ATM ADPRAD50DNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1MRE11A HIST1H2BJ p-5T-MDC1 HIST1H2BJ MRE11A HIST1H2BC p-S102-WHSC1 RAD50 HIST1H2BH p-5T-MDC1 p-S1981,Ac-K3016-ATM RNF8 Zn2+ H2BFS H2BFS HIST1H2BJ HIST3H2BB p-S1981,Ac-K3016-ATM UBC(1-76) HIST1H2BJ KAT5 p-S15-TP53 TetramerCoA-SHHIST3H2BB HIST1H2BL HIST1H2BJ UBE2I-G97-SUMO1 KAT5 H2BFS UIMC1 HIST1H2BK PIAS4 p-S25,S1778-TP53BP1 p-S1981,Ac-K3016-ATM EYA2 PIAS4 TP53BP1HIST1H2BH HIST1H2BM K6PolyUb,p-T714,T734-BARD1 HIST1H2BC HIST1H2BD HIST1H2BC HIST1H2BL KAT5 HIST1H2BO p-S102-WHSC1 HIST1H2BK HIST1H2BL UBB(153-228) MRE11A HIST1H2BD KAT5 HIST1H2BK p-S102-WHSC1 HERC2-SUMO1 HIST2H2BE PIAS4 HIST1H2BH RAD50 UBC(457-532) MRE11A HERC2-SUMO1 HIST1H2BD Me2K21-HIST1H4 RNF8 HIST1H2BJ ATPHIST1H2BA HIST1H2BM ATPDNA double-strand break ends WHSC1 HIST1H2BO ATPKDM4A K63PolyUb-K14,K16,p-S140-H2AFX p-S343-NBN HIST1H2BJ H2BFS DNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1p-5T-MDC1 HIST1H2BN HIST1H2BA p-S15-TP53 KAT5 KAT5 ATPHIST3H2BB HIST1H2BL K6PolyUb,p-S1387,S1423,S1524,S1547-BRCA1 p-S140,Y143-H2AFX HIST1H2BL HIST1H2BK DNA double-strand break ends HERC2-SUMO1 K48PolyUb-KDM4A,BUBXN1K6PolyUb-BRCA1 DNA double-strand break ends HIST1H2BO K63PolyUb-K14,K16,p-S140-H2AFX KDM4A p-S1981,Ac-K3016-ATM H2BFS p-S1981,Ac-K3016-ATM RNF8 HIST2H2BE HIST2H2BE HIST1H2BB p-T68-CHEK2p-S343-NBN HDR through MMEJ(alt-NHEJ)KPNA2p-S1981,Ac-K3016-ATM HIST1H2BB HIST1H2BM DNA DSBs:MRN:ATMdimer:KAT5ATM dimer:KAT5HIST1H2BL DNA double-strand break ends DNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-NucleosomeUBE2N HIST1H2BD HIST1H4 HIST1H2BJ DNADNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1RAD50 p-S456-ABL1BRE HIST1H2BK BARD1 RAD50 RAD50 HIST3H3 HIST3H2BB HIST3H2BB ATPHIST1H2BB HIST1H2BM RNF8 HIST1H2BH ATM MRE11A p-S1981,Ac-K3016-ATM RNF168 HIST1H2BC Me2K21-HIST1H4 AdoHcyMe2K21-HIST1H4 p-S25,S1778-TP53BP1 HIST3H3 HIST2H2BE p-5T-MDC1 HIST1H2BB BAP1 TP53BP1 KDM4B RAD50 BRCC3 HIST1H2BJ HIST1H2BJ p-S1981,Ac-K3016-ATM HIST1H2BB HIST1H2BH BRCA1 DNADNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:p-4S,2T-BRCA1-A complex:CHEK2p-S140-H2AFX HIST1H2BJ ABL1NBN HIST1H2BA HIST1H2BD DNADNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:UIMC1:p-S406-FAM175Ap-S343-NBN p-T4827,SUMO1-HERC2 HIST1H2BB HIST2H2BE KDM4B p-5T-MDC1 H2BFS beta-particle HIST1H2BC Zn2+ HIST1H2BH HIST1H2BK alpha-particle HIST1H2BC HIST1H2BN KAT5 HIST1H2BK RNF8 UBC(305-380) HIST1H2BA HIST1H2BO ADPKAT5 p-S1981,Ac-K3016-ATM HIST1H2BO TP53 TetramerKDM4B p-S1981,Ac-K3016-ATM HIST1H2BJ Me2K21-HIST1H4 HIST3H3 KDM4A MRE11A UIMC1 KAT5 HIST3H2BB HIST1H2BK p-EYA3 HIST3H2BB HIST1H2BO HIST1H2BB K63PolyUb-K14,K16,p-S140-H2AFX RAD50 Me2K21-HIST1H4 ADPUb-538-UBC(533-608) HIST1H2BN DNA double-strand break ends MRE11A HIST3H3 RAD50 RNF168 ADPHIST1H2BM HIST1H2BD HIST1H2BN RNF168 BRCC3MRE11A HIST1H2BH p-T4827,SUMO1-HERC2 p-S1981,Ac-K3016-ATM HIST1H2BL RNF8 p-T,Y-MAPK8 p-S1981,Ac-K3016-ATM HIST2H2BE HIST1H2BN H2BFS RAD50 DNADSBs:p-MRN:p-S-1981,Ac-K3016-ATM:KAT5:p-Y142-H2AFX-NucleosomeBABAM1 RNF8 p-S1981,Ac-K3016-ATM p-T68-CHEK2 dimerBAP1 Ub-234-UBC(229-304) HIST1H2BK K63PolyUb-K14,K16,p-S140-H2AFX RNF8 MRE11A HIST3H3 HIST1H2BB p-S1981,Ac-K3016-ATM p-T714,T734-BARD1 KDM4A KAT5 Zn2+ p-5T-MDC1 HIST1H2BA HIST1H2BO DNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-Nucleosome:p-5T-MDC1:WHSC1HIST1H2BD HIST1H2BN HIST1H2BD HIST1H2BC HIST2H2BE p-S140-H2AFX HIST1H2BJ H2BFS HIST3H3 RAD50 BABAM1 HIST1H2BJ MRE11A DNA DSBs:MRNHIST1H2BK HERC2-SUMO1 HIST1H2BC p-T4827,SUMO1-HERC2 HIST1H2BO KAT5 BRCA1:BARD1p-S102-WHSC1 HIST1H2BL HIST1H2BM DNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4BABAM1PIAS4 MRE11A p-S102-WHSC1 MRE11A MRE11A BRCC3 HIST1H2BJ HIST1H2BL Zn2+ HIST1H2BN RNF8 p-S140-H2AFX MRNHIST1H2BD Zn2+ Me2K21-HIST1H4 HIST1H2BN HIST1H2BK p-S25,S1778-TP53BP1 p-S102-WHSC1 RNF168 HIST1H2BC gamma-ray UBE2V2 KAT5 HIST1H2BO p-S343-NBN APBB1 HIST1H2BH HIST1H2BA HIST1H2BC p-S343-NBN p-S343-NBN HIST1H2BH p-T4827,SUMO1-HERC2 HIST1H2BD HERC2-SUMO1 DNA double-strand break ends UBE2V2 HIST3H3 AdoMetUIMC1 Zn2+ K6PolyUb,p-T714,T734-BARD1 K6PolyUb,p-T714,T734-BARD1 p-S102-WHSC1 HIST3H2BB MDC1 DNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:PIAS4p-S102-WHSC1 p-S102-WHSC1 RNF8 p-T,Y-MAPK8HIST1H2BC DNA double-strand break ends BAP1:BARD1p-S406-FAM175AHIST1H2BK p-EYA2 RPS27A(1-76) p-S140-H2AFX HIST1H2BK HIST1H2BL RAD50 HIST3H2BB HERC2-SUMO1 p-S343-NBN HIST1H2BM p-T68-CHEK2 DNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+DNADNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:TP53BP1DNA double-strand break ends p-T714,T734-BARD1 BAZ1B K6PolyUb-BARD1 p-T4827,SUMO1-HERC2 p-S140-H2AFX KAT5 H2BFS HIST1H2BH p-S140-H2AFX p-S343-NBN HIST3H3 HIST3H2BB HIST1H2BO DNA double-strand break ends RNF168 HIST1H2BC p-S343-NBN BABAM1 HIST1H2BA MRE11A HIST1H2BM Zn2+ WHSC1MRE11A HIST1H2BO HIST1H4 HIST1H2BN HIST1H2BA DNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139,Y142-H2AFX-Nucleosome:APBB1:p-T,Y-MAPK8p-S1981,Ac-K3016-ATM BRCA1:BARD1KAT5 DNA double-strand break ends MRE11A ADPKAT5 HDR throughHomologousRecombination (HRR)or Single StrandAnnealing (SSA)Zn2+ p-S406-FAM175A HIST1H2BA H2BFS KDM4A HIST1H2BH HIST1H2BD DNA double-strand break ends DNA double-strand break ends UBE2N RAD50 HIST1H2BK PIAS4 HIST1H2BA HIST1H2BA Me2K21-HIST1H4 p-S1981,Ac-K3016-ATM K63PolyUb-K14,K16,p-S140-H2AFX DNA double-strand break ends HIST1H2BL p-Y142-H2AFX-NucleosomeUBE2N PIAS4 HIST1H2BN p-5T-MDC1 HIST1H2BN HIST1H2BM p-5T-MDC1 Ub-6-RPS27A(1-76) UBE2V2 HIST1H2BM HIST2H2BE HIST1H2BJ HIST1H2BA KAT5 DNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4HIST1H2BL HIST1H2BB UBE2V2 DNA double-strand break ends HIST1H2BL HIST1H2BN UIMC1 BRCA1 HIST1H2BB HIST1H2BJ NBN HIST1H2BL NBN BRE HIST1H2BN HIST1H2BD UBC(229-304) UBE2V2 p-S1387,S1423,S1524,S1547-BRCA1 RNF8 HIST1H2BL HIST1H2BA HIST1H2BL DNA double-strand break ends HIST2H2BE p-EYA1-4RAD50 HIST1H2BK PIAS4 ATPKAT5 HERC2p-S406-FAM175A HIST1H2BA HIST1H2BA HIST1H2BA p-S140-H2AFX KDM4B HIST2H2BE KDM4B KAT5 KDM4B p-S25,S1778-TP53BP1 HIST1H2BD KAT5 Zn2+ NBNp-S102-WHSC1 HIST1H2BL HIST1H2BO BRCA1:BARD1:BAP1HIST1H2BK HIST3H3 HIST1H2BH p-S343-NBN RAD50 HIST1H2BM MRE11A HIST1H4 HIST1H2BH DNA double-strandbreak endsHIST2H2BE HIST3H3 p-5T-MDC1 RAD50 Ub-310-UBC(305-380) DNA double-strand break ends p-T4827,SUMO1-HERC2 ADPNBN UBE2N Me2K21-HIST1H4 UBE2N HIST1H2BD NBN ATPHIST1H2BO UIMC1 HIST1H2BB HIST1H2BO HIST3H2BB p-S343-NBN MRE11A H2BFS HIST1H2BC Ub-6-UBB(1-76) Me2K21-HIST1H4 HIST1H2BH PiH2BFS UBXN1:K6PolyUb-BRCA1:K6PolyUb-BARD1HIST2H2BE HIST1H2BH HIST1H2BA p-S1387,S1423,S1524,S1547-BRCA1 DNADSBs:MRN:p-S1981,Ac-K3016-ATM:KAT5p-S406-FAM175A DNA double-strand break ends H2BFS HIST1H2BM HIST3H3 UBC(77-152) RAD50 HIST1H2BM DNA double-strand break ends p-S343-NBN HIST1H2BN K6PolyUb-BARD1 p-S1981,Ac-K3016-ATM MRE11A UBE2N HIST1H2BM UBB(1-76) K6PolyUb-BARD1 Me2K21-HIST1H4 UIMC1Me2K21-HIST1H4 HIST1H2BA HIST2H2BE HIST1H2BL HIST2H2BE ATM HIST3H3 BRERNF168 p-T4827,SUMO1-HERC2 RNF8 RAD50 HIST1H2BO HIST3H3 Zn2+ HIST1H2BA HIST3H3 BRCC3 NBN K48PolyUb-KDM4A DNA double-strand break ends HIST1H2BO DNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-Nucleosome:MDC1p-S140-H2AFX p-S343-NBN NonhomologousEnd-Joining (NHEJ)HIST3H2BB DNADNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:BRCA1-A complexHIST1H2BH HIST1H2BB PPP5CH2BFS p-T4827,SUMO1-HERC2 p-S140-H2AFX p-S343-NBN HIST1H2BK HIST1H2BJ KDM4A,BMRE11A p-S343-NBN ADPSUMO1:C93-UBE2IRAD50 Ub-158-UBB(153-228) HERC2-SUMO1 HIST1H2BA p-S102-WHSC1 HIST3H2BB HIST3H2BB HERC2 p-S343-NBN p-S343-NBN HIST1H2BM UBE2N p-S102-WHSC1 HIST2H2BE HIST1H2BH HIST1H2BJ HIST1H2BK HIST1H2BN HIST2H2BE HERC2-SUMO1 H2BFS HIST3H2BB p-T4827,SUMO1-HERC2 HIST3H2BB HIST1H2BD K63PolyUb-K14,K16,p-S140-H2AFX HIST1H2BC p-S1981,Ac-K3016-ATM RNF8 BARD1 H2BFS p-Y143-H2AFX HIST1H2BB HIST1H2BN H2BFS RNF168 EYA1-4HIST1H2BN MRE11AKPNA2KAT5 HIST1H2BC HIST1H2BM K6PolyUb-BRCA1 p-S102-WHSC1 H2AFX HIST1H2BO p-S25,S1778-TP53BP1 Zn2+ KDM4A RAD50 HIST1H2BC HIST1H2BL BARD1 HIST1H2BM HERC2-SUMO1 ADPHIST1H2BD DNA double-strand break ends HIST1H2BB UBE2N ATPHIST1H2BO H2BFS HIST1H2BK HIST3H3 MRE11A p-S140,Y143-H2AFX p-Y143-H2AFX p-S343-NBN BRE p-5T-MDC1 HIST1H2BJ KAT5 KDM4B H2BFS ROS RAD50 K6PolyUb-BARD1 UBC(381-456) ATPHIST1H2BK p-EYA1 BRCC3 MDC1UBC(153-228) HIST1H4 HIST1H2BA HIST1H2BO HIST3H3 MRE11A CHEK2HIST1H2BL HIST1H2BH UBE2V2 BAP1p-S140-H2AFX HIST3H3 Me2K21-HIST1H4 HIST1H2BH HIST3H3 H2BFS UBE2N RAD50 p-5T-MDC1 HIST1H4 NBNAPBB1BABAM1 SMARCA5 p-S343-NBN p-S1981,Ac-K3016-ATM p-5T-MDC1 DNA double-strand break ends UBE2N:UBE2V2HIST1H2BH HIST1H2BA RAD50 HIST1H2BL Me2K21-HIST1H4 H2Op-S102-WHSC1 HIST1H2BJ ADPHIST1H4 HIST1H2BA p-S343-NBN K6PolyUb,p-S988,S1387,S1423,S1524,S1547-BRCA1 p-T4827-HERC2 HIST1H2BL HIST1H2BM NBN:KPNA2p-T714,T734-BARD1 p-5T-MDC1 UBXN1 Ub-158-UBC(153-228) KAT5 UBC(533-608) HIST1H2BJ Ac-K3016-ATM BRCA1 BRCA1 HIST1H2BC HIST1H2BO HIST1H2BL HIST1H2BC BRCA1KDM4A ATPp-S343-NBN DNA double-strand break ends HIST1H2BD MRE11A ATPUb-82-UBB(77-152) HIST1H2BH MRE11A HIST3H2BB HIST1H2BN HIST2H2BE RAD50 PIAS4 K6-Ubp-S1981,Ac-K3016-ATM K6PolyUb-BRCA1 HIST1H2BN KAT5 HIST1H4 HIST1H2BO HIST3H2BB DNA double-strand break ends KDM4B HIST1H2BN HIST3H3 Zn2+ RNF168 HIST1H2BB p-S1981,Ac-K3016-ATM K63PolyUb-K14,K16,p-S140-H2AFX Me2K21-HIST1H4 HIST1H2BK p-S140-H2AFX HIST1H2BM HIST1H2BB HIST1H2BO ADPRNF8 HIST2H2BE UbUBC(609-684) K6PolyUb-BRCA1:K6PolyUb-BARD1HIST1H2BO ADPBRE Me2K21-HIST1H4 HIST1H2BM HIST1H2BJ HIST1H2BH K6PolyUb-BRCA1 PiHIST2H2BE UBE2V2 HIST1H2BD HIST3H2BB HIST1H2BC RAD50 HIST1H2BB HIST1H2BM RAD50 p-5T-MDC1 RAD50 MRE11A p-S102-WHSC1 HIST1H2BK PIAS4 HIST1H2BN RAD50 PIAS4 p-S343-NBN K6PolyUb,p-S1387,S1423,S1524,S1547-BRCA1 RNF8 ADPHIST3H3 MRE11A ATPHIST1H2BB HIST1H2BK p-S1981,Ac-K3016-ATM PIAS4 RNF168HIST1H2BC HIST1H2BK H2BFS HIST1H4 MRE11A DNADSBs:MRN:Ac-K3016-ATM dimer:KAT5HIST1H2BN DNA double-strand break ends Zn2+ p-5T-MDC1 HIST1H2BC PIAS4RNF168 HIST1H2BL ADPHIST3H3 HIST1H2BM PIAS4 MRE11A HIST3H2BB UBE2V2 KAT5 RAD50 DNA double-strand break ends UBE2IHIST2H2BE DNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139,Y142-H2AFX-NucleosomeHIST1H2BJ p-5T-MDC1 KPNA2 PIAS4 H2BFS p-S406-FAM175A KAT5 HIST1H2BC HIST1H2BD HIST3H2BB KDM4A RNF8 HIST1H2BO Me2K21-HIST1H4 p-5T-MDC1 RAD50 HIST1H2BM HERC2-SUMO1 HIST2H2BE HIST3H3 p-S140-H2AFX MRE11A proton HIST2H2BE KAT5 EYA1 H2BFS HIST1H2BC BARD1DNADSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:HERC2:PIAS4HIST1H2BN Me2K21-HIST1H4 p-S988,S1387,S1423,S1524,S1547-BRCA1 HIST1H2BJ ATPHIST1H2BM UBE2V2 UBE2N HIST2H2BE EYA4 HIST1H2BL HIST1H2BD HIST3H3 PIAS4 HIST1H2BB HIST1H2BN Zn2+ ADPHIST1H2BK HIST1H2BH HIST1H2BL p-T4827,SUMO1-HERC2 HIST1H2BM MRE11A HIST3H2BB HIST3H2BB p-S343-NBN 327, 13-16, 19...33474755665010166411126647, 55274666610, 22, 36, 40, 49...666652, 1174750666671665076122661166611662, 766643506647, 5566


Description

DNA double strand break (DSB) response involves sensing of DNA DSBs by the MRN complex which triggers ATM activation. ATM phosphorylates a number of proteins involved in DNA damage checkpoint signaling, as well as proteins directly involved in the repair of DNA DSBs. For a recent review, please refer to Ciccia and Elledge, 2010. View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 5693606
Reactome-version 
Reactome version: 75
Reactome Author 
Reactome Author: Orlic-Milacic, Marija

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Xiao A, Li H, Shechter D, Ahn SH, Fabrizio LA, Erdjument-Bromage H, Ishibe-Murakami S, Wang B, Tempst P, Hofmann K, Patel DJ, Elledge SJ, Allis CD.; ''WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity.''; PubMed Europe PMC Scholia
  2. Nishikawa H, Wu W, Koike A, Kojima R, Gomi H, Fukuda M, Ohta T.; ''BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity.''; PubMed Europe PMC Scholia
  3. Westermark UK, Reyngold M, Olshen AB, Baer R, Jasin M, Moynahan ME.; ''BARD1 participates with BRCA1 in homology-directed repair of chromosome breaks.''; PubMed Europe PMC Scholia
  4. Sun Y, Jiang X, Xu Y, Ayrapetov MK, Moreau LA, Whetstine JR, Price BD.; ''Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60.''; PubMed Europe PMC Scholia
  5. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ.; ''ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage.''; PubMed Europe PMC Scholia
  6. Trujillo KM, Yuan SS, Lee EY, Sung P.; ''Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95.''; PubMed Europe PMC Scholia
  7. Riballo E, Kühne M, Rief N, Doherty A, Smith GC, Recio MJ, Reis C, Dahm K, Fricke A, Krempler A, Parker AR, Jackson SP, Gennery A, Jeggo PA, Löbrich M.; ''A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci.''; PubMed Europe PMC Scholia
  8. Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ.; ''Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro.''; PubMed Europe PMC Scholia
  9. Liu J, Luo S, Zhao H, Liao J, Li J, Yang C, Xu B, Stern DF, Xu X, Ye K.; ''Structural mechanism of the phosphorylation-dependent dimerization of the MDC1 forkhead-associated domain.''; PubMed Europe PMC Scholia
  10. Mansour WY, Rhein T, Dahm-Daphi J.; ''The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies.''; PubMed Europe PMC Scholia
  11. Goodarzi AA, Jonnalagadda JC, Douglas P, Young D, Ye R, Moorhead GB, Lees-Miller SP, Khanna KK.; ''Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A.''; PubMed Europe PMC Scholia
  12. Wang B, Hurov K, Hofmann K, Elledge SJ.; ''NBA1, a new player in the Brca1 A complex, is required for DNA damage resistance and checkpoint control.''; PubMed Europe PMC Scholia
  13. Malu S, De Ioannes P, Kozlov M, Greene M, Francis D, Hanna M, Pena J, Escalante CR, Kurosawa A, Erdjument-Bromage H, Tempst P, Adachi N, Vezzoni P, Villa A, Aggarwal AK, Cortes P.; ''Artemis C-terminal region facilitates V(D)J recombination through its interactions with DNA Ligase IV and DNA-PKcs.''; PubMed Europe PMC Scholia
  14. Nick McElhinny SA, Snowden CM, McCarville J, Ramsden DA.; ''Ku recruits the XRCC4-ligase IV complex to DNA ends.''; PubMed Europe PMC Scholia
  15. Escribano-Díaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young JT, Tkáč J, Cook MA, Rosebrock AP, Munro M, Canny MD, Xu D, Durocher D.; ''A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice.''; PubMed Europe PMC Scholia
  16. Gómez-Herreros F, Romero-Granados R, Zeng Z, Alvarez-Quilón A, Quintero C, Ju L, Umans L, Vermeire L, Huylebroeck D, Caldecott KW, Cortés-Ledesma F.; ''TDP2-dependent non-homologous end-joining protects against topoisomerase II-induced DNA breaks and genome instability in cells and in vivo.''; PubMed Europe PMC Scholia
  17. Jowsey P, Morrice NA, Hastie CJ, McLauchlan H, Toth R, Rouse J.; ''Characterisation of the sites of DNA damage-induced 53BP1 phosphorylation catalysed by ATM and ATR.''; PubMed Europe PMC Scholia
  18. Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB, Chen J.; ''RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly.''; PubMed Europe PMC Scholia
  19. Lee JW, Blanco L, Zhou T, Garcia-Diaz M, Bebenek K, Kunkel TA, Wang Z, Povirk LF.; ''Implication of DNA polymerase lambda in alignment-based gap filling for nonhomologous DNA end joining in human nuclear extracts.''; PubMed Europe PMC Scholia
  20. Vikrant, Sawant UU, Varma AK.; ''Role of MERIT40 in stabilization of BRCA1 complex: a protein-protein interaction study.''; PubMed Europe PMC Scholia
  21. Yu TW, Anderson D.; ''Reactive oxygen species-induced DNA damage and its modification: a chemical investigation.''; PubMed Europe PMC Scholia
  22. Ghezraoui H, Piganeau M, Renouf B, Renaud JB, Sallmyr A, Ruis B, Oh S, Tomkinson AE, Hendrickson EA, Giovannangeli C, Jasin M, Brunet E.; ''Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining.''; PubMed Europe PMC Scholia
  23. Yoo S, Dynan WS.; ''Geometry of a complex formed by double strand break repair proteins at a single DNA end: recruitment of DNA-PKcs induces inward translocation of Ku protein.''; PubMed Europe PMC Scholia
  24. Lovly CM, Yan L, Ryan CE, Takada S, Piwnica-Worms H.; ''Regulation of Chk2 ubiquitination and signaling through autophosphorylation of serine 379.''; PubMed Europe PMC Scholia
  25. Melchionna R, Chen XB, Blasina A, McGowan CH.; ''Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1.''; PubMed Europe PMC Scholia
  26. Brzovic PS, Rajagopal P, Hoyt DW, King MC, Klevit RE.; ''Structure of a BRCA1-BARD1 heterodimeric RING-RING complex.''; PubMed Europe PMC Scholia
  27. Li J, Stern DF.; ''DNA damage regulates Chk2 association with chromatin.''; PubMed Europe PMC Scholia
  28. Cortez D, Wang Y, Qin J, Elledge SJ.; ''Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks.''; PubMed Europe PMC Scholia
  29. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM.; ''DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139.''; PubMed Europe PMC Scholia
  30. Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W.; ''Histone H2A variants H2AX and H2AZ.''; PubMed Europe PMC Scholia
  31. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ.; ''ATM phosphorylates histone H2AX in response to DNA double-strand breaks.''; PubMed Europe PMC Scholia
  32. Tseng SF, Chang CY, Wu KJ, Teng SC.; ''Importin KPNA2 is required for proper nuclear localization and multiple functions of NBS1.''; PubMed Europe PMC Scholia
  33. Bozhenok L, Wade PA, Varga-Weisz P.; ''WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci.''; PubMed Europe PMC Scholia
  34. Ayoub N, Jeyasekharan AD, Bernal JA, Venkitaraman AR.; ''HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response.''; PubMed Europe PMC Scholia
  35. Paull TT, Gellert M.; ''The 3' to 5' exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks.''; PubMed Europe PMC Scholia
  36. Mateos-Gomez PA, Gong F, Nair N, Miller KM, Lazzerini-Denchi E, Sfeir A.; ''Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination.''; PubMed Europe PMC Scholia
  37. Ahnesorg P, Smith P, Jackson SP.; ''XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining.''; PubMed Europe PMC Scholia
  38. Tsai CJ, Kim SA, Chu G.; ''Cernunnos/XLF promotes the ligation of mismatched and noncohesive DNA ends.''; PubMed Europe PMC Scholia
  39. Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB, Siliciano JD.; ''Activation of the ATM kinase by ionizing radiation and phosphorylation of p53.''; PubMed Europe PMC Scholia
  40. Kent T, Chandramouly G, McDevitt SM, Ozdemir AY, Pomerantz RT.; ''Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase θ.''; PubMed Europe PMC Scholia
  41. Hupp TR, Lane DP.; ''Allosteric activation of latent p53 tetramers.''; PubMed Europe PMC Scholia
  42. Walker JR, Corpina RA, Goldberg J.; ''Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair.''; PubMed Europe PMC Scholia
  43. Wu LC, Wang ZW, Tsan JT, Spillman MA, Phung A, Xu XL, Yang MC, Hwang LY, Bowcock AM, Baer R.; ''Identification of a RING protein that can interact in vivo with the BRCA1 gene product.''; PubMed Europe PMC Scholia
  44. Krishnan N, Jeong DG, Jung SK, Ryu SE, Xiao A, Allis CD, Kim SJ, Tonks NK.; ''Dephosphorylation of the C-terminal tyrosyl residue of the DNA damage-related histone H2A.X is mediated by the protein phosphatase eyes absent.''; PubMed Europe PMC Scholia
  45. Lou Z, Minter-Dykhouse K, Franco S, Gostissa M, Rivera MA, Celeste A, Manis JP, van Deursen J, Nussenzweig A, Paull TT, Alt FW, Chen J.; ''MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals.''; PubMed Europe PMC Scholia
  46. Shroff R, Arbel-Eden A, Pilch D, Ira G, Bonner WM, Petrini JH, Haber JE, Lichten M.; ''Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break.''; PubMed Europe PMC Scholia
  47. Pei H, Zhang L, Luo K, Qin Y, Chesi M, Fei F, Bergsagel PL, Wang L, You Z, Lou Z.; ''MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites.''; PubMed Europe PMC Scholia
  48. Gatei M, Scott SP, Filippovitch I, Soronika N, Lavin MF, Weber B, Khanna KK.; ''Role for ATM in DNA damage-induced phosphorylation of BRCA1.''; PubMed Europe PMC Scholia
  49. Della-Maria J, Zhou Y, Tsai MS, Kuhnlein J, Carney JP, Paull TT, Tomkinson AE.; ''Human Mre11/human Rad50/Nbs1 and DNA ligase IIIalpha/XRCC1 protein complexes act together in an alternative nonhomologous end joining pathway.''; PubMed Europe PMC Scholia
  50. Wang B, Matsuoka S, Ballif BA, Zhang D, Smogorzewska A, Gygi SP, Elledge SJ.; ''Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response.''; PubMed Europe PMC Scholia
  51. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y.; ''Requirement of the MRN complex for ATM activation by DNA damage.''; PubMed Europe PMC Scholia
  52. Wang B, Matsuoka S, Carpenter PB, Elledge SJ.; ''53BP1, a mediator of the DNA damage checkpoint.''; PubMed Europe PMC Scholia
  53. Sun J, Lee KJ, Davis AJ, Chen DJ.; ''Human Ku70/80 protein blocks exonuclease 1-mediated DNA resection in the presence of human Mre11 or Mre11/Rad50 protein complex.''; PubMed Europe PMC Scholia
  54. Lee JH, Paull TT.; ''Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex.''; PubMed Europe PMC Scholia
  55. Mallette FA, Mattiroli F, Cui G, Young LC, Hendzel MJ, Mer G, Sixma TK, Richard S.; ''RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites.''; PubMed Europe PMC Scholia
  56. Ma Y, Pannicke U, Lu H, Niewolik D, Schwarz K, Lieber MR.; ''The DNA-dependent protein kinase catalytic subunit phosphorylation sites in human Artemis.''; PubMed Europe PMC Scholia
  57. Wang B, Elledge SJ.; ''Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage.''; PubMed Europe PMC Scholia
  58. Kang Y, Lee JH, Hoan NN, Sohn HM, Chang IY, You HJ.; ''Protein phosphatase 5 regulates the function of 53BP1 after neocarzinostatin-induced DNA damage.''; PubMed Europe PMC Scholia
  59. Bekker-Jensen S, Rendtlew Danielsen J, Fugger K, Gromova I, Nerstedt A, Lukas C, Bartek J, Lukas J, Mailand N.; ''HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes.''; PubMed Europe PMC Scholia
  60. Baskaran R, Wood LD, Whitaker LL, Canman CE, Morgan SE, Xu Y, Barlow C, Baltimore D, Wynshaw-Boris A, Kastan MB, Wang JY.; ''Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation.''; PubMed Europe PMC Scholia
  61. Galanty Y, Belotserkovskaya R, Coates J, Polo S, Miller KM, Jackson SP.; ''Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks.''; PubMed Europe PMC Scholia
  62. Wu Y, Xiao S, Zhu XD.; ''MRE11-RAD50-NBS1 and ATM function as co-mediators of TRF1 in telomere length control.''; PubMed Europe PMC Scholia
  63. Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH, Kastan MB.; ''ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway.''; PubMed Europe PMC Scholia
  64. Mahajan KN, Nick McElhinny SA, Mitchell BS, Ramsden DA.; ''Association of DNA polymerase mu (pol mu) with Ku and ligase IV: role for pol mu in end-joining double-strand break repair.''; PubMed Europe PMC Scholia
  65. Khanna KK, Keating KE, Kozlov S, Scott S, Gatei M, Hobson K, Taya Y, Gabrielli B, Chan D, Lees-Miller SP, Lavin MF.; ''ATM associates with and phosphorylates p53: mapping the region of interaction.''; PubMed Europe PMC Scholia
  66. Danielsen JR, Povlsen LK, Villumsen BH, Streicher W, Nilsson J, Wikström M, Bekker-Jensen S, Mailand N.; ''DNA damage-inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding Zinc finger.''; PubMed Europe PMC Scholia
  67. Campbell SJ, Edwards RA, Leung CC, Neculai D, Hodge CD, Dhe-Paganon S, Glover JN.; ''Molecular insights into the function of RING finger (RNF)-containing proteins hRNF8 and hRNF168 in Ubc13/Mms2-dependent ubiquitylation.''; PubMed Europe PMC Scholia
  68. Inamdar KV, Pouliot JJ, Zhou T, Lees-Miller SP, Rasouli-Nia A, Povirk LF.; ''Conversion of phosphoglycolate to phosphate termini on 3' overhangs of DNA double strand breaks by the human tyrosyl-DNA phosphodiesterase hTdp1.''; PubMed Europe PMC Scholia
  69. McCarthy EE, Celebi JT, Baer R, Ludwig T.; ''Loss of Bard1, the heterodimeric partner of the Brca1 tumor suppressor, results in early embryonic lethality and chromosomal instability.''; PubMed Europe PMC Scholia
  70. Callen E, Di Virgilio M, Kruhlak MJ, Nieto-Soler M, Wong N, Chen HT, Faryabi RB, Polato F, Santos M, Starnes LM, Wesemann DR, Lee JE, Tubbs A, Sleckman BP, Daniel JA, Ge K, Alt FW, Fernandez-Capetillo O, Nussenzweig MC, Nussenzweig A.; ''53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions.''; PubMed Europe PMC Scholia
  71. Sun Y, Jiang X, Chen S, Fernandes N, Price BD.; ''A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM.''; PubMed Europe PMC Scholia
  72. Lukas C, Melander F, Stucki M, Falck J, Bekker-Jensen S, Goldberg M, Lerenthal Y, Jackson SP, Bartek J, Lukas J.; ''Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention.''; PubMed Europe PMC Scholia
  73. Ward IM, Minn K, Jorda KG, Chen J.; ''Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX.''; PubMed Europe PMC Scholia
  74. Cai Z, Chehab NH, Pavletich NP.; ''Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase.''; PubMed Europe PMC Scholia
  75. Tibbetts RS, Cortez D, Brumbaugh KM, Scully R, Livingston D, Elledge SJ, Abraham RT.; ''Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress.''; PubMed Europe PMC Scholia
  76. Lee JH, Paull TT.; ''ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex.''; PubMed Europe PMC Scholia
  77. Hsu HL, Yannone SM, Chen DJ.; ''Defining interactions between DNA-PK and ligase IV/XRCC4.''; PubMed Europe PMC Scholia
  78. Wu-Baer F, Lagrazon K, Yuan W, Baer R.; ''The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin.''; PubMed Europe PMC Scholia
  79. Liang L, Deng L, Chen Y, Li GC, Shao C, Tischfield JA.; ''Modulation of DNA end joining by nuclear proteins.''; PubMed Europe PMC Scholia
  80. Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP.; ''MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks.''; PubMed Europe PMC Scholia
  81. Hu X, Kim JA, Castillo A, Huang M, Liu J, Wang B.; ''NBA1/MERIT40 and BRE interaction is required for the integrity of two distinct deubiquitinating enzyme BRCC36-containing complexes.''; PubMed Europe PMC Scholia
  82. Mallery DL, Vandenberg CJ, Hiom K.; ''Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains.''; PubMed Europe PMC Scholia
  83. Gottlieb TM, Jackson SP.; ''The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen.''; PubMed Europe PMC Scholia
  84. Yun MH, Hiom K.; ''CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle.''; PubMed Europe PMC Scholia
  85. Shakya R, Szabolcs M, McCarthy E, Ospina E, Basso K, Nandula S, Murty V, Baer R, Ludwig T.; ''The basal-like mammary carcinomas induced by Brca1 or Bard1 inactivation implicate the BRCA1/BARD1 heterodimer in tumor suppression.''; PubMed Europe PMC Scholia
  86. Hanakahi LA, Bartlet-Jones M, Chappell C, Pappin D, West SC.; ''Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair.''; PubMed Europe PMC Scholia
  87. Doil C, Mailand N, Bekker-Jensen S, Menard P, Larsen DH, Pepperkok R, Ellenberg J, Panier S, Durocher D, Bartek J, Lukas J, Lukas C.; ''RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins.''; PubMed Europe PMC Scholia
  88. Dolganov GM, Maser RS, Novikov A, Tosto L, Chong S, Bressan DA, Petrini JH.; ''Human Rad50 is physically associated with human Mre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair.''; PubMed Europe PMC Scholia
  89. Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, Ziv Y.; ''Enhanced phosphorylation of p53 by ATM in response to DNA damage.''; PubMed Europe PMC Scholia
  90. Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ.; ''MDC1 is a mediator of the mammalian DNA damage checkpoint.''; PubMed Europe PMC Scholia
  91. Bakkenist CJ, Kastan MB.; ''DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation.''; PubMed Europe PMC Scholia
  92. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM.; ''A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage.''; PubMed Europe PMC Scholia
  93. Gatei M, Young D, Cerosaletti KM, Desai-Mehta A, Spring K, Kozlov S, Lavin MF, Gatti RA, Concannon P, Khanna K.; ''ATM-dependent phosphorylation of nibrin in response to radiation exposure.''; PubMed Europe PMC Scholia
  94. Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B, Petalcorin MI, O'Connor KW, Konstantinopoulos PA, Elledge SJ, Boulton SJ, Yusufzai T, D'Andrea AD.; ''Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair.''; PubMed Europe PMC Scholia
  95. Kim HS, Li H, Cevher M, Parmelee A, Fonseca D, Kleiman FE, Lee SB.; ''DNA damage-induced BARD1 phosphorylation is critical for the inhibition of messenger RNA processing by BRCA1/BARD1 complex.''; PubMed Europe PMC Scholia
  96. Andegeko Y, Moyal L, Mittelman L, Tsarfaty I, Shiloh Y, Rotman G.; ''Nuclear retention of ATM at sites of DNA double strand breaks.''; PubMed Europe PMC Scholia
  97. Sharma S, Javadekar SM, Pandey M, Srivastava M, Kumari R, Raghavan SC.; ''Homology and enzymatic requirements of microhomology-dependent alternative end joining.''; PubMed Europe PMC Scholia
  98. Singh N, Basnet H, Wiltshire TD, Mohammad DH, Thompson JR, Héroux A, Botuyan MV, Yaffe MB, Couch FJ, Rosenfeld MG, Mer G.; ''Dual recognition of phosphoserine and phosphotyrosine in histone variant H2A.X by DNA damage response protein MCPH1.''; PubMed Europe PMC Scholia
  99. Lisby M, Barlow JH, Burgess RC, Rothstein R.; ''Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins.''; PubMed Europe PMC Scholia
  100. Lee JS, Collins KM, Brown AL, Lee CH, Chung JH.; ''hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response.''; PubMed Europe PMC Scholia
  101. Ciccia A, Elledge SJ.; ''The DNA damage response: making it safe to play with knives.''; PubMed Europe PMC Scholia
  102. Lee CH, Chung JH.; ''The hCds1 (Chk2)-FHA domain is essential for a chain of phosphorylation events on hCds1 that is induced by ionizing radiation.''; PubMed Europe PMC Scholia
  103. Celeste A, Fernandez-Capetillo O, Kruhlak MJ, Pilch DR, Staudt DW, Lee A, Bonner RF, Bonner WM, Nussenzweig A.; ''Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks.''; PubMed Europe PMC Scholia
  104. Goldberg M, Stucki M, Falck J, D'Amours D, Rahman D, Pappin D, Bartek J, Jackson SP.; ''MDC1 is required for the intra-S-phase DNA damage checkpoint.''; PubMed Europe PMC Scholia
  105. Niewolik D, Pannicke U, Lu H, Ma Y, Wang LC, Kulesza P, Zandi E, Lieber MR, Schwarz K.; ''DNA-PKcs dependence of Artemis endonucleolytic activity, differences between hairpins and 5' or 3' overhangs.''; PubMed Europe PMC Scholia
  106. Ma Y, Pannicke U, Schwarz K, Lieber MR.; ''Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination.''; PubMed Europe PMC Scholia
  107. Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A.; ''H2AX: the histone guardian of the genome.''; PubMed Europe PMC Scholia
  108. Chen A, Kleiman FE, Manley JL, Ouchi T, Pan ZQ.; ''Autoubiquitination of the BRCA1*BARD1 RING ubiquitin ligase.''; PubMed Europe PMC Scholia
  109. Wang J, Aroumougame A, Lobrich M, Li Y, Chen D, Chen J, Gong Z.; ''PTIP associates with Artemis to dictate DNA repair pathway choice.''; PubMed Europe PMC Scholia
  110. Sun Y, Xu Y, Roy K, Price BD.; ''DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity.''; PubMed Europe PMC Scholia
  111. Stewart GS, Panier S, Townsend K, Al-Hakim AK, Kolas NK, Miller ES, Nakada S, Ylanko J, Olivarius S, Mendez M, Oldreive C, Wildenhain J, Tagliaferro A, Pelletier L, Taubenheim N, Durandy A, Byrd PJ, Stankovic T, Taylor AM, Durocher D.; ''The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage.''; PubMed Europe PMC Scholia
  112. Cook PJ, Ju BG, Telese F, Wang X, Glass CK, Rosenfeld MG.; ''Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions.''; PubMed Europe PMC Scholia
  113. Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J.; ''RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins.''; PubMed Europe PMC Scholia
  114. Fernandez-Capetillo O, Chen HT, Celeste A, Ward I, Romanienko PJ, Morales JC, Naka K, Xia Z, Camerini-Otero RD, Motoyama N, Carpenter PB, Bonner WM, Chen J, Nussenzweig A.; ''DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1.''; PubMed Europe PMC Scholia
  115. Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ, Redon C, Pilch DR, Olaru A, Eckhaus M, Camerini-Otero RD, Tessarollo L, Livak F, Manova K, Bonner WM, Nussenzweig MC, Nussenzweig A.; ''Genomic instability in mice lacking histone H2AX.''; PubMed Europe PMC Scholia
  116. Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, Sweeney FD, Panier S, Mendez M, Wildenhain J, Thomson TM, Pelletier L, Jackson SP, Durocher D.; ''Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase.''; PubMed Europe PMC Scholia
  117. Wilson KA, Stern DF.; ''NFBD1/MDC1, 53BP1 and BRCA1 have both redundant and unique roles in the ATM pathway.''; PubMed Europe PMC Scholia
  118. Laufer M, Nandula SV, Modi AP, Wang S, Jasin M, Murty VV, Ludwig T, Baer R.; ''Structural requirements for the BARD1 tumor suppressor in chromosomal stability and homology-directed DNA repair.''; PubMed Europe PMC Scholia
  119. Du F, Zhang M, Li X, Yang C, Meng H, Wang D, Chang S, Xu Y, Price B, Sun Y.; ''Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair.''; PubMed Europe PMC Scholia
  120. Foray N, Marot D, Gabriel A, Randrianarison V, Carr AM, Perricaudet M, Ashworth A, Jeggo P.; ''A subset of ATM- and ATR-dependent phosphorylation events requires the BRCA1 protein.''; PubMed Europe PMC Scholia
  121. Curtin NJ.; ''DNA repair dysregulation from cancer driver to therapeutic target.''; PubMed Europe PMC Scholia
  122. Wu-Baer F, Ludwig T, Baer R.; ''The UBXN1 protein associates with autoubiquitinated forms of the BRCA1 tumor suppressor and inhibits its enzymatic function.''; PubMed Europe PMC Scholia
  123. Kozlov SV, Graham ME, Peng C, Chen P, Robinson PJ, Lavin MF.; ''Involvement of novel autophosphorylation sites in ATM activation.''; PubMed Europe PMC Scholia
  124. Fan W, Wu X.; ''DNA polymerase lambda can elongate on DNA substrates mimicking non-homologous end joining and interact with XRCC4-ligase IV complex.''; PubMed Europe PMC Scholia
  125. Mattiroli F, Vissers JH, van Dijk WJ, Ikpa P, Citterio E, Vermeulen W, Marteijn JA, Sixma TK.; ''RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling.''; PubMed Europe PMC Scholia
  126. Zimmermann M, Lottersberger F, Buonomo SB, Sfeir A, de Lange T.; ''53BP1 regulates DSB repair using Rif1 to control 5' end resection.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114907view16:42, 25 January 2021ReactomeTeamReactome version 75
113352view11:42, 2 November 2020ReactomeTeamReactome version 74
112561view15:53, 9 October 2020ReactomeTeamReactome version 73
101474view11:33, 1 November 2018ReactomeTeamreactome version 66
101012view21:13, 31 October 2018ReactomeTeamreactome version 65
100548view19:47, 31 October 2018ReactomeTeamreactome version 64
100096view16:32, 31 October 2018ReactomeTeamreactome version 63
99646view15:03, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99248view12:44, 31 October 2018ReactomeTeamreactome version 62
93882view13:42, 16 August 2017ReactomeTeamreactome version 61
93450view11:23, 9 August 2017ReactomeTeamreactome version 61
87147view18:54, 18 July 2016MkutmonOntology Term : 'DNA damage response pathway' added !
86542view09:20, 11 July 2016ReactomeTeamreactome version 56
83433view12:24, 18 November 2015ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
ABL1ProteinP00519 (Uniprot-TrEMBL)
ADPMetaboliteCHEBI:456216 (ChEBI)
APBB1 ProteinO00213 (Uniprot-TrEMBL)
APBB1ProteinO00213 (Uniprot-TrEMBL)
ATM ProteinQ13315 (Uniprot-TrEMBL)
ATM dimer:KAT5ComplexR-HSA-5682037 (Reactome)
ATPMetaboliteCHEBI:30616 (ChEBI)
Ac-CoAMetaboliteCHEBI:15351 (ChEBI)
Ac-K3016-ATM ProteinQ13315 (Uniprot-TrEMBL)
AdoHcyMetaboliteCHEBI:16680 (ChEBI)
AdoMetMetaboliteCHEBI:15414 (ChEBI)
BABAM1 ProteinQ9NWV8 (Uniprot-TrEMBL)
BABAM1ProteinQ9NWV8 (Uniprot-TrEMBL)
BAP1 ProteinQ92560 (Uniprot-TrEMBL)
BAP1:BARD1ComplexR-HSA-5690771 (Reactome)
BAP1ProteinQ92560 (Uniprot-TrEMBL)
BARD1 ProteinQ99728 (Uniprot-TrEMBL)
BARD1ProteinQ99728 (Uniprot-TrEMBL)
BAZ1B ProteinQ9UIG0 (Uniprot-TrEMBL)
BRCA1 ProteinP38398 (Uniprot-TrEMBL)
BRCA1:BARD1:BAP1ComplexR-HSA-9701007 (Reactome)
BRCA1:BARD1ComplexR-HSA-5659802 (Reactome)
BRCA1:BARD1ComplexR-HSA-9707070 (Reactome)
BRCA1ProteinP38398 (Uniprot-TrEMBL)
BRCC3 ProteinP46736 (Uniprot-TrEMBL)
BRCC3ProteinP46736 (Uniprot-TrEMBL)
BRE ProteinQ9NXR7 (Uniprot-TrEMBL)
BREProteinQ9NXR7 (Uniprot-TrEMBL)
CHEK2 ProteinO96017 (Uniprot-TrEMBL)
CHEK2ProteinO96017 (Uniprot-TrEMBL)
CoA-SHMetaboliteCHEBI:15346 (ChEBI)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:TP53BP1
ComplexR-HSA-5693591 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:BRCA1-A complex
ComplexR-HSA-5683387 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:UIMC1:p-S406-FAM175A
ComplexR-HSA-5683388 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:p-4S,2T-BRCA1-A complex:CHEK2
ComplexR-HSA-5683737 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:p-4S,2T-BRCA1-A complex
ComplexR-HSA-5683605 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:p-5S,2T-BRCA1-A complex
ComplexR-HSA-5683808 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1
ComplexR-HSA-5683417 (Reactome)
DNA DSB:p-MRN:p-S1981,Ac-K3016-ATM:KAT5ComplexR-HSA-5682162 (Reactome)
DNA DSBs:MRN:Ac-K3016-ATM dimer:KAT5ComplexR-HSA-5682035 (Reactome)
DNA DSBs:MRN:p-S1981,Ac-K3016-ATM:KAT5ComplexR-HSA-5682055 (Reactome)
DNA DSBs:p-MRN:p-S-1981,Ac-K3016-ATM:KAT5:p-Y142-H2AFX-NucleosomeComplexR-HSA-5693563 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4ComplexR-HSA-5682861 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4ComplexR-HSA-5683079 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139,Y142-H2AFX-Nucleosome:APBB1:p-T,Y-MAPK8ComplexR-HSA-5683988 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139,Y142-H2AFX-NucleosomeComplexR-HSA-5683952 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:HERC2:PIAS4ComplexR-HSA-5682590 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:PIAS4ComplexR-HSA-5682609 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:PIAS4ComplexR-HSA-5682623 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4ComplexR-HSA-5682859 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:p-T4827-HERC2:PIAS4ComplexR-HSA-5682599 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+ComplexR-HSA-5682585 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1ComplexR-HSA-5682993 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1ComplexR-HSA-5682972 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-Nucleosome:MDC1ComplexR-HSA-5693594 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-Nucleosome:p-5T-MDC1:WHSC1ComplexR-HSA-5682968 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-Nucleosome:p-5T-MDC1:p-S102-WHSC1ComplexR-HSA-5682976 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-Nucleosome:p-5T-MDC1ComplexR-HSA-5682530 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-NucleosomeComplexR-HSA-5682180 (Reactome)
DNA DSBs:MRN:ATM dimer:KAT5ComplexR-HSA-3785779 (Reactome)
DNA DSBs:MRNComplexR-HSA-3785763 (Reactome)
DNA double-strand break endsR-ALL-75165 (Reactome)
DNA double-strand break ends R-ALL-75165 (Reactome)
DSB inducing agentsComplexR-ALL-6783909 (Reactome)
EYA1 ProteinQ99502 (Uniprot-TrEMBL)
EYA1-4ComplexR-HSA-5683966 (Reactome)
EYA2 ProteinO00167 (Uniprot-TrEMBL)
EYA3 ProteinQ99504 (Uniprot-TrEMBL)
EYA4 ProteinO95677 (Uniprot-TrEMBL)
H2AFX ProteinP16104 (Uniprot-TrEMBL)
H2AFX-NucleosomeComplexR-HSA-975775 (Reactome)
H2BFS ProteinP57053 (Uniprot-TrEMBL)
H2OMetaboliteCHEBI:15377 (ChEBI)
HDR through

Homologous Recombination (HRR) or Single Strand

Annealing (SSA)
PathwayR-HSA-5693567 (Reactome) Homology directed repair (HDR) of replication-independent DNA double strand breaks (DSBs) via homologous recombination repair (HRR) or single strand annealing (SSA) requires the activation of ATM followed by ATM-mediated phosphorylation of DNA repair proteins. ATM coordinates the recruitment of DNA repair and signaling proteins to DSBs and formation of the so-called ionizing radiation induced foci (IRIF). While IRIFs include chromatin regions kilobases away from the actual DSB, this Reactome pathway represents simplified foci and shows events that happen at the very ends of the broken DNA.

For both HRR and SSA to occur, the ends of the DNA DSB must be processed (resected) to generate lengthy 3' ssDNA tails, and the resulting ssDNA coated with RPA complexes, triggering ATR activation and signaling.

After the resection step, BRCA2 and RAD51 trigger HRR, a very accurate process in which the 3'-ssDNA overhang invades a sister chromatid, base pairs with the complementary strand of the sister chromatid DNA duplex, creating a D-loop, and uses the complementary sister chromatid strand as a template for DNA repair synthesis that bridges the DSB.

The SSA is triggered when 3'-ssDNA overhangs created in the resection step contain highly homologous direct repeats. In a process involving RAD52, the direct repeats in each 3'-ssDNA overhang become annealed, the unannealed 3'-flaps excised, and structures then processed by DNA repair synthesis. SSA results in the loss of one of the annealed repeats and the DNA sequence between the two repeats. Therefore, SSA is error-prone and is probably used as a backup for HRR, with RAD52 loss-of-function mutations being synthetically lethal with mutations in HRR genes, such as BRCA2 (reviewed by Ciccia and Elledge 2010).

HDR through MMEJ (alt-NHEJ)PathwayR-HSA-5685939 (Reactome) Homology directed repair (HDR) through microhomology-mediated end joining (MMEJ) is an error prone process also known as alternative nonhomologous end joining (alt-NHEJ), although it does not involve proteins that participate in the classical NHEJ. Contrary to the classical NHEJ and other HDR pathways, homologous recombination repair (HRR) and single strand annealing (SSA), MMEJ does not require ATM activation. In fact, ATM activation inhibits MMEJ. Therefore, MMEJ may be triggered when the amount of DNA double strand breaks (DSBs) overwhelms DNA repair machinery of higher fidelity or when cells are deficient in components of high fidelity DNA repair.

MMEJ is initiated by a limited resection of DNA DSB ends by the MRN complex (MRE11A:RAD50:NBN) and RBBP8 (CtIP), in the absence of CDK2-mediated RBBP8 phosphorylation and related BRCA1:BARD1 recruitment (Yun and Hiom 2009). Single strand DNA (ssDNA) at resected DNA DSB ends recruits PARP1 or PARP2 homo- or heterodimers, together with DNA polymerase theta (POLQ) and FEN1 5'-flap endonuclease. In a poorly studied sequence of events, POLQ promotes the annealing of two 3'-ssDNA overhangs through microhomologous regions that are optimally 10-19 nucleotides long. Using analogy with POLB-mediated long patch base excision repair (BER), it is plausible that PARP1 (or PARP2) dimers coordinate the extension of annealed 3'-ssDNA overhangs via POLQ-mediated strand displacement synthesis with FEN1-mediated cleavage of the resulting 5'-flaps (Liang et al. 2005, Mansour et al. 2011, Sharma et al. 2015, Kent et al. 2015, Ciccaldi et al. 2015, Mateos-Gomez et al. 2015). The MRN complex subsequently recruits DNA ligase 3 (LIG3) bound to XRCC1 (LIG3:XRCC1) to ligate the remaining single strand nicks (SSBs) at MMEJ sites (Della-Maria et al. 2011).

Similar to single strand annealing (SSA), MMEJ leads to deletion of one of the microhomology regions used for annealing and the DNA sequence in between two annealed microhomology regions. MMEJ, just like classical NHEJ, can result in genomic translocations (Ghezraoui et al. 2014). In addition, since POLQ is an error-prone DNA polymerase, MMEJ introduces frequent base substitutions (Ceccaldi et al. 2015).

HERC2 ProteinO95714 (Uniprot-TrEMBL)
HERC2-SUMO1 ProteinP63165 (Uniprot-TrEMBL)
HERC2ProteinO95714 (Uniprot-TrEMBL)
HIST1H2BA ProteinQ96A08 (Uniprot-TrEMBL)
HIST1H2BB ProteinP33778 (Uniprot-TrEMBL)
HIST1H2BC ProteinP62807 (Uniprot-TrEMBL)
HIST1H2BD ProteinP58876 (Uniprot-TrEMBL)
HIST1H2BH ProteinQ93079 (Uniprot-TrEMBL)
HIST1H2BJ ProteinP06899 (Uniprot-TrEMBL)
HIST1H2BK ProteinO60814 (Uniprot-TrEMBL)
HIST1H2BL ProteinQ99880 (Uniprot-TrEMBL)
HIST1H2BM ProteinQ99879 (Uniprot-TrEMBL)
HIST1H2BN ProteinQ99877 (Uniprot-TrEMBL)
HIST1H2BO ProteinP23527 (Uniprot-TrEMBL)
HIST1H4 ProteinP62805 (Uniprot-TrEMBL)
HIST2H2BE ProteinQ16778 (Uniprot-TrEMBL)
HIST3H2BB ProteinQ8N257 (Uniprot-TrEMBL)
HIST3H3 ProteinQ16695 (Uniprot-TrEMBL)
K48PolyUb-KDM4A ProteinO75164 (Uniprot-TrEMBL)
K48PolyUb-KDM4A,BComplexR-HSA-5683075 (Reactome)
K48PolyUb-KDM4B ProteinO94953 (Uniprot-TrEMBL)
K6-UbComplexR-HSA-6782648 (Reactome)
K63PolyUb-K14,K16,p-S140-H2AFX ProteinP16104 (Uniprot-TrEMBL)
K6PolyUb,p-S1387,S1423,S1524,S1547-BRCA1 ProteinP38398 (Uniprot-TrEMBL)
K6PolyUb,p-S988,S1387,S1423,S1524,S1547-BRCA1 ProteinP38398 (Uniprot-TrEMBL)
K6PolyUb,p-T714,T734-BARD1 ProteinQ99728 (Uniprot-TrEMBL)
K6PolyUb-BARD1 ProteinQ99728 (Uniprot-TrEMBL)
K6PolyUb-BRCA1 ProteinP38398 (Uniprot-TrEMBL)
K6PolyUb-BRCA1:K6PolyUb-BARD1ComplexR-HSA-9701028 (Reactome)
KAT5 ProteinQ92993 (Uniprot-TrEMBL)
KDM4A ProteinO75164 (Uniprot-TrEMBL)
KDM4A,BComplexR-HSA-5682990 (Reactome)
KDM4B ProteinO94953 (Uniprot-TrEMBL)
KPNA2 ProteinP52292 (Uniprot-TrEMBL)
KPNA2ProteinP52292 (Uniprot-TrEMBL)
MDC1 ProteinQ14676 (Uniprot-TrEMBL)
MDC1ComplexR-HSA-5682522 (Reactome)
MRE11A ProteinP49959 (Uniprot-TrEMBL)
MRE11AProteinP49959 (Uniprot-TrEMBL)
MRNComplexR-HSA-75164 (Reactome)
Me2K21-HIST1H4 ProteinP62805 (Uniprot-TrEMBL)
NBN ProteinO60934 (Uniprot-TrEMBL)
NBN:KPNA2ComplexR-HSA-5684011 (Reactome)
NBNProteinO60934 (Uniprot-TrEMBL)
Nonhomologous End-Joining (NHEJ)PathwayR-HSA-5693571 (Reactome) The nonhomologous end joining (NHEJ) pathway is initiated in response to the formation of DNA double-strand breaks (DSBs) induced by DNA-damaging agents, such as ionizing radiation. DNA DSBs are recognized by the MRN complex (MRE11A:RAD50:NBN), leading to ATM activation and ATM-dependent recruitment of a number of DNA damage checkpoint and repair proteins to DNA DSB sites (Lee and Paull 2005). The ATM phosphorylated MRN complex, MDC1 and H2AFX-containing nucleosomes (gamma-H2AX) serve as scaffolds for the formation of nuclear foci known as ionizing radiation induced foci (IRIF) (Gatei et al. 2000, Paull et al. 2000, Stewart et al. 2003, Stucki et al. 2005). Ultimately, both BRCA1:BARD1 heterodimers and TP53BP1 (53BP1) are recruited to IRIF (Wang et al. 2007, Pei et al. 2011, Mallette et al. 2012), which is necessary for ATM-mediated CHEK2 activation (Wang et al. 2002, Wilson et al. 2008). In G1 cells, TP53BP1 promotes NHEJ by recruiting RIF1 and PAX1IP, which displaces BRCA1:BARD1 and associated proteins from the DNA DSB site and prevents resection of DNA DSBs needed for homologous recombination repair (HRR) (Escribano-Diaz et al. 2013, Zimmermann et al. 2013, Callen et al. 2013). TP53BP1 also plays an important role in ATM-mediated phosphorylation of DCLRE1C (ARTEMIS) (Riballo et al. 2004, Wang et al. 2014). Ku70:Ku80 heterodimer (also known as the Ku complex or XRCC5:XRCC6) binds DNA DSB ends, competing away the MRN complex and preventing MRN-mediated resection of DNA DSB ends (Walker et al. 2001, Sun et al. 2012). The catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs, PRKDC) is then recruited to DNA-bound Ku to form the DNA-PK holoenzyme. Two DNA-PK complexes, one at each side of the break, bring DNA DSB ends together, joining them in a synaptic complex (Gottlieb 1993, Yoo and Dynan 2000). DNA-PK complex recruits DCLRE1C (ARTEMIS) to DNA DSB ends (Ma et al. 2002). PRKDC-mediated phosphorylation of DCLRE1C, as well as PRKDC autophosphorylation, enables DCLRE1C to trim 3'- and 5'-overhangs at DNA DSBs, preparing them for ligation (Ma et al. 2002, Ma et al. 2005, Niewolik et al. 2006). The binding of inositol phosphate may additionally stimulate the catalytic activity of PRKDC (Hanakahi et al. 2000). Other factors, such as polynucleotide kinase (PNK), TDP1 or TDP2 may remove unligatable damaged nucleotides from 5'- and 3'-ends of the DSB, converting them to ligatable substrates (Inamdar et al. 2002, Gomez-Herreros et al. 2013). DNA ligase 4 (LIG4) in complex with XRCC4 (XRCC4:LIG4) is recruited to ligatable DNA DSB ends together with the XLF (NHEJ1) homodimer and DNA polymerases mu (POLM) and/or lambda (POLL) (McElhinny et al. 2000, Hsu et al. 2002, Malu et al. 2002, Ahnesorg et al. 2006, Mahajan et al. 2002, Lee et al. 2004, Fan and Wu 2004). After POLL and/or POLM fill 1- or 2-nucleotide long single strand gaps at aligned DNA DSB ends, XRCC4:LIG4 performs the ligation of broken DNA strands, thus completing NHEJ. The presence of NHEJ1 homodimer facilitates the ligation step, especially at mismatched DSB ends (Tsai et al. 2007). Depending on other types of DNA damage present at DNA DSBs, NHEJ can result in error-free products, produce dsDNA with microdeletions and/or mismatched bases, or result in translocations (reviewed by Povrik et al. 2012).
PIAS4 ProteinQ8N2W9 (Uniprot-TrEMBL)
PIAS4ProteinQ8N2W9 (Uniprot-TrEMBL)
PPP5CProteinP53041 (Uniprot-TrEMBL)
PiMetaboliteCHEBI:43474 (ChEBI)
RAD50 ProteinQ92878 (Uniprot-TrEMBL)
RAD50:MRE11AComplexR-HSA-75161 (Reactome)
RAD50ProteinQ92878 (Uniprot-TrEMBL)
RNF168 ProteinQ8IYW5 (Uniprot-TrEMBL)
RNF168ProteinQ8IYW5 (Uniprot-TrEMBL)
RNF8 ProteinO76064 (Uniprot-TrEMBL)
RNF8:Zn2+ComplexR-HSA-5682540 (Reactome)
ROS MetaboliteCHEBI:26523 (ChEBI)
RPS27A(1-76) ProteinP62979 (Uniprot-TrEMBL)
SMARCA5 ProteinO60264 (Uniprot-TrEMBL)
SUMO1-C93-UBE2I ProteinP63279 (Uniprot-TrEMBL)
SUMO1:C93-UBE2IComplexR-HSA-2993783 (Reactome)
TP53 ProteinP04637 (Uniprot-TrEMBL)
TP53 TetramerComplexR-HSA-3209194 (Reactome)
TP53BP1 ProteinQ12888 (Uniprot-TrEMBL)
TP53BP1ProteinQ12888 (Uniprot-TrEMBL)
UBA52(1-76) ProteinP62987 (Uniprot-TrEMBL)
UBB(1-76) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(153-228) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(77-152) ProteinP0CG47 (Uniprot-TrEMBL)
UBC(1-76) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(153-228) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(229-304) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(305-380) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(381-456) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(457-532) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(533-608) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(609-684) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(77-152) ProteinP0CG48 (Uniprot-TrEMBL)
UBE2I-G97-SUMO1 ProteinP63165 (Uniprot-TrEMBL)
UBE2IProteinP63279 (Uniprot-TrEMBL)
UBE2N ProteinP61088 (Uniprot-TrEMBL)
UBE2N:UBE2V2ComplexR-HSA-5682542 (Reactome)
UBE2V2 ProteinQ15819 (Uniprot-TrEMBL)
UBXN1 ProteinQ04323 (Uniprot-TrEMBL)
UBXN1:K6PolyUb-BRCA1:K6PolyUb-BARD1ComplexR-HSA-9707048 (Reactome)
UBXN1ProteinQ04323 (Uniprot-TrEMBL)
UIMC1 ProteinQ96RL1 (Uniprot-TrEMBL)
UIMC1ProteinQ96RL1 (Uniprot-TrEMBL)
Ub-158-UBB(153-228) ProteinP0CG47 (Uniprot-TrEMBL)
Ub-158-UBC(153-228) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-234-UBC(229-304) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-310-UBC(305-380) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-386-UBC(381-456) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-462-UBC(457-532) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-538-UBC(533-608) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-6-RPS27A(1-76) ProteinP62979 (Uniprot-TrEMBL)
Ub-6-UBA52(1-76) ProteinP62987 (Uniprot-TrEMBL)
Ub-6-UBB(1-76) ProteinP0CG47 (Uniprot-TrEMBL)
Ub-6-UBC(1-76) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-614-UBC(609-684) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-82-UBB(77-152) ProteinP0CG47 (Uniprot-TrEMBL)
Ub-82-UBC(77-152) ProteinP0CG48 (Uniprot-TrEMBL)
UbComplexR-HSA-68524 (Reactome)
WHSC1 ProteinO96028 (Uniprot-TrEMBL)
WHSC1ProteinO96028 (Uniprot-TrEMBL)
WICHComplexR-HSA-5683941 (Reactome)
X-ray MetaboliteCHEBI:30212 (ChEBI)
Zn2+ MetaboliteCHEBI:29105 (ChEBI)
alpha-particle MetaboliteCHEBI:30216 (ChEBI)
beta-particle MetaboliteCHEBI:10545 (ChEBI)
dsDNAR-HSA-5649637 (Reactome)
gamma-ray MetaboliteCHEBI:30212 (ChEBI)
p-5T-MDC1 ProteinQ14676 (Uniprot-TrEMBL)
p-EYA1 ProteinQ99502 (Uniprot-TrEMBL)
p-EYA1-4ComplexR-HSA-5683980 (Reactome)
p-EYA2 ProteinO00167 (Uniprot-TrEMBL)
p-EYA3 ProteinQ99504 (Uniprot-TrEMBL)
p-EYA4 ProteinO95677 (Uniprot-TrEMBL)
p-S,3T-CHEK2ProteinO96017 (Uniprot-TrEMBL)
p-S102-WHSC1 ProteinO96028 (Uniprot-TrEMBL)
p-S1387,S1423,S1524,S1547-BRCA1 ProteinP38398 (Uniprot-TrEMBL)
p-S140,Y143-H2AFX ProteinP16104 (Uniprot-TrEMBL)
p-S140-H2AFX ProteinP16104 (Uniprot-TrEMBL)
p-S15-TP53 ProteinP04637 (Uniprot-TrEMBL)
p-S15-TP53 TetramerComplexR-HSA-349474 (Reactome)
p-S1981,Ac-K3016-ATM ProteinQ13315 (Uniprot-TrEMBL)
p-S1981,Ac-K3016-ATMProteinQ13315 (Uniprot-TrEMBL)
p-S25,S1778-TP53BP1 ProteinQ12888 (Uniprot-TrEMBL)
p-S343-NBN ProteinO60934 (Uniprot-TrEMBL)
p-S406-FAM175A ProteinQ6UWZ7 (Uniprot-TrEMBL)
p-S406-FAM175AProteinQ6UWZ7 (Uniprot-TrEMBL)
p-S456-ABL1ProteinP00519 (Uniprot-TrEMBL)
p-S988,S1387,S1423,S1524,S1547-BRCA1 ProteinP38398 (Uniprot-TrEMBL)
p-T,Y-MAPK8 ProteinP45983 (Uniprot-TrEMBL)
p-T,Y-MAPK8ProteinP45983 (Uniprot-TrEMBL)
p-T4827,SUMO1-HERC2 ProteinO95714 (Uniprot-TrEMBL)
p-T4827-HERC2 ProteinO95714 (Uniprot-TrEMBL)
p-T68-CHEK2 ProteinO96017 (Uniprot-TrEMBL)
p-T68-CHEK2 dimerComplexR-HSA-5683773 (Reactome)
p-T68-CHEK2ProteinO96017 (Uniprot-TrEMBL)
p-T714,T734-BARD1 ProteinQ99728 (Uniprot-TrEMBL)
p-Y142-H2AFX-NucleosomeComplexR-HSA-5683932 (Reactome)
p-Y143-H2AFX ProteinP16104 (Uniprot-TrEMBL)
proton MetaboliteCHEBI:24636 (ChEBI)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ABL1R-HSA-5686578 (Reactome)
ADPArrowR-HSA-5682598 (Reactome)
ADPArrowR-HSA-5682983 (Reactome)
ADPArrowR-HSA-5683425 (Reactome)
ADPArrowR-HSA-5683792 (Reactome)
ADPArrowR-HSA-5683801 (Reactome)
ADPArrowR-HSA-5683930 (Reactome)
ADPArrowR-HSA-5683964 (Reactome)
ADPArrowR-HSA-5686578 (Reactome)
ADPArrowR-HSA-5693536 (Reactome)
ADPArrowR-HSA-5693540 (Reactome)
ADPArrowR-HSA-5693549 (Reactome)
ADPArrowR-HSA-5693551 (Reactome)
ADPArrowR-HSA-5693598 (Reactome)
ADPArrowR-HSA-5693609 (Reactome)
ADPArrowR-HSA-69891 (Reactome)
APBB1R-HSA-5683986 (Reactome)
ATM dimer:KAT5R-HSA-5693612 (Reactome)
ATPR-HSA-5682598 (Reactome)
ATPR-HSA-5682983 (Reactome)
ATPR-HSA-5683425 (Reactome)
ATPR-HSA-5683792 (Reactome)
ATPR-HSA-5683801 (Reactome)
ATPR-HSA-5683930 (Reactome)
ATPR-HSA-5683964 (Reactome)
ATPR-HSA-5686578 (Reactome)
ATPR-HSA-5693536 (Reactome)
ATPR-HSA-5693540 (Reactome)
ATPR-HSA-5693549 (Reactome)
ATPR-HSA-5693551 (Reactome)
ATPR-HSA-5693598 (Reactome)
ATPR-HSA-5693609 (Reactome)
ATPR-HSA-69891 (Reactome)
Ac-CoAR-HSA-5682044 (Reactome)
AdoHcyArrowR-HSA-5682965 (Reactome)
AdoMetR-HSA-5682965 (Reactome)
BABAM1R-HSA-5683385 (Reactome)
BAP1:BARD1ArrowR-HSA-9700998 (Reactome)
BAP1:BARD1TBarR-HSA-9701000 (Reactome)
BAP1R-HSA-9701003 (Reactome)
BARD1R-HSA-5659781 (Reactome)
BRCA1:BARD1:BAP1ArrowR-HSA-9701003 (Reactome)
BRCA1:BARD1:BAP1R-HSA-9700998 (Reactome)
BRCA1:BARD1ArrowR-HSA-5659781 (Reactome)
BRCA1:BARD1R-HSA-5683385 (Reactome)
BRCA1:BARD1R-HSA-9701000 (Reactome)
BRCA1:BARD1R-HSA-9701003 (Reactome)
BRCA1:BARD1mim-catalysisR-HSA-9701000 (Reactome)
BRCA1ArrowR-HSA-9700998 (Reactome)
BRCA1R-HSA-5659781 (Reactome)
BRCC3R-HSA-5683385 (Reactome)
BRER-HSA-5683385 (Reactome)
CHEK2R-HSA-5683735 (Reactome)
CoA-SHArrowR-HSA-5682044 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:TP53BP1
ArrowR-HSA-5683405 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:TP53BP1
ArrowR-HSA-5693566 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:TP53BP1
R-HSA-5683425 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:TP53BP1
mim-catalysisR-HSA-5683425 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:BRCA1-A complex
ArrowR-HSA-5683385 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:BRCA1-A complex
R-HSA-5693551 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:BRCA1-A complex
mim-catalysisR-HSA-5693551 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:UIMC1:p-S406-FAM175A
ArrowR-HSA-5683384 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:UIMC1:p-S406-FAM175A
R-HSA-5683385 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:p-4S,2T-BRCA1-A complex:CHEK2
ArrowR-HSA-5683735 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:p-4S,2T-BRCA1-A complex:CHEK2
R-HSA-69891 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:p-4S,2T-BRCA1-A complex:CHEK2
mim-catalysisR-HSA-69891 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:p-4S,2T-BRCA1-A complex
ArrowR-HSA-5693551 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:p-4S,2T-BRCA1-A complex
ArrowR-HSA-69891 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:p-4S,2T-BRCA1-A complex
R-HSA-5683735 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:p-4S,2T-BRCA1-A complex
R-HSA-5683801 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1:p-5S,2T-BRCA1-A complex
ArrowR-HSA-5683801 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1
ArrowR-HSA-5683425 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1
R-HSA-5683384 (Reactome)
DNA

DNA

DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4:p-S25,S1778-TP53BP1
R-HSA-5683405 (Reactome)
DNA DSB:p-MRN:p-S1981,Ac-K3016-ATM:KAT5ArrowR-HSA-5693598 (Reactome)
DNA DSB:p-MRN:p-S1981,Ac-K3016-ATM:KAT5R-HSA-5693602 (Reactome)
DNA DSBs:MRN:Ac-K3016-ATM dimer:KAT5ArrowR-HSA-5682044 (Reactome)
DNA DSBs:MRN:Ac-K3016-ATM dimer:KAT5R-HSA-5693540 (Reactome)
DNA DSBs:MRN:Ac-K3016-ATM dimer:KAT5mim-catalysisR-HSA-5693540 (Reactome)
DNA DSBs:MRN:p-S1981,Ac-K3016-ATM:KAT5ArrowR-HSA-5693540 (Reactome)
DNA DSBs:MRN:p-S1981,Ac-K3016-ATM:KAT5R-HSA-5693598 (Reactome)
DNA DSBs:MRN:p-S1981,Ac-K3016-ATM:KAT5mim-catalysisR-HSA-5693598 (Reactome)
DNA DSBs:p-MRN:p-S-1981,Ac-K3016-ATM:KAT5:p-Y142-H2AFX-NucleosomeArrowR-HSA-5693602 (Reactome)
DNA DSBs:p-MRN:p-S-1981,Ac-K3016-ATM:KAT5:p-Y142-H2AFX-NucleosomeR-HSA-5693549 (Reactome)
DNA DSBs:p-MRN:p-S-1981,Ac-K3016-ATM:KAT5:p-Y142-H2AFX-Nucleosomemim-catalysisR-HSA-5693549 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4ArrowR-HSA-5682858 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4R-HSA-5683077 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4mim-catalysisR-HSA-5683077 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4ArrowR-HSA-5683077 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:K63PolyUb-K14,K16,p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4R-HSA-5693566 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139,Y142-H2AFX-Nucleosome:APBB1:p-T,Y-MAPK8ArrowR-HSA-5683986 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139,Y142-H2AFX-NucleosomeArrowR-HSA-5693549 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139,Y142-H2AFX-NucleosomeR-HSA-5683967 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139,Y142-H2AFX-NucleosomeR-HSA-5683986 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139,Y142-H2AFX-Nucleosomemim-catalysisR-HSA-5683964 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:HERC2:PIAS4ArrowR-HSA-5682586 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:HERC2:PIAS4R-HSA-5682598 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:HERC2:PIAS4mim-catalysisR-HSA-5682598 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:PIAS4ArrowR-HSA-5682607 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:PIAS4R-HSA-5682629 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:PIAS4ArrowR-HSA-5682629 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:PIAS4R-HSA-5682863 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4ArrowR-HSA-5682863 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4R-HSA-5682858 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:SUMO1:p-T4827-HERC2:UBE2N:UBE2V2:RNF168:PIAS4mim-catalysisR-HSA-5682858 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:p-T4827-HERC2:PIAS4ArrowR-HSA-5682598 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:p-T4827-HERC2:PIAS4R-HSA-5682607 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+:p-T4827-HERC2:PIAS4mim-catalysisR-HSA-5682607 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+ArrowR-HSA-5682588 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1:RNF8:Zn2+R-HSA-5682586 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1ArrowR-HSA-5682992 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:KDM4A,B:p-S102-WHSC1R-HSA-5682588 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1ArrowR-HSA-5682965 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX,Me2K21-HIST1H4A-Nucleosome:p-5T-MDC1:p-S102-WHSC1R-HSA-5682992 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-Nucleosome:MDC1ArrowR-HSA-5693583 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-Nucleosome:MDC1R-HSA-5693536 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-Nucleosome:MDC1mim-catalysisR-HSA-5693536 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-Nucleosome:p-5T-MDC1:WHSC1ArrowR-HSA-5682967 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-Nucleosome:p-5T-MDC1:WHSC1R-HSA-5682983 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-Nucleosome:p-5T-MDC1:WHSC1mim-catalysisR-HSA-5682983 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-Nucleosome:p-5T-MDC1:p-S102-WHSC1ArrowR-HSA-5682983 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-Nucleosome:p-5T-MDC1:p-S102-WHSC1R-HSA-5682965 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-Nucleosome:p-5T-MDC1:p-S102-WHSC1mim-catalysisR-HSA-5682965 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-Nucleosome:p-5T-MDC1ArrowR-HSA-5693536 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-Nucleosome:p-5T-MDC1R-HSA-5682967 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-NucleosomeArrowR-HSA-5683967 (Reactome)
DNA DSBs:p-MRN:p-S1981,Ac-K3016-ATM:KAT5:p-S139-H2AFX-NucleosomeR-HSA-5693583 (Reactome)
DNA DSBs:MRN:ATM dimer:KAT5ArrowR-HSA-5693612 (Reactome)
DNA DSBs:MRN:ATM dimer:KAT5R-HSA-5682044 (Reactome)
DNA DSBs:MRN:ATM dimer:KAT5mim-catalysisR-HSA-5682044 (Reactome)
DNA DSBs:MRNArrowR-HSA-3785768 (Reactome)
DNA DSBs:MRNR-HSA-5693612 (Reactome)
DNA double-strand break endsArrowR-HSA-3785704 (Reactome)
DNA double-strand break endsR-HSA-3785768 (Reactome)
DSB inducing agentsR-HSA-3785704 (Reactome)
EYA1-4R-HSA-5683964 (Reactome)
H2AFX-NucleosomeR-HSA-5683930 (Reactome)
H2OR-HSA-5683405 (Reactome)
H2OR-HSA-5683967 (Reactome)
HERC2R-HSA-5682586 (Reactome)
K48PolyUb-KDM4A,BArrowR-HSA-5683077 (Reactome)
K6-UbR-HSA-9701000 (Reactome)
K6PolyUb-BRCA1:K6PolyUb-BARD1ArrowR-HSA-9701000 (Reactome)
K6PolyUb-BRCA1:K6PolyUb-BARD1R-HSA-9707051 (Reactome)
KDM4A,BR-HSA-5682992 (Reactome)
KPNA2ArrowR-HSA-5684006 (Reactome)
KPNA2R-HSA-5684008 (Reactome)
MDC1R-HSA-5693583 (Reactome)
MRE11AR-HSA-75172 (Reactome)
MRNArrowR-HSA-75174 (Reactome)
MRNR-HSA-3785768 (Reactome)
NBN:KPNA2ArrowR-HSA-5684008 (Reactome)
NBN:KPNA2R-HSA-5684006 (Reactome)
NBNArrowR-HSA-5684006 (Reactome)
NBNR-HSA-5684008 (Reactome)
NBNR-HSA-75174 (Reactome)
PIAS4R-HSA-5682586 (Reactome)
PPP5Cmim-catalysisR-HSA-5683405 (Reactome)
PiArrowR-HSA-5683405 (Reactome)
PiArrowR-HSA-5683967 (Reactome)
R-HSA-3785704 (Reactome) Reactive oxygen species (ROS) induce DNA double strand breaks (DSBs) (Yu and Anderson 1997) in cells undergoing oxidative stress. In addition to ROS, DSBs can also be directly generated by ionizing radiation. Agents that interfere with the progression of replication forks, such as topoisomerase poisons used in chemotherapy, induce DSBs indirectly (Curtin 2012).
R-HSA-3785768 (Reactome) The MRN complex (MRE11A:RAD50:NBN) binds to DNA ends found at double strand breaks (DNA DSBs) (Lee and Paull 2005). In budding yeast, the Mre11:Rad50:Xrs2 complex, homologous to human MRN, rapidly localizes to DNA breaks (Shroff et al. 2004, Lisby et al. 2004).
R-HSA-5659781 (Reactome) BRCA1 and BARD1 form a stable heterodimer through an interaction between sequences encompassing their N-terminal RING domains (Wu et al. 1996, Brzovic et al. 2001). In addition to the RING domains, BRCA1 and BARD1 both have tandem BRCT motifs at their C termini. The central region of BARD1 contains ankyrin repeats (Wu et al. 1996). Formation of BRCA1:BARD1 heterodimers is necessary for the repair of double strand DNA breaks by homologous recombination (Westermark et al. 2003, Laufer et al. 2007), BRCA1-mediated tumor suppression (Shakya et al. 2008) and normal development (McCarthy et al. 2003). Tumorigenic BRCA1 mutations that abolish the formation of BRCA1:BARD1 heterodimers have been reported (Wu et al. 1996, Brzovic et al. 2001).
R-HSA-5682044 (Reactome) The histone acetyltransferase Tip60 (KAT5), in addition to forming a histone acetyltransferase complex with NuA4, forms another complex with ATM dimers. The ATM dimer:KAT5 complex is formed in the absence of DNA damage, but the acetyltransferase activity of KAT5 is activated by double strand DNA breaks (DNA DSBs) (Sun et al. 2005). In response to DNA DSBs, the MRN complex targets KAT5 to chromatin, where KAT5 associates with histone H3 trimethylated on lysine 10 (commonly known as H3K9me3 mark). Besides the MRN complex, the ability of KAT5 to access H3K9me3 depends on the DNA damage-induced displacement of HP1beta (CBX1) from H3K9me3 (Ayoub et al. 2008). Binding to H3K9me3 activates the acetyltransferase activity of KAT5 (Sun et al. 2009). KAT5 acetylates ATM on lysine residue K3016 in the highly conserved C-terminal FATC domain of ATM. ATM acetylation is needed for the activation of ATM kinase activity in response to DNA damage (Sun et al. 2007).
R-HSA-5682586 (Reactome) PIAS4, an E3 SUMO ligase, is recruited to DNA double strand breaks (DSBs) via an unknown mechanism that requires a DNA-binding SAP domain of PIAS4 (Galanty et al. 2009). HERC2, an E3 ubiquitin ligase and a PIAS4 target, is recruited to DNA DSBs probably through its interaction with ATM (Bekker-Jensen et al. 2010).
R-HSA-5682588 (Reactome) RNF8 is an E3 ubiquitin ligase that, through its FHA domain, binds MDC1 phosphorylated at T-Q-X-F (Thr-Gln-X-Phe) sites by ATM. The phosphorylation of at least four T-Q-X-F sites of MDC1 (T699, T719, T752, T765) increases RNF8 binding to MDC1 (Kolas et al. 2007). RNF8 functions as a homodimer formed by interactions of the RNF8 coiled-coil domains (Cambell et al. 2012).
R-HSA-5682598 (Reactome) ATM phosphorylates HERC2 on threonine residue T4827. This threonine residue may also be phosphorylated by ATR and DNA-PKcs (PRKDC) (Bekker-Jensen et al. 2010).
R-HSA-5682607 (Reactome) PIAS4 SUMOylates HERC2 at an unknown lysine residue with SUMO1. ATM activity is needed for PIAS4-mediated HERC2 SUMOylation and it is therefore plausible that the ATM-mediated phosphorylation of HERC2 precedes HERC2 SUMOylation. Once SUMOylated, the ZZ domain of HERC2 interacts with the attached SUMO1 group, probably leading to a conformational change that allows binding of phosphorylated HERC2 to RNF8 (Bekker-Jensen et al. 2010, Danielsen et al. 2012).
R-HSA-5682629 (Reactome) HERC2 facilitates binding of the E2 ubiquitin conjugase dimer UBE2N:UBE2V2 (UBC13:MMS2) to RNF8 at DNA double strand breaks (DSBs) (Kolas et al. 2007, Bekker-Jensen et al. 2010, Campbell et al. 2012).
R-HSA-5682858 (Reactome) RNF8 and RNF168 E3 ubiquitin ligases work in concert with the E2 ubiquitin ligase complex UBE2N:UBE2V2 (UBC13:MMS2) to polyubiquitinate histone H2AFX (H2AX) on lysine residues K14 and K16 (commonly labeled in literature as K13 and K15) via ubiquitin lysine K63-directed cross-linking (Mattiroli et al. 2012). The scenario best supported by experimental evidence is that RNF8 initiates ubiquitination of H2AFX, followed by RNF168 binding to and extending ubiquitin chains ligated by RNF8 (Huen et al. 2007, Mailand et al. 2007, Stewart et al. 2009, Doil et al. 2009, Campbell et al. 2012).
R-HSA-5682863 (Reactome) The recruitment of RNF168, an E3 ubiquitin ligase, to DNA double strand breaks (DSBs) is facilitated by the interaction of RNF168 with the UBE2N:UBE2V2 (UBC13:MMS2) complex, which serves as the E2 ubiquitin ligase for both RNF8 and RNF168. In addition, because the two RNF168 ubiquitin interaction motifs (UIMs) are needed for the accumulation of RNF168 at DSBs, the initial ubiquitination of H2AFX (H2AX) histones by RNF8 is likely involved in RNF168 recruitment to DSBs. Inactivating mutations in both RNF168 alleles are responsible for the RIDDLE (radiosensitivity, immunodeficiency, dysmorphic features and learning difficulties) syndrome (Stewart et al. 2009, Doil et al. 2009, Bekker-Jensen et al. 2010, Campbell et al. 2012, Mattiroli et al. 2012).
R-HSA-5682965 (Reactome) WHSC1 (MMSET) histone methyltransferase dimethylates histone H4 (HIST1H4A) on lysine residue K21 (commonly labeled in literature as K20), locally increasing the concentration of the H4K20Me2 mark. H4K20Me2 (Me2-K21-HIST1H4A) serves as a binding site for TP53BP1 (53BP1). The recruitment of WHSC1 to DNA double strand breaks (DSBs) is independent of RNF8 and RNF168, but the catalytic activity of all three proteins is necessary for binding and accumulation of TP53BP1 at DSBs (Pei et al. 2011).
R-HSA-5682967 (Reactome) The histone methyltransferase WHSC1 (MMSET) is recruited to DNA double strand breaks (DSBs) likely through its interaction with histones and activated ATM (Pei et al. 2011).
R-HSA-5682983 (Reactome) Activated ATM phosphorylates WHSC1 (MMSET) on serine residue S102 (Matsuoka et al. 2007). The BRCT domain of MDC1 binds phosphorylated WHSC1, which is necessary for retention of WHSC1 at DNA double strand break (DSB) sites (Pei et al. 2011).
R-HSA-5682992 (Reactome) Histone demethylases KDM4A (JMJD2A) and KDM4B (JMJD2B) bind H4K20Me2 (Me2-K21-HIST1H4A) with a higher affinity than TP53BP1 (53BP1), thereby blocking TP53BP1 recruitment to DNA double strand breaks (DSBs). Demethylation of HIST1H4A (histone H4) by KDM4A or KDM4B is not involved in the inhibition of TP53BP1 binding (Mallette et al. 2012).
R-HSA-5683077 (Reactome) RNF8 and RNF168 polyubiquitinate KDM4A and KDM4B via ubiquitin lysine K48 cross-linking, leading to dissociation of ubiquitinated KDM4A and KDM4B from H4K20Me2 (Me2-K21-HIST1H4A) and subsequent proteasome-mediated degradation of KDM4A and KDM4B (Mallette et al. 2012).
R-HSA-5683384 (Reactome) UIMC1 (RAP80) is recruited to DNA double strand breaks (DSBs) through the interaction of its UIM (ubiquitin interaction motif) region with H2AFX (H2AX) ubiquitinated by RNF8 and RNF168 (Huen et al. 2007, Wang and Elledge 2007, Kolas et al. 2007, Mailand et al. 2007). A simultaneous interaction with FAM175A (Abraxas) through the AIR (Abraxas-interaction region) domain of UIMC1 facilitates UIMC1 binding to DNA DSBs. The interaction between UIMC1 and FAM175A and their loading to DNA DSBs is independent of BRCA1 (Wang et al. 2007, Wang and Elledge 2007).
R-HSA-5683385 (Reactome) A DNA damage-independent phosphorylation of FAM175A (Abraxas) serine residue S406 creates a pS-X-X-F (phospho-Ser-X-X-Phe) motif that binds BRCT repeats of BRCA1. The BRCA1 cancer predisposing mutation M1775R (Met1775Arg) inhibits BRCA1 binding to FAM175A. FAM175A interaction with UIMC1 (RAP80) enables BRCA1 recruitment to DNA double strand breaks (DSBs) (Wang et al. 2007). In addition to BRCA1, FAM175A also interacts with BRCC3 (BRCC36) (Wang et al. 2007, Hu et al. 2011) and BABAM1 (MERIT40, NBA1) (Vikrant et al. 2014). BABAM1 simultaneously interacts with BRE (BRCC45) (Hu et al. 2011). Together, BRCA1, BARD1, UIMC1, FAM175A, BRCC36, BRE and BABAM1 form the so-called BRCA1-A complex at DNA DSBs (Wang et al. 2009).
R-HSA-5683405 (Reactome) PPP5C-mediated dephosphorylation of TP53BP1 serine residues S25 and S1778 contributes to dissociation of TP53BP1 from DNA doubles strand break (DSB) sites and termination of DSB repair (Kang et al. 2009).
R-HSA-5683425 (Reactome) Activated ATM hyper-phosphorylates TP53BP1 (53BP1) at multiple residues in response to DNA damage (Fernandez-Capetillo et al. 2002, Ward et al. 2003, Jowsey et al. 2007). Phosphorylation of TP53BP1 serine residues S25 and S1778 is important for the retention of TP53BP1 at DNA double strand break (DSB) sites (Kang et al. 2009).
R-HSA-5683735 (Reactome) CHEK2 (CHK2, Cds1) is recruited to DNA double strand breaks (DSBs) mainly through its interaction with TP53BP1 (53BP1) (Wang et al. 2002), but BRCA1 also contributes to CHEK2 recruitment (Wilson and Stern 2008).
R-HSA-5683774 (Reactome) ATM-mediated phosphorylation of CHEK2 (CHK2, Cds1) on threonine residue T68 promotes formation of transitional CHEK2 homodimers primarily through intermolecular interactions of FHA domains and phospho-T68 residues of two CHEK2 protomers (Cai et al. 2009).
R-HSA-5683792 (Reactome) Upon dimerization, p-T68-CHEK2 protomers trans-autophosphorylate on serine residue S379 (Lovly et al. 2008) and threonine residues T383 and T387 (Lee et al. 2001). Autophosphorylation leads to dissociation of CHEK2 dimers into active CHEK2 monomers (Cai et al. 2009).
R-HSA-5683801 (Reactome) Activated CHEK2 phosphorylates BRCA1 on serine residue S988 (Lee et al. 2000), but does not phosphorylate BARD1, the heterodimerization partner of BRCA1 (Kim et al. 2006).
R-HSA-5683930 (Reactome) Under basal conditions, histone H2AFX (H2AX) is phosphorylated on tyrosine residue Y142 by the WICH complex composed of BAZ1B (WSTF) and SMARCA5 (SNF2H) (Xiao et al. 2009).
R-HSA-5683964 (Reactome) EYA tyrosine protein phosphatases (EYA1, EYA2 and EYA3) play an important role in repair of DNA double strand breaks (DSBs) (Cook et al. 2009, Krishnan et al. 2009). The role of EYA4 in the context of DNA damage has not been examined but is plausible based on sequence similarity. EYA3 is phosphorylated by activated ATM on serine residue S266 (labeled as S219 by Cook et al. 2009) and this phosphorylation is important for the catalytic activity of EYA3 (Cook et al. 2009). Although EYA1, EYA2 and EYA4 possess several sites that match the ATM consensus SQ/TQ sequence, their phosphorylation by ATM has not been examined
R-HSA-5683967 (Reactome) In response to DNA damage, EYA tyrosine protein phosphatases (EYA1, EYA2, EYA3 and, by sequence similarity, EYA4) dephosphorylate tyrosine Y142 of H2AFX, which allows the progression of DNA repair (Cook et al. 2009, Krishnan et al. 2009). It is possible that different EYA proteins heterodimerize in different cell types - the existence of a functional EYA1:EYA3 heterodimer in human embryonic kidney 293 (HEK293) cells is likely (Cook et al. 2009).

MCPH1 recognizes and binds diphosphorylated H2AFX, but the exact biological role of this interaction has not been elucidated (Singh et al. 2012).

R-HSA-5683986 (Reactome) In the absence of sufficient EYA1-4 activity, APBB1 (FE65) binds diphosphorylated H2AFX and recruits MAPK8 (JNK1) to H2AFX. This triggers pro-apoptotic signaling and targets the affected cell for apoptosis instead of DNA repair (Cook et al. 2009).
R-HSA-5684006 (Reactome) KPNA2 facilitates the translocation of NBN (NBS1) to the nucleus, thereby making NBN available for the formation of MRN complexes in response to DNA double strand breaks (DSBs) (Tseng et al. 2005).
R-HSA-5684008 (Reactome) In the cytosol, NBN (NBS1) binds KPNA2, an importin alpha family member. The armadillo repeats of KPNA2 and a nuclear localization signal (NLS) of NBN are involved in the interaction (Tseng et al. 2005).
R-HSA-5686578 (Reactome) ATM, activated in response to DNA damage in the form of double strand breaks, phosphorylates ABL1 (c-ABL) on serine residue S456, resulting in the activation of kinase activity of ABL1 (Baskaran et al. 1997).
R-HSA-5693536 (Reactome) The function of MDC1 in recruiting and retaining DNA repair proteins at the sites of DNA damage (Xu and Stern 2003, Stewart et al. 2003) is promoted by the ATM-mediated phosphorylation of MDC1 (Liu et al. 2012). Phosphorylation of MDC1 (NFBD1) by ATM at threonine residue T4 stabilizes otherwise unstable MDC1 homodimers by enabling in trans interaction of MDC1 FHA domains with phosphorylated N-terminal threonine residues (Goldberg et al. 2003, Liu et al. 2012). ATM also phosphorylates MDC1 on at least four threonine residues that match the consensus RNF8-binding sequence T-Q-X-F: T699, T719, T752, T765 (Kolas et al. 2007). Binding of the ubiquitin ligase RNF8 to ATM phosphorylated MDC1 is necessary for the recruitment of TP53BP1 and BRCA1 to DNA double strand break (DSB) sites.
R-HSA-5693540 (Reactome) MRN promotes dissociation of ATM dimers to ATM monomers which is accompanied by ATM trans-autophosphorylation on serine residue S1981 (Bakkenist et al. 2003, Du et al. 2014). ATM autophosphorylation at serine residues S367 and S1893 is also implicated in ATM activation (Kozlov et al. 2006). Dissociation of ATM dimers requires the ATP-dependent DNA-helicase activity of the MRN subunit RAD50 (Lee and Paull 2005). KAT5 (Tip60) mediated acetylation of ATM dimers at lysine K3016 is a prerequisite for ATM kinase activity (Sun et al. 2007). Upon the dissociation of ATM dimers induced by DNA double strand breaks (DSBs), a fraction of activated ATM is retained at DSB sites, co-localizing with the MRN complex (Andegeko et al. 2001, Uziel et al. 2003) at ionizing radiation-induced foci (IRIF). MRN facilitates the binding of a portion of ATM substrates to ATM (Lee and Paull 2004).

After the DNA double strand breaks (DSBs) are repaired, ATM is dephosphorylated by an unidentified PP2A phosphatase complex, leading to dimer reformation (Goodarzi et al. 2004).

R-HSA-5693549 (Reactome) ATM phosphorylates histone H2AFX (H2AX) on serine S139 within 1-3 minutes of double strand break (DSB) formation, producing gamma-H2AX (gamma-H2AFX) (Rogakou et al.1998, Burma et al. 2001). Basal phosphorylation of H2AFX on tyrosine residue Y142 contributes to successful S139 phosphorylation and results in a transient diphosphorylated H2AFX (Cook et al. 2009). Gamma-H2AFX localizes to a region of about 2 Mbp surrounding the site of the DSB (Rogakou et al.1998), playing an essential role in the stable recruitment of other repair proteins and formation of ionizing radiation-induced foci (IRIF) at DSB sites (Paull et al. 2000, Celeste et al. 2002, Celeste et al. 2003, Stewart et al., 2003). Recruitment of MDC1 to gamma-H2AFX may be important for the sustained phosphorylation of H2AFX at DSBs (Stewart et al. 2003).
R-HSA-5693551 (Reactome) ATM phosphorylates BRCA1 at serine residues S1387, S1423, S1524 and S1547 (Cortez et al. 1999, Gatei et al. 2000). At least a fraction of these sites and some additional BRCA1 SQ/TQ sites can also be phosphorylated by ATR (Tibbetts et al. 2000). ATM also phosphorylates BARD1, the heterodimerization partner of BRCA1, at threonine residues T714 and T734 (Kim et al. 2006).
R-HSA-5693566 (Reactome) RNF8- and RNF168-mediated removal of KDM4A and KDM4B from H4K20Me2 (Me2-K21-HIST1H4A) enables TP53BP1 (53BP1) recruitment to WHSC1-methylated histone H4K20Me2 at DNA double strand breaks (DSBs) (Pei et al. 2011, Mallette et al. 2012)
R-HSA-5693583 (Reactome) Recruitment of MDC1 to nuclear foci (IRIF - ionizing radiation induced foci) is mediated by phosphorylated H2AFX (gamma-H2AX, gamma-H2AFX). Once bound, MDC1 promotes sustained phosphorylation of H2AFX by enhancing the interaction between ATM and H2AFX. The BRCT domain of MDC1 binds gamma-H2AFX, while the FHA domain of MDC1 interacts with ATM. Thus, ATM, H2AFX and MDC1 form a positive feedback loop that amplifies downstream ATM signaling and phosphorylation of other ATM targets (Goldberg et al. 2003, Stewart et al. 2003, Stucki et al. 2005, Lou et al. 2006). MDC1 also binds NBN (NBS1) component of the MRN complex, serving as a molecular linker between the MRN complex and the ATM-phosphorylated H2AFX. Although the initial recruitment of the MRN complex to DNA double strand breaks (DSBs) and ATM-mediated phosphorylation of NBN do not depend on MDC1, MDC1 is necessary for the retention of the MRN complex at DSB sites (Lukas et al. 2004).
R-HSA-5693598 (Reactome) NSB1 (NBN) is a component of the MRN (MRE11:RAD50:NBN) complex which acts early in homologous recombination repair (HRR) during recognition and resection of double-strand breaks (DSBs). ATM-mediated phosphorylation of NBN at serine residue S343 is required for activation of the S-phase checkpoint in response to ionizing radiation (IR), ATM-dependent activation of CHK2 and cell survival after exposure to IR (Lim et al. 2000, Gatei et al. 2000, Lee and Paull 2004). The phosphorylation of NBN by ATM may be enhanced by the presence of BRCA1 (Foray et al. 2003).
R-HSA-5693602 (Reactome) H2AFX (also known as H2AX) is a variant of histone H2A and is present in a portion of nucleosomes. While H2AFX-containing nucleosomes (H2AFX-nucleosomes) are not specifically recruited to the sites of DNA double strand breaks (DSBs), ATM recognizes the carboxyl tails of H2AFX on H2AFX-nucleosomes in the vicinity of DSBs as a suitable phosphorylation substrate. The phosphorylated H2AFX (gamma-H2AX) plays a crucial role in the retention of DNA repair proteins at DSBs, manifested in the formation of ionizing radiation-induced foci (Paull et al. 2000, Celeste et al. 2002, Redon et al. 2002, Celeste et al. 2003, Fernandez-Capetillo et al. 2004).
R-HSA-5693609 (Reactome) In response to DNA double strand breaks, serine at position 15 of the TP53 (p53) tumor suppressor protein is rapidly phosphorylated by the ATM kinase. This serves to stabilize the p53 protein. A rise in the levels of the p53 protein induces the expression of p21 cyclin-dependent kinase inhibitor. This prevents the normal progression from G1 to S phase, thus providing a check on replication of damaged DNA (Banin et al. 1998, Canman et al. 1998, Khanna et al. 1998).
R-HSA-5693612 (Reactome) Activation of ATM kinase in response to DNA damage in the form of DNA double strand breaks (DSBs) requires association of ATM dimers with the MRN complex bound to DNA ends. MRN subunit RAD50 is essential for ATM dimer binding (Lee and Paull 2005, Wu et al. 2007). ATM dimer exists in a preformed complex with KAT5 (Tip60) histone acetyltransferase (Sun et al. 2005).
R-HSA-69891 (Reactome) Activated ATM phosphorylates CHEK2 (CHK2, Cds1) on threonine residue T68 (Matsuoka et al. 2000, Melchionna et al. 2000). The presence of BRCA1 and TP53BP1 positively regulates ATM-mediated phosphorylation of CHEK2 (Wang et al. 2002, Foray et al. 2003). ATM-mediated phosphorylation causes formation of CHEK2 dimers and dissociation of CHEK2 from chromatin (Li and Stern 2005).
R-HSA-75172 (Reactome) MRE11 has both manganese dependent ssDNA 3'->5' exonuclease and endonuclease activities. MRE11 associates with RAD50, resulting in increased 3'-5' exonuclease activity (Dolganov et al. 1996, Paull and Gellert 1998).
R-HSA-75174 (Reactome) NBN (NBS1) binds MRE11A:RAD50 complex to form the evolutionarily conserved MRN complex (Trujillo et al. 1998).
R-HSA-9700998 (Reactome) Binding of BAP1 to the BRCA1:BARD1 heterodimer disrupts the BRCA1:BARD1 association and consequently inhibits its E3 ubiquitin ligase activity. Downregulation of BAP1 expression results in the hypersensitivity of cells to ionizing radiation and in retardation of S phase progression, suggesting that BAP1 coordinates the enzymatic activity of the BRCA1:BARD1 complex during DNA double strand break response and during cell cycle (Nishikawa et al. 2009). While BAP1 is a deubiquitinating enzyme and may deubiquitinate some BRCA1:BARD1 substrates, it does not deubiquitinate autoubiquitinated BRCA1 and BARD1 (Mallery et al. 2002, Nishikawa et al. 2009). A catalytically-inactive mutant of BAP1, BAP1 C91S, is still able to inhibit BRCA1:BARD1-mediated ubiquitination, implying that BAP1 primarily regulates the action of the BRCA1:BARD1 complex by disrupting it (Nishikawa et al. 2009).
R-HSA-9701000 (Reactome) In vivo, most BRCA1 and BARD1 polypeptides exist in the form of the BRCA1:BARD1 heterodimer. Although BRCA1 and BARD1 each harbor a RING domain (Miki et al. 1994; Wu et al. 1996), only the RING domain of BRCA1 is known to associate functionally with E2 ubiquitin conjugating enzymes (Brzovic et al. 2001). In vitro, BRCA1 alone exhibits a residual E3 ligase activity that is dramatically enhanced upon heterodimerization with BARD1 (Hashizume et al. 2001, Chen et al. 2002, Mallery et al. 2002, Wu-Baer et al. 2003, Xia et al. 2003). In addition to extensive auto-polyubiquitination on multiple unidentified lysine residues of both BRCA1 and BARD1, the heterodimer also mono- and/or poly-ubiquitinates a number of other substrates, including the H2A histones (Ohta et al. 2011, Kalb et al. 2014). Depending on the associated E2 conjugase, BRCA1:BARD1 can generate polyubiquitin chains of various linkages, including K6-linked ubiquitin polymers, that are not typically involved in proteasomal degradation (Wu-Baer et al. 2003, Nishikawa et al. 2004, Christensen et al. 2007). Autoubiquitination has been reported to increase the enzymatic activity of the BRCA1:BARD1 complex and may promote DNA damage response signaling (Mallery et al. 2002). In contrast, its E3 ligase activity can be suppressed by association with regulatory factors such as the BAP1 ubiquitin hydrolase (Nishikawa et al. 2009) or the UBXN1 ubiquitin-binding protein (Wu-Baer et al. 2010). The cancer-predisposing BRCA1 missense mutation C61G prevents binding to BARD1 and thereby impairs the ubiquitin ligase activity of BRCA1 (Wu et al. 1996, Ransburgh et al. 2010, Brzovic et al. 2001, Mallery et al. 2002, Wu-Baer et al. 2003). Studies in mouse cells have shown that the ubiquitin ligase activity of BRCA1 is not essential for its role in tumor suppression (Shakya et al. 2011) or double-strand DNA break repair by homologous recombination.
R-HSA-9701003 (Reactome) BAP1 binds to the BRCA1:BARD1 complex mainly through interaction with BARD1, although BRCA1 enhances the interaction. Amino acid residues 182-365 of BAP1 bind to the RING domain of BARD1, but outside of the BRCA1-binding site in the BARD1 RING domain (Nishikawa et al. 2009).
R-HSA-9707051 (Reactome) The UBXN1 polypeptide can bind to and suppress the E3 ligase activity of autoubiquitinated BRCA1/BARD1 heterodimers. UBXN1 recognizes autoubiquitinated heterodimers through a bipartite interaction in which its UBA domain binds the conjugated K6-linked polyubiquitin chains of BRCA1:BARD1 while its C-terminal region binds BRCA1:BARD1 in a ubiquitin-independent manner.
RAD50:MRE11AArrowR-HSA-75172 (Reactome)
RAD50:MRE11AR-HSA-75174 (Reactome)
RAD50R-HSA-75172 (Reactome)
RNF168R-HSA-5682863 (Reactome)
RNF8:Zn2+R-HSA-5682588 (Reactome)
SUMO1:C93-UBE2IR-HSA-5682607 (Reactome)
TP53 TetramerR-HSA-5693609 (Reactome)
TP53BP1R-HSA-5693566 (Reactome)
UBE2IArrowR-HSA-5682607 (Reactome)
UBE2N:UBE2V2R-HSA-5682629 (Reactome)
UBXN1:K6PolyUb-BRCA1:K6PolyUb-BARD1ArrowR-HSA-9707051 (Reactome)
UBXN1R-HSA-9707051 (Reactome)
UIMC1R-HSA-5683384 (Reactome)
UbR-HSA-5682858 (Reactome)
UbR-HSA-5683077 (Reactome)
WHSC1R-HSA-5682967 (Reactome)
WICHmim-catalysisR-HSA-5683930 (Reactome)
dsDNAR-HSA-3785704 (Reactome)
p-EYA1-4ArrowR-HSA-5683964 (Reactome)
p-EYA1-4mim-catalysisR-HSA-5683967 (Reactome)
p-S,3T-CHEK2ArrowR-HSA-5683792 (Reactome)
p-S,3T-CHEK2mim-catalysisR-HSA-5683801 (Reactome)
p-S15-TP53 TetramerArrowR-HSA-5693609 (Reactome)
p-S1981,Ac-K3016-ATMArrowR-HSA-5693540 (Reactome)
p-S1981,Ac-K3016-ATMmim-catalysisR-HSA-5686578 (Reactome)
p-S1981,Ac-K3016-ATMmim-catalysisR-HSA-5693609 (Reactome)
p-S406-FAM175AR-HSA-5683384 (Reactome)
p-S456-ABL1ArrowR-HSA-5686578 (Reactome)
p-T,Y-MAPK8R-HSA-5683986 (Reactome)
p-T68-CHEK2 dimerArrowR-HSA-5683774 (Reactome)
p-T68-CHEK2 dimerR-HSA-5683792 (Reactome)
p-T68-CHEK2 dimermim-catalysisR-HSA-5683792 (Reactome)
p-T68-CHEK2ArrowR-HSA-69891 (Reactome)
p-T68-CHEK2R-HSA-5683774 (Reactome)
p-Y142-H2AFX-NucleosomeArrowR-HSA-5683930 (Reactome)
p-Y142-H2AFX-NucleosomeR-HSA-5693602 (Reactome)
Personal tools