Striated Muscle Contraction (Homo sapiens)

From WikiPathways

Jump to: navigation, search
2-51111cytosolTNNC1 Calcium BoundSarcomere ProteinComplexTNNT3 ATPTNNT2 TNNT2 TNNI1 MYH8 MYBPC2 ACTN3 DMD MYH3 MYH6 alpha Actin Chain NEB TMOD1 TMOD1 MYBPC1 TMOD4 VIM ATP TPM3 TNNT3 MYL2 MYL4 TTN TPM1 TNNT1 TTN TNNI3 MYBPC3 VIM ADP:Calcium BoundSarcomere ProteinComplexTPM4 MYL2 TNNI3 ACTN2 TCAP TMOD1 TMOD4 TNNC2 Ca2+ MYL4 TNNI2 Inactive SarcomereProtein ComplexTPM3 ACTN3 MYBPC3 MYL4 DMD TTN ATP:Calcium BoundSarcomere ProteinComplexTNNT2 MYL2 MYH8 ADP TNNI1 ADPTNNI2 MYBPC3 ACTN3 TMOD1 DMD MYBPC1 TPM4 TTN MYL1 MYH6 TNNC1 TCAP TMOD3 MYL4 ACTN2 MYH6 NEB TPM3 MYL3 DES TNNC2 TNNI3 TPM4 NEB MYH8 DES TCAP alpha Actin Chain TPM1 MYL3 Ca2+ TMOD2 TNNT2 TNNC1 TNNT1 DES MYBPC1 MYL4 MYBPC2 ACTN3 TMOD3 Ca2+ MYL3 TNNC2 TNNC2 TNNI3 MYH3 TPM3 TCAP MYH3 TNNT1 TPM1 MYL2 TNNT1 MYL1 MYBPC1 MYH6 Myosin ComplexTPM2 MYBPC2 TMOD4 MYL1 ACTN2 alpha Actin Chain MYL3 MYL1 alpha Actin Chain MYH8 TPM2 DMD MYL2 VIM TPM1 TMOD4 MYH6 ACTN2 MYH8 DES MYL1 MYH3 MYBPC3 TNNT3 TPM2 VIM TMOD2 TNNI1 TPM4 TMOD2 MYL3 TNNC1 TNNI2 PiTMOD2 TNNT3 MYH3 Ca2+MYBPC2 TMOD3 TNNI2 TPM2 TMOD3 NEB TNNI1


Description

Striated muscle contraction is a process whereby force is generated within striated muscle tissue, resulting in a change in muscle geometry, or in short, increased force being exerted on the tendons. Force generation involves a chemo-mechanical energy conversion step that is carried out by the actin/myosin complex activity, which generates force through ATP hydrolysis. Striated muscle is a type of muscle composed of myofibrils, containing repeating units called sarcomeres, in which the contractile myofibrils are arranged in parallel to the axis of the cell, resulting in transverse or oblique striations observable at the level of the light microscope.
Here striated muscle contraction is represented on the basis of calcium binding to the troponin complex, which exposes the active sites of actin. Once the active sites of actin are exposed, the myosin complex bound to ADP can bind actin and the myosin head can pivot, pulling the thin actin and thick myosin filaments past one another. Once the myosin head pivots, ADP is ejected, a fresh ATP can be bound and the energy from the hydrolysis of ATP to ADP is channeled into kinetic energy by resetting the myosin head. With repeated rounds of this cycle the sarcomere containing the thin and thick filaments effectively shortens, forming the basis of muscle contraction. View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 390522
Reactome-version 
Reactome version: 75
Reactome Author 
Reactome Author: Gillespie, Marc E

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

  1. Gordon AM, Homsher E, Regnier M.; ''Regulation of contraction in striated muscle.''; PubMed Europe PMC Scholia
  2. HUXLEY AF, NIEDERGERKE R.; ''Structural changes in muscle during contraction; interference microscopy of living muscle fibres.''; PubMed Europe PMC Scholia
  3. HUXLEY AF, NIEDERGERKE R.; ''Measurement of muscle striations in stretch and contraction.''; PubMed Europe PMC Scholia
  4. Cooke R.; ''The sliding filament model: 1972-2004.''; PubMed Europe PMC Scholia
  5. Szent-Györgyi AG.; ''The early history of the biochemistry of muscle contraction.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114638view16:10, 25 January 2021ReactomeTeamReactome version 75
113086view11:14, 2 November 2020ReactomeTeamReactome version 74
112320view15:24, 9 October 2020ReactomeTeamReactome version 73
101219view11:11, 1 November 2018ReactomeTeamreactome version 66
100757view20:36, 31 October 2018ReactomeTeamreactome version 65
100301view19:13, 31 October 2018ReactomeTeamreactome version 64
99848view15:57, 31 October 2018ReactomeTeamreactome version 63
99405view14:34, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
93771view13:35, 16 August 2017ReactomeTeamreactome version 61
93296view11:19, 9 August 2017ReactomeTeamreactome version 61
87838view11:47, 25 July 2016MirellaKalafatiOntology Term : 'regulatory pathway' added !
86381view09:16, 11 July 2016ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
ACTN2 ProteinP35609 (Uniprot-TrEMBL)
ACTN3 ProteinQ08043 (Uniprot-TrEMBL)
ADP MetaboliteCHEBI:456216 (ChEBI)
ADP:Calcium Bound

Sarcomere Protein

Complex
ComplexR-HSA-390591 (Reactome)
ADPMetaboliteCHEBI:456216 (ChEBI)
ATP MetaboliteCHEBI:30616 (ChEBI)
ATP:Calcium Bound

Sarcomere Protein

Complex
ComplexR-HSA-390596 (Reactome)
ATPMetaboliteCHEBI:30616 (ChEBI)
Ca2+ MetaboliteCHEBI:29108 (ChEBI)
Ca2+MetaboliteCHEBI:29108 (ChEBI)
Calcium Bound

Sarcomere Protein

Complex
ComplexR-HSA-390592 (Reactome)
DES ProteinP17661 (Uniprot-TrEMBL)
DMD ProteinP11532 (Uniprot-TrEMBL)
Inactive Sarcomere Protein ComplexComplexR-HSA-390590 (Reactome)
MYBPC1 ProteinQ00872 (Uniprot-TrEMBL)
MYBPC2 ProteinQ14324 (Uniprot-TrEMBL)
MYBPC3 ProteinQ14896 (Uniprot-TrEMBL)
MYH3 ProteinP11055 (Uniprot-TrEMBL)
MYH6 ProteinP13533 (Uniprot-TrEMBL)
MYH8 ProteinP13535 (Uniprot-TrEMBL)
MYL1 ProteinP05976 (Uniprot-TrEMBL)
MYL2 ProteinP10916 (Uniprot-TrEMBL)
MYL3 ProteinP08590 (Uniprot-TrEMBL)
MYL4 ProteinP12829 (Uniprot-TrEMBL)
Myosin ComplexComplexR-HSA-390575 (Reactome)
NEB ProteinP20929 (Uniprot-TrEMBL)
PiMetaboliteCHEBI:43474 (ChEBI)
TCAP ProteinO15273 (Uniprot-TrEMBL)
TMOD1 ProteinP28289 (Uniprot-TrEMBL)
TMOD2 ProteinQ9NZR1 (Uniprot-TrEMBL)
TMOD3 ProteinQ9NYL9 (Uniprot-TrEMBL)
TMOD4 ProteinQ9NZQ9 (Uniprot-TrEMBL)
TNNC1 ProteinP63316 (Uniprot-TrEMBL)
TNNC2 ProteinP02585 (Uniprot-TrEMBL)
TNNI1 ProteinP19237 (Uniprot-TrEMBL)
TNNI2 ProteinP48788 (Uniprot-TrEMBL)
TNNI3 ProteinP19429 (Uniprot-TrEMBL)
TNNT1 ProteinP13805 (Uniprot-TrEMBL)
TNNT2 ProteinP45379 (Uniprot-TrEMBL)
TNNT3 ProteinP45378 (Uniprot-TrEMBL)
TPM1 ProteinP09493 (Uniprot-TrEMBL)
TPM2 ProteinP07951 (Uniprot-TrEMBL)
TPM3 ProteinP06753 (Uniprot-TrEMBL)
TPM4 ProteinP67936 (Uniprot-TrEMBL)
TTN ProteinQ8WZ42 (Uniprot-TrEMBL)
VIM ProteinP08670 (Uniprot-TrEMBL)
alpha Actin Chain R-HSA-390576 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ADP:Calcium Bound

Sarcomere Protein

Complex
ArrowR-HSA-390593 (Reactome)
ADP:Calcium Bound

Sarcomere Protein

Complex
R-HSA-390597 (Reactome)
ADPArrowR-HSA-390597 (Reactome)
ATP:Calcium Bound

Sarcomere Protein

Complex
ArrowR-HSA-390598 (Reactome)
ATP:Calcium Bound

Sarcomere Protein

Complex
R-HSA-390593 (Reactome)
ATPR-HSA-390598 (Reactome)
Ca2+R-HSA-390595 (Reactome)
Calcium Bound

Sarcomere Protein

Complex
ArrowR-HSA-390595 (Reactome)
Calcium Bound

Sarcomere Protein

Complex
ArrowR-HSA-390597 (Reactome)
Calcium Bound

Sarcomere Protein

Complex
R-HSA-390598 (Reactome)
Inactive Sarcomere Protein ComplexR-HSA-390595 (Reactome)
Myosin Complexmim-catalysisR-HSA-390593 (Reactome)
PiArrowR-HSA-390593 (Reactome)
R-HSA-390593 (Reactome) The cleft closes like a clam shell around the ATP molecule, triggering a large shape change that causes the myosin head to release actin and be displaced along the actin filament by a distance of about 5 nm. Hydrolysis of ATP occurs, but the ADP remains tightly bound to the protein.
R-HSA-390595 (Reactome) Troponin (Tn) is the central regulatory protein of striated muscle contraction. Tn consists of three components: troponin I (TNNI3; the inhibitor of actomyosin ATPase), Tn-T (which contains the binding site for tropomyosin) and troponin C (TNNC1, Tn-C). The binding of calcium to TNNC1 abolishes the inhibitory action of Tn on actin filaments. At the start of the striated muscle contraction cycle, a myosin head lacking a bound nucleotide is locked tightly onto an actin filament in a rigor conformation. TNNC1 binds four calcium ions. In an actively contracting muscle this state is very short-lived, being rapidly terminated by the binding of a molecule of ATP.
R-HSA-390597 (Reactome) The weak binding of the myosin head to the new site on the actin filament causes release of the inorganic phosphate produced by ATP hydrolysis, concomitantly with the tight binding of the head to actin. This release triggers the power stroke, a force-generating change in the shape during which the head regains its original conformation. In the course of the power stroke, the head loses its bound ADP, thereby returning to the start of a new cycle.
R-HSA-390598 (Reactome) A molecule of ATP binds to the large cleft on the side of the myosin head farthest from the actin filament and immediately causes a slight change in the conformation of the domains that make up the actin-binding site. This reduces the affinity of the myosin head for actin and allows it to move along the filament.
Personal tools