HSP90 chaperone cycle for steroid hormone receptors (SHR) (Homo sapiens)
From WikiPathways
Description
Steroid hormone receptors (SHR) are transcription factors that become activated upon sensing steroid hormones such as glucocorticoids, mineralocorticoids, progesterone, androgens, or estrogen (Escriva et al 2000; Griekspoor A et al. 2007; Eick GN & Thornton JW. 2011). Depending on SHR type and the presence of ligand, they show different subcellular localizations. Whereas both unliganded and liganded estrogen receptors (ERalpha and ERbeta) are predominantly nuclear, unliganded glucocorticoid (GR) and androgen receptors (AR) are mostly located in the cytoplasm and completely translocate to the nucleus only after binding hormone (Htun H et al. 1999; Stenoien D et al. 2000; Tyagi RK et al. 2000; Cadepond F et al. 1992; Jewell CM et al. 1995; Kumar S et al. 2006). The unliganded mineralocorticoid receptor (MR) is partially cytoplasmic but can be found in nucleus in the ligand-bound or ligand-free form (Nishi M & Kawata M 2007). The progesterone receptor (PR) exists in two forms (PRA and PRB) with different ratios of nuclear versus cytoplasmic localization of the unliganded receptor. In most cell contexts, the PRA isoform is a repressor of the shorter PRB isoform, and without hormone induction it is mostly located in the nucleus, whereas PRB distributes both in the nucleus and in the cytoplasm (Lim CS et al. 1999; Griekspoor A et al. 2007). In the absence of ligand, members of the steroid receptor family remain sequestered in the cytoplasm and/or nucleus in the complex with proteins of HSP70/HSP90 chaperone machinery (Pratt WB & Dittmar KD1998). The highly dynamic ATP-dependent interactions of SHRs with HSP90 complexes regulate SHR cellular location, protein stability, competency to bind steroid hormones and transcriptional activity (Echeverria PC & Picard D 2010). Understanding the mechanism of ATPase activity of HSP90 is mostly based on structural and functional studies of the Saccharomyces cerevisiae Hsp90 complexes (Meyer P et al. 2003, 2004; Ali MM et al. 2006; Prodromou C et al. 2000; Prodromou C 2012). The ATPase cycle of human HSP90 is less well understood, however several studies suggest that the underlying enzymatic mechanisms and a set of conformational changes that accompany the ATPase cycle are highly similar in both species (Richter K et al. 2008; Vaughan CK et al. 2009). Nascent SHR proteins are chaperoned by HSP70 and HSP40 to HSP90 cycle via STIP1 (HOP) (and its TPR domains) (Hernández MP et al. 2002a,b; EcheverriaPC & Picard D 2010; Li J et al. 2011). The ATP-bound form of HSP90 leads to the displacement of STIP1 by immunophilins FKBP5 or FKBP4 resulting in conformational changes that allow efficient hormone binding (Li J et al. 2011). PTGES3 (p23) binds to HSP90 complex finally stabilizing it in the conformation with a high hormone binding affinity. After hydrolysis of ATP the hormone bound SHR is released from HSP90 complex. The cytosolic hormone-bound SHR can be transported to the nucleus by several import pathways such as the dynein-based nuclear transport along microtubules involving the transport of the entire HSP90 complex or nuclear localization signals (NLS)-mediated nuclear targeting by importins (Tyagi RK et al. 2000; Cadepond F et al. 1992; Jewell CM et al. 1995; Kumar S et al. 2006). It is worth noting that GR-importin interactions can be ligand-dependent or independent (Freedman & Yamamoto 2004; Picard & Yamamoto 1987). In the nucleus ligand-activated SHR dimerizes, binds specific sequences in the DNA, called Hormone Responsive Elements (HRE), and recruits a number of coregulators that facilitate gene transcription. Nuclear localization is essential for SHRs to transactivate their target genes, but the same receptors also possess non-genomic functions in the cytoplasm.
The Reactome module describes the ATPase-driven conformational cycle of HSP90 that regulates ligand-dependent activation of SHRs. View original pathway at Reactome.</div>
Try the New WikiPathways
View approved pathways at the new wikipathways.org.Quality Tags
Ontology Terms
Bibliography
History
External references
DataNodes
Annotated Interactions
The HSP70 family of chaperone proteins is one of the most conserved protein families in evolution (Takayama S et al. 1999; Boorstein WR et al. 1994; Brocchieri L et al. 2008). The sequence alignment of eukaryotic and bacterial HSP70 proteins revealed that the human HSP70 SBD is highly homologous to the DnaK SBD (51% sequence identity in the full-length protein and 47% identity in the SBD) (Zhang P et al. 2014). Moreover, the crystal structure of the substrate-bound human HSP70-SBD resembled the overall fold of the corresponding domain in the substrate-bound DnaK structures, confirming a similar overall architecture of the orthologous bacterial and human HSP70 proteins (Zhang P et al. 2014). Structures of nucleotide-binding domains of four human HSP70 isoforms: HSPA1L, HSPA2, HSPA6 and HSPA5 also support the view that the NBDs of human HSP70 function by conserved mechanisms (Wisniewska M et al. 2014). Structural analysis of a functionally intact bovine Hsp70 family member Hsc70 together with analysis of mutants in the interdomain linker and interface support the allosteric mechanism of the mammalian HSP70 chaperones (Wilbanks SM & McKay DB 1998; Jiang J et al. 2005).
FKBP52 (FKBP4) is a member of the immunophilin (IMM) protein family of intracellular proteins that are able to bind immunosuppressant drugs, from which the term immunophilin derives (Pratt and Toft 1997; Kang et al. 2008). These proteins are also known as peptidyl-prolyl cis/trans isomerases (PPIases) for their ability to convert proline bonds from cis to trans form, a rate-limiting step in protein folding (Harding et al. 1989; Standaert et al. 1990; Galat 2003; Davies and Sanchez 2005). In addition to the PPIase and TPR domains, there are two additional domains - the nucleotide-binding domain (also called FKBD2 in FKBP proteins) where ATP binds and the calmodulin-binding domain, a poorly characterized domain able to interact with calmodulin.
After hydrolysis of ATP the ligand-bound steroid hormone receptor (SHR) is released from HSP90 complex. The Reactome module describes ATPase activity of HSP90 in the nucleus, however it is not entirely clear whether cytosolic hormone-bound SHR translocates through the nuclear pores before or after ATP-dependent dissociation from the HSP90 complex.
SHs are synthesized from cholesterol in the adrenal cortex (glucocorticoids, mineralocorticoids, and adrenal androgens), the testes (testicular androgens, estrogen), and the ovary and placenta (estrogen and progestogen or progestins) (Payne AH & Hales DB 2004; Hu J et al. 2010;). SHs reach their target cells via the blood, where they are bound to specific carrier proteins (Grishkovskaya I et al. 2000; Hammond GL 2016). SHs detach from the carrier proteins and because of their lipophilic nature readily diffuse through the plasma membrane of cells (Oren I et al. 2004). Within the target cells SHs bind to steroid hormone receptors (SHRs) which are present in a heterocomplex with heat shock protein HSP90 and co-chaperones (e.g., immunophilins p23) (Echeverria PC & Picard D 2010). The ATP-bound form of HSP90 and chaperone-mediated conformational changes are required to keep SHRs in a ligand binding-competent state (McLaughlin SH et al. 2002; Pratt WB et al. 2008; Krukenberg KA et al. 2011).
SHs are synthesized from cholesterol in the adrenal cortex (glucocorticoids, mineralocorticoids, and adrenal androgens), the testes (testicular androgens, estrogen), and the ovary and placenta (estrogen and progestogen or progestins) (Payne AH & Hales DB 2004; Hu J et al. 2010;). SHs reach their target cells via the blood, where they are bound to specific carrier proteins (Grishkovskaya I et al. 2000; Hammond GL 2016). SHs detach from the carrier proteins and because of their lipophilic nature readily diffuse through the plasma membrane of cells (Oren I et al. 2004). Within the target cells SHs bind to steroid hormone receptors (SHRs) which are present in a heterocomplex with heat shock protein HSP90 and co-chaperones (e.g., immunophilins p23) (Echeverria PC & Picard D 2010). The ATP-bound form of HSP90 and chaperone-mediated conformational changes are required to keep SHRs in a ligand binding-competent state (McLaughlin SH et al. 2002; Pratt WB et al. 2008; Krukenberg KA et al. 2011).
SHs are synthesized from cholesterol in the adrenal cortex (glucocorticoids, mineralocorticoids, and adrenal androgens), the testes (testicular androgens, estrogen), and the ovary and placenta (estrogen and progestogen or progestins) (Payne AH & Hales DB 2004; Hu J et al. 2010;). SHs reach their target cells via the blood, where they are bound to specific carrier proteins (Grishkovskaya I et al. 2000; Hammond GL 2016). SHs detach from the carrier proteins and because of their lipophilic nature readily diffuse through the plasma membrane of cells (Oren I et al. 2004). Within the target cells SHs bind to steroid hormone receptors (SHRs) which are present in a heterocomplex with heat shock protein HSP90 and co-chaperones (e.g., immunophilins p23) (Echeverria PC & Picard D 2010). The ATP-bound form of HSP90 and chaperone-mediated conformational changes are required to keep SHRs in a ligand binding-competent state (McLaughlin SH et al. 2002; Pratt WB et al. 2008; Krukenberg KA et al. 2011). Here, the androgens testosterone (TEST), dihydrotestosterone (DHTEST), androst-4-en-3,17-dione (ANDST) and 6-dehydrotestosterone bind the androgen receptor (AR), within the HSP90 chaperone complex.