RAB GEFs exchange GTP for GDP on RABs (Homo sapiens)

From WikiPathways

Jump to: navigation, search
1, 5, 8, 18, 24...4, 39, 49, 65, 66, 76...92, 97, 11292, 97, 1122, 6, 8, 12, 19...9, 21, 50, 63, 71...27, 32, 33, 38, 40...25, 46, 51, 71, 95...11, 22, 28, 30, 42...13, 16, 18, 23, 36...8, 10, 15, 41, 65...3, 14, 17, 20, 52...7, 26, 56, 71, 104...secretory granule membranetransport vesicle membranecytoplasmic vesicle membraneGolgi membranemelanosome membraneearly endosome membraneendoplasmic reticulum membranecytosolrecycling endosome membranelysosomal membranetrans-Golgi network membraneCHM CHM GGC-RAB1B GGC-RAB39A GGC-RAB9:GDP:GDIs,CHMsRIN1 DENND4B GDI1 ANKRD27 GGC-RAB7B GGC-RAB5A GDI1 CHM GDI1 CHM RAB9 GEFsGDI2 GGC-RAB3A GGC-RAB18 TRAPPC8 GGC-RAB10 DENND2A p-S472,S490-DENND3 GDPp-2S-DENND1A,B:YWHAEdimerCHML GDP CCZ1 GDIs,CHMsGGC-RAB21:GDP:GDIs,CHMsGGC-RAB9A GDI2 GDI1 GGC-RAB8B GDIs,CHMsMON1A GGC-RAB7B GDI1 GGC-RAB9:GTPGDP TRAPPC4 GGC-RAB5C RABGEF1 CHM GDPHPS1:HPS4p-T308,S473-AKT1 DENND5B GTPGDP GDPGDI1 CHML GGC-RAB6B GDI1 GTP GGC-RAB31 GDI1 GDI1 GGC-RAB14:GTPGGC-RAB9B GGC-RAB8A TRAPPC13 GGC-RAB5:GTPRAB3 GEFsGGC-RAB1A GTP GTPDENND2C p-S472,S490-DENND3GTPGTP GGC-RAB13 GGC-RAB31 GDP RAB3GAP1:RAB3GAP2GGC-RAB1B GDPALS2CL CHML TRAPPC9 CHML GGC-RAB12 GGC-RAB31:GTPGGC-RAB14 RAB3IL1 GTP CHML GGC-RAB35:GDP:GDIs,CHMsDENND3GGC-RAB27A GGC-RAB32 GGC-RAB12:GTPGGC-RAB14:GDP:GDIs,CHMsGGC-RAB21 p-S536, S538 DENND1A DENND3 SBF1 YWHAE TRAPPC3 MON1B GGC-RAB6B DENND1A GDI2 CHM GDI2 GGC-RAB8B CHML GGC-RAB8:GDP:GDIs,CHMsGTP p-2S DENND1B GDP DENND4sRIC1 GGC-RAB39B CHML CHM CHM DENND4A RIN3 GDP GGC-RAB5:GDP:GDIs,CHMsGGC-RAB5B GTPGDPp-S536, S538 DENND1A GDI1 GGC-RAB6A DENND5A,BGDP GTP CHML TRAPPC1 GTPGGC-RAB13:GDP:GDIs,CHMsATPGDP GGC-RAB27:GDP:GDIs,CHMsGDI2 GDPDENND5A DENND6A GTP GDP GGC-RAB7:GDP:GDIs,CHMsGGC-RAB5B GGC-RAB1:GTPST5 TRAPPC5 GGC-RAB1A GGC-RAB21:GTPTRAPPC2 GDI2 GTPATPYWHAE GGC-RAB6A HPS4 CHM CHM GAPVD1 GGC-RAB9A CHM GTP GGC-RAB5A GDI2 RAB27:GTPRAB21 GEFsGDI1 GGC-RAB39:GDP:GDIs,CHMsCHM GDPGDI2 GDI1 CHML GGC-RAB10 GGC-RAB8:GTPCHM GDP GDI1 DENND1C GDI2 GDI1 GTPGGC-RAB7A GGC-RAB6:GTPGGC-RAB3A:GTPGDP GDI2 CHML GDI1 DENND3CHM GGC-RAB39B CHM GGC-RAB3A GTPGDI2 HPS1 GTP GDPRINL GGC-RAB39:GTPTRAPPC6B CHML GTP GGC-RAB8A CHML GDPGDP GDI2 GDI2 GDI2 GGC-RAB35 GGC-RAB27B GDPRAB5 GEFsGDI2 GGC-RAB18 GGC-RAB7A GTP GGC-RAB12 CHML GGC-RAB18:GTPGDPCCZ1B DENND1B GGC-RAB10:GTPGTP GDPGDI1 MADD ADPCHM GGC-RAB27B GTPGDI2 GGC-RAB38 RIN3 CHML DENND1A, DENND1BGDP GDI1 GTPGGC-RAB9B GDP GDPMADDCHM GDI2 GTPGGC-RAB13:GTPGGC-RAB31:GDP:GDIs,CHMsGCC-RAB12:GDP:GDIs,CHMsp-2S DENND1B CHM GDI1 RGP1 GDI2 GGC-RAB14 RIN2 CHML GGC-RAB35 CHML CHM GDI2 RAB3GAP2 GGC-RAB7:GTPTRAPPCsTRAPPC12 GDIs,CHMsGTPGDI1 GTP GTP CHML CHM RAB32,RAB38:GTPTRAPPC11 GGC-RAB1:GDP:GDIs,CHMsCHML GAPVD1 ALS2 RAB35 GEFsCHML GTPRAB32,RAB38:GDP:GDIs,CHMsp-T,p-S-AKTGGC-RAB3A:GDP:GDIs,CHMsGDP CHML p-2S DENND1A,DENND1BGGC-RAB38 MON1:CCZ1GDI2 p-S536, S538 DENND1A YWHAE dimerGTP RAB3IL1 RAB13 GEFsGDI2 RAB3GAP1 DENND1A GGC-RAB13 DENND6A,BCHM CHM p-T309,S474-AKT2 GGC-RAB39A GDI2 GDI1 GTP GDI1 CHM RIC1:RGP1p-2S DENND1B SBF2 GGC-RAB27A GGC-RAB5C GTPRAB31 GEFsGDIs,CHMsST5 p-T180,S317,S467,S556,S638,T575-ULK1RAB8 GEFsCHML GGC-RAB10:GDP:GDIs,CHMsGGC-RAB21 GDIs,CHMsGDP ADPGDI2 RAB3IP GGC-RAB18:GDP:GDIs,CHMsGDIs,CHMsGDI1 GDPGDPGTP CHML GDP DENND6B GGC-RAB35:GTPGDP GDI1 GGC-RAB32 CHML DENND1C CHML DENND4C DENND1C GDI1 TRAPPC10 GTP TRAPPC2L GDI2 GGC-RAB6:GDP:GDIs,CHMsDENND2D DENND1B GTPp-T305,S472-AKT3 CHM YWHAE TRAPPC6A 71


Description

Human cells have more than 60 RAB proteins that are key regulators of intracellular membrane trafficking. These small GTPases contribute to trafficking specificity by localizing to the membranes of different organelles and interacting with effectors such as sorting adaptors, tethering factors, kinases, phosphatases and tubular-vesicular cargo (reviewed in Stenmark et al, 2009; Wandinger-Ness and Zerial, 2014; Zhen and Stenmark, 2015).

RAB localization depends on a number of factors including C-terminal prenylation, the sequence of upstream hypervariable regions and what nucleotide is bound, as well as interaction with RAB-interacting proteins (Chavrier et al, 1991; Ullrich et al, 1993; Soldati et al, 1994; Farnsworth et al, 1994; Seabra, 1996; Wu et al, 2010; reviewed in Stenmark, 2009; Wandinger-Ness and Zerial, 2014). More recently, the activity of RAB GEFs has also been implicated in regulating the localization of RAB proteins (Blumer et al, 2103; Schoebel et al, 2009; Cabrera and Ungermann, 2013; reviewed in Barr, 2013; Zhen and Stenmark, 2015)

In the active, GTP-bound form, RAB proteins are membrane-associated, while in the inactive GDP-bound form, RABs are extracted from the target membrane and exist in a soluble form in complex with GDP dissociation inhibitors (GDIs) (Ullrich et al, 1993; Soldati et al, 1994; Gavriljuk et al, 2013). Conversion between the inactive and active form relies on the activities of RAB guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) (Yoshimura et al, 2010; Wu et al, 2011; Pan et al, 2006; Frasa et al, 2012; reviewed in Stenmark, 2009; Wandinger-Ness and Zerial, 2014; Ishida et al, 2016).

Newly synthesized RABs are bound to a RAB escort protein, CHM (also known as REP1) or CHML (REP2) (Alexandrov et al, 1994; Shen and Seabra, 1996). CHM/REP proteins are the substrate-binding component of the trimeric RAB geranylgeranyltransferase enzyme (GGTaseII) along with the two catalytic subunits RABGGTA and RABGGTB (reviewed in Gutkowska and Swiezewska, 2012; Palsuledesai and Distefano, 2015). REP proteins recruit the unmodified RAB in its GDP-bound state to the GGTase for sequential geranylgeranylation at one or two C-terminal cysteine residues (Alexandrov et al, 1994; Seabra et al 1996; Shen and Seabra, 1996; Baron and Seabra, 2008). After geranylation, CHM/REP proteins remain in complex with the geranylated RAB and escort it to its target membrane, where RAB activity is regulated by GAPs, GEFs, GDIs and membrane-bound GDI displacement factors (GDFs) (Sivars et al, 2003; reviewed in Stenmark, 2009; Wandinger-Ness and Zerial, 2014).

Unlike the RAB GAPS, which (to date) all contain a shared TBC domain, RAB GEFs are structurally diverse and range from monomeric to multisubunit complexes (reviewed in Fukuda et al, 2011; Frasa et al, 2012; Cherfils and Zeghouf, 2013; Ishida et al, 2016). While many GEFs contain one of three conserved GEF domains identified to date - the DENN (differentially expressed in normal and neoplastic cell) domain, the VPS9 domain and the SEC2 domain- other GEFs lack a conserved domain (reviewed in Ishida et al, 2016). Based on sequence conservation and subunit organization, GEFs can be grouped into 6 general classes: the DENND-containing GEFs, the VPS9-containing GEFs (both monomeric), the SEC2-containing GEFs (homodimeric), heterodimeric GEF complexes such as RIC1:RGP1, the multisubunit TRAPPC GEF, and others (reviewed in Barr and Lambright, 2010; Marat et al, 2011; Ishida et al, 2016). GEFs for many RABs have still not been identified, however. View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 8876198
Reactome-version 
Reactome version: 75
Reactome Author 
Reactome Author: Rothfels, Karen

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Gavriljuk K, Itzen A, Goody RS, Gerwert K, Kötting C.; ''Membrane extraction of Rab proteins by GDP dissociation inhibitor characterized using attenuated total reflection infrared spectroscopy.''; PubMed Europe PMC Scholia
  2. Poteryaev D, Datta S, Ackema K, Zerial M, Spang A.; ''Identification of the switch in early-to-late endosome transition.''; PubMed Europe PMC Scholia
  3. Gerondopoulos A, Bastos RN, Yoshimura S, Anderson R, Carpanini S, Aligianis I, Handley MT, Barr FA.; ''Rab18 and a Rab18 GEF complex are required for normal ER structure.''; PubMed Europe PMC Scholia
  4. Pellinen T, Tuomi S, Arjonen A, Wolf M, Edgren H, Meyer H, Grosse R, Kitzing T, Rantala JK, Kallioniemi O, Fässler R, Kallio M, Ivaska J.; ''Integrin trafficking regulated by Rab21 is necessary for cytokinesis.''; PubMed Europe PMC Scholia
  5. Fukuda M.; ''TBC proteins: GAPs for mammalian small GTPase Rab?''; PubMed Europe PMC Scholia
  6. Feng Y, Press B, Wandinger-Ness A.; ''Rab 7: an important regulator of late endocytic membrane traffic.''; PubMed Europe PMC Scholia
  7. Tarafder AK, Wasmeier C, Figueiredo AC, Booth AE, Orihara A, Ramalho JS, Hume AN, Seabra MC.; ''Rab27a targeting to melanosomes requires nucleotide exchange but not effector binding.''; PubMed Europe PMC Scholia
  8. Wandinger-Ness A, Zerial M.; ''Rab proteins and the compartmentalization of the endosomal system.''; PubMed Europe PMC Scholia
  9. Geppert M, Bolshakov VY, Siegelbaum SA, Takei K, De Camilli P, Hammer RE, Südhof TC.; ''The role of Rab3A in neurotransmitter release.''; PubMed Europe PMC Scholia
  10. Brunet S, Sacher M.; ''In sickness and in health: the role of TRAPP and associated proteins in disease.''; PubMed Europe PMC Scholia
  11. Chen D, Guo J, Miki T, Tachibana M, Gahl WA.; ''Molecular cloning of two novel rab genes from human melanocytes.''; PubMed Europe PMC Scholia
  12. Nordmann M, Cabrera M, Perz A, Bröcker C, Ostrowicz C, Engelbrecht-Vandré S, Ungermann C.; ''The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7.''; PubMed Europe PMC Scholia
  13. Marat AL, McPherson PS.; ''The connecdenn family, Rab35 guanine nucleotide exchange factors interfacing with the clathrin machinery.''; PubMed Europe PMC Scholia
  14. Martin S, Driessen K, Nixon SJ, Zerial M, Parton RG.; ''Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism.''; PubMed Europe PMC Scholia
  15. Szul T, Sztul E.; ''COPII and COPI traffic at the ER-Golgi interface.''; PubMed Europe PMC Scholia
  16. Klinkert K, Echard A.; ''Rab35 GTPase: A Central Regulator of Phosphoinositides and F-actin in Endocytic Recycling and Beyond.''; PubMed Europe PMC Scholia
  17. Handley MT, Aligianis IA.; ''RAB3GAP1, RAB3GAP2 and RAB18: disease genes in Micro and Martsolf syndromes.''; PubMed Europe PMC Scholia
  18. Marat AL, Dokainish H, McPherson PS.; ''DENN domain proteins: regulators of Rab GTPases.''; PubMed Europe PMC Scholia
  19. Cantalupo G, Alifano P, Roberti V, Bruni CB, Bucci C.; ''Rab-interacting lysosomal protein (RILP): the Rab7 effector required for transport to lysosomes.''; PubMed Europe PMC Scholia
  20. Dejgaard SY, Murshid A, Erman A, Kizilay O, Verbich D, Lodge R, Dejgaard K, Ly-Hartig TB, Pepperkok R, Simpson JC, Presley JF.; ''Rab18 and Rab43 have key roles in ER-Golgi trafficking.''; PubMed Europe PMC Scholia
  21. Kapfhamer D, Valladares O, Sun Y, Nolan PM, Rux JJ, Arnold SE, Veasey SC, Bućan M.; ''Mutations in Rab3a alter circadian period and homeostatic response to sleep loss in the mouse.''; PubMed Europe PMC Scholia
  22. Lodhi IJ, Chiang SH, Chang L, Vollenweider D, Watson RT, Inoue M, Pessin JE, Saltiel AR.; ''Gapex-5, a Rab31 guanine nucleotide exchange factor that regulates Glut4 trafficking in adipocytes.''; PubMed Europe PMC Scholia
  23. Hsu C, Morohashi Y, Yoshimura S, Manrique-Hoyos N, Jung S, Lauterbach MA, Bakhti M, Grønborg M, Möbius W, Rhee J, Barr FA, Simons M.; ''Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C.''; PubMed Europe PMC Scholia
  24. Farnsworth CC, Seabra MC, Ericsson LH, Gelb MH, Glomset JA.; ''Rab geranylgeranyl transferase catalyzes the geranylgeranylation of adjacent cysteines in the small GTPases Rab1A, Rab3A, and Rab5A.''; PubMed Europe PMC Scholia
  25. Chen T, Han Y, Yang M, Zhang W, Li N, Wan T, Guo J, Cao X.; ''Rab39, a novel Golgi-associated Rab GTPase from human dendritic cells involved in cellular endocytosis.''; PubMed Europe PMC Scholia
  26. Figueiredo AC, Wasmeier C, Tarafder AK, Ramalho JS, Baron RA, Seabra MC.; ''Rab3GEP is the non-redundant guanine nucleotide exchange factor for Rab27a in melanocytes.''; PubMed Europe PMC Scholia
  27. Bultema JJ, Di Pietro SM.; ''Cell type-specific Rab32 and Rab38 cooperate with the ubiquitous lysosome biogenesis machinery to synthesize specialized lysosome-related organelles.''; PubMed Europe PMC Scholia
  28. Rodriguez-Gabin AG, Cammer M, Almazan G, Charron M, Larocca JN.; ''Role of rRAB22b, an oligodendrocyte protein, in regulation of transport of vesicles from trans Golgi to endocytic compartments.''; PubMed Europe PMC Scholia
  29. Balderhaar HJ, Ungermann C.; ''CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion.''; PubMed Europe PMC Scholia
  30. Hunker CM, Galvis A, Kruk I, Giambini H, Veisaga ML, Barbieri MA.; ''Rab5-activating protein 6, a novel endosomal protein with a role in endocytosis.''; PubMed Europe PMC Scholia
  31. Gutkowska M, Swiezewska E.; ''Structure, regulation and cellular functions of Rab geranylgeranyl transferase and its cellular partner Rab Escort Protein.''; PubMed Europe PMC Scholia
  32. Loftus SK, Larson DM, Baxter LL, Antonellis A, Chen Y, Wu X, Jiang Y, Bittner M, Hammer JA, Pavan WJ.; ''Mutation of melanosome protein RAB38 in chocolate mice.''; PubMed Europe PMC Scholia
  33. Wasmeier C, Romao M, Plowright L, Bennett DC, Raposo G, Seabra MC.; ''Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes.''; PubMed Europe PMC Scholia
  34. Seabra MC.; ''Nucleotide dependence of Rab geranylgeranylation. Rab escort protein interacts preferentially with GDP-bound Rab.''; PubMed Europe PMC Scholia
  35. Pan X, Eathiraj S, Munson M, Lambright DG.; ''TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism.''; PubMed Europe PMC Scholia
  36. Wu X, Bradley MJ, Cai Y, Kümmel D, De La Cruz EM, Barr FA, Reinisch KM.; ''Insights regarding guanine nucleotide exchange from the structure of a DENN-domain protein complexed with its Rab GTPase substrate.''; PubMed Europe PMC Scholia
  37. Gutierrez MG, Munafó DB, Berón W, Colombo MI.; ''Rab7 is required for the normal progression of the autophagic pathway in mammalian cells.''; PubMed Europe PMC Scholia
  38. Gerondopoulos A, Langemeyer L, Liang JR, Linford A, Barr FA.; ''BLOC-3 mutated in Hermansky-Pudlak syndrome is a Rab32/38 guanine nucleotide exchange factor.''; PubMed Europe PMC Scholia
  39. Jean S, Cox S, Schmidt EJ, Robinson FL, Kiger A.; ''Sbf/MTMR13 coordinates PI(3)P and Rab21 regulation in endocytic control of cellular remodeling.''; PubMed Europe PMC Scholia
  40. Tamura K, Ohbayashi N, Maruta Y, Kanno E, Itoh T, Fukuda M.; ''Varp is a novel Rab32/38-binding protein that regulates Tyrp1 trafficking in melanocytes.''; PubMed Europe PMC Scholia
  41. Yang XZ, Li XX, Zhang YJ, Rodriguez-Rodriguez L, Xiang MQ, Wang HY, Zheng XF.; ''Rab1 in cell signaling, cancer and other diseases.''; PubMed Europe PMC Scholia
  42. Pan Y, Zhang Y, Chen L, Liu Y, Feng Y, Yan J.; ''The Critical Role of Rab31 in Cell Proliferation and Apoptosis in Cancer Progression.''; PubMed Europe PMC Scholia
  43. Solinger JA, Spang A.; ''Tethering complexes in the endocytic pathway: CORVET and HOPS.''; PubMed Europe PMC Scholia
  44. Kouranti I, Sachse M, Arouche N, Goud B, Echard A.; ''Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis.''; PubMed Europe PMC Scholia
  45. Stenmark H.; ''Rab GTPases as coordinators of vesicle traffic.''; PubMed Europe PMC Scholia
  46. Willett R, Ungar D, Lupashin V.; ''The Golgi puppet master: COG complex at center stage of membrane trafficking interactions.''; PubMed Europe PMC Scholia
  47. Barr F, Lambright DG.; ''Rab GEFs and GAPs.''; PubMed Europe PMC Scholia
  48. Wang F, Zhang H, Zhang X, Wang Y, Ren F, Zhang X, Zhai Y, Chang Z.; ''Varp interacts with Rab38 and functions as its potential effector.''; PubMed Europe PMC Scholia
  49. Burgo A, Sotirakis E, Simmler MC, Verraes A, Chamot C, Simpson JC, Lanzetti L, Proux-Gillardeaux V, Galli T.; ''Role of Varp, a Rab21 exchange factor and TI-VAMP/VAMP7 partner, in neurite growth.''; PubMed Europe PMC Scholia
  50. Luo HR, Saiardi A, Nagata E, Ye K, Yu H, Jung TS, Luo X, Jain S, Sawa A, Snyder SH.; ''GRAB: a physiologic guanine nucleotide exchange factor for Rab3A, which interacts with inositol hexakisphosphate kinase.''; PubMed Europe PMC Scholia
  51. Giannandrea M, Bianchi V, Mignogna ML, Sirri A, Carrabino S, D'Elia E, Vecellio M, Russo S, Cogliati F, Larizza L, Ropers HH, Tzschach A, Kalscheuer V, Oehl-Jaschkowitz B, Skinner C, Schwartz CE, Gecz J, Van Esch H, Raynaud M, Chelly J, de Brouwer AP, Toniolo D, D'Adamo P.; ''Mutations in the small GTPase gene RAB39B are responsible for X-linked mental retardation associated with autism, epilepsy, and macrocephaly.''; PubMed Europe PMC Scholia
  52. Vazquez-Martinez R, Cruz-Garcia D, Duran-Prado M, Peinado JR, Castaño JP, Malagon MM.; ''Rab18 inhibits secretory activity in neuroendocrine cells by interacting with secretory granules.''; PubMed Europe PMC Scholia
  53. Marat AL, Ioannou MS, McPherson PS.; ''Connecdenn 3/DENND1C binds actin linking Rab35 activation to the actin cytoskeleton.''; PubMed Europe PMC Scholia
  54. Soldati T, Shapiro AD, Svejstrup AB, Pfeffer SR.; ''Membrane targeting of the small GTPase Rab9 is accompanied by nucleotide exchange.''; PubMed Europe PMC Scholia
  55. Sivars U, Aivazian D, Pfeffer SR.; ''Yip3 catalyses the dissociation of endosomal Rab-GDI complexes.''; PubMed Europe PMC Scholia
  56. Fukuda M.; ''Rab27 effectors, pleiotropic regulators in secretory pathways.''; PubMed Europe PMC Scholia
  57. Ng EL, Ng JJ, Liang F, Tang BL.; ''Rab22B is expressed in the CNS astroglia lineage and plays a role in epidermal growth factor receptor trafficking in A431 cells.''; PubMed Europe PMC Scholia
  58. Kajiho H, Sakurai K, Minoda T, Yoshikawa M, Nakagawa S, Fukushima S, Kontani K, Katada T.; ''Characterization of RIN3 as a guanine nucleotide exchange factor for the Rab5 subfamily GTPase Rab31.''; PubMed Europe PMC Scholia
  59. Harrison RE, Bucci C, Vieira OV, Schroer TA, Grinstein S.; ''Phagosomes fuse with late endosomes and/or lysosomes by extension of membrane protrusions along microtubules: role of Rab7 and RILP.''; PubMed Europe PMC Scholia
  60. Shen F, Seabra MC.; ''Mechanism of digeranylgeranylation of Rab proteins. Formation of a complex between monogeranylgeranyl-Rab and Rab escort protein.''; PubMed Europe PMC Scholia
  61. Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M.; ''Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments.''; PubMed Europe PMC Scholia
  62. Wang T, Ming Z, Xiaochun W, Hong W.; ''Rab7: role of its protein interaction cascades in endo-lysosomal traffic.''; PubMed Europe PMC Scholia
  63. Fischer von Mollard G, Südhof TC, Jahn R.; ''A small GTP-binding protein dissociates from synaptic vesicles during exocytosis.''; PubMed Europe PMC Scholia
  64. Chua CE, Tang BL.; ''Engagement of the small GTPase Rab31 protein and its effector, early endosome antigen 1, is important for trafficking of the ligand-bound epidermal growth factor receptor from the early to the late endosome.''; PubMed Europe PMC Scholia
  65. Ishida M, E Oguchi M, Fukuda M.; ''Multiple Types of Guanine Nucleotide Exchange Factors (GEFs) for Rab Small GTPases.''; PubMed Europe PMC Scholia
  66. Fukuda M.; ''Multiple Roles of VARP in Endosomal Trafficking: Rabs, Retromer Components and R-SNARE VAMP7 Meet on VARP.''; PubMed Europe PMC Scholia
  67. Wu YW, Oesterlin LK, Tan KT, Waldmann H, Alexandrov K, Goody RS.; ''Membrane targeting mechanism of Rab GTPases elucidated by semisynthetic protein probes.''; PubMed Europe PMC Scholia
  68. Epp N, Rethmeier R, Krämer L, Ungermann C.; ''Membrane dynamics and fusion at late endosomes and vacuoles--Rab regulation, multisubunit tethering complexes and SNAREs.''; PubMed Europe PMC Scholia
  69. Fuchs E, Haas AK, Spooner RA, Yoshimura S, Lord JM, Barr FA.; ''Specific Rab GTPase-activating proteins define the Shiga toxin and epidermal growth factor uptake pathways.''; PubMed Europe PMC Scholia
  70. Ortiz Sandoval C, Simmen T.; ''Rab proteins of the endoplasmic reticulum: functions and interactors.''; PubMed Europe PMC Scholia
  71. Yoshimura S, Gerondopoulos A, Linford A, Rigden DJ, Barr FA.; ''Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors.''; PubMed Europe PMC Scholia
  72. Hyttinen JM, Niittykoski M, Salminen A, Kaarniranta K.; ''Maturation of autophagosomes and endosomes: a key role for Rab7.''; PubMed Europe PMC Scholia
  73. Allaire PD, Marat AL, Dall'Armi C, Di Paolo G, McPherson PS, Ritter B.; ''The Connecdenn DENN domain: a GEF for Rab35 mediating cargo-specific exit from early endosomes.''; PubMed Europe PMC Scholia
  74. Ullrich O, Stenmark H, Alexandrov K, Huber LA, Kaibuchi K, Sasaki T, Takai Y, Zerial M.; ''Rab GDP dissociation inhibitor as a general regulator for the membrane association of rab proteins.''; PubMed Europe PMC Scholia
  75. Kinchen JM, Ravichandran KS.; ''Identification of two evolutionarily conserved genes regulating processing of engulfed apoptotic cells.''; PubMed Europe PMC Scholia
  76. Miserey-Lenkei S, Colombo MI.; ''Small RAB GTPases Regulate Multiple Steps of Mitosis.''; PubMed Europe PMC Scholia
  77. Pellinen T, Arjonen A, Vuoriluoto K, Kallio K, Fransen JA, Ivaska J.; ''Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of beta1-integrins.''; PubMed Europe PMC Scholia
  78. Bultema JJ, Ambrosio AL, Burek CL, Di Pietro SM.; ''BLOC-2, AP-3, and AP-1 proteins function in concert with Rab38 and Rab32 proteins to mediate protein trafficking to lysosome-related organelles.''; PubMed Europe PMC Scholia
  79. Chavrier P, Gorvel JP, Stelzer E, Simons K, Gruenberg J, Zerial M.; ''Hypervariable C-terminal domain of rab proteins acts as a targeting signal.''; PubMed Europe PMC Scholia
  80. Handley MT, Morris-Rosendahl DJ, Brown S, Macdonald F, Hardy C, Bem D, Carpanini SM, Borck G, Martorell L, Izzi C, Faravelli F, Accorsi P, Pinelli L, Basel-Vanagaite L, Peretz G, Abdel-Salam GM, Zaki MS, Jansen A, Mowat D, Glass I, Stewart H, Mancini G, Lederer D, Roscioli T, Giuliano F, Plomp AS, Rolfs A, Graham JM, Seemanova E, Poo P, García-Cazorla A, Edery P, Jackson IJ, Maher ER, Aligianis IA.; ''Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotype-phenotype correlations in warburg micro syndrome and Martsolf syndrome.''; PubMed Europe PMC Scholia
  81. Tamura K, Ohbayashi N, Ishibashi K, Fukuda M.; ''Structure-function analysis of VPS9-ankyrin-repeat protein (Varp) in the trafficking of tyrosinase-related protein 1 in melanocytes.''; PubMed Europe PMC Scholia
  82. Lopes VS, Wasmeier C, Seabra MC, Futter CE.; ''Melanosome maturation defect in Rab38-deficient retinal pigment epithelium results in instability of immature melanosomes during transient melanogenesis.''; PubMed Europe PMC Scholia
  83. Cai H, Yu S, Menon S, Cai Y, Lazarova D, Fu C, Reinisch K, Hay JC, Ferro-Novick S.; ''TRAPPI tethers COPII vesicles by binding the coat subunit Sec23.''; PubMed Europe PMC Scholia
  84. Frasa MA, Koessmeier KT, Ahmadian MR, Braga VM.; ''Illuminating the functional and structural repertoire of human TBC/RABGAPs.''; PubMed Europe PMC Scholia
  85. Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T.; ''Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane.''; PubMed Europe PMC Scholia
  86. Chua CE, Tang BL.; ''The role of the small GTPase Rab31 in cancer.''; PubMed Europe PMC Scholia
  87. Zhang X, He X, Fu XY, Chang Z.; ''Varp is a Rab21 guanine nucleotide exchange factor and regulates endosome dynamics.''; PubMed Europe PMC Scholia
  88. Holz RW, Brondyk WH, Senter RA, Kuizon L, Macara IG.; ''Evidence for the involvement of Rab3A in Ca(2+)-dependent exocytosis from adrenal chromaffin cells.''; PubMed Europe PMC Scholia
  89. Wada M, Nakanishi H, Satoh A, Hirano H, Obaishi H, Matsuura Y, Takai Y.; ''Isolation and characterization of a GDP/GTP exchange protein specific for the Rab3 subfamily small G proteins.''; PubMed Europe PMC Scholia
  90. Ohbayashi N, Yatsu A, Tamura K, Fukuda M.; ''The Rab21-GEF activity of Varp, but not its Rab32/38 effector function, is required for dendrite formation in melanocytes.''; PubMed Europe PMC Scholia
  91. Pavlos NJ, Jahn R.; ''Distinct yet overlapping roles of Rab GTPases on synaptic vesicles.''; PubMed Europe PMC Scholia
  92. Kulasekaran G, Nossova N, Marat AL, Lund I, Cremer C, Ioannou MS, McPherson PS.; ''Phosphorylation-dependent Regulation of Connecdenn/DENND1 Guanine Nucleotide Exchange Factors.''; PubMed Europe PMC Scholia
  93. Dambournet D, Machicoane M, Chesneau L, Sachse M, Rocancourt M, El Marjou A, Formstecher E, Salomon R, Goud B, Echard A.; ''Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis.''; PubMed Europe PMC Scholia
  94. Fukui K, Sasaki T, Imazumi K, Matsuura Y, Nakanishi H, Takai Y.; ''Isolation and characterization of a GTPase activating protein specific for the Rab3 subfamily of small G proteins.''; PubMed Europe PMC Scholia
  95. Liu S, Storrie B.; ''Are Rab proteins the link between Golgi organization and membrane trafficking?''; PubMed Europe PMC Scholia
  96. Gronemeyer T, Wiese S, Grinhagens S, Schollenberger L, Satyagraha A, Huber LA, Meyer HE, Warscheid B, Just WW.; ''Localization of Rab proteins to peroxisomes: a proteomics and immunofluorescence study.''; PubMed Europe PMC Scholia
  97. Davey JR, Humphrey SJ, Junutula JR, Mishra AK, Lambright DG, James DE, Stöckli J.; ''TBC1D13 is a RAB35 specific GAP that plays an important role in GLUT4 trafficking in adipocytes.''; PubMed Europe PMC Scholia
  98. Palsuledesai CC, Distefano MD.; ''Protein prenylation: enzymes, therapeutics, and biotechnology applications.''; PubMed Europe PMC Scholia
  99. Uytterhoeven V, Kuenen S, Kasprowicz J, Miskiewicz K, Verstreken P.; ''Loss of skywalker reveals synaptic endosomes as sorting stations for synaptic vesicle proteins.''; PubMed Europe PMC Scholia
  100. Wang CW, Stromhaug PE, Shima J, Klionsky DJ.; ''The Ccz1-Mon1 protein complex is required for the late step of multiple vacuole delivery pathways.''; PubMed Europe PMC Scholia
  101. Zhang J, Fonovic M, Suyama K, Bogyo M, Scott MP.; ''Rab35 controls actin bundling by recruiting fascin as an effector protein.''; PubMed Europe PMC Scholia
  102. Rahajeng J, Giridharan SS, Cai B, Naslavsky N, Caplan S.; ''MICAL-L1 is a tubular endosomal membrane hub that connects Rab35 and Arf6 with Rab8a.''; PubMed Europe PMC Scholia
  103. Jean S, Cox S, Nassari S, Kiger AA.; ''Starvation-induced MTMR13 and RAB21 activity regulates VAMP8 to promote autophagosome-lysosome fusion.''; PubMed Europe PMC Scholia
  104. Mahoney TR, Liu Q, Itoh T, Luo S, Hadwiger G, Vincent R, Wang ZW, Fukuda M, Nonet ML.; ''Regulation of synaptic transmission by RAB-3 and RAB-27 in Caenorhabditis elegans.''; PubMed Europe PMC Scholia
  105. Iwasaki K, Staunton J, Saifee O, Nonet M, Thomas JH.; ''aex-3 encodes a novel regulator of presynaptic activity in C. elegans.''; PubMed Europe PMC Scholia
  106. Simpson JC, Griffiths G, Wessling-Resnick M, Fransen JA, Bennett H, Jones AT.; ''A role for the small GTPase Rab21 in the early endocytic pathway.''; PubMed Europe PMC Scholia
  107. Lord C, Bhandari D, Menon S, Ghassemian M, Nycz D, Hay J, Ghosh P, Ferro-Novick S.; ''Sequential interactions with Sec23 control the direction of vesicle traffic.''; PubMed Europe PMC Scholia
  108. Miller VJ, Sharma P, Kudlyk TA, Frost L, Rofe AP, Watson IJ, Duden R, Lowe M, Lupashin VV, Ungar D.; ''Molecular insights into vesicle tethering at the Golgi by the conserved oligomeric Golgi (COG) complex and the golgin TATA element modulatory factor (TMF).''; PubMed Europe PMC Scholia
  109. Cai Y, Chin HF, Lazarova D, Menon S, Fu C, Cai H, Sclafani A, Rodgers DW, De La Cruz EM, Ferro-Novick S, Reinisch KM.; ''The structural basis for activation of the Rab Ypt1p by the TRAPP membrane-tethering complexes.''; PubMed Europe PMC Scholia
  110. Ng EL, Wang Y, Tang BL.; ''Rab22B's role in trans-Golgi network membrane dynamics.''; PubMed Europe PMC Scholia
  111. Lord C, Ferro-Novick S, Miller EA.; ''The highly conserved COPII coat complex sorts cargo from the endoplasmic reticulum and targets it to the golgi.''; PubMed Europe PMC Scholia
  112. Humphrey SJ, Yang G, Yang P, Fazakerley DJ, Stöckli J, Yang JY, James DE.; ''Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2.''; PubMed Europe PMC Scholia
  113. Kondo H, Shirakawa R, Higashi T, Kawato M, Fukuda M, Kita T, Horiuchi H.; ''Constitutive GDP/GTP exchange and secretion-dependent GTP hydrolysis activity for Rab27 in platelets.''; PubMed Europe PMC Scholia
  114. Burgo A, Proux-Gillardeaux V, Sotirakis E, Bun P, Casano A, Verraes A, Liem RK, Formstecher E, Coppey-Moisan M, Galli T.; ''A molecular network for the transport of the TI-VAMP/VAMP7 vesicles from cell center to periphery.''; PubMed Europe PMC Scholia
  115. Wang W, Sacher M, Ferro-Novick S.; ''TRAPP stimulates guanine nucleotide exchange on Ypt1p.''; PubMed Europe PMC Scholia
  116. Alexandrov K, Horiuchi H, Steele-Mortimer O, Seabra MC, Zerial M.; ''Rab escort protein-1 is a multifunctional protein that accompanies newly prenylated rab proteins to their target membranes.''; PubMed Europe PMC Scholia
  117. Bao X, Faris AE, Jang EK, Haslam RJ.; ''Molecular cloning, bacterial expression and properties of Rab31 and Rab32.''; PubMed Europe PMC Scholia
  118. Cherfils J, Zeghouf M.; ''Regulation of small GTPases by GEFs, GAPs, and GDIs.''; PubMed Europe PMC Scholia
  119. Yamasaki A, Menon S, Yu S, Barrowman J, Meerloo T, Oorschot V, Klumperman J, Satoh A, Ferro-Novick S.; ''mTrs130 is a component of a mammalian TRAPPII complex, a Rab1 GEF that binds to COPI-coated vesicles.''; PubMed Europe PMC Scholia
  120. Rodriguez-Gabin AG, Yin X, Si Q, Larocca JN.; ''Transport of mannose-6-phosphate receptors from the trans-Golgi network to endosomes requires Rab31.''; PubMed Europe PMC Scholia
  121. Nagano F, Sasaki T, Fukui K, Asakura T, Imazumi K, Takai Y.; ''Molecular cloning and characterization of the noncatalytic subunit of the Rab3 subfamily-specific GTPase-activating protein.''; PubMed Europe PMC Scholia
  122. Kajiho H, Saito K, Tsujita K, Kontani K, Araki Y, Kurosu H, Katada T.; ''RIN3: a novel Rab5 GEF interacting with amphiphysin II involved in the early endocytic pathway.''; PubMed Europe PMC Scholia
  123. Sato M, Sato K, Liou W, Pant S, Harada A, Grant BD.; ''Regulation of endocytic recycling by C. elegans Rab35 and its regulator RME-4, a coated-pit protein.''; PubMed Europe PMC Scholia
  124. Vitelli R, Santillo M, Lattero D, Chiariello M, Bifulco M, Bruni CB, Bucci C.; ''Role of the small GTPase Rab7 in the late endocytic pathway.''; PubMed Europe PMC Scholia
  125. Baron RA, Seabra MC.; ''Rab geranylgeranylation occurs preferentially via the pre-formed REP-RGGT complex and is regulated by geranylgeranyl pyrophosphate.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114830view16:33, 25 January 2021ReactomeTeamReactome version 75
113276view11:34, 2 November 2020ReactomeTeamReactome version 74
112488view15:44, 9 October 2020ReactomeTeamReactome version 73
101400view11:28, 1 November 2018ReactomeTeamreactome version 66
100938view21:04, 31 October 2018ReactomeTeamreactome version 65
100475view19:38, 31 October 2018ReactomeTeamreactome version 64
100020view16:22, 31 October 2018ReactomeTeamreactome version 63
99573view14:55, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
93395view11:22, 9 August 2017ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
ADPMetaboliteCHEBI:456216 (ChEBI)
ALS2 ProteinQ96Q42 (Uniprot-TrEMBL)
ALS2CL ProteinQ60I27 (Uniprot-TrEMBL)
ANKRD27 ProteinQ96NW4 (Uniprot-TrEMBL)
ATPMetaboliteCHEBI:30616 (ChEBI)
CCZ1 ProteinP86791 (Uniprot-TrEMBL)
CCZ1B ProteinP86790 (Uniprot-TrEMBL)
CHM ProteinP24386 (Uniprot-TrEMBL)
CHML ProteinP26374 (Uniprot-TrEMBL)
DENND1A ProteinQ8TEH3 (Uniprot-TrEMBL)
DENND1A, DENND1BComplexR-HSA-8933359 (Reactome)
DENND1B ProteinQ6P3S1 (Uniprot-TrEMBL)
DENND1C ProteinQ8IV53 (Uniprot-TrEMBL)
DENND2A ProteinQ9ULE3 (Uniprot-TrEMBL)
DENND2C ProteinQ68D51 (Uniprot-TrEMBL)
DENND2D ProteinQ9H6A0 (Uniprot-TrEMBL)
DENND3 ProteinA2RUS2 (Uniprot-TrEMBL)
DENND3ProteinA2RUS2 (Uniprot-TrEMBL)
DENND3ComplexR-HSA-8876437 (Reactome)
DENND4A ProteinQ7Z401 (Uniprot-TrEMBL)
DENND4B ProteinO75064 (Uniprot-TrEMBL)
DENND4C ProteinQ5VZ89 (Uniprot-TrEMBL)
DENND4sComplexR-HSA-8876092 (Reactome)
DENND5A ProteinQ6IQ26 (Uniprot-TrEMBL)
DENND5A,BComplexR-HSA-8877802 (Reactome)
DENND5B ProteinQ6ZUT9 (Uniprot-TrEMBL)
DENND6A ProteinQ8IWF6 (Uniprot-TrEMBL)
DENND6A,BComplexR-HSA-8876608 (Reactome)
DENND6B ProteinQ8NEG7 (Uniprot-TrEMBL)
GAPVD1 ProteinQ14C86 (Uniprot-TrEMBL)
GCC-RAB12:GDP:GDIs,CHMsComplexR-HSA-8876453 (Reactome)
GDI1 ProteinP31150 (Uniprot-TrEMBL)
GDI2 ProteinP50395 (Uniprot-TrEMBL)
GDIs,CHMsComplexR-HSA-8875305 (Reactome)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GGC-RAB10 ProteinP61026 (Uniprot-TrEMBL)
GGC-RAB10:GDP:GDIs,CHMsComplexR-HSA-8876131 (Reactome)
GGC-RAB10:GTPComplexR-HSA-8876128 (Reactome)
GGC-RAB12 ProteinQ6IQ22 (Uniprot-TrEMBL)
GGC-RAB12:GTPComplexR-HSA-8876448 (Reactome)
GGC-RAB13 ProteinP51153 (Uniprot-TrEMBL)
GGC-RAB13:GDP:GDIs,CHMsComplexR-HSA-8876604 (Reactome)
GGC-RAB13:GTPComplexR-HSA-8876599 (Reactome)
GGC-RAB14 ProteinP61106 (Uniprot-TrEMBL)
GGC-RAB14:GDP:GDIs,CHMsComplexR-HSA-8876596 (Reactome)
GGC-RAB14:GTPComplexR-HSA-8876595 (Reactome)
GGC-RAB18 ProteinQ9NP72 (Uniprot-TrEMBL)
GGC-RAB18:GDP:GDIs,CHMsComplexR-HSA-8877994 (Reactome)
GGC-RAB18:GTPComplexR-HSA-8877989 (Reactome)
GGC-RAB1:GDP:GDIs,CHMsComplexR-HSA-8877473 (Reactome)
GGC-RAB1:GTPComplexR-HSA-8877468 (Reactome)
GGC-RAB1A ProteinP62820 (Uniprot-TrEMBL)
GGC-RAB1B ProteinQ9H0U4 (Uniprot-TrEMBL)
GGC-RAB21 ProteinQ9UL25 (Uniprot-TrEMBL)
GGC-RAB21:GDP:GDIs,CHMsComplexR-HSA-8876836 (Reactome)
GGC-RAB21:GTPComplexR-HSA-8876838 (Reactome)
GGC-RAB27:GDP:GDIs,CHMsComplexR-HSA-8877298 (Reactome)
GGC-RAB27A ProteinP51159 (Uniprot-TrEMBL)
GGC-RAB27B ProteinO00194 (Uniprot-TrEMBL)
GGC-RAB31 ProteinQ13636 (Uniprot-TrEMBL)
GGC-RAB31:GDP:GDIs,CHMsComplexR-HSA-8877287 (Reactome)
GGC-RAB31:GTPComplexR-HSA-8877284 (Reactome)
GGC-RAB32 ProteinQ13637 (Uniprot-TrEMBL)
GGC-RAB35 ProteinQ15286 (Uniprot-TrEMBL)
GGC-RAB35:GDP:GDIs,CHMsComplexR-HSA-8877604 (Reactome)
GGC-RAB35:GTPComplexR-HSA-8877601 (Reactome)
GGC-RAB38 ProteinP57729 (Uniprot-TrEMBL)
GGC-RAB39:GDP:GDIs,CHMsComplexR-HSA-8877806 (Reactome)
GGC-RAB39:GTPComplexR-HSA-8877804 (Reactome)
GGC-RAB39A ProteinQ14964 (Uniprot-TrEMBL)
GGC-RAB39B ProteinQ96DA2 (Uniprot-TrEMBL)
GGC-RAB3A ProteinP20336 (Uniprot-TrEMBL)
GGC-RAB3A:GDP:GDIs,CHMsComplexR-HSA-8875313 (Reactome)
GGC-RAB3A:GTPComplexR-HSA-8875326 (Reactome)
GGC-RAB5:GDP:GDIs,CHMsComplexR-HSA-8875330 (Reactome)
GGC-RAB5:GTPComplexR-HSA-8875316 (Reactome)
GGC-RAB5A ProteinP20339 (Uniprot-TrEMBL)
GGC-RAB5B ProteinP61020 (Uniprot-TrEMBL)
GGC-RAB5C ProteinP51148 (Uniprot-TrEMBL)
GGC-RAB6:GDP:GDIs,CHMsComplexR-HSA-8876125 (Reactome)
GGC-RAB6:GTPComplexR-HSA-8876122 (Reactome)
GGC-RAB6A ProteinP20340 (Uniprot-TrEMBL)
GGC-RAB6B ProteinQ9NRW1 (Uniprot-TrEMBL)
GGC-RAB7:GDP:GDIs,CHMsComplexR-HSA-8877449 (Reactome)
GGC-RAB7:GTPComplexR-HSA-8877453 (Reactome)
GGC-RAB7A ProteinP51149 (Uniprot-TrEMBL)
GGC-RAB7B ProteinQ96AH8 (Uniprot-TrEMBL)
GGC-RAB8:GDP:GDIs,CHMsComplexR-HSA-8876120 (Reactome)
GGC-RAB8:GTPComplexR-HSA-8876116 (Reactome)
GGC-RAB8A ProteinP61006 (Uniprot-TrEMBL)
GGC-RAB8B ProteinQ92930 (Uniprot-TrEMBL)
GGC-RAB9:GDP:GDIs,CHMsComplexR-HSA-8876113 (Reactome)
GGC-RAB9:GTPComplexR-HSA-8876110 (Reactome)
GGC-RAB9A ProteinP51151 (Uniprot-TrEMBL)
GGC-RAB9B ProteinQ9NP90 (Uniprot-TrEMBL)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
HPS1 ProteinQ92902 (Uniprot-TrEMBL)
HPS1:HPS4ComplexR-HSA-8877746 (Reactome)
HPS4 ProteinQ9NQG7 (Uniprot-TrEMBL)
MADD ProteinQ8WXG6-3 (Uniprot-TrEMBL)
MADDProteinQ8WXG6-3 (Uniprot-TrEMBL)
MON1:CCZ1ComplexR-HSA-8877446 (Reactome)
MON1A ProteinQ86VX9 (Uniprot-TrEMBL)
MON1B ProteinQ7L1V2 (Uniprot-TrEMBL)
RAB13 GEFsComplexR-HSA-8876606 (Reactome)
RAB21 GEFsComplexR-HSA-8933368 (Reactome)
RAB27:GTPComplexR-HSA-8877303 (Reactome)
RAB3 GEFsComplexR-HSA-8877301 (Reactome)
RAB31 GEFsComplexR-HSA-8877299 (Reactome)
RAB32,RAB38:GDP:GDIs,CHMsComplexR-HSA-8877756 (Reactome)
RAB32,RAB38:GTPComplexR-HSA-8877758 (Reactome)
RAB35 GEFsComplexR-HSA-8877607 (Reactome)
RAB3GAP1 ProteinQ15042 (Uniprot-TrEMBL)
RAB3GAP1:RAB3GAP2ComplexR-HSA-8877988 (Reactome)
RAB3GAP2 ProteinQ9H2M9 (Uniprot-TrEMBL)
RAB3IL1 ProteinQ8TBN0 (Uniprot-TrEMBL)
RAB3IP ProteinQ96QF0 (Uniprot-TrEMBL)
RAB5 GEFsComplexR-HSA-8875310 (Reactome)
RAB8 GEFsComplexR-HSA-8876097 (Reactome)
RAB9 GEFsComplexR-HSA-8876094 (Reactome)
RABGEF1 ProteinQ9UJ41 (Uniprot-TrEMBL)
RGP1 ProteinQ92546 (Uniprot-TrEMBL)
RIC1 ProteinQ4ADV7 (Uniprot-TrEMBL)
RIC1:RGP1ComplexR-HSA-8847862 (Reactome)
RIN1 ProteinQ13671 (Uniprot-TrEMBL)
RIN2 ProteinQ8WYP3 (Uniprot-TrEMBL)
RIN3 ProteinQ8TB24 (Uniprot-TrEMBL)
RINL ProteinQ6ZS11 (Uniprot-TrEMBL)
SBF1 ProteinO95248 (Uniprot-TrEMBL)
SBF2 ProteinQ86WG5 (Uniprot-TrEMBL)
ST5 ProteinP78524 (Uniprot-TrEMBL)
TRAPPC1 ProteinQ9Y5R8 (Uniprot-TrEMBL)
TRAPPC10 ProteinP48553 (Uniprot-TrEMBL)
TRAPPC11 ProteinQ7Z392 (Uniprot-TrEMBL)
TRAPPC12 ProteinQ8WVT3 (Uniprot-TrEMBL)
TRAPPC13 ProteinA5PLN9 (Uniprot-TrEMBL)
TRAPPC2 ProteinP0DI81 (Uniprot-TrEMBL)
TRAPPC2L ProteinQ9UL33 (Uniprot-TrEMBL)
TRAPPC3 ProteinO43617 (Uniprot-TrEMBL)
TRAPPC4 ProteinQ9Y296 (Uniprot-TrEMBL)
TRAPPC5 ProteinQ8IUR0 (Uniprot-TrEMBL)
TRAPPC6A ProteinO75865 (Uniprot-TrEMBL)
TRAPPC6B ProteinQ86SZ2 (Uniprot-TrEMBL)
TRAPPC8 ProteinQ9Y2L5 (Uniprot-TrEMBL)
TRAPPC9 ProteinQ96Q05 (Uniprot-TrEMBL)
TRAPPCsComplexR-HSA-8933216 (Reactome)
YWHAE ProteinP62258 (Uniprot-TrEMBL)
YWHAE dimerComplexR-HSA-194364 (Reactome)
p-2S DENND1A, DENND1BComplexR-HSA-8933377 (Reactome)
p-2S DENND1B ProteinQ6P3S1 (Uniprot-TrEMBL)
p-2S-DENND1A,B:YWHAE dimerComplexR-HSA-8933379 (Reactome)
p-S472,S490-DENND3 ProteinA2RUS2 (Uniprot-TrEMBL)
p-S472,S490-DENND3ProteinA2RUS2 (Uniprot-TrEMBL)
p-S536, S538 DENND1A ProteinQ8TEH3 (Uniprot-TrEMBL)
p-T,p-S-AKTComplexR-HSA-202074 (Reactome)
p-T180,S317,S467,S556,S638,T575-ULK1ProteinO75385 (Uniprot-TrEMBL)
p-T305,S472-AKT3 ProteinQ9Y243 (Uniprot-TrEMBL)
p-T308,S473-AKT1 ProteinP31749 (Uniprot-TrEMBL)
p-T309,S474-AKT2 ProteinP31751 (Uniprot-TrEMBL)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ADPArrowR-HSA-8876446 (Reactome)
ADPArrowR-HSA-8933446 (Reactome)
ATPR-HSA-8876446 (Reactome)
ATPR-HSA-8933446 (Reactome)
DENND1A, DENND1BR-HSA-8933446 (Reactome)
DENND3R-HSA-8876446 (Reactome)
DENND3mim-catalysisR-HSA-8876454 (Reactome)
DENND4smim-catalysisR-HSA-8876188 (Reactome)
DENND5A,Bmim-catalysisR-HSA-8877813 (Reactome)
DENND6A,Bmim-catalysisR-HSA-8876616 (Reactome)
GCC-RAB12:GDP:GDIs,CHMsR-HSA-8876454 (Reactome)
GDIs,CHMsArrowR-HSA-8875318 (Reactome)
GDIs,CHMsArrowR-HSA-8875320 (Reactome)
GDIs,CHMsArrowR-HSA-8876188 (Reactome)
GDIs,CHMsArrowR-HSA-8876190 (Reactome)
GDIs,CHMsArrowR-HSA-8876191 (Reactome)
GDIs,CHMsArrowR-HSA-8876193 (Reactome)
GDIs,CHMsArrowR-HSA-8876454 (Reactome)
GDIs,CHMsArrowR-HSA-8876615 (Reactome)
GDIs,CHMsArrowR-HSA-8876616 (Reactome)
GDIs,CHMsArrowR-HSA-8876837 (Reactome)
GDIs,CHMsArrowR-HSA-8877308 (Reactome)
GDIs,CHMsArrowR-HSA-8877311 (Reactome)
GDIs,CHMsArrowR-HSA-8877451 (Reactome)
GDIs,CHMsArrowR-HSA-8877475 (Reactome)
GDIs,CHMsArrowR-HSA-8877612 (Reactome)
GDIs,CHMsArrowR-HSA-8877760 (Reactome)
GDIs,CHMsArrowR-HSA-8877813 (Reactome)
GDIs,CHMsArrowR-HSA-8877998 (Reactome)
GDPArrowR-HSA-8875318 (Reactome)
GDPArrowR-HSA-8875320 (Reactome)
GDPArrowR-HSA-8876188 (Reactome)
GDPArrowR-HSA-8876190 (Reactome)
GDPArrowR-HSA-8876191 (Reactome)
GDPArrowR-HSA-8876193 (Reactome)
GDPArrowR-HSA-8876454 (Reactome)
GDPArrowR-HSA-8876615 (Reactome)
GDPArrowR-HSA-8876616 (Reactome)
GDPArrowR-HSA-8876837 (Reactome)
GDPArrowR-HSA-8877308 (Reactome)
GDPArrowR-HSA-8877311 (Reactome)
GDPArrowR-HSA-8877451 (Reactome)
GDPArrowR-HSA-8877475 (Reactome)
GDPArrowR-HSA-8877612 (Reactome)
GDPArrowR-HSA-8877760 (Reactome)
GDPArrowR-HSA-8877813 (Reactome)
GDPArrowR-HSA-8877998 (Reactome)
GGC-RAB10:GDP:GDIs,CHMsR-HSA-8876188 (Reactome)
GGC-RAB10:GTPArrowR-HSA-8876188 (Reactome)
GGC-RAB12:GTPArrowR-HSA-8876454 (Reactome)
GGC-RAB13:GDP:GDIs,CHMsR-HSA-8876615 (Reactome)
GGC-RAB13:GTPArrowR-HSA-8876615 (Reactome)
GGC-RAB14:GDP:GDIs,CHMsR-HSA-8876616 (Reactome)
GGC-RAB14:GTPArrowR-HSA-8876616 (Reactome)
GGC-RAB18:GDP:GDIs,CHMsR-HSA-8877998 (Reactome)
GGC-RAB18:GTPArrowR-HSA-8877998 (Reactome)
GGC-RAB1:GDP:GDIs,CHMsR-HSA-8877475 (Reactome)
GGC-RAB1:GTPArrowR-HSA-8877475 (Reactome)
GGC-RAB21:GDP:GDIs,CHMsR-HSA-8876837 (Reactome)
GGC-RAB21:GTPArrowR-HSA-8876837 (Reactome)
GGC-RAB27:GDP:GDIs,CHMsR-HSA-8877308 (Reactome)
GGC-RAB31:GDP:GDIs,CHMsR-HSA-8877311 (Reactome)
GGC-RAB31:GTPArrowR-HSA-8877311 (Reactome)
GGC-RAB35:GDP:GDIs,CHMsR-HSA-8877612 (Reactome)
GGC-RAB35:GTPArrowR-HSA-8877612 (Reactome)
GGC-RAB39:GDP:GDIs,CHMsR-HSA-8877813 (Reactome)
GGC-RAB39:GTPArrowR-HSA-8877813 (Reactome)
GGC-RAB3A:GDP:GDIs,CHMsR-HSA-8875318 (Reactome)
GGC-RAB3A:GTPArrowR-HSA-8875318 (Reactome)
GGC-RAB5:GDP:GDIs,CHMsR-HSA-8875320 (Reactome)
GGC-RAB5:GTPArrowR-HSA-8875320 (Reactome)
GGC-RAB6:GDP:GDIs,CHMsR-HSA-8876193 (Reactome)
GGC-RAB6:GTPArrowR-HSA-8876193 (Reactome)
GGC-RAB7:GDP:GDIs,CHMsR-HSA-8877451 (Reactome)
GGC-RAB7:GTPArrowR-HSA-8877451 (Reactome)
GGC-RAB8:GDP:GDIs,CHMsR-HSA-8876190 (Reactome)
GGC-RAB8:GTPArrowR-HSA-8876190 (Reactome)
GGC-RAB9:GDP:GDIs,CHMsR-HSA-8876191 (Reactome)
GGC-RAB9:GTPArrowR-HSA-8876191 (Reactome)
GTPR-HSA-8875318 (Reactome)
GTPR-HSA-8875320 (Reactome)
GTPR-HSA-8876188 (Reactome)
GTPR-HSA-8876190 (Reactome)
GTPR-HSA-8876191 (Reactome)
GTPR-HSA-8876193 (Reactome)
GTPR-HSA-8876454 (Reactome)
GTPR-HSA-8876615 (Reactome)
GTPR-HSA-8876616 (Reactome)
GTPR-HSA-8876837 (Reactome)
GTPR-HSA-8877308 (Reactome)
GTPR-HSA-8877311 (Reactome)
GTPR-HSA-8877451 (Reactome)
GTPR-HSA-8877475 (Reactome)
GTPR-HSA-8877612 (Reactome)
GTPR-HSA-8877760 (Reactome)
GTPR-HSA-8877813 (Reactome)
GTPR-HSA-8877998 (Reactome)
HPS1:HPS4mim-catalysisR-HSA-8877760 (Reactome)
MADDmim-catalysisR-HSA-8877308 (Reactome)
MON1:CCZ1mim-catalysisR-HSA-8877451 (Reactome)
R-HSA-8875318 (Reactome) RAB3A is involved in neurotransmitter release at the synaptic vesicle (Fischer et al, 1991; Holz et al, 1994; Geppert et al, 1994; Kapfhamer et al, 2002; reviewed in Pavlos and Jahn, 2011). RAB3A is activated at the synaptic vesicle through the guanine nucleotide exchange activity of RAB3IL1 (also known as GRAB) which promotes the exchange of GDP for GTP (Luo et al, 2001; Yoshimura et al, 2010). RAB3 family members are also activated by the DENN domain-containing GEF MADD, also known as RAB3GEP (Wada et al, 1997; Fukui et al, 1997; Iwasaki et al, 1997; Mahoney et al, 2006). Interaction of RAB3A with its GEFs promotes release of GDP, allowing GTP to bind, and precludes the interaction of RAB3A with GDI and CHM proteins.
R-HSA-8875320 (Reactome) RAB5 has roles at early endosomal compartments including fusion of vesicles originating from the plasma membrane with early endosomes, and is implicated in clathrin-mediated endocytosis (Chavrier et al, 1990; Bucci et al, 1992; Gorvel et al, 1991; Hoffenberg et al, 2000; Zeigerer et al, 2012; Taylor et al, 2011). RAB5 activation is mediated by a number of GEFs including members of the RIN (RAS and RAB interactor) and ALS2 families and GAPVD1, all of which belong to the VPS9-domain containing group (Horiuchi et al, 1997; Tall et al, 2001; Saito et al, 2002; Kajiho et al, 2003; Kajiho et al, 2011; Kunita et al, 2004; Hadano et al, 2004; Hunker et al, 2006; Suzuki-Utsunomiya et al, 2007; reviewed in Ishida et al, 2016). Interaction of RAB5 with its GEFs promotes release of GDP, allowing GTP to bind, and precludes the interaction of RAB5 with GDI and CHM proteins.
R-HSA-8876188 (Reactome) RAB10 has well characterized roles in basolateral sorting and GLUT4 transport and has more recently been shown to contribute to ER dynamics and morphology (Chen et al, 1993; Babbey et al, 2006; Schuck et al, 2007; Sano et al, 2008; Chen et al, 2012; Chen and Lippincott-Schwarz, 2013; English and Voeltz, 2013). In vitro, DENN4 family members A, B and C show RAB10-specific GEF activity, and DENN4B staining colocalizes with that of RAB10 in HeLa cells (Yoshimura et al, 2010). Consistent with this, coexpression of DENND4C and RAB10 in HEK293 cells increases the fraction of GTP-bound RAB10, and DENND4C knockdown in insulin-stimulated 3T3 cells reduces the trafficking of GLUT4 to the plasma membrane (Sano et al, 2011). Interaction of RAB10:GDP with its GEFs promotes release of GDP, allowing GTP to bind, and precludes the interaction of RAB10 with GDI and CHM proteins.
R-HSA-8876190 (Reactome) RAB8 is involved in trafficking from the trans-Golgi network (TGN) to the plasma membrane, contributes, with RAB10, 13 and 14 to GLUT4 transport, and plays a role in the formation of the primary cilium (Huber et al, 1993; Ishikura et al, 2008; Sun et al, 2010; Nachury et al, 2007; Yoshimura et al, 2007; reviewed in Hoffman and Elmendorf, 2011; Reiter et al, 2012). RAB8 also plays a role in regulating G2/M transition in complex with Optineurin (OPTN) (Kachaner et al, 2012).

RAB3IP is the best characterized GEF for RAB8A, with established roles in ciliogenesis (Hatulla et al, 2002; Knodler et al, 2010; Westlake et al, 2012; Wang et al, 2012; Feng et al, 2012; reviewed in Sung and Leroux, 2013). Other potential RAB8 GEFs include RAB3IPL and DENND1C (Yoshimura et al, 2010; reviewed in Ishida et al, 2016). Interaction of RAB8 with its GEFs displaces the GDI or CHM protein that keeps the inactive RAB:GDP soluble in the cytosol and promotes membrane association of RAB8 (reviewed in Wandinger-Ness and Zerial, 2014; Ishida et al, 2016)
R-HSA-8876191 (Reactome) RAB9 plays a role in the retrograde traffic of cargo such as the mannose-6-phosphate receptors (M6PR) from the late endosome to the trans-Golgi network (TGN). Vesicles are recruited to the TGN through interaction of RAB9 with the atypical RHO GTPase RHOBTB3, and tethered by virtue of interaction with TGN-localized Golgins and the GARP complex (Perez-Victoria et al, 2008; Perez-Victoria et al, 2009; Diaz et al, 1999; Espinosa et al, 2009; reviewed in Pfeffer, 2011; Chia and Gleeson, 2014). Interaction of RAB9:GDP with its GEFs promotes release of GDP, allowing GTP to bind, and precludes the interaction of RAB9 with GDI and CHM proteins. DENND2 family members have been shown to be RAB9 specific GEFs, and HeLa cells depleted of RAB9 or DENND2A show reduced staining of M6PR and a loss of M6PR-positive structures in the cell periphery (Yoshimura et al, 2010).
R-HSA-8876193 (Reactome) The RIC1:RGP1 complex is a GEF for RAB6, the primary RAB in intra-Golgi trafficking. RAB6 also has roles in COPI-independent retrograde traffic from the Golgi to the ER. Inactive RAB6:GDP is recruited to the trans-Golgi network (TGN) through interaction with RIC1:RGP1, and is subsequently activated by the RIC1:RGP1 GEF activity (Pusapati et al, 2012; Siniossoglou et al 2001; Siniossoglou et al, 2000; reviewed in Ishida et al, 2016). Interaction of RIC1:RGP1 with RAB6:GDP promotes release of GDP, allowing GTP to bind, and precludes the interaction of RAB6 with GDI and CHM proteins. Activated RAB6 nucleates a tethering complex at the TGN that is required for fusion of endosome-derived vesicles arriving at the late Golgi. Typical cargo of the RAB6-dependent retrograde vesicles include resident TGN proteins such as TGOLN2 as well as Shiga, cholera and ricin toxins which use the retrograde trafficking machinery to 'hitchhike' back through the secretory system for release into the cytoplasm (Siniossoglou et al, 2001; Liewen et al, 2005; Perez-Victoria et al, 2008; Perez-Victoria et al, 2009; reviewed in Bonaficino and Hierro, 2011; Johannes and Popoff, 2008; Pfeffer, 2011).


R-HSA-8876446 (Reactome) ULK1 is a serine-threonine kinase with key roles in macroautophagy in response to starvation. Under high nutrient conditions, ULK1 is phosphorylated by mTORC1, inhibiting the autophagy pathway, while under nutrient-limited conditions, mTORC1 phosphorylation is replaced by AMPK-mediated phosphorylation, resulting in the activation of both ULK1 and the autophagy pathway (reviewed in Wong et al, 2013). How nutrient levels are sensed by mTORC1 and ULK1 is not fully established, but a number of recent papers have highlighted a role for RAB proteins and their regulators in autophagy (Matsui and Fukuda, 2013; Matsui et al, 2014; Xu et al, 2015; Fan et al, 2016; reviewed in Lamb et al, 2013; Xu and McPherson, 2015). Under starvation conditions, ULK1 phosphorylates DENND3, a RAB12 GEF, at serine residues 472 and 490, activating it and promoting the formation of GTP-bound RAB12 (Yoshimura et al, 2010; Xu et al, 2015). Active RAB12 promotes the constitutive recycling or degradation of a number of plasma membrane proteins including the amino acid transporter SLC36A4 (also known as PAT4). Degradation of SLC36A4 decreases the intracellular amino acid concentration, inactivating mTORC1 and promoting the macroautophagy pathway (Matsui et al, 2011; Matsui and Fukuda, 2013; Xu et al, 2015; Fan et al, 2016).
R-HSA-8876454 (Reactome) DENND3 is a RAB12-specific GEF with roles in macroautophagy and the trafficking of proteins from the recycling endosome to the lysosome (Yoshimura et al, 2010; Matsui et al, 2014; Xu et al, 2015; reviewed in Xu and McPherson, 2015). DENND3 activity promotes the formation of active RAB12:GTP, required for the constitutive degradation of plasma membrane proteins such as the transferrin receptor and the amino acid transporter SLC36A4, also known as PAT4 (Matsui et al, 2011; Matsui and Fukuda, 2013; Matsui et al, 2014; Sirohi et al, 2013). Under starvation conditions, DENND3 is phosphorylated by the macroautophagy-promoting kinase ULK1. DENND3- and RAB12-dependent degradation of SLC36A4 contributes to the activation of the macroautophagy pathway by decreasing intracellular amino-acid levels and inhibiting mTORC1 (Matsui and Fukuda, 2013; Matsui et al, 2014; Xu et al, 2015; Fan et al, 2016; reviewed in Xu and McPherson, 2015).
R-HSA-8876615 (Reactome) RAB13 is involved in the trafficking of proteins in the biosynthetic and endosomal recycling pathways and contributes to processes such as tight junction formation and cell adhesion, GLUT 4 transport, angiogenesis, reorganization of the actin cytoskeleton, cell migration and cellular proliferation (Marzesco et al, 2002; Kohler et al, 2004; Morimoto et al, 2005; Terai et al, 2006; Yamamura et al, 2008; Nokes et al, 2008; Sun et al, 2010; Sakane et al, 2010; Sun et al, 2012; Nishikimi et al, 2014; Sun et al, 2016). These processes are often misregulated in cancer cells, and consistent with this, RAB13 has been implicated as a driver of cancer progression and is upregulated in multiple cancer types (Mahadevan et al, 2005; Li et al, 2014; Ioannou et al, 2015; reviewed in Iaonnou and McPherson, 2016). RAB13 is activated at the plasma membrane by its GEFs, DENND1C and DENND2B (also known as ST5), and may also be activated at other sites at lower levels (Yoshimura et al, 2010; Marat et al, 2012; Nishikimi et al, 2014; Ioannou et al, 2015; reviewed in Ishida et al, 2016). In this reaction, GDI and CHM proteins are depicted keeping the inactive, GDP-bound RAB13 soluble, in accordance with the classic view of the RAB cycle. A recent paper, however, provides evidence that in the case of RAB13, inactive RAB13:GDP traffics on vesicles, tethered by interaction with vesicle-bound proteins, and resists GDI-dependent extraction from membranes (Ioannou et al, 2016).
R-HSA-8876616 (Reactome) RAB14 is involved in the trafficking of GLUT4 to the plasma membrane and also contributes to cell migration by regulating the trafficking of ADAM10, a metalloendopetidase that cleaves a number of cell surface proteins including the adherens junction components N-cadherin (Reed et al, 2013; Brewer et al, 2016; Linford et al, 2012; Lu et al, 2012; Maretzky et al, 2005; Reiss et al, 2005; Gutwein et al, 2010; Rabquer et al, 2010). DENND6A and B, also known as FAM116A and B, show RAB14 GEF activity in vitro and are required for RAB14 localization and activity in vivo (Linford et al, 2012; reviewed in Ishida et al, 2016). Interaction of RAB14:GDP with its GEFs promotes release of GDP, allowing GTP to bind, and precludes the interaction of RAB14 with GDI and CHM proteins.


R-HSA-8876837 (Reactome) RAB21 is involved in the endocytosis of transferrin and EGF receptors as well as of integrins, and RAB21-mediated integrin trafficking is required for cytokinesis (Simpson et al, 2004; Pellinen et al, 2006; Pellinen et al, 2008; reviewed in Miserey-Lenkei and Colombo, 2016). In addition, RAB21 contributes to neurite and dendrite outgrowth, macrophage outgrowth and fusion of autophagosomes with lysosomes (Obayashi et al, 2012; Burgo et al, 2009; Burgo et al, 2012; Jean et al, 2012; Jean et al, 2015). RAB21 nucleotide exchange is stimulated by ANKRD27, also known as VARP (VPS9 ankyrin repeat protein), which in addition to promoting RAB21 guanyl-nucleotide exchange, also interacts with numerous RAB effectors and contributes to multiple steps of endosomal trafficking (Zhang et al, 2006; Obayashi et al, 2012; reviwed in Fukuda, 2016; Ishida et al, 2016). Other GEFs for RAB21 include the myotubularin proteins SBF1 and SBF2 (also known as MTMR5 and MTMR13) which contribute to macrophage outgrowth and fusion of autophagosomes with lysosomes (Jean et al, 2012; Jean et al, 2015). Interaction of RAB21:GDP with its GEFs promotes release of GDP, allowing GTP to bind, and precludes the interaction of RAB21 with GDI and CHM proteins.
R-HSA-8877308 (Reactome) Vertebrate RAB27 exists in two isoforms, RAB27A and RAB27B, with overlapping but distinct functions in trafficking to melanosomes, secretory granules and platelets (Kondo et al, 2006; Figueiredo et al, 2008; Tarafder et al, 2011; reviewed in Fukuda et al, 2013). Studies in nematodes and vertebrates have identified MADD as a RAB27 GEF required for its activity (Mahoney et al, 2006; Tarafder et al, 2011; Yoshimura et al, 2010). Interaction of RAB27:GDP with its GEFs promotes release of GDP, allowing GTP to bind, and precludes the interaction of RAB27 with GDI and CHM proteins.
R-HSA-8877311 (Reactome) RAB31, also referred to as RAB22B, is a member of the RAB5 family of proteins (Chen et al, 1996; Bao et al, 2002). It is involved in trafficking pathways at the trans-Golgi network (TGN) and early endosome, where it is required for insulin-stimulated GLUT4 transport, internalization of the EGFR receptor and for mannose-6-phosphate receptor transport from the TGN (Rodriguez-Gabin et al, 2001; Lodhi et al, 2007; Chua et al, 2014; Ng et al, 2007; Ng et al, 2009; Rodriguez-Gabin et al, 2009). RAB31 overexpression is also implicated in cellular proliferation and apoptosis during cancer progression (Pan et al, 2015; reviewed in Chua and Tang, 2015). RAB31 is activated by VPS domain-containing GEFs GAPVD1 (also known as GAPEX5 or RAP6) and RIN3 (Hunker et al, 2006; Lodhi et al, 2007; Kajiho et al, 2003; Kajiho et al, 2011). Interaction of RAB31:GDP with its GEFs promotes release of GDP, allowing GTP to bind, and precludes the interaction of RAB31 with GDI and CHM proteins.
R-HSA-8877451 (Reactome) RAB7 acts downstream of RAB5 in a RAB cascade that regulates endolysosomal trafficking (Chavrier et al, 1990; Feng et al, 1997; Vitelli et al, 1997; reviewed in Epp et al, 2011; Solinger and Spang, 2013). The RAB7 GEF complex, MON:CCZ1, is recruited to the endosome through interaction with RAB5 and the RAB5 effector complex CORVET (Nordmann et al, 2010; Gerondopolous et al, 2012; Poteryaev et al, 2010; Wang et al, 2002; Kinchen and Ravichandran, 2010; reviewed in Wang et al, 2011; Balderhaar and Ungermann, 2013). Recruitment of MON1:CCZ1 leads to the displacement RAB5 and the RAB5 GEF RABEX5, and subsequent recruitment and activation of RAB7 (Poteryaev et al, 2010; reviewed in Balderhaar and Ungermann, 2013; Wandinger-Ness and Zerial, 2014; Ishida et al, 2016). RAB7 is also involved in more specialized trafficking pathways involved in phagocytosis, autophagy and retromer-mediated endocytosis, among others (Gutierrez et al, 2004; Harrison et al, 2003; Cantalupo et al, 2003; reviewed in Hyttinen et al, 2013)
R-HSA-8877475 (Reactome) RAB1 is involved in COPII-mediated anterograde traffic from the endoplasmic reticulum to the ERGIC (ER-Golgi intermediate compartment) and in early steps of the macroautophagy pathway (reviewed in Szul and Sztul, 2011; Sandoval and Simmen, 2012; Lord et al, 2013; Yang et al, 2016; Lamb et al, 2016; Kim et al, 2016; Ao et al, 2014). RAB1 nucleotide exchange is stimulated in these pathways by the GEF activity of the multisubunit TRAPPC complexes II and III, respectively (reviewed in Brunet and Sacher, 2014; Kim et al, 2016). Note that the separate existence of a TRAPPCI complex is not clearly established in human cells (Barrowman et al, 2010; Bassik et al, 2013; reviewed in Brunet and Sacher, 2014; Kim et al, 2016). TRAPPCII is recruited to ER-derived vesicles by virtue of an interaction between the TRAPPCII component TRAPPC3 and the COPII coat protein SEC23 (Wang et al, 2000; Cai et al, 2007; Cai et al, 2008; Yamasaki et al, 2009; Lord et al, 2011; reviewed in Brunet and Sacher, 2014; Ishida et al, 2016). Interaction of TRAAPPCII with RAB1:GDP promotes release of GDP, allowing GTP to bind, and precludes the interaction of RAB1 with GDI and CHM proteins. Protein protein interactions involving activated RAB1:GTP help dock the ER-derived vesicle on the cis-Golgi membrane (reviewed in Lord et al, 2013). In the macroautophagy pathway, RAB1 and the TRAPPCIII complex play a role in the formation of the pre-autophagosomal structure (PAS) and contribute to the localization of ATG9, a key nucleator of autophagosome formation (Lynch-Day et al, 2010; Winslow et al, 2010; Zoppino et al, 2010; Mochizuki et al, 2013; Lamb et al, 2016; reviewed in Kim et al, 2016).
R-HSA-8877612 (Reactome) RAB35 localizes to the plasma membrane, to clathrin-coated vesicles and to the endosome where it plays roles in recycling of endocytic cargo to the plasma membrane, in synaptic vesicle recycling and fusion of exosomes. RAB35 is also required for cytokinesis and contributes to the regulation of the actin cytoskeleton, and for GLUT4 translocation to the plasma membrane in response to insulin (Fuchs et al, 2007; Allaire et al, 2010; Kouranti et al, 2006; Dambournet et al, 2011; Rahajeng et al, 2012; Hsu et al. 2010; Uytterhoeven et al. 2011; Zhang et al. 2009; Davey et al, 2012; Humphrey et al, 2013; reviewed in Klinkert and Echard, 2016). RAB35 is activated by DENND1A, B and C (Sato et al, 2008; Allaire et al, 2010; Yoshimura et al, 2010; Marat and McPherson, 2010; Marat et al, 2012; reviewed in Marat et al, 2011; Ishida et al, 2016). Interaction of RAB35:GDP with its GEFs promotes release of GDP, allowing GTP to bind, and precludes the interaction of RAB35 with GDI and CHM proteins (Wu et al, 2011).
R-HSA-8877760 (Reactome) RAB32 and RAB38 play non-redundant but overlapping roles in melanosome and lysosome-related organelle (LRO) biogenesis (Loftus et al, 2002; Wasmeier et al, 2006; Lopes et al, 2007; Wang et al, 2008; Bultema et al, 2012; reviewed in Bultema and di Pietro, 2012). Through interaction with effector protein ANKRD27 (also known as VARP, a RAB21-specific GEF), RAB32 and RAB38 control trafficking of melanogenic enzymes; ANKRD27 GEF activity does not appear to be essential for this, however (Tamura et al, 2009; Tamura et al, 2011; Ohbayahsi et al, 2012). BLOC-3, a dimeric complex of HPS1 and HPS4, has RAB32- and RAB38 GEF activity and mutation in the genes encoding HPS1 and HPS4 results in defects in pigmentation and mislocalization of RAB32 and 38, and are associated with the rare autosomal recessive disorder Hermansky-Pudlak Syndrome (Gerondopoulos et al, 2012; reviewed in Ishida et al, 2016). Interaction of RAB32:GDP or RAB38:GDP with BLOC-3 promotes release of GDP, allowing GTP to bind, and precludes the interaction of the RAB proteins with GDI and CHM proteins.
R-HSA-8877813 (Reactome) RAB39 proteins are involved in endolysosomal trafficking and are localized to the Golgi membrane where they interact with the multisubunit tethering complex COG (Chen et al, 2003; Giannandrea et al, 2010; Miller et al, 2013; reviewed in Willet et al, 2013). Although RAB proteins are known to play key roles in trafficking and Golgi structure and function, the significance of some of these interactions is not yet clear (reviewed in Liu and Storrie, 2015). Loss-of-function mutations of RAB39B cause X-linked metal retardation, likely as a result of altered trafficking during growth cone and synapse formation (Giannandrea et al, 2010). Activation of RAB39 at the Golgi is dependent on the GEF activity of DENND5A and DENND5B (Yoshimura et al, 2010). Interaction of RAB39:GDP with its GEFs promotes release of GDP, allowing GTP to bind, and precludes the interaction of RAB39 with GDI and CHM proteins.
R-HSA-8877998 (Reactome) RAB18 is a highly conserved RAB GTPase with roles in Golgi to ER trafficking, lipid droplet formation and the regulation of secretory granules and peroxisomes (Dejgaard et al, 2008; Gerondopoulos et al, 2014; Martin et al, 2005; Ozeki et al, 2005; Vazquez-Martinez et al, 2007; Gronemeyer et al, 2013). RAB18 is recruited to the ER membrane by the RAB18 GEF complex RAB3GAP1:RAB3GAP2, a complex that was initially identified and characterized for its GAP activity towards RAB3 (Gerondopoulos et al, 2013; Fukui et al, 1997; Nagano et al, 1998; reviewed in Ishida et al, 2016). Interaction of RAB18:GDP with its GEF promotes release of GDP, allowing GTP to bind, and precludes the interaction of RAB18 with GDI and CHM proteins. Mutations in RAB18, RAB3GAP1 or RAB3GAP2 are associated with Warburg Micro syndromes, characterized by ocular and neurological abnormalities (Handley and Aligianis, 2013; reviewed in Handley and Aligianis, 2012).
R-HSA-8933446 (Reactome) In response to insulin signaling, active AKT phosphorylates the C-terminal region of RAB35 GEFs DENND1A and DENND1B at at least 2 sites in the C-terminal region. This relieves an autoinhibitory conformation of the GEFs, allowing full GEF activity and promoting RAB35 binding. The open conformation of DENN1D proteins is stabilized subsequent to AKT-mediated phosphorylation by binding of a dimer of the 14-3-3 protein YWHAE. Abrogation of AKT phosphorylation disrupts both 14-3-3 and RAB35 binding to DENND1 proteins (Kulasekaran et al, 2015). Active RAB35 is needed for the insulin-dependent translocation of GLUT4 to the plasma membrane (Davey et al, 2012; Humphrey et al, 2013).
R-HSA-8933452 (Reactome) RAB35 GEFs DENND1A and DENND1B are phosphorylated by AKT in response to insulin signaling at at least 2 sites in the C-terminal region. This phosphorylation relieves an autoinhibitory conformation of the GEF that sterically blocks the N-terminal DENN domain, obstructing RAB35 binding and full GEF activity. Subsequent to AKT-dependent phosphorylation, DENN1D proteins are bound by a 14-3-3 dimer, which is thought to stabilize the open conformation of the GEF, promoting full GEF activity and RAB35 binding (Kulasekaran et al, 2015). Active RAB35 contributes to GLUT4 translocation to the plamsa membrane in response to insulin signaling, among other cellular roles (Kulasekaran et al, 2015; Davey et al, 2012; Humphrey et al, 2013).
RAB13 GEFsmim-catalysisR-HSA-8876615 (Reactome)
RAB21 GEFsmim-catalysisR-HSA-8876837 (Reactome)
RAB27:GTPArrowR-HSA-8877308 (Reactome)
RAB3 GEFsmim-catalysisR-HSA-8875318 (Reactome)
RAB31 GEFsmim-catalysisR-HSA-8877311 (Reactome)
RAB32,RAB38:GDP:GDIs,CHMsR-HSA-8877760 (Reactome)
RAB32,RAB38:GTPArrowR-HSA-8877760 (Reactome)
RAB35 GEFsmim-catalysisR-HSA-8877612 (Reactome)
RAB3GAP1:RAB3GAP2mim-catalysisR-HSA-8877998 (Reactome)
RAB5 GEFsmim-catalysisR-HSA-8875320 (Reactome)
RAB8 GEFsmim-catalysisR-HSA-8876190 (Reactome)
RAB9 GEFsmim-catalysisR-HSA-8876191 (Reactome)
RIC1:RGP1mim-catalysisR-HSA-8876193 (Reactome)
TRAPPCsmim-catalysisR-HSA-8877475 (Reactome)
YWHAE dimerR-HSA-8933452 (Reactome)
p-2S DENND1A, DENND1BArrowR-HSA-8933446 (Reactome)
p-2S DENND1A, DENND1BR-HSA-8933452 (Reactome)
p-2S-DENND1A,B:YWHAE dimerArrowR-HSA-8933452 (Reactome)
p-S472,S490-DENND3ArrowR-HSA-8876446 (Reactome)
p-T,p-S-AKTmim-catalysisR-HSA-8933446 (Reactome)
p-T180,S317,S467,S556,S638,T575-ULK1mim-catalysisR-HSA-8876446 (Reactome)
Personal tools