Phase II - Conjugation of compounds (Homo sapiens)

From WikiPathways

Jump to: navigation, search
102831, 2, 7, 9, 10, 14...50, 10423, 137, 14121, 85, 110, 1229828, 46, 82, 108, 112...82, 1231255, 52, 1011860, 99617824, 45, 10511994, 107, 109, 131, 13248, 7597638, 11, 89, 91, 11558, 67, 127113926, 22, 39, 69, 938, 11, 89, 91, 115...106, 14023, 12970, 1014926, 8736, 12833, 140348, 75119427534, 11664, 129, 13340, 68, 72, 88, 13513730, 56, 12633, 106, 14012, 13, 47, 59, 74...51, 57, 7616, 444, 27, 13920, 11829, 124, 13654, 66, 8411753, 6210313428, 46, 108, 112251375, 10181, 851134112317, 83, 141924313315, 77, 79, 903738, 8058, 67, 127mitochondrial matrixendoplasmic reticulum lumencytosolendoplasmic reticulum lumenGolgi lumenmitochondrial intermembrane spaceMAT2B Benzo(a)pyrene-7,8-diol-glutathione conjugate p-nitrophenolsulfateN-hydroxy-2-acetylaminofluoreneAKR1A1ACAP-OGLU IMPAD1 MTRR SULT2A1 PPilithocholate sulfateAflatoxin exo-8,9-oxide glutathione conjugate UGT2A3 SULT1E1 UGT1A7 GGT6(1-?) T3NAT1 acetylatedconjugateAS3MTPNPBGSS NHABP-SO4SULT2B1-1 PODXL2UGT2B28 TRMT112 GSTK1 dimerDAGSS:Mg2+ dimerACSM5 SLC26A1 AHCY:NAD+ tetramerGSTA5 MAT1A multimersATPH+MMAIIIO2UGT2B15 PYSLC35B2 SULT1A4 GCLM GSH3,5,3'-triiodothyronine 4-sulfateGLYATL3 TAM N-hydroxy-4-aminobiphenyl O-acetylated conjugate L-GlnSULT2A1 NAcPAB Zn2+ MAT2B:MAT2A:K+:2Mg2+MGST2 PAPPPiBPNT1SULT1E1 dimergGluCysATPTPMTGCLSULT2B1-2 GGT7(1-472) DSQ-OG GSTO1 AFMU O-glucuronidePiCHOLSULTs active onNH2AAFN6AMT1 GSHSULT1A1 ACSM2B phenylacetylglutaminePiDNPSGSULT1C2 UGT2A1 GCTN4OG3,3'-diiodothyronineH2OGSTA3 L-GluSULT2B1-1 SULT1E1 ABHD14BH2OTPST2 UDPBENZASLC26A1,2UGT2B11 BaP-7,8-dioneMTRR CNDP2:2Mn2+ dimerL-CysMeCbl electrophilicsubstrateUGT2B7 NHABP 27HCHOL3SFMN UGT1A4 AFXBO PhOH PAPSS1 DSQ GlyCDNBG1PGSTT1 AdoHcyAMPAGOPLAH PPiH+MP+K+ ATP3,3'-diiodothyronine4-sulfateUGT2A2 UDP-GlcNAcPiMn2+ NHABPATPGlcAAMPGGT3P(1-380) SULT1C2 GGT3P(381-568) NAT2NAcPAS CoA-SHGSSGCH2OCOMTLCAGSTM3 TPST1 UGT1A3 PNPH2OGGCT SULT2A1 dimerSULT dimers (T3)SLC35B3 AdoMetE1glutamine-N-acyltransferaseSULT2B1-1 APSGLYAT-like proteinsPAPSAMD OPROSLC35D1 hexamerACSM2B GSTM2 ISNZ AS3MTSULT1A3 DHEA-SO4CysGly27HCHOLSULTs active on DHEAUGT1A4NABQI NHABP UDP-GlcAUGT1A4 MAT2A GSTO1 dimerATPPARAGSHcholesterol sulfateN-hydroxy-4-aminobiphenyl O-glucuronide SULT1A1 H+ATPSULT6B1 NABQI SULT dimers (T2)GSTA2 UGT1A1ABHD10SULT1A3 ESD H2OACSM1 UGT1A3,A4,A9ElectrophilicsubstrateH2OGLYAT GSTK1 SULT4A1 PAPSSULT4A1 PiNAD+UGT3A2 BUTN4-acetylsulfanilamide SALATPUGT1A1 BDGMTR O-centre functionalgroup substrateNAcISNZ GSHphenylacetateMPASULT1A1 dimerH2OUGT3A1 NADPHUGT1A8 GGCT dimerUDP-GlcAGSTA1 UDP-GlcNAcPiOPLAHAdoHcyGSTP1 8xUGP2formatePPiPPiPAPSS1,26MMPMMETOHADPUGT1A1 tetramerPARA-SO4NNMTMAT1A PREGSULT1C4 UGT1A1 AdoHcyUGDH PAPSFAD taurolithocholatesulfateADPNAT2 substrateN6AMT1:TRMT112GSTA4 SO4(2-)NAT2 acetylatedconjugatePiZn2+ GGT1(381-569) 6MPS-FGSHN-hydroxy-4-aminobiphenyl O-acetylated conjugate Salicylate-CoAthioesterCNDP2 BEZ-CoAGSTT2B CoA-SHMg2+ 6MPHClHIPAGSTO2 CHAC2 6xUGDHDHEAH2OACSM1 TPST1,2NADP+ACAP-GSH 3,4DHBNZDNPSG AcC-NAT1PREGSelectrophilicsubstrate:SGACSM2A ESD dimerMg2+ NADPHSULTs active on27HCHOLSULT1A3 MTRR:MTR(MeCbl)K+ GSTM5 UGT2B10 UGT1A9 CHAC1,2ACSM2B DAOSH+UGT1A6 SULT1E1 GGT5(388-586) H2O6MMPCoA-SHE2AdoMetATPAAF-N-SSULT2B1-2 CDNB SULT1A2 UGT2B4 UTPelectrophilicsubstrate:SGSULTs active onpregnenoloneGGT7(473-662) ADPUGT2B17 H2OPhOHN-centre functionalgroup substrateL-GluNAD+ GSTM1 SULT1C4 Nicotine TMTPAPSS2 GSTO1 SULT2B1-1 UGT1A10S-2-(hydroxyethyl)-glutathione AHCY NADP+GSHGGT6(?-493) Benzo(a)pyrene-7,8-diol 9,10-epoxide Mg2+ adenosine5'-monophosphateGlyPPiSULT2A1 SULT1A1 BaPtDHDUGT1A5 HCYSMTR EtO AdoHcyAdoMetMTRR:MTR(cob(I)alamin)HPGDS UGTs (O-GlcAforming)GLYATL1 SULT2B1-2 UDP-GlcGSTZ1 NAT1 substrateACSM4 SULT1A1 BMGxenobiotic/medium-chain fatty acid:CoA ligasesUGP2 SULT6B1 SULT1A2 CYP1A2SLC35B2,3BMEMGST3 cob(I)alamin H2OTAMNG UDP-GlcAUGT1A9 phenylacetyl-CoAN-glucuronideNicotine N-glucuronide GCLC 3H,4MBNZH2OMGST1 SUAUDPGSTM4 SLC26A2 SULT2B1-1 dimerGGT1(1-380) UDPGLYATL2 DMAAASAL dimethylarsinateNADHH2OCHAC1 methylarsonateUDP-GlcACoA-SHSO4(2-)UDPL-Metadenosine5'-monophosphatexenobiotic/medium-chain fatty acid:CoA ligasesarsenite(3-)Acetaminophen (TN TYLENOL) AcC-NAT2Ac-CoASULT1E1 GlyPhenyl glucuronate GCTNSULT1B1 SULT1A3,4 dimersNHABP FMN Li+adenosine5'-monophosphateGST dimersSULT1C2 ACSM2B-like proteinsSLC35D1 Paraxanthine ATPATPMg2+ SULT1E1 ACAP-GSH SULT2A1 adenosine5'-monophosphateABENZ BILUGT1A3 OSulf-Y97,118-PODXL2GSTT2 SULT2A1 SULT1B1 methylarsoniteCysGlyAde-RibSULT1A1,A2,C2,4A1GGT dimersE2-SO4UDP-GlcAFAD Phenyl sulfateADPSULT1E1,2A1H+taurolithocholateH2OSULT1E1 MGST trimersGGT5(1-387) NAT1IMPAD1:Mg2+AdoMetE1S42754213, 114


Description

Phase II of biotransformation is concerned with conjugation, that is using groups from cofactors to react with functional groups present or introduced from phase I on the compound. The enzymes involved are a set of transferases which perform the transfer of the cofactor group to the substrate. The resultant conjugation results in greatly increasing the excretory potential of compounds. Although most conjugations result in pharmacological inactivation or detoxification, some can result in bioactivation. Most of the phase II enzymes are located in the cytosol except UDP-glucuronosyltransferases (UGT), which are microsomal. Phase II reactions are typically much faster than phase I reactions therefore the rate-limiting step for biotransformation of a compound is usually the phase I reaction.
Phase II metabolism can deal with all the products of phase I metabolism, be they reactive (Type I substrate) or unreactive/poorly active (Type II substrate) compounds. With the exception of glutathione, the conjugating species needs to be made chemically reactive after synthesis. The availability of the cofactor in the synthesis may be a rate-limiting factor in some phase II pathways as it may prevent the formation of enough conjugating species to deal with the substrate or it's metabolite. As many substrates and/or their metabolites are chemically reactive, their continued presence may lead to toxicity. View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 156580
Reactome-version 
Reactome version: 75
Reactome Author 
Reactome Author: Jassal, Bijay

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Inoue T, Irikura D, Okazaki N, Kinugasa S, Matsumura H, Uodome N, Yamamoto M, Kumasaka T, Miyano M, Kai Y, Urade Y.; ''Mechanism of metal activation of human hematopoietic prostaglandin D synthase.''; PubMed Europe PMC Scholia
  2. Raghunathan S, Chandross RJ, Kretsinger RH, Allison TJ, Penington CJ, Rule GS.; ''Crystal structure of human class mu glutathione transferase GSTM2-2. Effects of lattice packing on conformational heterogeneity.''; PubMed Europe PMC Scholia
  3. Chen X, Schecter RL, Griffith OW, Hayward MA, Alpert LC, Batist G.; ''Characterization of 5-oxo-L-prolinase in normal and tumor tissues of humans and rats: a potential new target for biochemical modulation of glutathione.''; PubMed Europe PMC Scholia
  4. Ozeran JD, Westley J, Schwartz NB.; ''Identification and partial purification of PAPS translocase.''; PubMed Europe PMC Scholia
  5. Vessey DA, Kelley M, Warren RS.; ''Characterization of the CoA ligases of human liver mitochondria catalyzing the activation of short- and medium-chain fatty acids and xenobiotic carboxylic acids.''; PubMed Europe PMC Scholia
  6. Weinshilboum RM, Otterness DM, Szumlanski CL.; ''Methylation pharmacogenetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase.''; PubMed Europe PMC Scholia
  7. Sinning I, Kleywegt GJ, Cowan SW, Reinemer P, Dirr HW, Huber R, Gilliland GL, Armstrong RN, Ji X, Board PG.; ''Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the Mu and Pi class enzymes.''; PubMed Europe PMC Scholia
  8. Kester MH, Kaptein E, Roest TJ, van Dijk CH, Tibboel D, Meinl W, Glatt H, Coughtrie MW, Visser TJ.; ''Characterization of human iodothyronine sulfotransferases.''; PubMed Europe PMC Scholia
  9. Le Trong I, Stenkamp RE, Ibarra C, Atkins WM, Adman ET.; ''1.3-A resolution structure of human glutathione S-transferase with S-hexyl glutathione bound reveals possible extended ligandin binding site.''; PubMed Europe PMC Scholia
  10. Balogh LM, Le Trong I, Kripps KA, Shireman LM, Stenkamp RE, Zhang W, Mannervik B, Atkins WM.; ''Substrate specificity combined with stereopromiscuity in glutathione transferase A4-4-dependent metabolism of 4-hydroxynonenal.''; PubMed Europe PMC Scholia
  11. Li X, Clemens DL, Cole JR, Anderson RJ.; ''Characterization of human liver thermostable phenol sulfotransferase (SULT1A1) allozymes with 3,3',5-triiodothyronine as the substrate.''; PubMed Europe PMC Scholia
  12. Tate SS, Ross ME.; ''Human kidney gamma-glutamyl transpeptidase. Catalytic properties, subunit structure, and localization of the gamma-glutamyl binding site on the light subunit.''; PubMed Europe PMC Scholia
  13. Heisterkamp N, Groffen J, Warburton D, Sneddon TP.; ''The human gamma-glutamyltransferase gene family.''; PubMed Europe PMC Scholia
  14. Polekhina G, Board PG, Blackburn AC, Parker MW.; ''Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity.''; PubMed Europe PMC Scholia
  15. Thomae BA, Rifki OF, Theobald MA, Eckloff BW, Wieben ED, Weinshilboum RM.; ''Human catecholamine sulfotransferase (SULT1A3) pharmacogenetics: functional genetic polymorphism.''; PubMed Europe PMC Scholia
  16. Hopkinson DA, Mestriner MA, Cortner J, Harris H.; ''Esterase D: a new human polymorphism.''; PubMed Europe PMC Scholia
  17. Comer KA, Falany JL, Falany CN.; ''Cloning and expression of human liver dehydroepiandrosterone sulphotransferase.''; PubMed Europe PMC Scholia
  18. Spiegelberg BD, Xiong JP, Smith JJ, Gu RF, York JD.; ''Cloning and characterization of a mammalian lithium-sensitive bisphosphate 3'-nucleotidase inhibited by inositol 1,4-bisphosphate.''; PubMed Europe PMC Scholia
  19. Li J, Xia Z, Ding J.; ''Thioredoxin-like domain of human kappa class glutathione transferase reveals sequence homology and structure similarity to the theta class enzyme.''; PubMed Europe PMC Scholia
  20. Halim AB, LeGros L, Geller A, Kotb M.; ''Expression and functional interaction of the catalytic and regulatory subunits of human methionine adenosyltransferase in mammalian cells.''; PubMed Europe PMC Scholia
  21. Zhu X, Veronese ME, Iocco P, McManus ME.; ''cDNA cloning and expression of a new form of human aryl sulfotransferase.''; PubMed Europe PMC Scholia
  22. REMY CN.; ''Metabolism of thiopyrimidines and thiopurines. S-Methylation with S-adenosylmethionine transmethylase and catabolism in mammalian tissues.''; PubMed Europe PMC Scholia
  23. Meloche CA, Falany CN.; ''Expression and characterization of the human 3 beta-hydroxysteroid sulfotransferases (SULT2B1a and SULT2B1b).''; PubMed Europe PMC Scholia
  24. Hanna PE.; ''N-acetyltransferases, O-acetyltransferases, and N,O-acetyltransferases: enzymology and bioactivation.''; PubMed Europe PMC Scholia
  25. Muraoka M, Kawakita M, Ishida N.; ''Molecular characterization of human UDP-glucuronic acid/UDP-N-acetylgalactosamine transporter, a novel nucleotide sugar transporter with dual substrate specificity.''; PubMed Europe PMC Scholia
  26. Griffith OW, Bridges RJ, Meister A.; ''Transport of gamma-glutamyl amino acids: role of glutathione and gamma-glutamyl transpeptidase.''; PubMed Europe PMC Scholia
  27. Kamiyama S, Suda T, Ueda R, Suzuki M, Okubo R, Kikuchi N, Chiba Y, Goto S, Toyoda H, Saigo K, Watanabe M, Narimatsu H, Jigami Y, Nishihara S.; ''Molecular cloning and identification of 3'-phosphoadenosine 5'-phosphosulfate transporter.''; PubMed Europe PMC Scholia
  28. Peters WH, Jansen PL.; ''Microsomal UDP-glucuronyltransferase-catalyzed bilirubin diglucuronide formation in human liver.''; PubMed Europe PMC Scholia
  29. Hu M.; ''Commentary: bioavailability of flavonoids and polyphenols: call to arms.''; PubMed Europe PMC Scholia
  30. Duggleby RG, Chao YC, Huang JG, Peng HL, Chang HY.; ''Sequence differences between human muscle and liver cDNAs for UDPglucose pyrophosphorylase and kinetic properties of the recombinant enzymes expressed in Escherichia coli.''; PubMed Europe PMC Scholia
  31. Patskovsky YV, Patskovska LN, Listowsky I.; ''An asparagine-phenylalanine substitution accounts for catalytic differences between hGSTM3-3 and other human class mu glutathione S-transferases.''; PubMed Europe PMC Scholia
  32. Morel F, Rauch C, Coles B, Le Ferrec E, Guillouzo A.; ''The human glutathione transferase alpha locus: genomic organization of the gene cluster and functional characterization of the genetic polymorphism in the hGSTA1 promoter.''; PubMed Europe PMC Scholia
  33. Yamazoe Y, Nagata K, Yoshinari K, Fujita K, Shiraga T, Iwasaki K.; ''Sulfotransferase catalyzing sulfation of heterocyclic amines.''; PubMed Europe PMC Scholia
  34. Crawford RR, Prescott ET, Sylvester CF, Higdon AN, Shan J, Kilberg MS, Mungrue IN.; ''Human CHAC1 Protein Degrades Glutathione, and mRNA Induction Is Regulated by the Transcription Factors ATF4 and ATF3 and a Bipartite ATF/CRE Regulatory Element.''; PubMed Europe PMC Scholia
  35. Zhou H, Brock J, Casarotto MG, Oakley AJ, Board PG.; ''Novel folding and stability defects cause a deficiency of human glutathione transferase omega 1.''; PubMed Europe PMC Scholia
  36. Gali RR, Board PG.; ''Sequencing and expression of a cDNA for human glutathione synthetase.''; PubMed Europe PMC Scholia
  37. Babu SR, Lakshmi VM, Huang GP, Zenser TV, Davis BB.; ''Glucuronide conjugates of 4-aminobiphenyl and its N-hydroxy metabolites. pH stability and synthesis by human and dog liver.''; PubMed Europe PMC Scholia
  38. Ren X, Aleshin M, Jo WJ, Dills R, Kalman DA, Vulpe CD, Smith MT, Zhang L.; ''Involvement of N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) in arsenic biomethylation and its role in arsenic-induced toxicity.''; PubMed Europe PMC Scholia
  39. Al Hadithy AF, de Boer NK, Derijks LJ, Escher JC, Mulder CJ, Brouwers JR.; ''Thiopurines in inflammatory bowel disease: pharmacogenetics, therapeutic drug monitoring and clinical recommendations.''; PubMed Europe PMC Scholia
  40. Holm PJ, Morgenstern R, Hebert H.; ''The 3-D structure of microsomal glutathione transferase 1 at 6 A resolution as determined by electron crystallography of p22(1)2(1) crystals.''; PubMed Europe PMC Scholia
  41. Zhang L, Jin Y, Huang M, Penning TM.; ''The Role of Human Aldo-Keto Reductases in the Metabolic Activation and Detoxication of Polycyclic Aromatic Hydrocarbons: Interconversion of PAH Catechols and PAH o-Quinones.''; PubMed Europe PMC Scholia
  42. Zakharyan RA, Sampayo-Reyes A, Healy SM, Tsaprailis G, Board PG, Liebler DC, Aposhian HV.; ''Human monomethylarsonic acid (MMA(V)) reductase is a member of the glutathione-S-transferase superfamily.''; PubMed Europe PMC Scholia
  43. Oakley AJ, Yamada T, Liu D, Coggan M, Clark AG, Board PG.; ''The identification and structural characterization of C7orf24 as gamma-glutamyl cyclotransferase. An essential enzyme in the gamma-glutamyl cycle.''; PubMed Europe PMC Scholia
  44. Eiberg H, Mohr J.; ''Identity of the polymorphisms for esterase D and S-formylglutathione hydrolase in red blood cells.''; PubMed Europe PMC Scholia
  45. Hein DW, Doll MA, Rustan TD, Gray K, Feng Y, Ferguson RJ, Grant DM.; ''Metabolic activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic NAT2 acetyltransferases.''; PubMed Europe PMC Scholia
  46. Fevery J, Van Damme B, Michiels R, De Groote J, Heirwegh KP.; ''Bilirubin conjugates in bile of man and rat in the normal state and in liver disease.''; PubMed Europe PMC Scholia
  47. Pawlak A, Wu SJ, Bulle F, Suzuki A, Chikhi N, Ferry N, Baik JH, Siegrist S, Guellaën G.; ''Different gamma-glutamyl transpeptidase mRNAs are expressed in human liver and kidney.''; PubMed Europe PMC Scholia
  48. Mawal YR, Qureshi IA.; ''Purification to homogeneity of mitochondrial acyl coa:glycine n-acyltransferase from human liver.''; PubMed Europe PMC Scholia
  49. Padmanabhan B, Kuzuhara T, Adachi N, Horikoshi M.; ''The crystal structure of CCG1/TAF(II)250-interacting factor B (CIB).''; PubMed Europe PMC Scholia
  50. Misra I, Griffith OW.; ''Expression and purification of human gamma-glutamylcysteine synthetase.''; PubMed Europe PMC Scholia
  51. Hästbacka J, de la Chapelle A, Mahtani MM, Clines G, Reeve-Daly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B, Weaver A.; ''The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping.''; PubMed Europe PMC Scholia
  52. Fujino T, Takei YA, Sone H, Ioka RX, Kamataki A, Magoori K, Takahashi S, Sakai J, Yamamoto TT.; ''Molecular identification and characterization of two medium-chain acyl-CoA synthetases, MACS1 and the Sa gene product.''; PubMed Europe PMC Scholia
  53. Mato JM, Alvarez L, Ortiz P, Pajares MA.; ''S-adenosylmethionine synthesis: molecular mechanisms and clinical implications.''; PubMed Europe PMC Scholia
  54. Kaku T, Ogura K, Nishiyama T, Ohnuma T, Muro K, Hiratsuka A.; ''Quaternary ammonium-linked glucuronidation of tamoxifen by human liver microsomes and UDP-glucuronosyltransferase 1A4.''; PubMed Europe PMC Scholia
  55. Zhou H, Brock J, Liu D, Board PG, Oakley AJ.; ''Structural insights into the dehydroascorbate reductase activity of human omega-class glutathione transferases.''; PubMed Europe PMC Scholia
  56. Levine S, Illett TA, Hagman E, Hansen RG.; ''Uridine diphosphate glucose pyrophosphorylase. II.''; PubMed Europe PMC Scholia
  57. Alper SL, Sharma AK.; ''The SLC26 gene family of anion transporters and channels.''; PubMed Europe PMC Scholia
  58. Faiyaz ul Haque M, King LM, Krakow D, Cantor RM, Rusiniak ME, Swank RT, Superti-Furga A, Haque S, Abbas H, Ahmad W, Ahmad M, Cohn DH.; ''Mutations in orthologous genes in human spondyloepimetaphyseal dysplasia and the brachymorphic mouse.''; PubMed Europe PMC Scholia
  59. Thompson GA, Meister A.; ''Hydrolysis and transfer reactions catalyzed by gamma-glutamyl transpeptidase; evidence for separate substrate sites and for high affinity of L-cystine.''; PubMed Europe PMC Scholia
  60. Yang X, Hu Y, Yin DH, Turner MA, Wang M, Borchardt RT, Howell PL, Kuczera K, Schowen RL.; ''Catalytic strategy of S-adenosyl-L-homocysteine hydrolase: transition-state stabilization and the avoidance of abortive reactions.''; PubMed Europe PMC Scholia
  61. Teufel M, Saudek V, Ledig JP, Bernhardt A, Boularand S, Carreau A, Cairns NJ, Carter C, Cowley DJ, Duverger D, Ganzhorn AJ, Guenet C, Heintzelmann B, Laucher V, Sauvage C, Smirnova T.; ''Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase.''; PubMed Europe PMC Scholia
  62. Corrales FJ, Pérez-Mato I, Sánchez Del Pino MM, Ruiz F, Castro C, García-Trevijano ER, Latasa U, Martínez-Chantar ML, Martínez-Cruz A, Avila MA, Mato JM.; ''Regulation of mammalian liver methionine adenosyltransferase.''; PubMed Europe PMC Scholia
  63. Iwamura A, Fukami T, Higuchi R, Nakajima M, Yokoi T.; ''Human α/β hydrolase domain containing 10 (ABHD10) is responsible enzyme for deglucuronidation of mycophenolic acid acyl-glucuronide in liver.''; PubMed Europe PMC Scholia
  64. Strott CA, Higashi Y.; ''Cholesterol sulfate in human physiology: what's it all about?''; PubMed Europe PMC Scholia
  65. Board PG, Coggan M, Chelvanayagam G, Easteal S, Jermiin LS, Schulte GK, Danley DE, Hoth LR, Griffor MC, Kamath AV, Rosner MH, Chrunyk BA, Perregaux DE, Gabel CA, Geoghegan KF, Pandit J.; ''Identification, characterization, and crystal structure of the Omega class glutathione transferases.''; PubMed Europe PMC Scholia
  66. Nakajima M, Tanaka E, Kwon JT, Yokoi T.; ''Characterization of nicotine and cotinine N-glucuronidations in human liver microsomes.''; PubMed Europe PMC Scholia
  67. Venkatachalam KV, Akita H, Strott CA.; ''Molecular cloning, expression, and characterization of human bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase and its functional domains.''; PubMed Europe PMC Scholia
  68. Kelner MJ, Stokely MN, Stovall NE, Montoya MA.; ''Structural organization of the human microsomal glutathione S-transferase gene (GST12).''; PubMed Europe PMC Scholia
  69. Coulthard S, Hogarth L.; ''The thiopurines: an update.''; PubMed Europe PMC Scholia
  70. Levy G.; ''Pharmacokinetics of salicylate elimination in man.''; PubMed Europe PMC Scholia
  71. Tars K, Olin B, Mannervik B.; ''Structural basis for featuring of steroid isomerase activity in alpha class glutathione transferases.''; PubMed Europe PMC Scholia
  72. Jakobsson PJ, Mancini JA, Riendeau D, Ford-Hutchinson AW.; ''Identification and characterization of a novel microsomal enzyme with glutathione-dependent transferase and peroxidase activities.''; PubMed Europe PMC Scholia
  73. Sun KH, Chang KH, Clawson S, Ghosh S, Mirzaei H, Regnier F, Shah K.; ''Glutathione-S-transferase P1 is a critical regulator of Cdk5 kinase activity.''; PubMed Europe PMC Scholia
  74. Hanigan MH, Frierson HF.; ''Immunohistochemical detection of gamma-glutamyl transpeptidase in normal human tissue.''; PubMed Europe PMC Scholia
  75. Webster LT, Siddiqui UA, Lucas SV, Strong JM, Mieyal JJ.; ''Identification of separate acyl- CoA:glycine and acyl-CoA:L-glutamine N-acyltransferase activities in mitochondrial fractions from liver of rhesus monkey and man.''; PubMed Europe PMC Scholia
  76. Regeer RR, Lee A, Markovich D.; ''Characterization of the human sulfate anion transporter (hsat-1) protein and gene (SAT1; SLC26A1).''; PubMed Europe PMC Scholia
  77. Hildebrandt MA, Salavaggione OE, Martin YN, Flynn HC, Jalal S, Wieben ED, Weinshilboum RM.; ''Human SULT1A3 pharmacogenetics: gene duplication and functional genomic studies.''; PubMed Europe PMC Scholia
  78. Hong H, Cai Y, Zhang S, Ding H, Wang H, Han A.; ''Molecular Basis of Substrate Specific Acetylation by N-Terminal Acetyltransferase NatB.''; PubMed Europe PMC Scholia
  79. Reiter C, Mwaluko G, Dunnette J, Van Loon J, Weinshilboum R.; ''Thermolabile and thermostable human platelet phenol sulfotransferase. Substrate specificity and physical separation.''; PubMed Europe PMC Scholia
  80. Figaro S, Scrima N, Buckingham RH, Heurgué-Hamard V.; ''HemK2 protein, encoded on human chromosome 21, methylates translation termination factor eRF1.''; PubMed Europe PMC Scholia
  81. Glatt H.; ''Sulfotransferases in the bioactivation of xenobiotics.''; PubMed Europe PMC Scholia
  82. Bosma PJ, Seppen J, Goldhoorn B, Bakker C, Oude Elferink RP, Chowdhury JR, Chowdhury NR, Jansen PL.; ''Bilirubin UDP-glucuronosyltransferase 1 is the only relevant bilirubin glucuronidating isoform in man.''; PubMed Europe PMC Scholia
  83. Falany CN, Krasnykh V, Falany JL.; ''Bacterial expression and characterization of a cDNA for human liver estrogen sulfotransferase.''; PubMed Europe PMC Scholia
  84. Kuehl GE, Murphy SE.; ''N-glucuronidation of nicotine and cotinine by human liver microsomes and heterologously expressed UDP-glucuronosyltransferases.''; PubMed Europe PMC Scholia
  85. Sakakibara Y, Yanagisawa K, Katafuchi J, Ringer DP, Takami Y, Nakayama T, Suiko M, Liu MC.; ''Molecular cloning, expression, and characterization of novel human SULT1C sulfotransferases that catalyze the sulfonation of N-hydroxy-2-acetylaminofluorene.''; PubMed Europe PMC Scholia
  86. Patskovsky Y, Patskovska L, Almo SC, Listowsky I.; ''Transition state model and mechanism of nucleophilic aromatic substitution reactions catalyzed by human glutathione S-transferase M1a-1a.''; PubMed Europe PMC Scholia
  87. Griffith OW, Meister A.; ''Translocation of intracellular glutathione to membrane-bound gamma-glutamyl transpeptidase as a discrete step in the gamma-glutamyl cycle: glutathionuria after inhibition of transpeptidase.''; PubMed Europe PMC Scholia
  88. DeJong JL, Morgenstern R, Jörnvall H, DePierre JW, Tu CP.; ''Gene expression of rat and human microsomal glutathione S-transferases.''; PubMed Europe PMC Scholia
  89. Li X, Clemens DL, Anderson RJ.; ''Sulfation of iodothyronines by human sulfotransferase 1C1 (SULT1C1)*.''; PubMed Europe PMC Scholia
  90. Johnson GA, Baker CA, Smith RT.; ''Radioenzymatic assay of sulfate conjugates of catecholamines and DOPA in plasma.''; PubMed Europe PMC Scholia
  91. Wang J, Falany JL, Falany CN.; ''Expression and characterization of a novel thyroid hormone-sulfating form of cytosolic sulfotransferase from human liver.''; PubMed Europe PMC Scholia
  92. Leclerc D, Campeau E, Goyette P, Adjalla CE, Christensen B, Ross M, Eydoux P, Rosenblatt DS, Rozen R, Gravel RA.; ''Human methionine synthase: cDNA cloning and identification of mutations in patients of the cblG complementation group of folate/cobalamin disorders.''; PubMed Europe PMC Scholia
  93. Azimi F, Jafariyan M, Khatami S, Mortazavi Y, Azad M.; ''Assessment of Thiopurine-based drugs according to Thiopurine S-methyltransferase genotype in patients with Acute Lymphoblastic Leukemia.''; PubMed Europe PMC Scholia
  94. Ouyang Yb, Lane WS, Moore KL.; ''Tyrosylprotein sulfotransferase: purification and molecular cloning of an enzyme that catalyzes tyrosine O-sulfation, a common posttranslational modification of eukaryotic proteins.''; PubMed Europe PMC Scholia
  95. Comstock KE, Widersten M, Hao XY, Henner WD, Mannervik B.; ''A comparison of the enzymatic and physicochemical properties of human glutathione transferase M4-4 and three other human Mu class enzymes.''; PubMed Europe PMC Scholia
  96. Bruns CM, Hubatsch I, Ridderström M, Mannervik B, Tainer JA.; ''Human glutathione transferase A4-4 crystal structures and mutagenesis reveal the basis of high catalytic efficiency with toxic lipid peroxidation products.''; PubMed Europe PMC Scholia
  97. Morel F, Rauch C, Petit E, Piton A, Theret N, Coles B, Guillouzo A.; ''Gene and protein characterization of the human glutathione S-transferase kappa and evidence for a peroxisomal localization.''; PubMed Europe PMC Scholia
  98. Sommer BJ, Barycki JJ, Simpson MA.; ''Characterization of human UDP-glucose dehydrogenase. CYS-276 is required for the second of two successive oxidations.''; PubMed Europe PMC Scholia
  99. Turner MA, Yuan CS, Borchardt RT, Hershfield MS, Smith GD, Howell PL.; ''Structure determination of selenomethionyl S-adenosylhomocysteine hydrolase using data at a single wavelength.''; PubMed Europe PMC Scholia
  100. Pastore A, Lo Bello M, Aureli G, Federici G, Ricci G, Di Ilio C, Petruzzelli R.; ''Purification and characterization of a novel alpha-class glutathione transferase from human liver.''; PubMed Europe PMC Scholia
  101. Vessey DA, Lau E, Kelley M, Warren RS.; ''Isolation, sequencing, and expression of a cDNA for the HXM-A form of xenobiotic/medium-chain fatty acid:CoA ligase from human liver mitochondria.''; PubMed Europe PMC Scholia
  102. McCarver DG, Hines RN.; ''The ontogeny of human drug-metabolizing enzymes: phase II conjugation enzymes and regulatory mechanisms.''; PubMed Europe PMC Scholia
  103. Hudson BH, Frederick JP, Drake LY, Megosh LC, Irving RP, York JD.; ''Role for cytoplasmic nucleotide hydrolysis in hepatic function and protein synthesis.''; PubMed Europe PMC Scholia
  104. Gipp JJ, Bailey HH, Mulcahy RT.; ''Cloning and sequencing of the cDNA for the light subunit of human liver gamma-glutamylcysteine synthetase and relative mRNA levels for heavy and light subunits in human normal tissues.''; PubMed Europe PMC Scholia
  105. Zhou X, Ma Z, Dong D, Wu B.; ''Arylamine N-acetyltransferases: a structural perspective.''; PubMed Europe PMC Scholia
  106. Weinshilboum RM, Otterness DM, Aksoy IA, Wood TC, Her C, Raftogianis RB.; ''Sulfation and sulfotransferases 1: Sulfotransferase molecular biology: cDNAs and genes.''; PubMed Europe PMC Scholia
  107. Danan LM, Yu Z, Hoffhines AJ, Moore KL, Leary JA.; ''Mass spectrometric kinetic analysis of human tyrosylprotein sulfotransferase-1 and -2.''; PubMed Europe PMC Scholia
  108. Chowdhury JR, Chowdhury NR, Wu G, Shouval R, Arias IM.; ''Bilirubin mono- and diglucuronide formation by human liver in vitro: assay by high-pressure liquid chromatography.''; PubMed Europe PMC Scholia
  109. Fieger CB, Sassetti CM, Rosen SD.; ''Endoglycan, a member of the CD34 family, functions as an L-selectin ligand through modification with tyrosine sulfation and sialyl Lewis x.''; PubMed Europe PMC Scholia
  110. Brix LA, Nicoll R, Zhu X, McManus ME.; ''Structural and functional characterisation of human sulfotransferases.''; PubMed Europe PMC Scholia
  111. Tars K, Larsson AK, Shokeer A, Olin B, Mannervik B, Kleywegt GJ.; ''Structural basis of the suppressed catalytic activity of wild-type human glutathione transferase T1-1 compared to its W234R mutant.''; PubMed Europe PMC Scholia
  112. Gordon ER, Sommerer U, Goresky CA.; ''The hepatic microsomal formation of bilirubin diglucuronide.''; PubMed Europe PMC Scholia
  113. Dupret JM, Grant DM.; ''Site-directed mutagenesis of recombinant human arylamine N-acetyltransferase expressed in Escherichia coli. Evidence for direct involvement of Cys68 in the catalytic mechanism of polymorphic human NAT2.''; PubMed Europe PMC Scholia
  114. West MB, Wickham S, Parks EE, Sherry DM, Hanigan MH.; ''Human GGT2 does not autocleave into a functional enzyme: A cautionary tale for interpretation of microarray data on redox signaling.''; PubMed Europe PMC Scholia
  115. Li X, Anderson RJ.; ''Sulfation of iodothyronines by recombinant human liver steroid sulfotransferases.''; PubMed Europe PMC Scholia
  116. Mungrue IN, Pagnon J, Kohannim O, Gargalovic PS, Lusis AJ.; ''CHAC1/MGC4504 is a novel proapoptotic component of the unfolded protein response, downstream of the ATF4-ATF3-CHOP cascade.''; PubMed Europe PMC Scholia
  117. Griffith OW, Bridges RJ, Meister A.; ''Evidence that the gamma-glutamyl cycle functions in vivo using intracellular glutathione: effects of amino acids and selective inhibition of enzymes.''; PubMed Europe PMC Scholia
  118. LeGros HL, Halim AB, Geller AM, Kotb M.; ''Cloning, expression, and functional characterization of the beta regulatory subunit of human methionine adenosyltransferase (MAT II).''; PubMed Europe PMC Scholia
  119. Wood TC, Salavagionne OE, Mukherjee B, Wang L, Klumpp AF, Thomae BA, Eckloff BW, Schaid DJ, Wieben ED, Weinshilboum RM.; ''Human arsenic methyltransferase (AS3MT) pharmacogenetics: gene resequencing and functional genomics studies.''; PubMed Europe PMC Scholia
  120. Ahmad H, Singhal SS, Saxena M, Awasthi YC.; ''Characterization of two novel subunits of the alpha-class glutathione S-transferases of human liver.''; PubMed Europe PMC Scholia
  121. Castonguay R, Halim D, Morin M, Furtos A, Lherbet C, Bonneil E, Thibault P, Keillor JW.; ''Kinetic characterization and identification of the acylation and glycosylation sites of recombinant human gamma-glutamyltranspeptidase.''; PubMed Europe PMC Scholia
  122. Sakakibara Y, Suiko M, Pai TG, Nakayama T, Takami Y, Katafuchi J, Liu MC.; ''Highly conserved mouse and human brain sulfotransferases: molecular cloning, expression, and functional characterization.''; PubMed Europe PMC Scholia
  123. Ritter JK, Chen F, Sheen YY, Tran HM, Kimura S, Yeatman MT, Owens IS.; ''A novel complex locus UGT1 encodes human bilirubin, phenol, and other UDP-glucuronosyltransferase isozymes with identical carboxyl termini.''; PubMed Europe PMC Scholia
  124. Tang L, Singh R, Liu Z, Hu M.; ''Structure and concentration changes affect characterization of UGT isoform-specific metabolism of isoflavones.''; PubMed Europe PMC Scholia
  125. van Haren MJ, Sastre Toraño J, Sartini D, Emanuelli M, Parsons RB, Martin NI.; ''A Rapid and Efficient Assay for the Characterization of Substrates and Inhibitors of Nicotinamide N-Methyltransferase.''; PubMed Europe PMC Scholia
  126. Knop JK, Hansen RG.; ''Uridine diphosphate glucose pyrophosphorylase. IV. Crystallization and properties of the enzyme from human liver.''; PubMed Europe PMC Scholia
  127. Girard JP, Baekkevold ES, Amalric F.; ''Sulfation in high endothelial venules: cloning and expression of the human PAPS synthetase.''; PubMed Europe PMC Scholia
  128. Polekhina G, Board PG, Gali RR, Rossjohn J, Parker MW.; ''Molecular basis of glutathione synthetase deficiency and a rare gene permutation event.''; PubMed Europe PMC Scholia
  129. Fuda H, Lee YC, Shimizu C, Javitt NB, Strott CA.; ''Mutational analysis of human hydroxysteroid sulfotransferase SULT2B1 isoforms reveals that exon 1B of the SULT2B1 gene produces cholesterol sulfotransferase, whereas exon 1A yields pregnenolone sulfotransferase.''; PubMed Europe PMC Scholia
  130. West MB, Wickham S, Quinalty LM, Pavlovicz RE, Li C, Hanigan MH.; ''Autocatalytic cleavage of human gamma-glutamyl transpeptidase is highly dependent on N-glycosylation at asparagine 95.''; PubMed Europe PMC Scholia
  131. Teramoto T, Fujikawa Y, Kawaguchi Y, Kurogi K, Soejima M, Adachi R, Nakanishi Y, Mishiro-Sato E, Liu MC, Sakakibara Y, Suiko M, Kimura M, Kakuta Y.; ''Crystal structure of human tyrosylprotein sulfotransferase-2 reveals the mechanism of protein tyrosine sulfation reaction.''; PubMed Europe PMC Scholia
  132. Kerr SC, Fieger CB, Snapp KR, Rosen SD.; ''Endoglycan, a member of the CD34 family of sialomucins, is a ligand for the vascular selectins.''; PubMed Europe PMC Scholia
  133. Javitt NB, Lee YC, Shimizu C, Fuda H, Strott CA.; ''Cholesterol and hydroxycholesterol sulfotransferases: identification, distinction from dehydroepiandrosterone sulfotransferase, and differential tissue expression.''; PubMed Europe PMC Scholia
  134. Carrithers SL, Hoffman JL.; ''Sequential methylation of 2-mercaptoethanol to the dimethyl sulfonium ion, 2-(dimethylthio)ethanol, in vivo and in vitro.''; PubMed Europe PMC Scholia
  135. Jakobsson PJ, Mancini JA, Ford-Hutchinson AW.; ''Identification and characterization of a novel human microsomal glutathione S-transferase with leukotriene C4 synthase activity and significant sequence identity to 5-lipoxygenase-activating protein and leukotriene C4 synthase.''; PubMed Europe PMC Scholia
  136. Zhou Y, Zheng J, Li Y, Xu DP, Li S, Chen YM, Li HB.; ''Natural Polyphenols for Prevention and Treatment of Cancer.''; PubMed Europe PMC Scholia
  137. Radominska A, Comer KA, Zimniak P, Falany J, Iscan M, Falany CN.; ''Human liver steroid sulphotransferase sulphates bile acids.''; PubMed Europe PMC Scholia
  138. Rossjohn J, McKinstry WJ, Oakley AJ, Verger D, Flanagan J, Chelvanayagam G, Tan KL, Board PG, Parker MW.; ''Human theta class glutathione transferase: the crystal structure reveals a sulfate-binding pocket within a buried active site.''; PubMed Europe PMC Scholia
  139. Kamiyama S, Sasaki N, Goda E, Ui-Tei K, Saigo K, Narimatsu H, Jigami Y, Kannagi R, Irimura T, Nishihara S.; ''Molecular cloning and characterization of a novel 3'-phosphoadenosine 5'-phosphosulfate transporter, PAPST2.''; PubMed Europe PMC Scholia
  140. Strott CA.; ''Sulfonation and molecular action.''; PubMed Europe PMC Scholia
  141. Aksoy IA, Wood TC, Weinshilboum R.; ''Human liver estrogen sulfotransferase: identification by cDNA cloning and expression.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114692view16:16, 25 January 2021ReactomeTeamReactome version 75
113138view11:20, 2 November 2020ReactomeTeamReactome version 74
112369view15:30, 9 October 2020ReactomeTeamReactome version 73
101271view11:16, 1 November 2018ReactomeTeamreactome version 66
100809view20:46, 31 October 2018ReactomeTeamreactome version 65
100350view19:21, 31 October 2018ReactomeTeamreactome version 64
99895view16:04, 31 October 2018ReactomeTeamreactome version 63
99452view14:38, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99116view12:40, 31 October 2018ReactomeTeamreactome version 62
93592view11:28, 9 August 2017ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
27HCHOL3SMetaboliteCHEBI:35419 (ChEBI)
27HCHOLMetaboliteCHEBI:17703 (ChEBI)
3,3'-diiodothyronine 4-sulfateMetaboliteCHEBI:35431 (ChEBI)
3,3'-diiodothyronineMetaboliteCHEBI:35430 (ChEBI)
3,4DHBNZMetaboliteCHEBI:36062 (ChEBI)
3,5,3'-triiodothyronine 4-sulfateMetaboliteCHEBI:35432 (ChEBI)
3H,4MBNZMetaboliteCHEBI:63797 (ChEBI)
6MMPMetaboliteCHEBI:28279 (ChEBI)
6MPMetaboliteCHEBI:2208 (ChEBI)
6xUGDHComplexR-HSA-173600 (Reactome)
8xUGP2ComplexR-HSA-70281 (Reactome)
AAF-N-SMetaboliteCHEBI:35424 (ChEBI)
ABENZ MetaboliteCHEBI:30753 (ChEBI)
ABHD10ProteinQ9NUJ1 (Uniprot-TrEMBL)
ABHD14BProteinQ96IU4 (Uniprot-TrEMBL)
ACAP-GSH MetaboliteCHEBI:32639 (ChEBI)
ACAP-OGLU MetaboliteCHEBI:32636 (ChEBI)
ACSM1 ProteinQ08AH1 (Uniprot-TrEMBL)
ACSM2A ProteinQ08AH3 (Uniprot-TrEMBL)
ACSM2B ProteinQ68CK6 (Uniprot-TrEMBL)
ACSM2B-like proteinsComplexR-HSA-3907283 (Reactome) This CandidateSet contains sequences identified by William Pearson's analysis of Reactome catalyst entities. Catalyst entity sequences were used to identify analagous sequences that shared overall homology and active site homology. Sequences in this Candidate set were identified in an April 24, 2012 analysis.
ACSM4 ProteinP0C7M7 (Uniprot-TrEMBL)
ACSM5 ProteinQ6NUN0 (Uniprot-TrEMBL)
ADPMetaboliteCHEBI:456216 (ChEBI)
AFMU MetaboliteCHEBI:32643 (ChEBI)
AFXBO MetaboliteCHEBI:30725 (ChEBI)
AHCY ProteinP23526 (Uniprot-TrEMBL)
AHCY:NAD+ tetramerComplexR-HSA-174358 (Reactome)
AKR1A1ProteinP14550 (Uniprot-TrEMBL)
AMPAGMetaboliteCHEBI:64689 (ChEBI)
AMPMetaboliteCHEBI:16027 (ChEBI)
APSMetaboliteCHEBI:17709 (ChEBI)
AS3MTProteinQ9HBK9 (Uniprot-TrEMBL)
ASAL MetaboliteCHEBI:27565 (ChEBI)
ATPMetaboliteCHEBI:30616 (ChEBI)
Ac-CoAMetaboliteCHEBI:15351 (ChEBI)
AcC-NAT1ProteinP18440 (Uniprot-TrEMBL)
AcC-NAT2ProteinP11245 (Uniprot-TrEMBL)
Acetaminophen (TN TYLENOL) MetaboliteCHEBI:46195 (ChEBI)
Ade-RibMetaboliteCHEBI:16335 (ChEBI)
AdoHcyMetaboliteCHEBI:16680 (ChEBI)
AdoMetMetaboliteCHEBI:15414 (ChEBI)
Aflatoxin exo-8,9-oxide glutathione conjugate MetaboliteCHEBI:2505 (ChEBI)
BDGMetaboliteCHEBI:18392 (ChEBI)
BENZAMetaboliteCHEBI:30746 (ChEBI)
BEZ-CoAMetaboliteCHEBI:15515 (ChEBI)
BILMetaboliteCHEBI:16990 (ChEBI)
BMEMetaboliteCHEBI:41218 (ChEBI)
BMGMetaboliteCHEBI:16427 (ChEBI)
BPNT1ProteinO95861 (Uniprot-TrEMBL)
BUTMetaboliteCHEBI:30772 (ChEBI)
BaP-7,8-dioneMetaboliteCHEBI:87752 (ChEBI)
BaPtDHDMetaboliteCHEBI:81626 (ChEBI)
Benzo(a)pyrene-7,8-diol 9,10-epoxide MetaboliteCHEBI:30614 (ChEBI)
Benzo(a)pyrene-7,8-diol-glutathione conjugate MetaboliteCHEBI:34479 (ChEBI)
CDNB MetaboliteCHEBI:34718 (ChEBI)
CDNBMetaboliteCHEBI:34718 (ChEBI)
CH2OMetaboliteCHEBI:16842 (ChEBI)
CHAC1 ProteinQ9BUX1 (Uniprot-TrEMBL)
CHAC1,2ComplexR-HSA-6785917 (Reactome)
CHAC2 ProteinQ8WUX2 (Uniprot-TrEMBL)
CHOLMetaboliteCHEBI:16113 (ChEBI)
CNDP2 ProteinQ96KP4 (Uniprot-TrEMBL)
CNDP2:2Mn2+ dimerComplexR-HSA-1258421 (Reactome)
COMTProteinP21964 (Uniprot-TrEMBL)
CYP1A2ProteinP05177 (Uniprot-TrEMBL)
CoA-SHMetaboliteCHEBI:15346 (ChEBI)
CysGlyMetaboliteCHEBI:4047 (ChEBI)
DAMetaboliteCHEBI:18243 (ChEBI)
DAOSMetaboliteCHEBI:37946 (ChEBI)
DHEA-SO4MetaboliteCHEBI:16814 (ChEBI)
DHEAMetaboliteCHEBI:28689 (ChEBI)
DMAAMetaboliteCHEBI:48765 (ChEBI)
DNPSG MetaboliteCHEBI:8927 (ChEBI)
DNPSGMetaboliteCHEBI:8927 (ChEBI)
DSQ MetaboliteCHEBI:34665 (ChEBI)
DSQ-OG MetaboliteCHEBI:65137 (ChEBI)
E1MetaboliteCHEBI:17263 (ChEBI)
E1SMetaboliteCHEBI:17474 (ChEBI)
E2-SO4MetaboliteCHEBI:4866 (ChEBI)
E2MetaboliteCHEBI:16469 (ChEBI)
ESD ProteinP10768 (Uniprot-TrEMBL)
ESD dimerComplexR-HSA-5693717 (Reactome)
Electrophilic substrateComplexR-ALL-176070 (Reactome)
EtO MetaboliteCHEBI:27561 (ChEBI)
FAD MetaboliteCHEBI:16238 (ChEBI)
FMN MetaboliteCHEBI:17621 (ChEBI)
G1PMetaboliteCHEBI:16077 (ChEBI)
GCLC ProteinP48506 (Uniprot-TrEMBL)
GCLM ProteinP48507 (Uniprot-TrEMBL)
GCLComplexR-HSA-174377 (Reactome)
GCTN4OGMetaboliteCHEBI:133667 (ChEBI)
GCTNMetaboliteCHEBI:34778 (ChEBI)
GGCT ProteinO75223 (Uniprot-TrEMBL)
GGCT dimerComplexR-HSA-1247905 (Reactome)
GGT dimersComplexR-HSA-1247946 (Reactome)
GGT1(1-380) ProteinP19440 (Uniprot-TrEMBL)
GGT1(381-569) ProteinP19440 (Uniprot-TrEMBL)
GGT3P(1-380) ProteinA6NGU5 (Uniprot-TrEMBL)
GGT3P(381-568) ProteinA6NGU5 (Uniprot-TrEMBL)
GGT5(1-387) ProteinP36269 (Uniprot-TrEMBL)
GGT5(388-586) ProteinP36269 (Uniprot-TrEMBL)
GGT6(1-?) ProteinQ6P531 (Uniprot-TrEMBL)
GGT6(?-493) ProteinQ6P531 (Uniprot-TrEMBL)
GGT7(1-472) ProteinQ9UJ14 (Uniprot-TrEMBL)
GGT7(473-662) ProteinQ9UJ14 (Uniprot-TrEMBL)
GLYAT ProteinQ6IB77 (Uniprot-TrEMBL)
GLYAT-like proteinsComplexR-HSA-3968340 (Reactome) This CandidateSet contains sequences identified by William Pearson's analysis of Reactome catalyst entities. Catalyst entity sequences were used to identify analagous sequences that shared overall homology and active site homology. Sequences in this Candidate set were identified in an April 24, 2012 analysis.
GLYATL1 ProteinQ969I3 (Uniprot-TrEMBL)
GLYATL2 ProteinQ8WU03 (Uniprot-TrEMBL)
GLYATL3 ProteinQ5SZD4 (Uniprot-TrEMBL)
GSHMetaboliteCHEBI:16856 (ChEBI)
GSS ProteinP48637 (Uniprot-TrEMBL)
GSS:Mg2+ dimerComplexR-HSA-174382 (Reactome)
GSSGMetaboliteCHEBI:17858 (ChEBI)
GST dimersComplexR-HSA-3301978 (Reactome)
GSTA1 ProteinP08263 (Uniprot-TrEMBL)
GSTA2 ProteinP09210 (Uniprot-TrEMBL)
GSTA3 ProteinQ16772 (Uniprot-TrEMBL)
GSTA4 ProteinO15217 (Uniprot-TrEMBL)
GSTA5 ProteinQ7RTV2 (Uniprot-TrEMBL)
GSTK1 ProteinQ9Y2Q3 (Uniprot-TrEMBL)
GSTK1 dimerComplexR-HSA-3302000 (Reactome)
GSTM1 ProteinP09488 (Uniprot-TrEMBL)
GSTM2 ProteinP28161 (Uniprot-TrEMBL)
GSTM3 ProteinP21266 (Uniprot-TrEMBL)
GSTM4 ProteinQ03013 (Uniprot-TrEMBL)
GSTM5 ProteinP46439 (Uniprot-TrEMBL)
GSTO1 ProteinP78417 (Uniprot-TrEMBL)
GSTO1 dimerComplexR-HSA-198825 (Reactome)
GSTO2 ProteinQ9H4Y5 (Uniprot-TrEMBL)
GSTP1 ProteinP09211 (Uniprot-TrEMBL)
GSTT1 ProteinP30711 (Uniprot-TrEMBL)
GSTT2 ProteinP0CG29 (Uniprot-TrEMBL)
GSTT2B ProteinP0CG30 (Uniprot-TrEMBL)
GSTZ1 ProteinO43708 (Uniprot-TrEMBL)
GlcAMetaboliteCHEBI:15748 (ChEBI)
GlyMetaboliteCHEBI:57305 (ChEBI)
H+MetaboliteCHEBI:15378 (ChEBI)
H2OMetaboliteCHEBI:15377 (ChEBI)
HCYSMetaboliteCHEBI:17230 (ChEBI)
HClMetaboliteCHEBI:17883 (ChEBI)
HIPAMetaboliteCHEBI:18089 (ChEBI)
HPGDS ProteinO60760 (Uniprot-TrEMBL)
IMPAD1 ProteinQ9NX62 (Uniprot-TrEMBL)
IMPAD1:Mg2+ComplexR-HSA-8953491 (Reactome)
ISNZ MetaboliteCHEBI:6030 (ChEBI)
K+ MetaboliteCHEBI:29103 (ChEBI)
L-CysMetaboliteCHEBI:35235 (ChEBI)
L-GlnMetaboliteCHEBI:58359 (ChEBI)
L-GluMetaboliteCHEBI:29985 (ChEBI)
L-MetMetaboliteCHEBI:57844 (ChEBI)
LCAMetaboliteCHEBI:16325 (ChEBI)
Li+MetaboliteCHEBI:49713 (ChEBI)
MAT1A ProteinQ00266 (Uniprot-TrEMBL)
MAT1A multimersComplexR-HSA-174383 (Reactome)
MAT2A ProteinP31153 (Uniprot-TrEMBL)
MAT2B ProteinQ9NZL9 (Uniprot-TrEMBL)
MAT2B:MAT2A:K+:2Mg2+ComplexR-HSA-353576 (Reactome)
MGST trimersComplexR-HSA-176042 (Reactome)
MGST1 ProteinP10620 (Uniprot-TrEMBL)
MGST2 ProteinQ99735 (Uniprot-TrEMBL)
MGST3 ProteinO14880 (Uniprot-TrEMBL)
MMAIIIMetaboliteCHEBI:17826 (ChEBI)
MMETOHMetaboliteCHEBI:63861 (ChEBI)
MP+MetaboliteCHEBI:15761 (ChEBI)
MPAMetaboliteCHEBI:168396 (ChEBI)
MTR ProteinQ99707 (Uniprot-TrEMBL)
MTRR ProteinQ9UBK8 (Uniprot-TrEMBL)
MTRR:MTR(MeCbl)ComplexR-HSA-3149551 (Reactome)
MTRR:MTR(cob(I)alamin)ComplexR-HSA-3149516 (Reactome)
MeCbl MetaboliteCHEBI:28115 (ChEBI)
Mg2+ MetaboliteCHEBI:18420 (ChEBI)
Mn2+ MetaboliteCHEBI:29035 (ChEBI)
N-centre functional group substrateComplexR-ALL-174932 (Reactome)
N-glucuronideComplexR-ALL-174918 (Reactome)
N-hydroxy-2-acetylaminofluoreneMetaboliteCHEBI:17931 (ChEBI)
N-hydroxy-4-aminobiphenyl O-acetylated conjugate MetaboliteCHEBI:16395 (ChEBI)
N-hydroxy-4-aminobiphenyl O-glucuronide MetaboliteCHEBI:32649 (ChEBI)
N4-acetylsulfanilamide MetaboliteCHEBI:63845 (ChEBI)
N6AMT1 ProteinQ9Y5N5 (Uniprot-TrEMBL)
N6AMT1:TRMT112ComplexR-HSA-6800133 (Reactome)
NABQI MetaboliteCHEBI:29132 (ChEBI)
NAD+ MetaboliteCHEBI:57540 (ChEBI)
NAD+MetaboliteCHEBI:57540 (ChEBI)
NADHMetaboliteCHEBI:57945 (ChEBI)
NADP+MetaboliteCHEBI:18009 (ChEBI)
NADPHMetaboliteCHEBI:16474 (ChEBI)
NAT1 acetylated conjugateComplexR-ALL-174960 (Reactome)
NAT1 substrateComplexR-ALL-174969 (Reactome)
NAT1ProteinP18440 (Uniprot-TrEMBL)
NAT2 acetylated conjugateComplexR-ALL-174958 (Reactome)
NAT2 substrateComplexR-ALL-174971 (Reactome)
NAT2ProteinP11245 (Uniprot-TrEMBL)
NAcISNZ MetaboliteCHEBI:7207 (ChEBI)
NAcPAB MetaboliteCHEBI:63815 (ChEBI)
NAcPAS MetaboliteCHEBI:63817 (ChEBI)
NHABP MetaboliteCHEBI:16580 (ChEBI)
NHABP-SO4MetaboliteCHEBI:32701 (ChEBI)
NHABPMetaboliteCHEBI:16580 (ChEBI)
NNMTProteinP40261 (Uniprot-TrEMBL)
Nicotine MetaboliteCHEBI:17688 (ChEBI)
Nicotine N-glucuronide MetaboliteCHEBI:63860 (ChEBI)
O-centre functional group substrateComplexR-ALL-174911 (Reactome)
O-glucuronideComplexR-ALL-174914 (Reactome)
O2MetaboliteCHEBI:15379 (ChEBI)
OPLAH ProteinO14841 (Uniprot-TrEMBL)
OPLAHComplexR-HSA-1247926 (Reactome)
OPROMetaboliteCHEBI:18183 (ChEBI)
OSulf-Y97,118-PODXL2ProteinQ9NZ53 (Uniprot-TrEMBL)
PAPMetaboliteCHEBI:17985 (ChEBI)
PAPSMetaboliteCHEBI:17980 (ChEBI)
PAPSS1 ProteinO43252 (Uniprot-TrEMBL)
PAPSS1,2ComplexR-HSA-174400 (Reactome)
PAPSS2 ProteinO95340 (Uniprot-TrEMBL)
PARA-SO4MetaboliteCHEBI:32635 (ChEBI)
PARAMetaboliteCHEBI:46195 (ChEBI)
PNPBMetaboliteCHEBI:85867 (ChEBI)
PNPMetaboliteCHEBI:16836 (ChEBI)
PODXL2ProteinQ9NZ53 (Uniprot-TrEMBL)
PPiMetaboliteCHEBI:29888 (ChEBI)
PREGMetaboliteCHEBI:16581 (ChEBI)
PREGSMetaboliteCHEBI:35420 (ChEBI)
PYMetaboliteCHEBI:16227 (ChEBI)
Paraxanthine MetaboliteCHEBI:25858 (ChEBI)
PhOH MetaboliteCHEBI:15882 (ChEBI)
PhOHMetaboliteCHEBI:15882 (ChEBI)
Phenyl glucuronate MetaboliteCHEBI:64681 (ChEBI)
Phenyl sulfateMetaboliteCHEBI:27905 (ChEBI)
PiMetaboliteCHEBI:43474 (ChEBI)
S-2-(hydroxyethyl)-glutathione MetaboliteCHEBI:35896 (ChEBI)
S-FGSHMetaboliteCHEBI:16225 (ChEBI)
SALMetaboliteCHEBI:16914 (ChEBI)
SAMD MetaboliteCHEBI:45373 (ChEBI)
SLC26A1 ProteinQ9H2B4 (Uniprot-TrEMBL)
SLC26A1,2ComplexR-HSA-427632 (Reactome)
SLC26A2 ProteinP50443 (Uniprot-TrEMBL)
SLC35B2 ProteinQ8TB61 (Uniprot-TrEMBL)
SLC35B2,3ComplexR-HSA-3465611 (Reactome)
SLC35B3 ProteinQ9H1N7 (Uniprot-TrEMBL)
SLC35D1 ProteinQ9NTN3 (Uniprot-TrEMBL)
SLC35D1 hexamerComplexR-HSA-174388 (Reactome)
SO4(2-)MetaboliteCHEBI:16189 (ChEBI)
SUAMetaboliteCHEBI:9008 (ChEBI)
SULT dimers (T2)ComplexR-HSA-176650 (Reactome)
SULT dimers (T3)ComplexR-HSA-176599 (Reactome)
SULT1A1 ProteinP50225 (Uniprot-TrEMBL)
SULT1A1 dimerComplexR-HSA-158473 (Reactome)
SULT1A1,A2,C2,4A1ComplexR-HSA-176479 (Reactome)
SULT1A2 ProteinP50226 (Uniprot-TrEMBL)
SULT1A3 ProteinP0DMM9 (Uniprot-TrEMBL)
SULT1A3,4 dimersComplexR-HSA-8959973 (Reactome)
SULT1A4 ProteinP0DMN0 (Uniprot-TrEMBL)
SULT1B1 ProteinO43704 (Uniprot-TrEMBL)
SULT1C2 ProteinO00338 (Uniprot-TrEMBL)
SULT1C4 ProteinO75897 (Uniprot-TrEMBL)
SULT1E1 ProteinP49888 (Uniprot-TrEMBL)
SULT1E1 dimerComplexR-HSA-176645 (Reactome)
SULT1E1,2A1ComplexR-HSA-176621 (Reactome)
SULT2A1 ProteinQ06520 (Uniprot-TrEMBL)
SULT2A1 dimerComplexR-HSA-176648 (Reactome)
SULT2B1-1 ProteinO00204-1 (Uniprot-TrEMBL)
SULT2B1-1 dimerComplexR-HSA-176484 (Reactome)
SULT2B1-2 ProteinO00204-2 (Uniprot-TrEMBL)
SULT4A1 ProteinQ9BR01 (Uniprot-TrEMBL)
SULT6B1 ProteinQ6IMI4 (Uniprot-TrEMBL)
SULTs active on 27HCHOLComplexR-HSA-176569 (Reactome)
SULTs active on NH2AAFComplexR-HSA-176572 (Reactome)
SULTs active on pregnenoloneComplexR-HSA-176567 (Reactome)
SULTs active on DHEAComplexR-HSA-176574 (Reactome)
Salicylate-CoA thioesterMetaboliteCHEBI:32587 (ChEBI)
T3MetaboliteCHEBI:28774 (ChEBI)
TAM MetaboliteCHEBI:41774 (ChEBI)
TAMNG MetaboliteCHEBI:32663 (ChEBI)
TMTR-HSA-175986 (Reactome)
TPMTProteinP51580 (Uniprot-TrEMBL)
TPST1 ProteinO60507 (Uniprot-TrEMBL)
TPST1,2ComplexR-HSA-8954265 (Reactome)
TPST2 ProteinO60704 (Uniprot-TrEMBL)
TRMT112 ProteinQ9UI30 (Uniprot-TrEMBL)
UDP-GlcAMetaboliteCHEBI:17200 (ChEBI)
UDP-GlcMetaboliteCHEBI:18066 (ChEBI)
UDP-GlcNAcMetaboliteCHEBI:16264 (ChEBI)
UDPMetaboliteCHEBI:17659 (ChEBI)
UGDH ProteinO60701 (Uniprot-TrEMBL)
UGP2 ProteinQ16851 (Uniprot-TrEMBL)
UGT1A1 ProteinP22309 (Uniprot-TrEMBL)
UGT1A1 tetramerComplexR-HSA-159191 (Reactome)
UGT1A10ProteinQ9HAW8 (Uniprot-TrEMBL)
UGT1A1ProteinP22309 (Uniprot-TrEMBL)
UGT1A3 ProteinP35503 (Uniprot-TrEMBL)
UGT1A3,A4,A9ComplexR-HSA-174917 (Reactome)
UGT1A4 ProteinP22310 (Uniprot-TrEMBL)
UGT1A4ProteinP22310 (Uniprot-TrEMBL)
UGT1A5 ProteinP35504 (Uniprot-TrEMBL)
UGT1A6 ProteinP19224 (Uniprot-TrEMBL)
UGT1A7 ProteinQ9HAW7 (Uniprot-TrEMBL)
UGT1A8 ProteinQ9HAW9 (Uniprot-TrEMBL)
UGT1A9 ProteinO60656 (Uniprot-TrEMBL)
UGT2A1 ProteinP0DTE4 (Uniprot-TrEMBL)
UGT2A2 ProteinP0DTE5 (Uniprot-TrEMBL)
UGT2A3 ProteinQ6UWM9 (Uniprot-TrEMBL)
UGT2B10 ProteinP36537 (Uniprot-TrEMBL)
UGT2B11 ProteinO75310 (Uniprot-TrEMBL)
UGT2B15 ProteinP54855 (Uniprot-TrEMBL)
UGT2B17 ProteinO75795 (Uniprot-TrEMBL)
UGT2B28 ProteinQ9BY64 (Uniprot-TrEMBL)
UGT2B4 ProteinP06133 (Uniprot-TrEMBL)
UGT2B7 ProteinP16662 (Uniprot-TrEMBL)
UGT3A1 ProteinQ6NUS8 (Uniprot-TrEMBL)
UGT3A2 ProteinQ3SY77 (Uniprot-TrEMBL)
UGTs (O-GlcA forming)ComplexR-HSA-174920 (Reactome)
UTPMetaboliteCHEBI:15713 (ChEBI)
Zn2+ MetaboliteCHEBI:29105 (ChEBI)
adenosine 5'-monophosphateMetaboliteCHEBI:16027 (ChEBI)
arsenite(3-)MetaboliteCHEBI:29866 (ChEBI)
cholesterol sulfateMetaboliteCHEBI:41321 (ChEBI)
cob(I)alamin MetaboliteCHEBI:15982 (ChEBI)
dimethylarsinateMetaboliteCHEBI:16223 (ChEBI)
electrophilic substrate:SGComplexR-ALL-176048 (Reactome)
electrophilic substrate:SGComplexR-ALL-176049 (Reactome)
electrophilic substrateComplexR-ALL-176065 (Reactome)
formateMetaboliteCHEBI:30751 (ChEBI)
gGluCysMetaboliteCHEBI:17515 (ChEBI)
glutamine-N-acyltransferaseR-HSA-177742 (Reactome)
lithocholate sulfateMetaboliteCHEBI:35421 (ChEBI)
methylarsonateMetaboliteCHEBI:16005 (ChEBI)
methylarsoniteMetaboliteCHEBI:14597 (ChEBI)
p-nitrophenol sulfateMetaboliteCHEBI:35422 (ChEBI)
phenylacetateMetaboliteCHEBI:8082 (ChEBI)
phenylacetyl glutamineMetaboliteCHEBI:17884 (ChEBI)
phenylacetyl-CoAMetaboliteCHEBI:15537 (ChEBI)
taurolithocholate sulfateMetaboliteCHEBI:17864 (ChEBI)
taurolithocholateMetaboliteCHEBI:17179 (ChEBI)
xenobiotic/medium-chain fatty acid:CoA ligasesComplexR-HSA-177125 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
27HCHOL3SArrowR-HSA-176494 (Reactome)
27HCHOLR-HSA-176494 (Reactome)
3,3'-diiodothyronine 4-sulfateArrowR-HSA-176474 (Reactome)
3,3'-diiodothyronineR-HSA-176474 (Reactome)
3,4DHBNZR-HSA-175983 (Reactome)
3,5,3'-triiodothyronine 4-sulfateArrowR-HSA-176585 (Reactome)
3H,4MBNZArrowR-HSA-175983 (Reactome)
6MMPArrowR-HSA-158609 (Reactome)
6MMPR-HSA-76386 (Reactome)
6MPArrowR-HSA-76386 (Reactome)
6MPR-HSA-158609 (Reactome)
6xUGDHmim-catalysisR-HSA-173597 (Reactome)
8xUGP2mim-catalysisR-HSA-70286 (Reactome)
AAF-N-SArrowR-HSA-176669 (Reactome)
ABHD10mim-catalysisR-HSA-5694563 (Reactome)
ABHD14Bmim-catalysisR-HSA-5695964 (Reactome)
ACSM2B-like proteinsmim-catalysisR-HSA-159567 (Reactome)
ADPArrowR-HSA-1247935 (Reactome)
ADPArrowR-HSA-174367 (Reactome)
ADPArrowR-HSA-174389 (Reactome)
ADPArrowR-HSA-174394 (Reactome)
AHCY:NAD+ tetramermim-catalysisR-HSA-174401 (Reactome)
AKR1A1mim-catalysisR-HSA-5692232 (Reactome)
AMPAGR-HSA-5694563 (Reactome)
AMPArrowR-HSA-176606 (Reactome)
APSArrowR-HSA-174392 (Reactome)
APSR-HSA-174389 (Reactome)
AS3MTmim-catalysisR-HSA-5696213 (Reactome)
AS3MTmim-catalysisR-HSA-5696220 (Reactome)
ATPR-HSA-1247935 (Reactome)
ATPR-HSA-159443 (Reactome)
ATPR-HSA-159567 (Reactome)
ATPR-HSA-174367 (Reactome)
ATPR-HSA-174389 (Reactome)
ATPR-HSA-174391 (Reactome)
ATPR-HSA-174392 (Reactome)
ATPR-HSA-174394 (Reactome)
ATPR-HSA-177157 (Reactome)
ATPR-HSA-5603114 (Reactome)
Ac-CoAR-HSA-158832 (Reactome)
Ac-CoAR-HSA-174959 (Reactome)
AcC-NAT1ArrowR-HSA-174959 (Reactome)
AcC-NAT1R-HSA-174963 (Reactome)
AcC-NAT1mim-catalysisR-HSA-174963 (Reactome)
AcC-NAT2ArrowR-HSA-158832 (Reactome)
AcC-NAT2R-HSA-174967 (Reactome)
AcC-NAT2mim-catalysisR-HSA-174967 (Reactome)
Ade-RibArrowR-HSA-174401 (Reactome)
AdoHcyArrowR-HSA-158609 (Reactome)
AdoHcyArrowR-HSA-175976 (Reactome)
AdoHcyArrowR-HSA-175983 (Reactome)
AdoHcyArrowR-HSA-175987 (Reactome)
AdoHcyArrowR-HSA-5696213 (Reactome)
AdoHcyArrowR-HSA-5696220 (Reactome)
AdoHcyArrowR-HSA-6800149 (Reactome)
AdoHcyR-HSA-174401 (Reactome)
AdoMetArrowR-HSA-174391 (Reactome)
AdoMetArrowR-HSA-5603114 (Reactome)
AdoMetR-HSA-158609 (Reactome)
AdoMetR-HSA-175976 (Reactome)
AdoMetR-HSA-175983 (Reactome)
AdoMetR-HSA-175987 (Reactome)
AdoMetR-HSA-5696213 (Reactome)
AdoMetR-HSA-5696220 (Reactome)
AdoMetR-HSA-6800149 (Reactome)
BDGArrowR-HSA-159179 (Reactome)
BDGArrowR-HSA-9632038 (Reactome)
BENZAR-HSA-159443 (Reactome)
BEZ-CoAArrowR-HSA-159443 (Reactome)
BEZ-CoAR-HSA-159566 (Reactome)
BILR-HSA-159194 (Reactome)
BILR-HSA-9632039 (Reactome)
BMER-HSA-175976 (Reactome)
BMGArrowR-HSA-159194 (Reactome)
BMGArrowR-HSA-9632039 (Reactome)
BMGR-HSA-159179 (Reactome)
BMGR-HSA-9632038 (Reactome)
BPNT1mim-catalysisR-HSA-176606 (Reactome)
BUTArrowR-HSA-5695964 (Reactome)
BaP-7,8-dioneArrowR-HSA-5692232 (Reactome)
BaPtDHDR-HSA-5692232 (Reactome)
CDNBR-HSA-3301943 (Reactome)
CH2OArrowR-HSA-76386 (Reactome)
CHAC1,2mim-catalysisR-HSA-6785928 (Reactome)
CHOLR-HSA-176609 (Reactome)
CNDP2:2Mn2+ dimermim-catalysisR-HSA-1247910 (Reactome)
COMTmim-catalysisR-HSA-175983 (Reactome)
CYP1A2mim-catalysisR-HSA-76386 (Reactome)
CoA-SHArrowR-HSA-158832 (Reactome)
CoA-SHArrowR-HSA-159566 (Reactome)
CoA-SHArrowR-HSA-159574 (Reactome)
CoA-SHArrowR-HSA-174959 (Reactome)
CoA-SHArrowR-HSA-177160 (Reactome)
CoA-SHR-HSA-159443 (Reactome)
CoA-SHR-HSA-159567 (Reactome)
CoA-SHR-HSA-177157 (Reactome)
CysGlyArrowR-HSA-1247939 (Reactome)
CysGlyArrowR-HSA-6785928 (Reactome)
CysGlyArrowR-HSA-8943279 (Reactome)
CysGlyR-HSA-1247910 (Reactome)
CysGlyR-HSA-1247939 (Reactome)
DAOSArrowR-HSA-159358 (Reactome)
DAR-HSA-159358 (Reactome)
DHEA-SO4ArrowR-HSA-176631 (Reactome)
DHEAR-HSA-176631 (Reactome)
DMAAArrowR-HSA-6800149 (Reactome)
DNPSGArrowR-HSA-3301943 (Reactome)
E1R-HSA-176664 (Reactome)
E1SArrowR-HSA-176664 (Reactome)
E2-SO4ArrowR-HSA-176521 (Reactome)
E2R-HSA-176521 (Reactome)
ESD dimermim-catalysisR-HSA-5693724 (Reactome)
Electrophilic substrateR-HSA-176054 (Reactome)
G1PR-HSA-70286 (Reactome)
GCLmim-catalysisR-HSA-174367 (Reactome)
GCTN4OGArrowR-HSA-8941701 (Reactome)
GCTNR-HSA-8941701 (Reactome)
GGCT dimermim-catalysisR-HSA-1247922 (Reactome)
GGT dimersmim-catalysisR-HSA-8943279 (Reactome)
GLYAT-like proteinsmim-catalysisR-HSA-159566 (Reactome)
GLYAT-like proteinsmim-catalysisR-HSA-159574 (Reactome)
GSHArrowR-HSA-1247915 (Reactome)
GSHArrowR-HSA-174394 (Reactome)
GSHArrowR-HSA-5693724 (Reactome)
GSHR-HSA-1247915 (Reactome)
GSHR-HSA-176054 (Reactome)
GSHR-HSA-176059 (Reactome)
GSHR-HSA-3301943 (Reactome)
GSHR-HSA-5696230 (Reactome)
GSHR-HSA-6785928 (Reactome)
GSHR-HSA-8943279 (Reactome)
GSHTBarR-HSA-174394 (Reactome)
GSS:Mg2+ dimermim-catalysisR-HSA-174394 (Reactome)
GSSGArrowR-HSA-5696230 (Reactome)
GST dimersmim-catalysisR-HSA-176054 (Reactome)
GSTK1 dimermim-catalysisR-HSA-3301943 (Reactome)
GSTO1 dimermim-catalysisR-HSA-5696230 (Reactome)
GlcAArrowR-HSA-5694563 (Reactome)
GlyArrowR-HSA-1247910 (Reactome)
GlyR-HSA-159566 (Reactome)
GlyR-HSA-159574 (Reactome)
GlyR-HSA-174394 (Reactome)
H+ArrowR-HSA-158609 (Reactome)
H+ArrowR-HSA-173597 (Reactome)
H+ArrowR-HSA-427555 (Reactome)
H+R-HSA-427555 (Reactome)
H+R-HSA-76386 (Reactome)
H2OArrowR-HSA-5696230 (Reactome)
H2OArrowR-HSA-76386 (Reactome)
H2OR-HSA-1247910 (Reactome)
H2OR-HSA-1247935 (Reactome)
H2OR-HSA-173597 (Reactome)
H2OR-HSA-174391 (Reactome)
H2OR-HSA-174401 (Reactome)
H2OR-HSA-176606 (Reactome)
H2OR-HSA-5603114 (Reactome)
H2OR-HSA-5693724 (Reactome)
H2OR-HSA-5694563 (Reactome)
H2OR-HSA-5695964 (Reactome)
H2OR-HSA-8943279 (Reactome)
H2OR-HSA-8953499 (Reactome)
HCYSArrowR-HSA-174401 (Reactome)
HCYSR-HSA-174374 (Reactome)
HClArrowR-HSA-3301943 (Reactome)
HIPAArrowR-HSA-159566 (Reactome)
IMPAD1:Mg2+mim-catalysisR-HSA-8953499 (Reactome)
L-CysArrowR-HSA-1247910 (Reactome)
L-CysArrowR-HSA-1247922 (Reactome)
L-CysR-HSA-174367 (Reactome)
L-GlnR-HSA-177160 (Reactome)
L-GluArrowR-HSA-1247935 (Reactome)
L-GluArrowR-HSA-8943279 (Reactome)
L-GluR-HSA-174367 (Reactome)
L-MetArrowR-HSA-174374 (Reactome)
L-MetR-HSA-174391 (Reactome)
L-MetR-HSA-5603114 (Reactome)
LCAR-HSA-176588 (Reactome)
Li+TBarR-HSA-8953499 (Reactome)
MAT1A multimersmim-catalysisR-HSA-174391 (Reactome)
MAT2B:MAT2A:K+:2Mg2+mim-catalysisR-HSA-5603114 (Reactome)
MGST trimersmim-catalysisR-HSA-176059 (Reactome)
MMAIIIR-HSA-6800149 (Reactome)
MMETOHArrowR-HSA-175976 (Reactome)
MP+ArrowR-HSA-175987 (Reactome)
MPAArrowR-HSA-5694563 (Reactome)
MTRR:MTR(MeCbl)R-HSA-174374 (Reactome)
MTRR:MTR(MeCbl)mim-catalysisR-HSA-174374 (Reactome)
MTRR:MTR(cob(I)alamin)ArrowR-HSA-174374 (Reactome)
N-centre functional group substrateR-HSA-174916 (Reactome)
N-glucuronideArrowR-HSA-174916 (Reactome)
N-hydroxy-2-acetylaminofluoreneR-HSA-176669 (Reactome)
N6AMT1:TRMT112mim-catalysisR-HSA-6800149 (Reactome)
NAD+R-HSA-173597 (Reactome)
NADHArrowR-HSA-173597 (Reactome)
NADP+ArrowR-HSA-76386 (Reactome)
NADP+R-HSA-5692232 (Reactome)
NADPHArrowR-HSA-5692232 (Reactome)
NADPHR-HSA-76386 (Reactome)
NAT1 acetylated conjugateArrowR-HSA-174963 (Reactome)
NAT1 substrateR-HSA-174963 (Reactome)
NAT1ArrowR-HSA-174963 (Reactome)
NAT1R-HSA-174959 (Reactome)
NAT2 acetylated conjugateArrowR-HSA-174967 (Reactome)
NAT2 substrateR-HSA-174967 (Reactome)
NAT2ArrowR-HSA-174967 (Reactome)
NAT2R-HSA-158832 (Reactome)
NHABP-SO4ArrowR-HSA-158860 (Reactome)
NHABPR-HSA-158860 (Reactome)
NNMTmim-catalysisR-HSA-175987 (Reactome)
O-centre functional group substrateR-HSA-174931 (Reactome)
O-glucuronideArrowR-HSA-174931 (Reactome)
O2R-HSA-76386 (Reactome)
OPLAHmim-catalysisR-HSA-1247935 (Reactome)
OPROArrowR-HSA-1247922 (Reactome)
OPROArrowR-HSA-6785928 (Reactome)
OPROR-HSA-1247935 (Reactome)
OSulf-Y97,118-PODXL2ArrowR-HSA-8954262 (Reactome)
PAPArrowR-HSA-158468 (Reactome)
PAPArrowR-HSA-158849 (Reactome)
PAPArrowR-HSA-158860 (Reactome)
PAPArrowR-HSA-159358 (Reactome)
PAPArrowR-HSA-176474 (Reactome)
PAPArrowR-HSA-176494 (Reactome)
PAPArrowR-HSA-176517 (Reactome)
PAPArrowR-HSA-176521 (Reactome)
PAPArrowR-HSA-176585 (Reactome)
PAPArrowR-HSA-176588 (Reactome)
PAPArrowR-HSA-176604 (Reactome)
PAPArrowR-HSA-176609 (Reactome)
PAPArrowR-HSA-176631 (Reactome)
PAPArrowR-HSA-176646 (Reactome)
PAPArrowR-HSA-176664 (Reactome)
PAPArrowR-HSA-176669 (Reactome)
PAPArrowR-HSA-8954262 (Reactome)
PAPR-HSA-176606 (Reactome)
PAPR-HSA-8953499 (Reactome)
PAPSArrowR-HSA-174389 (Reactome)
PAPSArrowR-HSA-741449 (Reactome)
PAPSR-HSA-158468 (Reactome)
PAPSR-HSA-158849 (Reactome)
PAPSR-HSA-158860 (Reactome)
PAPSR-HSA-159358 (Reactome)
PAPSR-HSA-176474 (Reactome)
PAPSR-HSA-176494 (Reactome)
PAPSR-HSA-176517 (Reactome)
PAPSR-HSA-176521 (Reactome)
PAPSR-HSA-176585 (Reactome)
PAPSR-HSA-176588 (Reactome)
PAPSR-HSA-176604 (Reactome)
PAPSR-HSA-176609 (Reactome)
PAPSR-HSA-176631 (Reactome)
PAPSR-HSA-176646 (Reactome)
PAPSR-HSA-176664 (Reactome)
PAPSR-HSA-176669 (Reactome)
PAPSR-HSA-741449 (Reactome)
PAPSR-HSA-8954262 (Reactome)
PAPSS1,2mim-catalysisR-HSA-174389 (Reactome)
PAPSS1,2mim-catalysisR-HSA-174392 (Reactome)
PARA-SO4ArrowR-HSA-158468 (Reactome)
PARAR-HSA-158468 (Reactome)
PNPArrowR-HSA-5695964 (Reactome)
PNPBR-HSA-5695964 (Reactome)
PNPR-HSA-176646 (Reactome)
PODXL2R-HSA-8954262 (Reactome)
PPiArrowR-HSA-159443 (Reactome)
PPiArrowR-HSA-159567 (Reactome)
PPiArrowR-HSA-174391 (Reactome)
PPiArrowR-HSA-174392 (Reactome)
PPiArrowR-HSA-177157 (Reactome)
PPiArrowR-HSA-5603114 (Reactome)
PPiArrowR-HSA-70286 (Reactome)
PREGR-HSA-176517 (Reactome)
PREGSArrowR-HSA-176517 (Reactome)
PYR-HSA-175987 (Reactome)
PhOHR-HSA-158849 (Reactome)
Phenyl sulfateArrowR-HSA-158849 (Reactome)
PiArrowR-HSA-1247935 (Reactome)
PiArrowR-HSA-174367 (Reactome)
PiArrowR-HSA-174391 (Reactome)
PiArrowR-HSA-174394 (Reactome)
PiArrowR-HSA-176606 (Reactome)
PiArrowR-HSA-5603114 (Reactome)
PiArrowR-HSA-8953499 (Reactome)
R-HSA-1247910 (Reactome) Cytosolic, non-specific peptidase (CNDP2) can hydrolyse cysteinylglycine (CysGly) to release cysteine (L-Cys) and glycine (Gly) (Tuefel et al. 2003). CNDP2 is functional as a homodimer and requires 2 Mn2+ ion per subunit.
R-HSA-1247915 (Reactome) Glutathione is exported out of the cell to be made available for membrane-bound gamma-glutamyl transpeptidases (GGTs). Cells that have GGTs can utilize translocated glutathione. The exact transport mechanism is uncertain (Griffith and Meister, 1979; Griffith et al, 1979).
R-HSA-1247922 (Reactome) Gamma-glutamylcyclotransferase (GGCT) homodimer (Bae et al. 2008) catalyses the formation of 5-oxoproline from gamma-glutamylcysteine (gGluCys), therby playing a role in glutathione homeostasis (Oakley et al. 2008).
R-HSA-1247935 (Reactome) 5-oxoprolinase catalyzes the cleavage of 5-oxoproline to form L-glutamate, coupled to the hydrolysis of ATP to ADP and inorganic phosphate (Chen et al, 1998).
R-HSA-1247939 (Reactome) The hydrolysis product of glutathione, cysteinylglycine (CysGly) is transported back into the cell to replenish the precursor resevoir for the resynthesis of glutathione. The exact mechanism of uptake is unknown (Griffith et al. 1978).
R-HSA-158468 (Reactome) Cytosolic sulfotransferase 1A1 (SULT1A1), in dimeric form, can sulfonate the widely used analgesic and antipyretic drug paracetamol (PARA aka acetaminophen). Around 20-30% of PARA is metabolised via sulfonation by the liver (Parkinson 1995, Yamazoe et al. 1995, Strott 2002).
R-HSA-158609 (Reactome) Methylation is the major biotransformation route of thiopurine drugs such as 6-mercaptopurine (6MP), used in the treatment of inflammatory diseases such as rheumatoid arthritis and childhood acute lymphoblastic leukemia. 6MP and its thioguanine nucleotide metabolites are principally inactivated by thiopurine methyltransferase (TPMT)-catalysed S-methylation.

Defects in TPMT can cause thiopurine S methyltransferase deficiency (TPMT deficiency; MIM:610460). Patients with intermediate or no TPMT activity are at risk of toxicity such as myelosuppression after receiving standard doses of thiopurine drugs. Inter individual differences in response to these drugs are largely determined by genetic variation at the TPMT locus. TPMT exhibits an autosomal co dominant phenotype: About one in 300 people in Caucasian, African, African-American, and Asian populations are TPMT deficient. Approximately 6-10% of people in these populations inherit intermediate TPMT activity and are heterozygous at the TPMT locus. The rest are homozygous for the wild type allele and have high levels of TPMT activity. (Remy 1963, Weinshilboum et al. 1999, Couldhard & Hogarth 2005, Al Hadithy et al. 2005, Azimi et al. 2014).
R-HSA-158832 (Reactome) N-acetylation occurs in two sequential steps via a ping-pong Bi-Bi mechanism. In the first step, the acetyl group from acetyl-CoA is transferred to a conserved cysteine residue (position 68) in the active site of NAT, with consequent release of coenzyme-A. In the second step, the acetyl group is transferred to the acceptor substrate and the enzyme returns to its initial state.
R-HSA-158849 (Reactome) At the beginning of this reaction, 1 molecule of 'PAPS', and 1 molecule of 'Phenol' are present. At the end of this reaction, 1 molecule of 'Phenyl sulfate', and 1 molecule of 'PAP' are present.

This reaction takes place in the 'cytosol' and is mediated by the 'aryl sulfotransferase activity' of 'SULT1A1 homodimer'.

R-HSA-158860 (Reactome) N-hydroxy-4-aminobiphenyl (NHABP) is a genotoxic metabolite of an industrial carcinogen no longer used in the rubber industry. It can be sulfonated in the liver by cytosolic sulfotransferase 1A1 (SULT1A1) (Yamazoe et al. 1999, Weinshilboum et al. 1997, Strott 2002).
R-HSA-159179 (Reactome) The principal conjugate of bilirubin in bile is bilirubin diglucuronide (BDG). UGT1A4 can transfer glucuronic acid (GlcA) to bilirubin (BIL) and bilirubin monoglucuronide (BMG) to form both the monoglucuronide and the diglucuronide (BDG) conjugates respectively (Ritter et al. 1992).
R-HSA-159194 (Reactome) Bilirubin (BIL) is a breakdown product of heme. Its accumulation in the blood can be fatal. It is highly lipophilic and thus requires conjugation to become more water soluble to aid excretion. Both UGT1A1 tetramer and UGT1A4 can transfer glucuronic acid (GlcA) to bilirubin to form either its monoglucuronide (BMG) or diglucuronide (BDG) conjugates (Bosma et al. 1994, Ritter et al. 1992, Peters & Jansen 1986, Gorden et al. 1983, Choudhury et al. 1981, Fevery et al. 1971).
R-HSA-159358 (Reactome) The catecholamine neurotransmitter dopamine (DA) is predominantly (>95%) conjugated with sulfate (dopamine 3-O-sulfate, DAOS) in human blood circulation. Human SULT1A3 and SULT1A4 are the major sulfotransferases that sulfonate DA (as well as other catecholamines and phenols) (Reiter et al. 1983, Johnson et al. 1980, Thomae et al. 2003, Hildebrandt et al. 2004).
R-HSA-159443 (Reactome) Benzoate and ATP react with coenzyme A to form benzoyl CoA, AMP, and pyrophosphate (Vessey et al. 1999, 2003). Two human CoA ligases have been characterized that catalyze this reaction efficiently in vitro: acyl-CoA synthetase medium-chain family member 1 (BUCS1) (Fujino et al. 2001) and xenobiotic/medium-chain fatty acid:CoA ligase (Vessey et al. 2003). Their relative contributions to benzoate metabolism in vivo are unknown.
R-HSA-159566 (Reactome) Benzoyl CoA and glycine react to form benzoyl glycine (hippuric acid) and Coenzyme A (Mawal and Qureshi 1994).
R-HSA-159567 (Reactome) Salicylate and ATP react with coenzyme A to form salicylate CoA, AMP, and pyrophosphate in a reaction catalyzed by xenobiotic/medium-chain fatty acid:CoA ligase (Vessey et al. 2003).
R-HSA-159574 (Reactome) Salicylate CoA and glycine react to form salicyluric acid and Coenzyme A (Mawal and Qureshi 1994).
R-HSA-173597 (Reactome) UDP-glucose dehydrogenase (UGDH) catalyzes the conversion of UDP-glucose to UDP-glucuronic acid. The cytosolic enzyme is active as a hexamer and performs two successive oxidations to convert the 6'-hydroxyl of UDP-glucose to a carboxylate with concurrent reduction of 2 mol of NAD+ to NADH.
R-HSA-174367 (Reactome) The first step in the formation of glutathione is the ligation of glutamate with cysteine, catalysed by the dimeric protein glutamate-cysteine ligase, GCL (Gipp et al. 1995, Misra & Griffith 1998).
R-HSA-174368 (Reactome) The UDP-glucuronic acid/UDP-N-acetylgalactosamine transporter (SLC35D1) in hexameric form transports both UDP-glucuronic acid (UDP-GlcA) and UDP-N-acetylgalactosamine (UDP-GalNAc) from the cytosol into the ER lumen across the ER membrane (Muraoka et al. 2001). These substrates participate in glucuronidation and/or chondroitin sulfate biosynthesis.
R-HSA-174374 (Reactome) A methyl group from 5-methyltetrahydrofolate is transferred to homocysteine (HCYS) via a meCbl intermediate, forming methionine (L-Met) (Leclerc et al. 1996).
R-HSA-174389 (Reactome) In the second step of PAPS biosynthesis, adenylyl sulfate (APS) is phosphorylated to 3'-phosphoadenylyl sulfate (PAPS), catalyzed by the APS kinase domains of the bifunctional enzymes PAPS synthases 1 and 2 (PAPSS1 and 2). PAPSS2 is essential for the sulfation of glycosaminoglycan chains of proteoglycans, a necessary post-translational modification. Defective PAPSS2 results in undersulfation of proteoglycans which causes spondyloepimetaphyseal dysplasia Pakistani type (SEMD-PA; MIM:612847), a bone disease characterized by epiphyseal dysplasia with mild metaphyseal abnormalities. Mutations resulting in SEMD-PA include S438*, T48R and R329* (Ahmad et al. 1998, ul Haque et al. 1998, Noordam et al. 2009).
R-HSA-174391 (Reactome) S-adenosylmethionine (AdoMet, SAM) is an essential metabolite in all cells. AdoMet is a precursor in the synthesis of polyamines. Methionine adenosyltransferases (MAT) catalyse the only known AdoMet biosynthetic reaction from methionine (L-Met) and ATP. In mammalian tissues, three different forms of MAT (MAT I, MAT III and MAT II) have been identified that are the product of two different genes (MAT1A and MAT2A). MAT1A binds 1 K+ and 2 Mg2+ (or Co2+, not shown here) in tetrameric or dimeric form (Corrales et al. 2002, Mato et al. 1997).
R-HSA-174392 (Reactome) In the first step of PAPS biosynthesis, ATP and sulfate react to form adenylyl sulfate (APS) and pyrophosphate (PPi), catalyzed by the ATP sulfurylase domains of the bifunctional enzymes PAPS synthases 1 and 2 (PAPSS1 and 2). PAPSS2 is essential for the sulfation of glycosaminoglycan chains in proteoglycans, a necessary post translational modification. Defective PAPSS2 results in undersulfation of the glycosaminoglycan chains in proteoglycans which causes spondyloepimetaphyseal dysplasia Pakistani type (SEMD PA; MIM:612847), a bone disease characterized by epiphyseal dysplasia with mild metaphyseal abnormalities. Mutations resulting in SEMD PA include S438*, T48R and R329* (Ahmad et al. 1998, ul Haque et al. 1998, Noordam et al. 2009).
R-HSA-174394 (Reactome) In the second step in the formation of glutathione, gamma-glutamylcysteine (gGluCys) ligates with glycine (Gly) to form glutathione (GSH) (Gali & Board 1995). This reaction is catalysed by glutathione synthetase (GSS), a homodimeric enzyme present in the cytosol which requires one Mg2+ cofactor per subunit for activity (Polekhina et al. 1999).
R-HSA-174401 (Reactome) Adenosylhomocysteinase (AHCY) is a tetrameric, NAD+-bound, cytosolic protein that regulates all adenosylmethionine-(AdoMet) dependent transmethylations by hydrolysing the feedback inhibitor adenosylhomocysteine (AdoHcy) to homocysteine (HCYS) and adenosine (Ade-Rib) (Turner et al. 1998, Yang et al. 2003).
R-HSA-174916 (Reactome) Typical N-centred substrates were chosen as examples for these isozymes.
R-HSA-174931 (Reactome) Typical O-centred substrates were chosen as examples for these isozymes. Many UDP-glucuronosyltransferases (UGTs) can transfer the glucuronyl moiety (GlcA) from UDP-GlcA to the O-centre functional group of many substrates to form 4-O-glucuronides (Casarett & Doull 1995, Babu et al. 1996).
R-HSA-174959 (Reactome) N-acetylation occurs in two sequential steps via a ping-pong Bi-Bi mechanism. In the first step, the acetyl group from acetyl-CoA is transferred to a conserved cysteine residue (position 68) in the active site of NAT, with consequent release of coenzyme-A. In the second step, the acetyl group is transferred to the acceptor substrate and the enzyme returns to its initial state.
R-HSA-174963 (Reactome) Typical NAT 1 substrates were chosen as examples. They are sulfanilamide, 4-aminosalicylate, 4-aminobenzoate and N-hydroxy 4-aminobiphenyl (Hong et al. 2017).
R-HSA-174967 (Reactome) Typical NAT 2 substrates were chosen as examples. They are paraxanthine, isoniazid and N-hydroxy 4-aminobiphenyl.
R-HSA-175976 (Reactome) 2-mercaptoethanol is a typical substrate for Thiol S-methyltransferase.
R-HSA-175983 (Reactome) Dihydroxybenzoate is a typical substrate for Catechol O-methyltransferase
R-HSA-175987 (Reactome) Pyridine is a typical substrate for Nicotinamide N-methyltransferase (Van Haren et al. 2016).
R-HSA-176054 (Reactome) The glutathione S-transferases (GSTs) catalyze the nucleophilic attack by reduced glutathione (GSH) on nonpolar compounds that contain an electrophilic carbon, nitrogen, or sulphur atom. Their substrates include halogenonitrobenzenes, arene oxides, quinones, and alpha, beta-unsaturated carbonyls. Three major families of proteins are widely distributed in nature. Two of these, the cytosolic and mitochondrial GST, comprise soluble enzymes that are only distantly related whilst the third family comprises microsomal GST, referred to as membrane-associated proteins in eicosanoid and glutathione (MAPEG) metabolism.

At least 16 cytosolic GST subunits exist in human which are all in a dimeric form. Based on amino acid sequence similarities, seven classes of cytosolic GST are recognized in mammalian species; Alpha, Mu, Pi, Sigma, Theta, Omega, and Zeta (2–5). As well as being homodimers, the Alpha and Mu classes are also able to form heterodimers so a large number of isozymes are possible from all cytosolic GST subunits (Sinning et al. 1993, LeTrong et al. 2002, Ahmad et al. 1993, Pastore et al. 1998, Tars et al. 2010, Bruns et al. 1999, Balogh et al. 2010, Morel et al. 2002, Li et al. 2005, Patskovsky et al. 2006, Raghunathan et al. 1994, Patskovsky et al. 1999, Comstock et al. 1994, Board et al. 2000, Zhou et al. 2011, Zhou et al. 2012, Sun et al. 2011, Tars et al. 2006, Rossjohn et al. 1998, Polekhina et al. 2001, Inoue et al. 2003). Typical electrophilic substrates are chosen as examples for which the majority of the cytosolic GST isozymes act on.
R-HSA-176059 (Reactome) The microsomal glutathione S-transferases (MGSTs) catalyse the nucleophilic attack by reduced glutathione (GSH) on nonpolar compounds that contain an electrophilic C, N, or S atom. Three major families of proteins are widely distributed in nature. The cytosolic and mitochondrial GST families comprise soluble enzymes that are only distantly related whilst the third family comprises microsomal GST, referred to as membrane-associated proteins in eicosanoid and glutathione (MAPEG) metabolism. Three members of this family function as detoxification enzymes, MGST1-3 (DeJong et al. 1988, Kelner et al. 1996, Jakobsson et al. 1996, Jakobsson et al. 1997). Electron crystallography studies in rat Mgst1 indicate these enzymes function as homotrimers (Holm et al. 2002). Both aflatoxin B1 exo- and endo-epoxides (AFXBO and AFNBO) conjugate with glutathione. These conjugates are eventually excreted in urine as mercapturic acids.
R-HSA-176474 (Reactome) Six SULT enzymes, SULT1A1 (Li et al. 2001), 1A3 (Kester, Kaptein et al. 1999), 1B1 (Wang et al. 1998), 1C1 (Li et al. 2000), 1E1 (Li and Anderson 1999; Kester, van Dijk et al. 1999), and 2A1 (Li and Anderson 1999), can catalyze the sulfonation of 3,3'-diiodothyronine (T2) in vitro or in tissue culture model systems. These six enzymes also catalyze the sulfonation of 3,5,3'-triiodothyronine (T3).
R-HSA-176494 (Reactome) The sulfonation of 27-hydroxycholesterol (27HCHOL) is catalyzed by both the a and b isoforms of SULT2B1 (Javitt et al. 2001).
R-HSA-176517 (Reactome) The sulfonation of pregnenolone (PREG) is catalyzed by both the a and b isoforms of SULT2B1, although the a isoform is more active in assays in vitro (Fuda et al. 2002; Meloche and Falany 2001).
R-HSA-176521 (Reactome) Sulfonation of beta-estradiol is catalyzed by SULT1E1 (Falany et al. 1995).
R-HSA-176585 (Reactome) 3,5,3'-Triiodothyronine (T3) 4-sulfate is a major metabolite of T3 in humans (LoPresti and Nicoloff 1994), and seven SULT enzymes, SULT1A1 (Li et al. 2001), 1A3 (Kester, Kaptein et al. 1999), 1B1 (Wang et al. 1998), 1C1 (Li et al. 2000), 1E1 (Li and Anderson 1999; Kester, van Dijk et al. 1999), 2A1 (Li and Anderson 1999), and 4A1 (Sakakibara et al. 2002) can catalyze this reaction in vitro or in tissue culture model systems. All of these enzymes except SULT4A1 also catalyze the sulfonation of 3,3'-diiodothyronine (T2).
R-HSA-176588 (Reactome) Sulfonation of lithocholate is catalyzed by SULT2A1 (Radominska et al. 1990).
R-HSA-176604 (Reactome) Sulfonation of taurolithocholate is catalyzed by SULT2A1 (Radominska et al. 1990).
R-HSA-176606 (Reactome) PAP is generated as a byproduct of sulfonation reactions in vivo; its hydrolysis to AMP and orthophosphate returns its constituents to the pool of molecules available for cytosolic nucleotide metabolism. Bisphosphate 3'-nucleotidase 1catalyzes this reaction efficiently in vitro; whether other nucleotidases also play a role in PAP breakdown in vivo is unknown.
R-HSA-176609 (Reactome) The 3-hydroxyl groups of a number of sterols can undergo sulfonation. Cholesterol sulfate is particularly abundant in the body, and may have both regulatory and biosynthetic functions (Strott and Higashi 2003). Its synthesis is catalyzed by the b isoform of SULT2B1 (Fuda et al. 2002; Javitt et al. 2001).
R-HSA-176631 (Reactome) Sulfonation of dehydroepiandrosterone (DHEA) is catalyzed by SULT1E1 (Aksoy et al. 1994), SULT2A1 (Radominska et al. 1990) and the a and b isoforms of SULT2B1 (Meloche and Falany 2001).
R-HSA-176646 (Reactome) The sulfonation of the xenobiotic p-nitrophenol (4-nitrophenol) can be catalyzed by five well-characterized SULT enzymes, 1A1 (Brix et al. 1998), 1A2 (Brix et al. 1998; Zhu et al. 1996), 1C2 (Sakakibara et al. 1998), and 4A1 (Sakakibara et al. 2002).
R-HSA-176664 (Reactome) Sulfonation of estrone is catalyzed by SULT1E1 (Aksoy et al. 1994; Falany et al. 1995), and also by SULT2A1 (Comer et al. 1993), although the efficiency of SULT2A1 catalysis is unknown.
R-HSA-176669 (Reactome) Sulfonation of the xenobiotic N-hydroxy-2-acetylaminofluorene converts it to a potent carcinogen. SULT1A2 (Glatt 2000) and SULT1C1 and 1C2 (Sakakibara et al. 1998) catalyze this reaction.
R-HSA-177157 (Reactome) Phenylacetate and ATP react with coenzyme A to form phenylacetyl CoA, AMP, and pyrophosphate (Vessey et al. 1999). Two human CoA ligases have been characterized that catalyze this reaction efficiently in vitro: acyl-CoA synthetase medium-chain family member 1 (BUCS1) (Fujino et al. 2001) and xenobiotic/medium-chain fatty acid:CoA ligase (Vessey et al. 2003). Their relative contributions to phenylacetate metabolism in vivo are unknown.
R-HSA-177160 (Reactome) Phenylacetyl CoA and glutamine react to form phenylacetyl glutamine and Coenzyme A. The enzyme that catalyzes this reaction has been purified from human liver mitochondria and shown to be a distinct polypeptide species from glycine-N-acyltransferase (Webster et al. 1976). This human glutamine-N-acyltransferase activity has not been characterized by sequence analysis at the protein or DNA level, however, and thus cannot be associated with a known human protein in the annotation of phenylacetate conjugation.
R-HSA-3301943 (Reactome) Glutathione S-transferase Kappa isozyme (GSTK1) is widely expressed in human tissues and exists as a dimer in mitochondria and peroxisomes. It has high activity towards aryl halides such as the model substrate 1-chloro-2,4-dinitrobenzene (CDNB) to which it can conjugate with glutathionate (GS-) from glutathione (GSH) (Morel et al. 2004). Mouse, rat and human possess only one GST Kappa isozyme.
R-HSA-427555 (Reactome) The SLC26A1 and 2 genes encode proteins that facilitate sulfate (SO4(2-)) uptake into cells (Alper & Sharma 2013). The mechanism by which these transporters work is unclear but may be enhanced by extracellular halides or acidic pH environments, cotransporting protons electroneutrally. Both can transport SO4(2-) (as well as oxalate and Cl-) across the basolateral membrane of epithelial cells. SLC26A1 encodes the sulfate anion transporter 1 (SAT1) (Regeer et al. 2003) and is most abundantly expressed in the liver and kidney, with lower levels expressed in many other parts of the body. SLC26A2 is ubiquitously expressed and encodes a sulfate transporter (Diastrophic dysplasia protein, DTD, DTDST) (Hastbacka et al. 1994). This transporter provides sulfate for sulfation of glycosaminoglycan chains in proteoglycans needed for cartilage development. Defects in SLC26A2 are implicated in the pathogenesis of several human chondrodysplasias.
R-HSA-5603114 (Reactome) S-adenosylmethionine (AdoMet, SAM) is an essential metabolite in all cells. AdoMet is a precursor in the synthesis of polyamines. Methionine adenosyltransferases (MAT) catalyse the only known AdoMet biosynthetic reaction from methionine (L-Met) and ATP. In mammalian tissues, three different forms of MAT (MAT I, MAT III and MAT II) have been identified that are the product of two different genes (MAT1A and MAT2A). A third gene, MAT2B has been identified and its protein product is known to associate as a regulatory subunit with catalytic MAT2A (LeGros et al. 2000, Halim et al. 1999).
R-HSA-5692232 (Reactome) Polycyclic aromatic hydrocarbons (PAHs) are pro-carcinogens which require further metabolic activation to ellicit their harmful effects. Aldo-keto reductases (AKRs) such as alcohol dehydrogenase [NADP+] (AKR1A1) can catalyse the oxidation of proximate carcinogenic PAH trans-dihydrodiols to reactive and redox active PAH o-quinones. Redox-cycling of PAH o-quinones generate reactive oxygen species and subsequent oxidative DNA damage. The proximate PAH carcinogen benzo[a]pyrene-7,8-trans-dihydrodiol (BaPtDHD) is oxidised by AKR1A1 to yield BaP-7,8-catechol which is unstable and auto-oxidises to yield BaP-7,8-dione (Zhang et al. 2012).
R-HSA-5693724 (Reactome) S-formylglutathione hydrolase (ESD, esterase D) is a homodimeric enzyme in the ER lumen of red blood cells that can hydrolyse S-formylglutathione (S-FGSH) to glutathione (GSH) and formate (Hopkinson et al. 1973, Eiberg & Mohr 1986). It is also able to hydrolyse 4-methylumbelliferyl acetate (not shown here).
R-HSA-5694563 (Reactome) Mycophenolic acid (MPA) is the active metabolite of the immunosuppressant drug mycophenolate mofetil (MMF) and is primarily metabolised by glucuronidation to a phenolic glucuronide (MPAG) and an acyl glucuronide (AMPAG), a potential immunotoxic metabolite. Mitochondrial mycophenolic acid acyl-glucuronide esterase (ABHD10) deglucuronidates AMPAG thereby ABHD10 could play a role in the protection against acyl glucuronide-induced toxicity (Iwamura et al. 2012).
R-HSA-5695964 (Reactome) Alpha/beta hydrolase domain-containing protein 14B (ABHD14B) can hydrolyse the model substrate p-nitrophenyl butyrate (PNPB) to p-nitrophenol (PNP) and butyric acid (BUT)
(Padmanabhan et al. 2004). Its physiological substrate is unknown.
R-HSA-5696213 (Reactome) Arsenic is a groundwater contaminant and methylation is an important reaction in its biotransformation. The arsenite(3-) salt form can be methylated by arsenite methyltransferase (AS3MT), transfering a methyl group from the high energy donor S-adenosyl-L-methionine (AdoMet) (Wood et al. 2006). Methylarsonite is also a substrate and it is converted into the much less toxic compound dimethylarsinate (cacodylate).
R-HSA-5696220 (Reactome) Arsenic is a groundwater contaminant and methylation is an important reaction in its biotransformation. The arsenite(3-) salt form can be methylated by arsenite methyltransferase (AS3MT), transfering a methyl group from the high energy donor S-adenosyl-L-methionine (AdoMet) (Wood et al. 2006). Methylarsonite is also a substrate and it is converted into the much less toxic compound dimethylarsinate (cacodylate).
R-HSA-5696230 (Reactome) Glutathione S-transferase omega-1 (GSTO1 aka monomethylarsonic acid reductase, MMA(V) reductase) is a bifunctional enzyme that has glutathione S-transferase activity and also takes part in the biotransformation of inorganic arsenic. It mediates the reduction of methylarsonate to methylarsonite (Zakharyan et al. 2001).
R-HSA-6785928 (Reactome) Glutathione-specific gamma-glutamylcyclotransferases 1 and 2 (CHAC1 and 2) catalyse the specific cleavage of glutathione (GSH) into 5-oxoproline (OPRO) and a cysteinylglycine (CysGly) dipeptide. GSH acts a redox buffer in cells and its depletion is an important factor for apoptosis, oxidative stress and progression of cancer. CHAC1 and 2 act as proapototic agents with implications for human health and disease (Mungrue et al. 2009, Crawford et al. 2015).
R-HSA-6800149 (Reactome) Inorganic arsenic (iAs) compounds are human carcinogens. The most toxic arsenic metabolite is monomethylarsonous acid (MMAIII). Arsenic (3+) methyltransferase (AS3MT) is the primary enzyme responsible for methylating MMAIII to the less toxic dimethylarsonic acid (DMAA). A human ortholog of yeast MTQ2, HemK methyltransferase family member 2 (aka N(6)-adenine-specific DNA methyltransferase 1, N6AMT1), is also able to methylate MMAIII using S-adenosyl L-methionine as methyl donor (Ren et al. 2011). N6AMT1 forms a heterodimer with multifunctional methyltransferase subunit TRM112-like protein (TRMT112) (Figaro et al. 2008).
R-HSA-70286 (Reactome) Cytosolic UDP-glucose pyrophosphorylase 2 (UGP2) catalyzes the reaction of UTP and glucose 1-phosphate to form UDP glucose and pyrophosphate (Knop and Hansen 1970; Duggleby et al. 1996). UGP2 is inferred to occur in the cell as a homooctamer from studies of its bovine homologue (Levine et al. 1969).
R-HSA-741449 (Reactome) The human gene SLC35B2 encodes the adenosine 3'-phospho 5'-phosphosulfate transporter 1 (PAPST1) (Ozeran et al. 1996, Kamiyama et al. 2003). In human tissues, PAPST1 is highly expressed in the placenta and pancreas and present at lower levels in the colon and heart. The human gene SLC35B3 encodes a human PAPS transporter gene that is closely related to PAPST1. Called PAPST2, it is predominantly expressed in the colon (Kamiyama et al. 2006). Both proteins can transport PAPS from the cytosol to the Golgi lumen.
R-HSA-76386 (Reactome) At the beginning of this reaction, 1 molecule of 'H+', 1 molecule of '6-Methylmercaptopurine', 1 molecule of 'Oxygen', and 1 molecule of 'NADPH' are present. At the end of this reaction, 1 molecule of 'NADP+', 1 molecule of '6-Mercaptopurine', 1 molecule of 'Formaldehyde', and 1 molecule of 'H2O' are present.

This reaction takes place in the 'smooth endoplasmic reticulum' and is mediated by the 'oxygen binding activity' of 'Cytochrome P450 1A2 '.

R-HSA-8941701 (Reactome) Isoflavones are a class of dietary polyphenols called phytoestrogens which are found in soy and soy foods, alfalfa sprouts and red clover. They possess biological activities ranging from anticancer to cardiovascular protective effects (Zhou et al. 2016). Despite their health claims, making these compounds into chemo-preventive or chemo-therapeutic agents is complicated by their low bioavailabilities (<5%), the result of extensive first-pass metabolism by phase II enzymes including UGTs and SULTs (Hu 2007). Four UDP-glucuronosyltransferase 1A (UGT1A) isoforms share the responsibility of metabolising various isoflavones. UGT1A10 is mainly expressed in the intestine and is located on the ER membrane of these cells. It can transfer the glucuronyl moiety from UDP-GlcA to the isoflavone glycitein (GCTN) to form glycitein 4-O-glucuronide (GCTN4OG) (Tang et al. 2009).
R-HSA-8943279 (Reactome) GGT (gamma-glutamyl transpeptidase) dimers associated with the plasma membrane (Hanigan & Frierson 1996) hydrolyze extracellular glutathione (GSH) to form cysteinylglycine (CysGly) and glutamate (L-Glu). GGT1 has been extensively characterized. The active dimeric form of the enzyme is generated by autohydrolysis (West et al. 2011) and in vitro can catalyze both the reaction of GSH with water annotated here, and the reaction of GSH with a free amino acid or dipeptide to generate a gamma-glutamyl-amino acid and cysteinylglycine (Castonguay et al. 2007; Pawlak et al. 1989; Tate & Ross 1977; Thompson & Meister 1976). Based on amino acid sequence similarity, Heisterkamp et al. (2008) identified five additional dimeric proteins, GGT2, 3P, 5, 6, and 7, likely to catalyze the same reactions. West et al. (2013), however, found that GGT2 had no catalytic activity in vitro.
R-HSA-8953499 (Reactome) Sulfur is an essential element in all lifeforms used in the synthesis of sulfur-containing amino acids, maintenance of cellular redox states and detoxifying toxic compounds. 3'-phosphoadenosine 5'-phosphosulfate (PAPS) is the active form of sulfur used in these reactions, which consume PAPS, producing 3'-phosphoadenosine 5'-phosphate (PAP). PAP is degraded to 5′-AMP (AMP) by 3′-nucleotidase family. Mammals encode two 3′-nucleotidases, the Golgi-resident inositol monophosphatase 3 (IMPAD3 aka PAP phosphatase, gPAPP) and the cytosolic bisphosphate 3′-nucleotidase 1 (BPNT1, described in its own reaction). Both require Mg2+ as cofactor and both are inhibited by lithium (Hudson et al. 2013).
R-HSA-8954262 (Reactome) Podocalyxin-like protein 2 (PODXL2 aka endoglycan) acts as a ligand for vascular selectins which mediate the rapid rolling of leukocytes over vascular surfaces. PODXL2 interacts with selectins through sulfation on two tyrosine residues (97 and 118) (Fieger et al. 2003, Kerr et al. 2008) and O-linked carbohydrate structures within its acidic amino-terminal region (latter not shown here). Protein-tyrosine sulfotransferases 1 and 2 (TPST1 and TPST2) are Golgi membrane-resident proteins which catalyse the transfer of sulfate from 3'-phospho-5'-adenylyl sulfate (PAPS) to tyrosine residues within acidic motifs of polypeptides such as PODXL2 (Ouyang et al. 1998, Danan et al. 2008, Teramoto et al. 2013).
R-HSA-9632038 (Reactome) The principal conjugate of bilirubin in bile is bilirubin diglucuronide (BDG). The monomeric forms of UGT1A1 (Bilirubin UDP-glucuronyltransferase 1) only conjugates the first step of bilirubin conjugation to form the monoglucuronide. A tetrameric form of UGT1A1 can transfer glucuronic acid (GlcA) to bilirubin (BIL) and bilirubin monoglucuronide (BMG) to form both the monoglucuronide and the diglucuronide (BDG) conjugates respectively (Peters & Jansen 1986, Gorden et al. 1983, Choudhury et al. 1981, Fevery et al. 1971).
R-HSA-9632039 (Reactome) Bilirubin (BIL) is a breakdown product of heme. Its accumulation in the blood can be fatal. It is highly lipophilic and thus requires conjugation to become more water soluble to aid excretion. Both UGT1A1 tetramer and UGT1A4 can transfer glucuronic acid (GlcA) to bilirubin to form either its monoglucuronide (BMG) or diglucuronide (BDG) conjugates (Bosma et al. 1994, Ritter et al. 1992, Peters & Jansen 1986, Gorden et al. 1983, Choudhury et al. 1981, Fevery et al. 1971).
S-FGSHR-HSA-5693724 (Reactome)
SALR-HSA-159567 (Reactome)
SLC26A1,2mim-catalysisR-HSA-427555 (Reactome)
SLC35B2,3mim-catalysisR-HSA-741449 (Reactome)
SLC35D1 hexamermim-catalysisR-HSA-174368 (Reactome)
SO4(2-)ArrowR-HSA-427555 (Reactome)
SO4(2-)R-HSA-174392 (Reactome)
SO4(2-)R-HSA-427555 (Reactome)
SUAArrowR-HSA-159574 (Reactome)
SULT dimers (T2)mim-catalysisR-HSA-176474 (Reactome)
SULT dimers (T3)mim-catalysisR-HSA-176585 (Reactome)
SULT1A1 dimermim-catalysisR-HSA-158468 (Reactome)
SULT1A1 dimermim-catalysisR-HSA-158849 (Reactome)
SULT1A1 dimermim-catalysisR-HSA-158860 (Reactome)
SULT1A1,A2,C2,4A1mim-catalysisR-HSA-176646 (Reactome)
SULT1A3,4 dimersmim-catalysisR-HSA-159358 (Reactome)
SULT1E1 dimermim-catalysisR-HSA-176521 (Reactome)
SULT1E1,2A1mim-catalysisR-HSA-176664 (Reactome)
SULT2A1 dimermim-catalysisR-HSA-176588 (Reactome)
SULT2A1 dimermim-catalysisR-HSA-176604 (Reactome)
SULT2B1-1 dimermim-catalysisR-HSA-176609 (Reactome)
SULTs active on 27HCHOLmim-catalysisR-HSA-176494 (Reactome)
SULTs active on NH2AAFmim-catalysisR-HSA-176669 (Reactome)
SULTs active on pregnenolonemim-catalysisR-HSA-176517 (Reactome)
SULTs active on DHEAmim-catalysisR-HSA-176631 (Reactome)
Salicylate-CoA thioesterArrowR-HSA-159567 (Reactome)
Salicylate-CoA thioesterR-HSA-159574 (Reactome)
T3R-HSA-176585 (Reactome)
TMTmim-catalysisR-HSA-175976 (Reactome)
TPMTmim-catalysisR-HSA-158609 (Reactome)
TPST1,2mim-catalysisR-HSA-8954262 (Reactome)
UDP-GlcAArrowR-HSA-173597 (Reactome)
UDP-GlcAArrowR-HSA-174368 (Reactome)
UDP-GlcAR-HSA-159179 (Reactome)
UDP-GlcAR-HSA-159194 (Reactome)
UDP-GlcAR-HSA-174368 (Reactome)
UDP-GlcAR-HSA-174916 (Reactome)
UDP-GlcAR-HSA-174931 (Reactome)
UDP-GlcAR-HSA-8941701 (Reactome)
UDP-GlcAR-HSA-9632038 (Reactome)
UDP-GlcAR-HSA-9632039 (Reactome)
UDP-GlcArrowR-HSA-70286 (Reactome)
UDP-GlcNAcArrowR-HSA-174368 (Reactome)
UDP-GlcNAcR-HSA-174368 (Reactome)
UDP-GlcR-HSA-173597 (Reactome)
UDPArrowR-HSA-159179 (Reactome)
UDPArrowR-HSA-159194 (Reactome)
UDPArrowR-HSA-174916 (Reactome)
UDPArrowR-HSA-174931 (Reactome)
UDPArrowR-HSA-8941701 (Reactome)
UDPArrowR-HSA-9632038 (Reactome)
UDPArrowR-HSA-9632039 (Reactome)
UGT1A1 tetramermim-catalysisR-HSA-9632038 (Reactome)
UGT1A10mim-catalysisR-HSA-8941701 (Reactome)
UGT1A1mim-catalysisR-HSA-9632039 (Reactome)
UGT1A3,A4,A9mim-catalysisR-HSA-174916 (Reactome)
UGT1A4mim-catalysisR-HSA-159179 (Reactome)
UGT1A4mim-catalysisR-HSA-159194 (Reactome)
UGTs (O-GlcA forming)mim-catalysisR-HSA-174931 (Reactome)
UTPR-HSA-70286 (Reactome)
adenosine 5'-monophosphateArrowR-HSA-159443 (Reactome)
adenosine 5'-monophosphateArrowR-HSA-159567 (Reactome)
adenosine 5'-monophosphateArrowR-HSA-177157 (Reactome)
adenosine 5'-monophosphateArrowR-HSA-8953499 (Reactome)
arsenite(3-)R-HSA-5696220 (Reactome)
cholesterol sulfateArrowR-HSA-176609 (Reactome)
dimethylarsinateArrowR-HSA-5696213 (Reactome)
electrophilic substrate:SGArrowR-HSA-176054 (Reactome)
electrophilic substrate:SGArrowR-HSA-176059 (Reactome)
electrophilic substrateR-HSA-176059 (Reactome)
formateArrowR-HSA-5693724 (Reactome)
gGluCysArrowR-HSA-174367 (Reactome)
gGluCysR-HSA-1247922 (Reactome)
gGluCysR-HSA-174394 (Reactome)
glutamine-N-acyltransferasemim-catalysisR-HSA-177160 (Reactome)
lithocholate sulfateArrowR-HSA-176588 (Reactome)
methylarsonateArrowR-HSA-5696220 (Reactome)
methylarsonateR-HSA-5696230 (Reactome)
methylarsoniteArrowR-HSA-5696230 (Reactome)
methylarsoniteR-HSA-5696213 (Reactome)
p-nitrophenol sulfateArrowR-HSA-176646 (Reactome)
phenylacetateR-HSA-177157 (Reactome)
phenylacetyl glutamineArrowR-HSA-177160 (Reactome)
phenylacetyl-CoAArrowR-HSA-177157 (Reactome)
phenylacetyl-CoAR-HSA-177160 (Reactome)
taurolithocholate sulfateArrowR-HSA-176604 (Reactome)
taurolithocholateR-HSA-176604 (Reactome)
xenobiotic/medium-chain fatty acid:CoA ligasesmim-catalysisR-HSA-159443 (Reactome)
xenobiotic/medium-chain fatty acid:CoA ligasesmim-catalysisR-HSA-177157 (Reactome)
Personal tools