Signaling by MET (Homo sapiens)

From WikiPathways

Jump to: navigation, search
5, 7, 9, 12, 16...24, 26, 56, 100, 1098, 966748, 85, 9824, 791, 52, 74, 9146, 97332, 18, 35, 39, 70...1, 726, 41, 85, 95, 1128524, 6424, 57, 637, 22, 29, 68, 775, 9196676024, 34, 7924, 9216, 23, 8411, 22, 46, 68, 979031, 55, 58161068684, 1003350, 9315, 1053380, 99, 10724, 643, 62, 104, 105, 110...51, 9327, 6084, 1007242332719, 28, 30, 45, 65...858638recycling endosome membranenucleoplasmextracellular regioncytosolplasma membraneNoteHGF(32-494) p-Y1234,Y1235,Y1349,Y1356-MET HGF(32-494) HGF(495-728) p-5Y-GAB1 STAM2 PTPN11HGF(495-728) HGFAC dimerHGF(495-728) SH3GL2 HGFAC(373-407) GRB2-1 HGF(495-728) ITGB1 GAB1SH3KBP1 SH3KBP1 GDPHGF dimerCRKL RANBP10 p-5Y-GAB1 GAB1 RAP1:GDPGDP SHC1-2p-Y194,Y397-PTK2 ITGB1 MonoUb-K,p-Y1003,4Y-MET RAP1B HGF(32-494) PTPN2 UBC(533-608) UBC(229-304) MUC20p-Y1234,Y1235,Y1349,Y1356-MET HGF:p-4Y-METdimer:p-Y397-PTK2:MyrG-p-Y419-SRCSH3GL1 HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:CRK,CRKL:(DOCK7)HGF(495-728) HGF:p-4Y-METdimer:p-Y317-SHC1-2:GRB2:SOS1HGF(32-494) UBC(533-608) PI(3,4,5)P3Integrinalpha2beta1,alpha3:beta1:(collagen,laminin,fibronectin)p-Y1234,Y1235,Y1349,Y1356-MET HGF(495-728) HGF:p-4Y METdimer:MUC20GDP GRB2-1 HGF(32-494) MET p-5Y-GAB1 HGF(495-728) GRB2-1 p-Y1234,Y1235,Y1349,Y1356-MET HGF(495-728) GRB2-1 p-Y1234,Y1235,Y1349,Y1356-MET GTP PTPN1,PTPN2RAC1:GDPPIK3CA:PIK3R1ITGA2 UBC(457-532) HGF:p-4Y-METdimer:GRB2:CBL,(HGF:p-Y1003,4Y-MET dimer:CBL)CRKL GGA3 SPINT1H2OUb-LRIG1 ADPp21 RAS:GDPGGA3HGF(495-728) HGF(495-728) p-Y194,Y397,Y576,Y577-PTK2 SH3KBP1 UBB(153-228) HGF:p-4Y-METdimer:p-Y317-SHC1-2p-Y1234,Y1235,Y1349,Y1356-MET PIK3R1 HGF(32-494) S-Farn-Me KRAS4B SH3GL2 RAP1A UBC(609-684) GTP CRK GRB2-1 p-Y1234,Y1235,Y1349,Y1356-MET SOS1GRB2-1 MET:Ub-LRIG1PTPN1 p-Y1234,Y1235,Y1349,Y1356-MET ADPTNS3 p-Y1234,Y1235,Y1349,Y1356-MET HGF(495-728) pro-HGFHPN(163-417) HGF(495-728) GRB2-1RANBP9 HGF(495-728) HGF(495-728) p-Y-CBL GRB2-1:SOS1p-Y1234,Y1235,Y1349,Y1356-MET HGF(32-494) GRB2-1 ARF6 DOCK7 p-Y-CBL RPS27A(1-76) SOS1 SH3GL3 HGF(495-728) GRB2-1 METHGF(32-494) HGF(32-494) DOCK7 RPS27A(1-76) HGF(32-494) p-Y-CBL HGF(32-494) HGF:p-4Y-METdimer,(HGF:p-Y1003,4Y-METdimer)UBB(1-76) HGF(32-494) SPINT2 MyrG-p-Y419-SRCHGF:p-Y,1349,Y1356-MET dimerRAC1:GTPp-Y705-STAT3 dimerHGF(32-494) ADPHGF(495-728) Collagen fibres HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:CRK,CRKLUBC(457-532) GTPp-Y1234,Y1235,Y1349,Y1356-MET MonoUb-K,p-Y1234,Y1235,Y1349,Y1356-MET HGF:p-4Y-METdimer:RANBP9:SOS1RAP1B MonoUb-K,p-Y1234,Y1235,Y1349,Y1356-MET S-Farn-Me-2xPalmS HRAS CRK, CRKLATPMonoUb-K,p-Y1234,Y1235,Y1349,Y1356-MET STAM ITGB1 HPN(1-162) ATPUSP8S-Farn-Me-PalmS KRAS4A SH3GL2 HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:PTPN11(DOCK7)CBL SPINT1 CIN85:endophilinPTPN11 HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:PI3KSTAM2 HGF:MonoUb-K,p-4Y-MET dimer:GRB2:p-Y-CBL,(HGF:MonoUb-K,p-Y1003,4Y-MET dimer:p-Y-CBL)UBC(305-380) HGF(32-494) UbHGF:p-4Y-METdimer:p-Y397-PTK2ADPp-Y705-STAT3 dimerEPS15 PI(4,5)P2HGF(495-728) S-Farn-Me PalmS NRAS HGF(32-494) ATPHGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:CRK,CRKL:GGA3:ARF6:GTPHGF:MonoUb-K,p-4Y-MET dimer:GRB2:p-Y-CBL,(HGF:MonoUb-K,p-Y1003,4Y-METdimer:p-Y-CBL):CIN85:endophillinATPSH3GL1 TNS4 HGF(32-494) ATPp-Y-CBL p-Y1234,Y1235,Y1349,Y1356-MET HGF(495-728) HGF(495-728) SOS1 MET MyrG-p-Y419-SRC STAM MET HGF(32-494) SH3GL2 CRKL RAF/MAP kinasecascadeMonoUb-K,p-Y1003,4Y-MET SH3GL3 p21 RAS:GTPp-Y705-STAT3p-Y1234,Y1235,Y1349,Y1356-MET MyrG-p-Y419-SRC unknown ubiquitinligaseHGF:p-4Y-METdimer:p-Y194,Y397-PTK2:MyrG-p-Y419-SRCHGF(32-494) UBC(229-304) p-Y317-SHC1-2 p-Y1234,Y1235,Y1349,Y1356-MET SH3GL3 GTPATPRAPGEF1 HGF:p-4Y-METdimer:STAT3GDPGTP HGF:p-4Y-METdimer:GAB1,HGF:p-4Y-MET dimer:GRB2:GAB1HGF(495-728) HGF:p-4Y-METdimer:GRB2:p-Y-CBL,(HGF:p-Y1003,4Y-MET dimer:p-Y-CBL)HGF(495-728) UBC(305-380) H2OATPMET HGF(495-728) HGF:p-Y1234,Y1235,Y1349,Y1356-MET dimerp-Y1234,Y1235,Y1349,Y1356-MET p-Y1234,Y1235,Y1349,Y1356-MET PIK3R1 Ub-LRIG1 p-Y1234,Y1235,Y1349,Y1356-MET p-Y1234,Y1235,Y1349,Y1356-MET GRB2-1 HGF:p-4Y-METdimer:RANBP10HGF(32-494) HGF(32-494) HGF(495-728) RAC1 HGF(495-728) HGF(32-494) MyrG-p-Y419-SRC p-5Y-GAB1 EPS15:HGS:STAMHGF(32-494) HGF:p-4Y-METdimer:TNS3HGF(32-494) TNS3GTPHGF(32-494) GRB2-1 CRK RANBP10GRB2-1 UBC(77-152) SHC1-2 HGF(32-494) PIK3CA GRB2-1 ADPHGF:p-4Y-METdimer:PTK2HGF dimer:METCBL:GRB2,CBLHGF(32-494) ATPp-5Y-GAB1 HGF(495-728) p-Y397-PTK2 HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:CRK,CRKL:RAPGEF1ADPHGF:p-4Y-METdimer:GRB2-1:SOS1HGS GGC-RAB4:GTPHGF(32-494) S-Farn-Me-2xPalmS HRAS HGF:p-4Y-METdimer:GRB2-1:GAB1HGF(495-728) ADPATPp-Y1234,Y1235,Y1349,Y1356-MET UBB(153-228) p-Y1349,Y1356-MET UBC(77-152) HGF(32-494) GAB1 p-Y1234,Y1235,Y1349,Y1356-MET HGF(495-728) GTP ITGA3(33-1051) RAPGEF1p-5Y-GAB1 LRIG1 RAP1A SH3KBP1 p-Y397-PTK2 ADPMET:LRIG1HPN heterodimerUBC(381-456) HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1HGF(32-494) PTPRJCRK TNS4 p-Y1234,Y1235,Y1349,Y1356-MET PIK3CA Laminins p-Y1003,4Y-MET GRB2-1 HGF(495-728) STAT3 CRK UBB(1-76) UBC(153-228) HGF(32-494) SOS1 p-Y-CBL H2OMonoUb-K,p-Y1003,4Y-MET p-5Y-GAB1 p-Y1234,Y1235,Y1349,Y1356-MET PIP3 activates AKTsignalingMUC20 HGF:p-4Y-METdimer:SHC1-2HGF:p-Y1234,Y1235,Y1356-MET dimerHGF(32-494) ARF6 UBC(153-228) CRKL HGF(495-728) PTK2GGC-RAB4A HGF:p-4Y-METdimer:TNS4:ITGB1p-Y705-STAT3 SOS1 HGF(495-728) HGF(495-728) ARF6:GTPPTK2 HGF(495-728) RAP1:GTPHGF:MonoUb-K,p-4Y-MET dimer:GRB2:p-Y-CBL,(HGF:MonoUb-K,p-Y1003,4Y-METdimer:p-Y-CBL):CIN85:endophillin:EPS15:HGS:STAM,(MET:Ub-LRIG1:EPS15:HGS:STAM)S-Farn-Me PalmS NRAS HGFAC(408-655) p-Y317-SHC1-2 GRB2-1 HGF(495-728) p-Y1003,4Y-MET HGF(495-728) GRB2-1 UBA52(1-76) p-Y1234,Y1235,Y1349,Y1356-MET GRB2-1 UBC(609-684) PiHGF(32-494) ADPHGF(32-494) HGF(32-494) HGF(495-728) CBL HGF(32-494) Ub-LRIG1 p-Y1234,Y1235,Y1349,Y1356-MET TNS4:ITGB1SH3GL1 SPINT1,2GRB2-1 HGF:p-4Y-METdimer:GAB1HGF(32-494) EPS15 UBA52(1-76) S-Farn-Me KRAS4B p-Y1234,Y1235,Y1349,Y1356-MET Fibronectin matrix HGF(32-494) MET p-Y1234,Y1235,Y1356-MET HGF:p-4Y-METdimer:p-Y194,Y397,Y576,Y577-PTK2:MyrG-p-Y419-SRCUBC(1-76) UBC(381-456) HGF(495-728) HGF(495-728) CRK p-Y1234,Y1235,Y1349,Y1356-MET HGF:MonoUb-K,p-4Y-MET dimer:GRB2:p-Y-CBL,(HGF:MonoUb-K,p-Y1003,4Y-METdimer:p-Y-CBL):CIN85:endophillin,(MET:Ub-LRIG1)HGF:MET dimerRAC1 p-Y1234,Y1235,Y1349,Y1356-MET p-Y705-STAT3 GGC-RAB4B MonoUb-K,p-Y1234,Y1235,Y1349,Y1356-MET CRKL LRIG1UBC(1-76) MET SH3GL1 GAB1 GTP UbUBB(77-152) GRB2-1 GDPUBB(77-152) MonoUb-K,p-Y1003,4Y-MET HGS STAT3RANBP9GRB2-1 p-Y1234,Y1235,Y1349,Y1356-MET S-Farn-Me-PalmS KRAS4A HGF(495-728) HGF(32-494) GDP p-Y1234,Y1235,Y1349,Y1356-MET GTP SH3GL3 6021, 6624668382410767864, 10, 13, 14, 20...672710784, 1003324, 64333324


Description

MET is a receptor tyrosine kinase (RTK) (Cooper et al. 1984, Park et al. 1984) activated by binding to its ligand, Hepatocyte growth factor/Scatter factor (HGF/SF) (Bottaro et al. 1991, Naldini et al. 1991). Similar to other related RTKs, such as EGFR, ligand binding induces MET dimerization and trans-autophosphorylation, resulting in the active MET receptor complex (Ferracini et al. 1991, Longati et al. 1994, Rodrigues and Park 1994, Kirchhofer et al. 2004, Stamos et al. 2004, Hays and Watowich 2004). Phosphorylated tyrosines in the cytoplasmic tail of MET serve as docking sites for binding of adapter proteins, such as GRB2, SHC1 and GAB1, which trigger signal transduction cascades that activate PI3K/AKT, RAS, STAT3, PTK2, RAC1 and RAP1 signaling (Ponzetto et al. 1994, Pelicci et al. 1995, Weidner et al. 1995, Besser et al. 1997, Shen and Novak 1997, Beviglia and Kramer 1999, Rodrigues et al. 2000, Sakkab et al. 2000, Schaeper et al. 2000, Lamorte et al. 2002, Wang et al. 2002, Chen and Chen 2006, Palamidessi et al. 2008, Chen et al. 2011, Murray et al. 2014).
Activation of PLC gamma 1 (PLCG1) signaling by MET remains unclear. It has been reported that PLCG1 can bind to MET directly (Ponzetto et al. 1994) or be recruited by phosphorylated GAB1 (Gual et al. 2000). Tyrosine residue Y307 of GAB1 that serves as docking sites for PLCG1 may be phosphorylated either by activated MET (Watanabe et al. 2006) or SRC (Chan et al. 2010). Another PCLG1 docking site on GAB1, tyrosine residue Y373, was reported as the SRC target, while the kinase for the main PLCG1 docking site, Y407 of GAB1, is not known (Chan et al. 2010).
Signaling by MET promotes cell growth, cell survival and motility, which are essential for embryonic development (Weidner et al. 1993, Schmidt et al. 1995, Uehara et al. 1995, Bladt et al. 1995, Maina et al. 1997, Maina et al. 2001, Helmbacher et al. 2003) and tissue regeneration (Huh et al. 2004, Borowiak et al. 2004, Liu 2004, Chmielowiec et al. 2007). MET signaling is frequently aberrantly activated in cancer, through MET overexpression or activating MET mutations (Schmidt et al. 1997, Pennacchietti et al. 2003, Smolen et al. 2006, Bertotti et al. 2009).
Considerable progress has recently been made in the development of HGF-MET inhibitors in cancer therapy. These include inhibitors of HGF activators, HGF inhibitors and MET antagonists, which are protein therapeutics that act outside the cell. Kinase inhibitors function inside the cell and have constituted the largest effort towards MET-based therapeutics (Gherardi et al. 2012).
Pathogenic bacteria of the species Listeria monocytogenes, exploit MET receptor as an entryway to host cells (Shen et al. 2000, Veiga and Cossart 2005, Neimann et al. 2007).
For review of MET signaling, please refer to Birchmeier et al. 2003, Trusolino et al. 2010, Gherardi et al. 2012, Petrini 2015. View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 6806834
Reactome-version 
Reactome version: 75
Reactome Author 
Reactome Author: Orlic-Milacic, Marija

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Peschard P, Fournier TM, Lamorte L, Naujokas MA, Band H, Langdon WY, Park M.; ''Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein.''; PubMed Europe PMC Scholia
  2. Rong S, Segal S, Anver M, Resau JH, Vande Woude GF.; ''Invasiveness and metastasis of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation.''; PubMed Europe PMC Scholia
  3. Wojcik EJ, Sharifpoor S, Miller NA, Wright TG, Watering R, Tremblay EA, Swan K, Mueller CR, Elliott BE.; ''A novel activating function of c-Src and Stat3 on HGF transcription in mammary carcinoma cells.''; PubMed Europe PMC Scholia
  4. Kyriakis JM, Avruch J.; ''Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update.''; PubMed Europe PMC Scholia
  5. Veiga E, Cossart P.; ''Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells.''; PubMed Europe PMC Scholia
  6. Bache KG, Raiborg C, Mehlum A, Stenmark H.; ''STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes.''; PubMed Europe PMC Scholia
  7. Ferracini R, Longati P, Naldini L, Vigna E, Comoglio PM.; ''Identification of the major autophosphorylation site of the Met/hepatocyte growth factor receptor tyrosine kinase.''; PubMed Europe PMC Scholia
  8. Lietha D, Cai X, Ceccarelli DF, Li Y, Schaller MD, Eck MJ.; ''Structural basis for the autoinhibition of focal adhesion kinase.''; PubMed Europe PMC Scholia
  9. Bertotti A, Burbridge MF, Gastaldi S, Galimi F, Torti D, Medico E, Giordano S, Corso S, Rolland-Valognes G, Lockhart BP, Hickman JA, Comoglio PM, Trusolino L.; ''Only a subset of Met-activated pathways are required to sustain oncogene addiction.''; PubMed Europe PMC Scholia
  10. Wellbrock C, Karasarides M, Marais R.; ''The RAF proteins take centre stage.''; PubMed Europe PMC Scholia
  11. Fournier TM, Kamikura D, Teng K, Park M.; ''Branching tubulogenesis but not scatter of madin-darby canine kidney cells requires a functional Grb2 binding site in the Met receptor tyrosine kinase.''; PubMed Europe PMC Scholia
  12. Park M, Dean M, Cooper CS, Schmidt M, O'Brien SJ, Blair DG, Vande Woude GF.; ''Mechanism of met oncogene activation.''; PubMed Europe PMC Scholia
  13. Cseh B, Doma E, Baccarini M.; ''"RAF" neighborhood: protein-protein interaction in the Raf/Mek/Erk pathway.''; PubMed Europe PMC Scholia
  14. McKay MM, Morrison DK.; ''Integrating signals from RTKs to ERK/MAPK.''; PubMed Europe PMC Scholia
  15. Schaper F, Siewert E, Gómez-Lechon MJ, Gatsios P, Sachs M, Birchmeier W, Heinrich PC, Castell J.; ''Hepatocyte growth factor/scatter factor (HGF/SF) signals via the STAT3/APRF transcription factor in human hepatoma cells and hepatocytes.''; PubMed Europe PMC Scholia
  16. Murray DW, Didier S, Chan A, Paulino V, Van Aelst L, Ruggieri R, Tran NL, Byrne AT, Symons M.; ''Guanine nucleotide exchange factor Dock7 mediates HGF-induced glioblastoma cell invasion via Rac activation.''; PubMed Europe PMC Scholia
  17. Naldini L, Vigna E, Narsimhan RP, Gaudino G, Zarnegar R, Michalopoulos GK, Comoglio PM.; ''Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET.''; PubMed Europe PMC Scholia
  18. Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C.; ''Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud.''; PubMed Europe PMC Scholia
  19. Shimomura T, Denda K, Kitamura A, Kawaguchi T, Kito M, Kondo J, Kagaya S, Qin L, Takata H, Miyazawa K, Kitamura N.; ''Hepatocyte growth factor activator inhibitor, a novel Kunitz-type serine protease inhibitor.''; PubMed Europe PMC Scholia
  20. Roskoski R.; ''MEK1/2 dual-specificity protein kinases: structure and regulation.''; PubMed Europe PMC Scholia
  21. Fukumoto T, Kubota Y, Kitanaka A, Yamaoka G, Ohara-Waki F, Imataki O, Ohnishi H, Ishida T, Tanaka T.; ''Gab1 transduces PI3K-mediated erythropoietin signals to the Erk pathway and regulates erythropoietin-dependent proliferation and survival of erythroid cells.''; PubMed Europe PMC Scholia
  22. Weidner KM, Sachs M, Riethmacher D, Birchmeier W.; ''Mutation of juxtamembrane tyrosine residue 1001 suppresses loss-of-function mutations of the met receptor in epithelial cells.''; PubMed Europe PMC Scholia
  23. Watanabe T, Tsuda M, Makino Y, Ichihara S, Sawa H, Minami A, Mochizuki N, Nagashima K, Tanaka S.; ''Adaptor molecule Crk is required for sustained phosphorylation of Grb2-associated binder 1 and hepatocyte growth factor-induced cell motility of human synovial sarcoma cell lines.''; PubMed Europe PMC Scholia
  24. Schaeper U, Gehring NH, Fuchs KP, Sachs M, Kempkes B, Birchmeier W.; ''Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses.''; PubMed Europe PMC Scholia
  25. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF.; ''Met, metastasis, motility and more.''; PubMed Europe PMC Scholia
  26. Garcia-Guzman M, Dolfi F, Zeh K, Vuori K.; ''Met-induced JNK activation is mediated by the adapter protein Crk and correlates with the Gab1 - Crk signaling complex formation.''; PubMed Europe PMC Scholia
  27. Wang D, Li Z, Schoen SR, Messing EM, Wu G.; ''A novel MET-interacting protein shares high sequence similarity with RanBPM, but fails to stimulate MET-induced Ras/Erk signaling.''; PubMed Europe PMC Scholia
  28. Hartmann G, Naldini L, Weidner KM, Sachs M, Vigna E, Comoglio PM, Birchmeier W.; ''A functional domain in the heavy chain of scatter factor/hepatocyte growth factor binds the c-Met receptor and induces cell dissociation but not mitogenesis.''; PubMed Europe PMC Scholia
  29. Longati P, Bardelli A, Ponzetto C, Naldini L, Comoglio PM.; ''Tyrosines1234-1235 are critical for activation of the tyrosine kinase encoded by the MET proto-oncogene (HGF receptor).''; PubMed Europe PMC Scholia
  30. Klezovitch O, Chevillet J, Mirosevich J, Roberts RL, Matusik RJ, Vasioukhin V.; ''Hepsin promotes prostate cancer progression and metastasis.''; PubMed Europe PMC Scholia
  31. Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT.; ''Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src.''; PubMed Europe PMC Scholia
  32. Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM, Vande Woude GF.; ''Molecular cloning of a new transforming gene from a chemically transformed human cell line.''; PubMed Europe PMC Scholia
  33. Pelicci G, Giordano S, Zhen Z, Salcini AE, Lanfrancone L, Bardelli A, Panayotou G, Waterfield MD, Ponzetto C, Pelicci PG.; ''The motogenic and mitogenic responses to HGF are amplified by the Shc adaptor protein.''; PubMed Europe PMC Scholia
  34. Weidner KM, Di Cesare S, Sachs M, Brinkmann V, Behrens J, Birchmeier W.; ''Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis.''; PubMed Europe PMC Scholia
  35. Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P, Scherer SW, Zhuang Z, Lubensky I, Dean M, Allikmets R, Chidambaram A, Bergerheim UR, Feltis JT, Casadevall C, Zamarron A, Bernues M, Richard S, Lips CJ, Walther MM, Tsui LC, Geil L, Orcutt ML, Stackhouse T, Lipan J, Slife L, Brauch H, Decker J, Niehans G, Hughson MD, Moch H, Storkel S, Lerman MI, Linehan WM, Zbar B.; ''Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas.''; PubMed Europe PMC Scholia
  36. Roskoski R.; ''RAF protein-serine/threonine kinases: structure and regulation.''; PubMed Europe PMC Scholia
  37. Helmbacher F, Dessaud E, Arber S, deLapeyrière O, Henderson CE, Klein R, Maina F.; ''Met signaling is required for recruitment of motor neurons to PEA3-positive motor pools.''; PubMed Europe PMC Scholia
  38. Higuchi T, Orita T, Katsuya K, Yamasaki Y, Akiyama K, Li H, Yamamoto T, Saito Y, Nakamura M.; ''MUC20 suppresses the hepatocyte growth factor-induced Grb2-Ras pathway by binding to a multifunctional docking site of met.''; PubMed Europe PMC Scholia
  39. Kirchhofer D, Yao X, Peek M, Eigenbrot C, Lipari MT, Billeci KL, Maun HR, Moran P, Santell L, Wiesmann C, Lazarus RA.; ''Structural and functional basis of the serine protease-like hepatocyte growth factor beta-chain in Met binding and signaling.''; PubMed Europe PMC Scholia
  40. Plotnikov A, Zehorai E, Procaccia S, Seger R.; ''The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation.''; PubMed Europe PMC Scholia
  41. Parachoniak CA, Park M.; ''Distinct recruitment of Eps15 via Its coiled-coil domain is required for efficient down-regulation of the met receptor tyrosine kinase.''; PubMed Europe PMC Scholia
  42. Palka HL, Park M, Tonks NK.; ''Hepatocyte growth factor receptor tyrosine kinase met is a substrate of the receptor protein-tyrosine phosphatase DEP-1.''; PubMed Europe PMC Scholia
  43. Liu Y.; ''Hepatocyte growth factor in kidney fibrosis: therapeutic potential and mechanisms of action.''; PubMed Europe PMC Scholia
  44. Shen Y, Naujokas M, Park M, Ireton K.; ''InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase.''; PubMed Europe PMC Scholia
  45. Tsuji A, Torres-Rosado A, Arai T, Le Beau MM, Lemons RS, Chou SH, Kurachi K.; ''Hepsin, a cell membrane-associated protease. Characterization, tissue distribution, and gene localization.''; PubMed Europe PMC Scholia
  46. Shen K, Novak RF.; ''DDT stimulates c-erbB2, c-met, and STATS tyrosine phosphorylation, Grb2-Sos association, MAPK phosphorylation, and proliferation of human breast epithelial cells.''; PubMed Europe PMC Scholia
  47. Chmielowiec J, Borowiak M, Morkel M, Stradal T, Munz B, Werner S, Wehland J, Birchmeier C, Birchmeier W.; ''c-Met is essential for wound healing in the skin.''; PubMed Europe PMC Scholia
  48. Shattuck DL, Miller JK, Laederich M, Funes M, Petersen H, Carraway KL, Sweeney C.; ''LRIG1 is a novel negative regulator of the Met receptor and opposes Met and Her2 synergy.''; PubMed Europe PMC Scholia
  49. Borowiak M, Garratt AN, Wüstefeld T, Strehle M, Trautwein C, Birchmeier C.; ''Met provides essential signals for liver regeneration.''; PubMed Europe PMC Scholia
  50. Brami-Cherrier K, Gervasi N, Arsenieva D, Walkiewicz K, Boutterin MC, Ortega A, Leonard PG, Seantier B, Gasmi L, Bouceba T, Kadaré G, Girault JA, Arold ST.; ''FAK dimerization controls its kinase-dependent functions at focal adhesions.''; PubMed Europe PMC Scholia
  51. Beviglia L, Kramer RH.; ''HGF induces FAK activation and integrin-mediated adhesion in MTLn3 breast carcinoma cells.''; PubMed Europe PMC Scholia
  52. Taher TE, Tjin EP, Beuling EA, Borst J, Spaargaren M, Pals ST.; ''c-Cbl is involved in Met signaling in B cells and mediates hepatocyte growth factor-induced receptor ubiquitination.''; PubMed Europe PMC Scholia
  53. Maina F, Panté G, Helmbacher F, Andres R, Porthin A, Davies AM, Ponzetto C, Klein R.; ''Coupling Met to specific pathways results in distinct developmental outcomes.''; PubMed Europe PMC Scholia
  54. Petrini I.; ''Biology of MET: a double life between normal tissue repair and tumor progression.''; PubMed Europe PMC Scholia
  55. Thomas JW, Ellis B, Boerner RJ, Knight WB, White GC, Schaller MD.; ''SH2- and SH3-mediated interactions between focal adhesion kinase and Src.''; PubMed Europe PMC Scholia
  56. Lamorte L, Kamikura DM, Park M.; ''A switch from p130Cas/Crk to Gab1/Crk signaling correlates with anchorage independent growth and JNK activation in cells transformed by the Met receptor oncoprotein.''; PubMed Europe PMC Scholia
  57. Cunnick JM, Mei L, Doupnik CA, Wu J.; ''Phosphotyrosines 627 and 659 of Gab1 constitute a bisphosphoryl tyrosine-based activation motif (BTAM) conferring binding and activation of SHP2.''; PubMed Europe PMC Scholia
  58. Xing Z, Chen HC, Nowlen JK, Taylor SJ, Shalloway D, Guan JL.; ''Direct interaction of v-Src with the focal adhesion kinase mediated by the Src SH2 domain.''; PubMed Europe PMC Scholia
  59. Gual P, Giordano S, Williams TA, Rocchi S, Van Obberghen E, Comoglio PM.; ''Sustained recruitment of phospholipase C-gamma to Gab1 is required for HGF-induced branching tubulogenesis.''; PubMed Europe PMC Scholia
  60. Wang D, Li Z, Messing EM, Wu G.; ''Activation of Ras/Erk pathway by a novel MET-interacting protein RanBPM.''; PubMed Europe PMC Scholia
  61. Niemann HH, Jäger V, Butler PJ, van den Heuvel J, Schmidt S, Ferraris D, Gherardi E, Heinz DW.; ''Structure of the human receptor tyrosine kinase met in complex with the Listeria invasion protein InlB.''; PubMed Europe PMC Scholia
  62. Zhang YW, Wang LM, Jove R, Vande Woude GF.; ''Requirement of Stat3 signaling for HGF/SF-Met mediated tumorigenesis.''; PubMed Europe PMC Scholia
  63. Schaeper U, Vogel R, Chmielowiec J, Huelsken J, Rosario M, Birchmeier W.; ''Distinct requirements for Gab1 in Met and EGF receptor signaling in vivo.''; PubMed Europe PMC Scholia
  64. Rodrigues GA, Falasca M, Zhang Z, Ong SH, Schlessinger J.; ''A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling.''; PubMed Europe PMC Scholia
  65. Torres-Rosado A, O'Shea KS, Tsuji A, Chou SH, Kurachi K.; ''Hepsin, a putative cell-surface serine protease, is required for mammalian cell growth.''; PubMed Europe PMC Scholia
  66. Chardin P, Camonis JH, Gale NW, van Aelst L, Schlessinger J, Wigler MH, Bar-Sagi D.; ''Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2.''; PubMed Europe PMC Scholia
  67. Muharram G, Sahgal P, Korpela T, De Franceschi N, Kaukonen R, Clark K, Tulasne D, Carpén O, Ivaska J.; ''Tensin-4-dependent MET stabilization is essential for survival and proliferation in carcinoma cells.''; PubMed Europe PMC Scholia
  68. Ponzetto C, Bardelli A, Zhen Z, Maina F, dalla Zonca P, Giordano S, Graziani A, Panayotou G, Comoglio PM.; ''A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family.''; PubMed Europe PMC Scholia
  69. Trusolino L, Bertotti A, Comoglio PM.; ''MET signalling: principles and functions in development, organ regeneration and cancer.''; PubMed Europe PMC Scholia
  70. Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, Gherardi E, Birchmeier C.; ''Scatter factor/hepatocyte growth factor is essential for liver development.''; PubMed Europe PMC Scholia
  71. Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, Aaronson SA.; ''Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product.''; PubMed Europe PMC Scholia
  72. Petrelli A, Gilestro GF, Lanzardo S, Comoglio PM, Migone N, Giordano S.; ''The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met.''; PubMed Europe PMC Scholia
  73. Cantwell-Dorris ER, O'Leary JJ, Sheils OM.; ''BRAFV600E: implications for carcinogenesis and molecular therapy.''; PubMed Europe PMC Scholia
  74. Peschard P, Ishiyama N, Lin T, Lipkowitz S, Park M.; ''A conserved DpYR motif in the juxtamembrane domain of the Met receptor family forms an atypical c-Cbl/Cbl-b tyrosine kinase binding domain binding site required for suppression of oncogenic activation.''; PubMed Europe PMC Scholia
  75. Palamidessi A, Frittoli E, Garré M, Faretta M, Mione M, Testa I, Diaspro A, Lanzetti L, Scita G, Di Fiore PP.; ''Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration.''; PubMed Europe PMC Scholia
  76. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM.; ''Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene.''; PubMed Europe PMC Scholia
  77. Rodrigues GA, Park M.; ''Autophosphorylation modulates the kinase activity and oncogenic potential of the Met receptor tyrosine kinase.''; PubMed Europe PMC Scholia
  78. Huh CG, Factor VM, Sánchez A, Uchida K, Conner EA, Thorgeirsson SS.; ''Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair.''; PubMed Europe PMC Scholia
  79. Lock LS, Frigault MM, Saucier C, Park M.; ''Grb2-independent recruitment of Gab1 requires the C-terminal lobe and structural integrity of the Met receptor kinase domain.''; PubMed Europe PMC Scholia
  80. Hays JL, Watowich SJ.; ''Oligomerization-dependent changes in the thermodynamic properties of the TPR-MET receptor tyrosine kinase.''; PubMed Europe PMC Scholia
  81. Roberts PJ, Der CJ.; ''Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer.''; PubMed Europe PMC Scholia
  82. Kawaguchi T, Qin L, Shimomura T, Kondo J, Matsumoto K, Denda K, Kitamura N.; ''Purification and cloning of hepatocyte growth factor activator inhibitor type 2, a Kunitz-type serine protease inhibitor.''; PubMed Europe PMC Scholia
  83. Smolen GA, Sordella R, Muir B, Mohapatra G, Barmettler A, Archibald H, Kim WJ, Okimoto RA, Bell DW, Sgroi DC, Christensen JG, Settleman J, Haber DA.; ''Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752.''; PubMed Europe PMC Scholia
  84. Lamorte L, Royal I, Naujokas M, Park M.; ''Crk adapter proteins promote an epithelial-mesenchymal-like transition and are required for HGF-mediated cell spreading and breakdown of epithelial adherens junctions.''; PubMed Europe PMC Scholia
  85. Oh YM, Lee SB, Choi J, Suh HY, Shim S, Song YJ, Kim B, Lee JM, Oh SJ, Jeong Y, Cheong KH, Song PH, Kim KA.; ''USP8 modulates ubiquitination of LRIG1 for Met degradation.''; PubMed Europe PMC Scholia
  86. Parachoniak CA, Luo Y, Abella JV, Keen JH, Park M.; ''GGA3 functions as a switch to promote Met receptor recycling, essential for sustained ERK and cell migration.''; PubMed Europe PMC Scholia
  87. Kirchhofer D, Peek M, Lipari MT, Billeci K, Fan B, Moran P.; ''Hepsin activates pro-hepatocyte growth factor and is inhibited by hepatocyte growth factor activator inhibitor-1B (HAI-1B) and HAI-2.''; PubMed Europe PMC Scholia
  88. Brown MD, Sacks DB.; ''Protein scaffolds in MAP kinase signalling.''; PubMed Europe PMC Scholia
  89. Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T, Kitamura N.; ''Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor.''; PubMed Europe PMC Scholia
  90. Shia S, Stamos J, Kirchhofer D, Fan B, Wu J, Corpuz RT, Santell L, Lazarus RA, Eigenbrot C.; ''Conformational lability in serine protease active sites: structures of hepatocyte growth factor activator (HGFA) alone and with the inhibitory domain from HGFA inhibitor-1B.''; PubMed Europe PMC Scholia
  91. Abella JV, Peschard P, Naujokas MA, Lin T, Saucier C, Urbé S, Park M.; ''Met/Hepatocyte growth factor receptor ubiquitination suppresses transformation and is required for Hrs phosphorylation.''; PubMed Europe PMC Scholia
  92. Chan PC, Sudhakar JN, Lai CC, Chen HC.; ''Differential phosphorylation of the docking protein Gab1 by c-Src and the hepatocyte growth factor receptor regulates different aspects of cell functions.''; PubMed Europe PMC Scholia
  93. Chen SY, Chen HC.; ''Direct interaction of focal adhesion kinase (FAK) with Met is required for FAK to promote hepatocyte growth factor-induced cell invasion.''; PubMed Europe PMC Scholia
  94. Maina F, Hilton MC, Ponzetto C, Davies AM, Klein R.; ''Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons.''; PubMed Europe PMC Scholia
  95. Row PE, Clague MJ, Urbé S.; ''Growth factors induce differential phosphorylation profiles of the Hrs-STAM complex: a common node in signalling networks with signal-specific properties.''; PubMed Europe PMC Scholia
  96. Chen TH, Chan PC, Chen CL, Chen HC.; ''Phosphorylation of focal adhesion kinase on tyrosine 194 by Met leads to its activation through relief of autoinhibition.''; PubMed Europe PMC Scholia
  97. Besser D, Bardelli A, Didichenko S, Thelen M, Comoglio PM, Ponzetto C, Nagamine Y.; ''Regulation of the urokinase-type plasminogen activator gene by the oncogene Tpr-Met involves GRB2.''; PubMed Europe PMC Scholia
  98. Lee JM, Kim B, Lee SB, Jeong Y, Oh YM, Song YJ, Jung S, Choi J, Lee S, Cheong KH, Kim DU, Park HW, Han YK, Kim GW, Choi H, Song PH, Kim KA.; ''Cbl-independent degradation of Met: ways to avoid agonism of bivalent Met-targeting antibody.''; PubMed Europe PMC Scholia
  99. Gherardi E, Sandin S, Petoukhov MV, Finch J, Youles ME, Ofverstedt LG, Miguel RN, Blundell TL, Vande Woude GF, Skoglund U, Svergun DI.; ''Structural basis of hepatocyte growth factor/scatter factor and MET signalling.''; PubMed Europe PMC Scholia
  100. Sakkab D, Lewitzky M, Posern G, Schaeper U, Sachs M, Birchmeier W, Feller SM.; ''Signaling of hepatocyte growth factor/scatter factor (HGF) to the small GTPase Rap1 via the large docking protein Gab1 and the adapter protein CRKL.''; PubMed Europe PMC Scholia
  101. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA.; ''Mutations of the BRAF gene in human cancer.''; PubMed Europe PMC Scholia
  102. Turjanski AG, Vaqué JP, Gutkind JS.; ''MAP kinases and the control of nuclear events.''; PubMed Europe PMC Scholia
  103. Roskoski R.; ''ERK1/2 MAP kinases: structure, function, and regulation.''; PubMed Europe PMC Scholia
  104. Cramer A, Kleiner S, Westermann M, Meissner A, Lange A, Friedrich K.; ''Activation of the c-Met receptor complex in fibroblasts drives invasive cell behavior by signaling through transcription factor STAT3.''; PubMed Europe PMC Scholia
  105. Boccaccio C, Andò M, Tamagnone L, Bardelli A, Michieli P, Battistini C, Comoglio PM.; ''Induction of epithelial tubules by growth factor HGF depends on the STAT pathway.''; PubMed Europe PMC Scholia
  106. Sangwan V, Paliouras GN, Abella JV, Dubé N, Monast A, Tremblay ML, Park M.; ''Regulation of the Met receptor-tyrosine kinase by the protein-tyrosine phosphatase 1B and T-cell phosphatase.''; PubMed Europe PMC Scholia
  107. Stamos J, Lazarus RA, Yao X, Kirchhofer D, Wiesmann C.; ''Crystal structure of the HGF beta-chain in complex with the Sema domain of the Met receptor.''; PubMed Europe PMC Scholia
  108. Cargnello M, Roux PP.; ''Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases.''; PubMed Europe PMC Scholia
  109. Lamorte L, Rodrigues S, Naujokas M, Park M.; ''Crk synergizes with epidermal growth factor for epithelial invasion and morphogenesis and is required for the met morphogenic program.''; PubMed Europe PMC Scholia
  110. Kermorgant S, Parker PJ.; ''Receptor trafficking controls weak signal delivery: a strategy used by c-Met for STAT3 nuclear accumulation.''; PubMed Europe PMC Scholia
  111. Sam MR, Elliott BE, Mueller CR.; ''A novel activating role of SRC and STAT3 on HGF transcription in human breast cancer cells.''; PubMed Europe PMC Scholia
  112. Hammond DE, Carter S, McCullough J, Urbé S, Vande Woude G, Clague MJ.; ''Endosomal dynamics of Met determine signaling output.''; PubMed Europe PMC Scholia
  113. Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G.; ''Targeting MET in cancer: rationale and progress.''; PubMed Europe PMC Scholia
  114. Weidner KM, Sachs M, Birchmeier W.; ''The Met receptor tyrosine kinase transduces motility, proliferation, and morphogenic signals of scatter factor/hepatocyte growth factor in epithelial cells.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114792view16:28, 25 January 2021ReactomeTeamReactome version 75
113236view11:30, 2 November 2020ReactomeTeamReactome version 74
112456view15:40, 9 October 2020ReactomeTeamReactome version 73
101363view11:25, 1 November 2018ReactomeTeamreactome version 66
100901view21:00, 31 October 2018ReactomeTeamreactome version 65
100442view19:34, 31 October 2018ReactomeTeamreactome version 64
99991view16:18, 31 October 2018ReactomeTeamreactome version 63
99545view14:53, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99179view12:42, 31 October 2018ReactomeTeamreactome version 62
93620view11:28, 9 August 2017ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
(DOCK7)ComplexR-HSA-8875579 (Reactome)
ADPMetaboliteCHEBI:456216 (ChEBI)
ARF6 ProteinP62330 (Uniprot-TrEMBL)
ARF6:GTPComplexR-HSA-2193115 (Reactome)
ATPMetaboliteCHEBI:30616 (ChEBI)
CBL ProteinP22681 (Uniprot-TrEMBL)
CBL:GRB2,CBLComplexR-HSA-8876356 (Reactome)
CIN85:endophilinComplexR-HSA-8875480 (Reactome)
CRK ProteinP46108 (Uniprot-TrEMBL)
CRK, CRKLComplexR-HSA-381945 (Reactome)
CRKL ProteinP46109 (Uniprot-TrEMBL)
Collagen fibres R-HSA-2214304 (Reactome)
DOCK7 ProteinQ96N67 (Uniprot-TrEMBL)
EPS15 ProteinP42566 (Uniprot-TrEMBL)
EPS15:HGS:STAMComplexR-HSA-182947 (Reactome)
Fibronectin matrix R-HSA-2327729 (Reactome)
GAB1 ProteinQ13480 (Uniprot-TrEMBL)
GAB1ProteinQ13480 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GGA3 ProteinQ9NZ52 (Uniprot-TrEMBL)
GGA3ProteinQ9NZ52 (Uniprot-TrEMBL)
GGC-RAB4:GTPComplexR-HSA-8875670 (Reactome)
GGC-RAB4A ProteinP20338 (Uniprot-TrEMBL)
GGC-RAB4B ProteinP61018 (Uniprot-TrEMBL)
GRB2-1 ProteinP62993-1 (Uniprot-TrEMBL)
GRB2-1:SOS1ComplexR-HSA-109797 (Reactome)
GRB2-1ProteinP62993-1 (Uniprot-TrEMBL)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
H2OMetaboliteCHEBI:15377 (ChEBI)
HGF dimer:METComplexR-HSA-6800287 (Reactome)
HGF dimerComplexR-HSA-141763 (Reactome)
HGF(32-494) ProteinP14210 (Uniprot-TrEMBL)
HGF(495-728) ProteinP14210 (Uniprot-TrEMBL)
HGF:MET dimerComplexR-HSA-6806956 (Reactome)
HGF:MonoUb-K,p-4Y-MET dimer:GRB2:p-Y-CBL,(HGF:MonoUb-K,p-Y1003,4Y-MET dimer:p-Y-CBL)ComplexR-HSA-8876375 (Reactome)
HGF:MonoUb-K,p-4Y-MET dimer:GRB2:p-Y-CBL,(HGF:MonoUb-K,p-Y1003,4Y-METdimer:p-Y-CBL):CIN85:endophillin,(MET:Ub-LRIG1)ComplexR-HSA-8875497 (Reactome)
HGF:MonoUb-K,p-4Y-MET dimer:GRB2:p-Y-CBL,(HGF:MonoUb-K,p-Y1003,4Y-METdimer:p-Y-CBL):CIN85:endophillin:EPS15:HGS:STAM,(MET:Ub-LRIG1:EPS15:HGS:STAM)ComplexR-HSA-8875489 (Reactome)
HGF:MonoUb-K,p-4Y-MET dimer:GRB2:p-Y-CBL,(HGF:MonoUb-K,p-Y1003,4Y-METdimer:p-Y-CBL):CIN85:endophillinComplexR-HSA-8875481 (Reactome)
HGF:p-4Y MET dimer:MUC20ComplexR-HSA-8851839 (Reactome)
HGF:p-4Y-MET dimer,(HGF:p-Y1003,4Y-METdimer)ComplexR-HSA-8874682 (Reactome)
HGF:p-4Y-MET dimer:GAB1,HGF:p-4Y-MET dimer:GRB2:GAB1ComplexR-HSA-8851934 (Reactome)
HGF:p-4Y-MET dimer:GAB1ComplexR-HSA-8851913 (Reactome)
HGF:p-4Y-MET dimer:GRB2-1:GAB1ComplexR-HSA-8851921 (Reactome)
HGF:p-4Y-MET dimer:GRB2-1:SOS1ComplexR-HSA-8851807 (Reactome)
HGF:p-4Y-MET dimer:GRB2:CBL,(HGF:p-Y1003,4Y-MET dimer:CBL)ComplexR-HSA-8876353 (Reactome)
HGF:p-4Y-MET dimer:GRB2:p-Y-CBL,(HGF:p-Y1003,4Y-MET dimer:p-Y-CBL)ComplexR-HSA-8876355 (Reactome)
HGF:p-4Y-MET dimer:PTK2ComplexR-HSA-8874088 (Reactome)
HGF:p-4Y-MET dimer:RANBP10ComplexR-HSA-8851868 (Reactome)
HGF:p-4Y-MET dimer:RANBP9:SOS1ComplexR-HSA-8851860 (Reactome)
HGF:p-4Y-MET dimer:SHC1-2ComplexR-HSA-8851882 (Reactome)
HGF:p-4Y-MET dimer:STAT3ComplexR-HSA-8875815 (Reactome)
HGF:p-4Y-MET dimer:TNS3ComplexR-HSA-8875512 (Reactome)
HGF:p-4Y-MET dimer:TNS4:ITGB1ComplexR-HSA-8875527 (Reactome)
HGF:p-4Y-MET dimer:p-Y194,Y397,Y576,Y577-PTK2:MyrG-p-Y419-SRCComplexR-HSA-8874611 (Reactome)
HGF:p-4Y-MET dimer:p-Y194,Y397-PTK2:MyrG-p-Y419-SRCComplexR-HSA-8874601 (Reactome)
HGF:p-4Y-MET dimer:p-Y317-SHC1-2:GRB2:SOS1ComplexR-HSA-8851897 (Reactome)
HGF:p-4Y-MET dimer:p-Y317-SHC1-2ComplexR-HSA-8851891 (Reactome)
HGF:p-4Y-MET dimer:p-Y397-PTK2:MyrG-p-Y419-SRCComplexR-HSA-8874097 (Reactome)
HGF:p-4Y-MET dimer:p-Y397-PTK2ComplexR-HSA-8874094 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:CRK,CRKL:(DOCK7)ComplexR-HSA-8875574 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:CRK,CRKL:GGA3:ARF6:GTPComplexR-HSA-8875665 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:CRK,CRKL:RAPGEF1ComplexR-HSA-8875561 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:CRK,CRKLComplexR-HSA-8875548 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:PI3KComplexR-HSA-8851953 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:PTPN11ComplexR-HSA-8865998 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1ComplexR-HSA-8851943 (Reactome)
HGF:p-Y,1349,Y1356-MET dimerComplexR-HSA-6807029 (Reactome)
HGF:p-Y1234,Y1235,Y1349,Y1356-MET dimerComplexR-HSA-6806977 (Reactome)
HGF:p-Y1234,Y1235,Y1356-MET dimerComplexR-HSA-6807016 (Reactome)
HGFAC dimerComplexR-HSA-6800311 (Reactome)
HGFAC(373-407) ProteinQ04756 (Uniprot-TrEMBL)
HGFAC(408-655) ProteinQ04756 (Uniprot-TrEMBL)
HGS ProteinO14964 (Uniprot-TrEMBL)
HPN heterodimerComplexR-HSA-8849220 (Reactome)
HPN(1-162) ProteinP05981 (Uniprot-TrEMBL)
HPN(163-417) ProteinP05981 (Uniprot-TrEMBL)
ITGA2 ProteinP17301 (Uniprot-TrEMBL)
ITGA3(33-1051) ProteinP26006 (Uniprot-TrEMBL)
ITGB1 ProteinP05556 (Uniprot-TrEMBL)
Integrin alpha2beta1,alpha3:beta1:(collagen,laminin,fibronectin)ComplexR-HSA-8874087 (Reactome)
LRIG1 ProteinQ96JA1 (Uniprot-TrEMBL)
LRIG1ProteinQ96JA1 (Uniprot-TrEMBL)
Laminins R-HSA-2426651 (Reactome)
MET ProteinP08581 (Uniprot-TrEMBL)
MET:LRIG1ComplexR-HSA-8875375 (Reactome)
MET:Ub-LRIG1ComplexR-HSA-8875433 (Reactome)
METProteinP08581 (Uniprot-TrEMBL)
MUC20 ProteinQ8N307 (Uniprot-TrEMBL)
MUC20ProteinQ8N307 (Uniprot-TrEMBL)
MonoUb-K,p-Y1003,4Y-MET ProteinP08581 (Uniprot-TrEMBL)
MonoUb-K,p-Y1234,Y1235,Y1349,Y1356-MET ProteinP08581 (Uniprot-TrEMBL)
MyrG-p-Y419-SRC ProteinP12931 (Uniprot-TrEMBL)
MyrG-p-Y419-SRCProteinP12931 (Uniprot-TrEMBL)
PI(3,4,5)P3MetaboliteCHEBI:16618 (ChEBI)
PI(4,5)P2MetaboliteCHEBI:18348 (ChEBI)
PIK3CA ProteinP42336 (Uniprot-TrEMBL)
PIK3CA:PIK3R1ComplexR-HSA-1806218 (Reactome)
PIK3R1 ProteinP27986 (Uniprot-TrEMBL)
PIP3 activates AKT signalingPathwayR-HSA-1257604 (Reactome) Signaling by AKT is one of the key outcomes of receptor tyrosine kinase (RTK) activation. AKT is activated by the cellular second messenger PIP3, a phospholipid that is generated by PI3K. In ustimulated cells, PI3K class IA enzymes reside in the cytosol as inactive heterodimers composed of p85 regulatory subunit and p110 catalytic subunit. In this complex, p85 stabilizes p110 while inhibiting its catalytic activity. Upon binding of extracellular ligands to RTKs, receptors dimerize and undergo autophosphorylation. The regulatory subunit of PI3K, p85, is recruited to phosphorylated cytosolic RTK domains either directly or indirectly, through adaptor proteins, leading to a conformational change in the PI3K IA heterodimer that relieves inhibition of the p110 catalytic subunit. Activated PI3K IA phosphorylates PIP2, converting it to PIP3; this reaction is negatively regulated by PTEN phosphatase. PIP3 recruits AKT to the plasma membrane, allowing TORC2 to phosphorylate a conserved serine residue of AKT. Phosphorylation of this serine induces a conformation change in AKT, exposing a conserved threonine residue that is then phosphorylated by PDPK1 (PDK1). Phosphorylation of both the threonine and the serine residue is required to fully activate AKT. The active AKT then dissociates from PIP3 and phosphorylates a number of cytosolic and nuclear proteins that play important roles in cell survival and metabolism. For a recent review of AKT signaling, please refer to Manning and Cantley, 2007.
PTK2 ProteinQ05397 (Uniprot-TrEMBL)
PTK2ProteinQ05397 (Uniprot-TrEMBL)
PTPN1 ProteinP18031 (Uniprot-TrEMBL)
PTPN1,PTPN2ComplexR-HSA-6807023 (Reactome)
PTPN11 ProteinQ06124 (Uniprot-TrEMBL)
PTPN11ProteinQ06124 (Uniprot-TrEMBL)
PTPN2 ProteinP17706 (Uniprot-TrEMBL)
PTPRJProteinQ12913 (Uniprot-TrEMBL)
PiMetaboliteCHEBI:43474 (ChEBI)
RAC1 ProteinP63000 (Uniprot-TrEMBL)
RAC1:GDPComplexR-HSA-5674631 (Reactome)
RAC1:GTPComplexR-HSA-442641 (Reactome)
RAF/MAP kinase cascadePathwayR-HSA-5673001 (Reactome) The RAS-RAF-MEK-ERK pathway regulates processes such as proliferation, differentiation, survival, senescence and cell motility in response to growth factors, hormones and cytokines, among others. Binding of these stimuli to receptors in the plasma membrane promotes the GEF-mediated activation of RAS at the plasma membrane and initiates the three-tiered kinase cascade of the conventional MAPK cascades. GTP-bound RAS recruits RAF (the MAPK kinase kinase), and promotes its dimerization and activation (reviewed in Cseh et al, 2014; Roskoski, 2010; McKay and Morrison, 2007; Wellbrock et al, 2004). Activated RAF phosphorylates the MAPK kinase proteins MEK1 and MEK2 (also known as MAP2K1 and MAP2K2), which in turn phophorylate the proline-directed kinases ERK1 and 2 (also known as MAPK3 and MAPK1) (reviewed in Roskoski, 2012a, b; Kryiakis and Avruch, 2012). Activated ERK proteins may undergo dimerization and have identified targets in both the nucleus and the cytosol; consistent with this, a proportion of activated ERK protein relocalizes to the nucleus in response to stimuli (reviewed in Roskoski 2012b; Turjanski et al, 2007; Plotnikov et al, 2010; Cargnello et al, 2011). Although initially seen as a linear cascade originating at the plasma membrane and culminating in the nucleus, the RAS/RAF MAPK cascade is now also known to be activated from various intracellular location. Temporal and spatial specificity of the cascade is achieved in part through the interaction of pathway components with numerous scaffolding proteins (reviewed in McKay and Morrison, 2007; Brown and Sacks, 2009).
The importance of the RAS/RAF MAPK cascade is highlighted by the fact that components of this pathway are mutated with high frequency in a large number of human cancers. Activating mutations in RAS are found in approximately one third of human cancers, while ~8% of tumors express an activated form of BRAF (Roberts and Der, 2007; Davies et al, 2002; Cantwell-Dorris et al, 2011).
RANBP10 ProteinQ6VN20 (Uniprot-TrEMBL)
RANBP10ProteinQ6VN20 (Uniprot-TrEMBL)
RANBP9 ProteinQ96S59 (Uniprot-TrEMBL)
RANBP9ProteinQ96S59 (Uniprot-TrEMBL)
RAP1:GDPComplexR-HSA-354074 (Reactome)
RAP1:GTPComplexR-HSA-354126 (Reactome)
RAP1A ProteinP62834 (Uniprot-TrEMBL)
RAP1B ProteinP61224 (Uniprot-TrEMBL)
RAPGEF1 ProteinQ13905 (Uniprot-TrEMBL)
RAPGEF1ProteinQ13905 (Uniprot-TrEMBL)
RPS27A(1-76) ProteinP62979 (Uniprot-TrEMBL)
S-Farn-Me KRAS4B ProteinP01116-2 (Uniprot-TrEMBL)
S-Farn-Me PalmS NRAS ProteinP01111 (Uniprot-TrEMBL)
S-Farn-Me-2xPalmS HRAS ProteinP01112 (Uniprot-TrEMBL)
S-Farn-Me-PalmS KRAS4A ProteinP01116-1 (Uniprot-TrEMBL)
SH3GL1 ProteinQ99961 (Uniprot-TrEMBL)
SH3GL2 ProteinQ99962 (Uniprot-TrEMBL)
SH3GL3 ProteinQ99963 (Uniprot-TrEMBL)
SH3KBP1 ProteinQ96B97 (Uniprot-TrEMBL)
SHC1-2 ProteinP29353-2 (Uniprot-TrEMBL)
SHC1-2ProteinP29353-2 (Uniprot-TrEMBL)
SOS1 ProteinQ07889 (Uniprot-TrEMBL)
SOS1ProteinQ07889 (Uniprot-TrEMBL)
SPINT1 ProteinO43278 (Uniprot-TrEMBL)
SPINT1,2ComplexR-HSA-6800235 (Reactome)
SPINT1ProteinO43278 (Uniprot-TrEMBL)
SPINT2 ProteinO43291 (Uniprot-TrEMBL)
STAM ProteinQ92783 (Uniprot-TrEMBL)
STAM2 ProteinO75886 (Uniprot-TrEMBL)
STAT3 ProteinP40763 (Uniprot-TrEMBL)
STAT3ProteinP40763 (Uniprot-TrEMBL)
TNS3 ProteinQ68CZ2 (Uniprot-TrEMBL)
TNS3ProteinQ68CZ2 (Uniprot-TrEMBL)
TNS4 ProteinQ8IZW8 (Uniprot-TrEMBL)
TNS4:ITGB1ComplexR-HSA-8875528 (Reactome)
UBA52(1-76) ProteinP62987 (Uniprot-TrEMBL)
UBB(1-76) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(153-228) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(77-152) ProteinP0CG47 (Uniprot-TrEMBL)
UBC(1-76) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(153-228) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(229-304) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(305-380) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(381-456) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(457-532) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(533-608) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(609-684) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(77-152) ProteinP0CG48 (Uniprot-TrEMBL)
USP8ProteinP40818 (Uniprot-TrEMBL)
Ub-LRIG1 ProteinQ96JA1 (Uniprot-TrEMBL)
UbComplexR-HSA-113595 (Reactome)
p-5Y-GAB1 ProteinQ13480 (Uniprot-TrEMBL)
p-Y-CBL ProteinP22681 (Uniprot-TrEMBL)
p-Y1003,4Y-MET ProteinP08581 (Uniprot-TrEMBL)
p-Y1234,Y1235,Y1349,Y1356-MET ProteinP08581 (Uniprot-TrEMBL)
p-Y1234,Y1235,Y1356-MET ProteinP08581 (Uniprot-TrEMBL)
p-Y1349,Y1356-MET ProteinP08581 (Uniprot-TrEMBL)
p-Y194,Y397,Y576,Y577-PTK2 ProteinQ05397 (Uniprot-TrEMBL)
p-Y194,Y397-PTK2 ProteinQ05397 (Uniprot-TrEMBL)
p-Y317-SHC1-2 ProteinP29353-2 (Uniprot-TrEMBL)
p-Y397-PTK2 ProteinQ05397 (Uniprot-TrEMBL)
p-Y705-STAT3 ProteinP40763 (Uniprot-TrEMBL)
p-Y705-STAT3 dimerComplexR-HSA-1112525 (Reactome)
p-Y705-STAT3 dimerComplexR-HSA-1112526 (Reactome)
p-Y705-STAT3ProteinP40763 (Uniprot-TrEMBL)
p21 RAS:GDPComplexR-HSA-109796 (Reactome)
p21 RAS:GTPComplexR-HSA-109783 (Reactome)
pro-HGFProteinP14210 (Uniprot-TrEMBL)
unknown ubiquitin ligaseR-HSA-5250898 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
(DOCK7)R-HSA-8875576 (Reactome)
ADPArrowR-HSA-6806974 (Reactome)
ADPArrowR-HSA-8851890 (Reactome)
ADPArrowR-HSA-8851933 (Reactome)
ADPArrowR-HSA-8852019 (Reactome)
ADPArrowR-HSA-8874078 (Reactome)
ADPArrowR-HSA-8874080 (Reactome)
ADPArrowR-HSA-8874082 (Reactome)
ADPArrowR-HSA-8875451 (Reactome)
ADPArrowR-HSA-8875817 (Reactome)
ARF6:GTPR-HSA-8875661 (Reactome)
ATPR-HSA-6806974 (Reactome)
ATPR-HSA-8851890 (Reactome)
ATPR-HSA-8851933 (Reactome)
ATPR-HSA-8852019 (Reactome)
ATPR-HSA-8874078 (Reactome)
ATPR-HSA-8874080 (Reactome)
ATPR-HSA-8874082 (Reactome)
ATPR-HSA-8875451 (Reactome)
ATPR-HSA-8875817 (Reactome)
CBL:GRB2,CBLR-HSA-8874685 (Reactome)
CIN85:endophilinR-HSA-8875482 (Reactome)
CRK, CRKLR-HSA-8875540 (Reactome)
EPS15:HGS:STAMR-HSA-8875490 (Reactome)
GAB1R-HSA-8851908 (Reactome)
GAB1R-HSA-8851919 (Reactome)
GDPArrowR-HSA-8851827 (Reactome)
GDPArrowR-HSA-8851877 (Reactome)
GDPArrowR-HSA-8851899 (Reactome)
GDPArrowR-HSA-8875568 (Reactome)
GDPArrowR-HSA-8875591 (Reactome)
GGA3R-HSA-8875661 (Reactome)
GGC-RAB4:GTPArrowR-HSA-8875659 (Reactome)
GRB2-1:SOS1R-HSA-8851804 (Reactome)
GRB2-1:SOS1R-HSA-8851900 (Reactome)
GRB2-1R-HSA-8851919 (Reactome)
GTPR-HSA-8851827 (Reactome)
GTPR-HSA-8851877 (Reactome)
GTPR-HSA-8851899 (Reactome)
GTPR-HSA-8875568 (Reactome)
GTPR-HSA-8875591 (Reactome)
H2OR-HSA-6800200 (Reactome)
H2OR-HSA-6800299 (Reactome)
H2OR-HSA-6807008 (Reactome)
H2OR-HSA-6807027 (Reactome)
H2OR-HSA-8875443 (Reactome)
HGF dimer:METArrowR-HSA-6800298 (Reactome)
HGF dimer:METR-HSA-6806957 (Reactome)
HGF dimerArrowR-HSA-6800200 (Reactome)
HGF dimerArrowR-HSA-6800299 (Reactome)
HGF dimerR-HSA-6800298 (Reactome)
HGF:MET dimerArrowR-HSA-6806957 (Reactome)
HGF:MET dimerR-HSA-6806974 (Reactome)
HGF:MET dimermim-catalysisR-HSA-6806974 (Reactome)
HGF:MonoUb-K,p-4Y-MET dimer:GRB2:p-Y-CBL,(HGF:MonoUb-K,p-Y1003,4Y-MET dimer:p-Y-CBL)ArrowR-HSA-8875183 (Reactome)
HGF:MonoUb-K,p-4Y-MET dimer:GRB2:p-Y-CBL,(HGF:MonoUb-K,p-Y1003,4Y-MET dimer:p-Y-CBL)R-HSA-8875482 (Reactome)
HGF:MonoUb-K,p-4Y-MET dimer:GRB2:p-Y-CBL,(HGF:MonoUb-K,p-Y1003,4Y-METdimer:p-Y-CBL):CIN85:endophillin,(MET:Ub-LRIG1)R-HSA-8875490 (Reactome)
HGF:MonoUb-K,p-4Y-MET dimer:GRB2:p-Y-CBL,(HGF:MonoUb-K,p-Y1003,4Y-METdimer:p-Y-CBL):CIN85:endophillin:EPS15:HGS:STAM,(MET:Ub-LRIG1:EPS15:HGS:STAM)ArrowR-HSA-8875490 (Reactome)
HGF:MonoUb-K,p-4Y-MET dimer:GRB2:p-Y-CBL,(HGF:MonoUb-K,p-Y1003,4Y-METdimer:p-Y-CBL):CIN85:endophillinArrowR-HSA-8875482 (Reactome)
HGF:p-4Y MET dimer:MUC20ArrowR-HSA-8851842 (Reactome)
HGF:p-4Y MET dimer:MUC20TBarR-HSA-8851804 (Reactome)
HGF:p-4Y-MET dimer,(HGF:p-Y1003,4Y-METdimer)R-HSA-8874685 (Reactome)
HGF:p-4Y-MET dimer:GAB1,HGF:p-4Y-MET dimer:GRB2:GAB1R-HSA-8851933 (Reactome)
HGF:p-4Y-MET dimer:GAB1,HGF:p-4Y-MET dimer:GRB2:GAB1mim-catalysisR-HSA-8851933 (Reactome)
HGF:p-4Y-MET dimer:GAB1ArrowR-HSA-8851908 (Reactome)
HGF:p-4Y-MET dimer:GRB2-1:GAB1ArrowR-HSA-8851919 (Reactome)
HGF:p-4Y-MET dimer:GRB2-1:SOS1ArrowR-HSA-8851804 (Reactome)
HGF:p-4Y-MET dimer:GRB2-1:SOS1mim-catalysisR-HSA-8851827 (Reactome)
HGF:p-4Y-MET dimer:GRB2:CBL,(HGF:p-Y1003,4Y-MET dimer:CBL)ArrowR-HSA-8874685 (Reactome)
HGF:p-4Y-MET dimer:GRB2:CBL,(HGF:p-Y1003,4Y-MET dimer:CBL)R-HSA-8875451 (Reactome)
HGF:p-4Y-MET dimer:GRB2:CBL,(HGF:p-Y1003,4Y-MET dimer:CBL)mim-catalysisR-HSA-8875451 (Reactome)
HGF:p-4Y-MET dimer:GRB2:p-Y-CBL,(HGF:p-Y1003,4Y-MET dimer:p-Y-CBL)ArrowR-HSA-8875451 (Reactome)
HGF:p-4Y-MET dimer:GRB2:p-Y-CBL,(HGF:p-Y1003,4Y-MET dimer:p-Y-CBL)R-HSA-8875183 (Reactome)
HGF:p-4Y-MET dimer:GRB2:p-Y-CBL,(HGF:p-Y1003,4Y-MET dimer:p-Y-CBL)mim-catalysisR-HSA-8875183 (Reactome)
HGF:p-4Y-MET dimer:PTK2ArrowR-HSA-8874079 (Reactome)
HGF:p-4Y-MET dimer:PTK2R-HSA-8874078 (Reactome)
HGF:p-4Y-MET dimer:PTK2mim-catalysisR-HSA-8874078 (Reactome)
HGF:p-4Y-MET dimer:RANBP10ArrowR-HSA-8851866 (Reactome)
HGF:p-4Y-MET dimer:RANBP10TBarR-HSA-8851859 (Reactome)
HGF:p-4Y-MET dimer:RANBP9:SOS1ArrowR-HSA-8851859 (Reactome)
HGF:p-4Y-MET dimer:RANBP9:SOS1mim-catalysisR-HSA-8851877 (Reactome)
HGF:p-4Y-MET dimer:SHC1-2ArrowR-HSA-8851888 (Reactome)
HGF:p-4Y-MET dimer:SHC1-2R-HSA-8851890 (Reactome)
HGF:p-4Y-MET dimer:SHC1-2mim-catalysisR-HSA-8851890 (Reactome)
HGF:p-4Y-MET dimer:STAT3ArrowR-HSA-8875816 (Reactome)
HGF:p-4Y-MET dimer:STAT3R-HSA-8875817 (Reactome)
HGF:p-4Y-MET dimer:STAT3mim-catalysisR-HSA-8875817 (Reactome)
HGF:p-4Y-MET dimer:TNS3ArrowR-HSA-8875523 (Reactome)
HGF:p-4Y-MET dimer:TNS4:ITGB1ArrowR-HSA-8875531 (Reactome)
HGF:p-4Y-MET dimer:p-Y194,Y397,Y576,Y577-PTK2:MyrG-p-Y419-SRCArrowR-HSA-8874080 (Reactome)
HGF:p-4Y-MET dimer:p-Y194,Y397-PTK2:MyrG-p-Y419-SRCArrowR-HSA-8874082 (Reactome)
HGF:p-4Y-MET dimer:p-Y194,Y397-PTK2:MyrG-p-Y419-SRCR-HSA-8874080 (Reactome)
HGF:p-4Y-MET dimer:p-Y194,Y397-PTK2:MyrG-p-Y419-SRCmim-catalysisR-HSA-8874080 (Reactome)
HGF:p-4Y-MET dimer:p-Y317-SHC1-2:GRB2:SOS1ArrowR-HSA-8851900 (Reactome)
HGF:p-4Y-MET dimer:p-Y317-SHC1-2:GRB2:SOS1mim-catalysisR-HSA-8851899 (Reactome)
HGF:p-4Y-MET dimer:p-Y317-SHC1-2ArrowR-HSA-8851890 (Reactome)
HGF:p-4Y-MET dimer:p-Y317-SHC1-2R-HSA-8851900 (Reactome)
HGF:p-4Y-MET dimer:p-Y397-PTK2:MyrG-p-Y419-SRCArrowR-HSA-8874083 (Reactome)
HGF:p-4Y-MET dimer:p-Y397-PTK2:MyrG-p-Y419-SRCR-HSA-8874082 (Reactome)
HGF:p-4Y-MET dimer:p-Y397-PTK2:MyrG-p-Y419-SRCmim-catalysisR-HSA-8874082 (Reactome)
HGF:p-4Y-MET dimer:p-Y397-PTK2ArrowR-HSA-8874078 (Reactome)
HGF:p-4Y-MET dimer:p-Y397-PTK2R-HSA-8874083 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:CRK,CRKL:(DOCK7)ArrowR-HSA-8875576 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:CRK,CRKL:(DOCK7)mim-catalysisR-HSA-8875591 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:CRK,CRKL:GGA3:ARF6:GTPArrowR-HSA-8875661 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:CRK,CRKL:GGA3:ARF6:GTPR-HSA-8875659 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:CRK,CRKL:RAPGEF1ArrowR-HSA-8875558 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:CRK,CRKL:RAPGEF1mim-catalysisR-HSA-8875568 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:CRK,CRKLArrowR-HSA-8875540 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:CRK,CRKLR-HSA-8875558 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:CRK,CRKLR-HSA-8875576 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:CRK,CRKLR-HSA-8875661 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:PI3KArrowR-HSA-8851954 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:PI3Kmim-catalysisR-HSA-8852019 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1:PTPN11ArrowR-HSA-8865994 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1ArrowR-HSA-8851933 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1R-HSA-8851954 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1R-HSA-8865994 (Reactome)
HGF:p-4Y-MET:p-5Y-GAB1, HGF:p-4Y-MET:GRB2-1:p-5Y-GAB1R-HSA-8875540 (Reactome)
HGF:p-Y,1349,Y1356-MET dimerArrowR-HSA-6807027 (Reactome)
HGF:p-Y1234,Y1235,Y1349,Y1356-MET dimerArrowR-HSA-6806974 (Reactome)
HGF:p-Y1234,Y1235,Y1349,Y1356-MET dimerArrowR-HSA-8875659 (Reactome)
HGF:p-Y1234,Y1235,Y1349,Y1356-MET dimerArrowR-HSA-8875817 (Reactome)
HGF:p-Y1234,Y1235,Y1349,Y1356-MET dimerR-HSA-6807008 (Reactome)
HGF:p-Y1234,Y1235,Y1349,Y1356-MET dimerR-HSA-6807027 (Reactome)
HGF:p-Y1234,Y1235,Y1349,Y1356-MET dimerR-HSA-8851804 (Reactome)
HGF:p-Y1234,Y1235,Y1349,Y1356-MET dimerR-HSA-8851842 (Reactome)
HGF:p-Y1234,Y1235,Y1349,Y1356-MET dimerR-HSA-8851859 (Reactome)
HGF:p-Y1234,Y1235,Y1349,Y1356-MET dimerR-HSA-8851866 (Reactome)
HGF:p-Y1234,Y1235,Y1349,Y1356-MET dimerR-HSA-8851888 (Reactome)
HGF:p-Y1234,Y1235,Y1349,Y1356-MET dimerR-HSA-8851908 (Reactome)
HGF:p-Y1234,Y1235,Y1349,Y1356-MET dimerR-HSA-8851919 (Reactome)
HGF:p-Y1234,Y1235,Y1349,Y1356-MET dimerR-HSA-8874079 (Reactome)
HGF:p-Y1234,Y1235,Y1349,Y1356-MET dimerR-HSA-8875523 (Reactome)
HGF:p-Y1234,Y1235,Y1349,Y1356-MET dimerR-HSA-8875531 (Reactome)
HGF:p-Y1234,Y1235,Y1349,Y1356-MET dimerR-HSA-8875816 (Reactome)
HGF:p-Y1234,Y1235,Y1356-MET dimerArrowR-HSA-6807008 (Reactome)
HGFAC dimermim-catalysisR-HSA-6800299 (Reactome)
HPN heterodimermim-catalysisR-HSA-6800200 (Reactome)
Integrin alpha2beta1,alpha3:beta1:(collagen,laminin,fibronectin)ArrowR-HSA-8874079 (Reactome)
LRIG1R-HSA-8875374 (Reactome)
MET:LRIG1ArrowR-HSA-8875374 (Reactome)
MET:LRIG1ArrowR-HSA-8875443 (Reactome)
MET:LRIG1R-HSA-8875431 (Reactome)
MET:Ub-LRIG1ArrowR-HSA-8875431 (Reactome)
MET:Ub-LRIG1R-HSA-8875443 (Reactome)
METR-HSA-6800298 (Reactome)
METR-HSA-8875374 (Reactome)
MUC20R-HSA-8851842 (Reactome)
MyrG-p-Y419-SRCR-HSA-8874083 (Reactome)
PI(3,4,5)P3ArrowR-HSA-8852019 (Reactome)
PI(4,5)P2R-HSA-8852019 (Reactome)
PIK3CA:PIK3R1R-HSA-8851954 (Reactome)
PTK2R-HSA-8874079 (Reactome)
PTPN1,PTPN2mim-catalysisR-HSA-6807027 (Reactome)
PTPN11R-HSA-8865994 (Reactome)
PTPRJmim-catalysisR-HSA-6807008 (Reactome)
PiArrowR-HSA-6807008 (Reactome)
PiArrowR-HSA-6807027 (Reactome)
R-HSA-2730595 (Reactome) As inferred from mouse, both non-phosphorylated and phosphorylated STAT3 can form dimers and enter the nucleus. Phosphorylation of STAT3 appears to change the equilibrium between these states, causing accumulation of phosphorylated STAT3 in the nucleus. Phosphorylated STAT3 dimers also activate transcription more efficiently.
R-HSA-2730599 (Reactome) As inferred from mouse, both non-phosphorylated and phosphorylated STAT3 are imported and exported from the nucleus. Phosphorylation shifts the equilibrium distribution of STAT3 to the nucleus.
R-HSA-6800200 (Reactome) Hepsin (HPN, aka TMPRSS1) is a cell surface-expressed chymotrypsin-like serine protease and a member of the family of type II transmembrane serine proteases (TTSP). The HPN zymogen is activated autocatalytically by cleavage at Arg162-Ile163, forming a heterodimeric enzyme (Tsuji et al. 1991, Torres-Rosado et al. 1993). HPN plays an essential role in cell growth and maintenance of cell morphology and is highly upregulated in prostate cancer and promotes tumor progression and metastasis (Klezovitch et al. 2004). Located on the cell surface, HPN can activate fibrinolytic enzymes, matrix metalloproteases and latent forms of growth factors, such as hepatocyte growth factor (HGF). HGF is a pleiotropic factor and activates hepatocyte growth factor receptor (MET). HGF is secreted into the extracellular matrix as an inactive single chain precursor (pro-HGF (32-728)) and requires cleavage at Arg494–Val495 to form the biologically active alpha-beta heterodimer (Hartmann et al. 1992, Kirchhofer et al. 2005). The Kunitz-type protease inhibitors 1 and 2 (SPINT1 and 2, aka HAI1 and 2) are inhibitors of HPN activity (Kawaguchi et al. 1997, Shimomoura et al. 1997, Kirchhofer et al. 2005).
R-HSA-6800298 (Reactome) Hepatocyte growth factor (HGF) is a pleiotropic factor and activates hepatocyte growth factor receptor (MET). HGF is secreted into the extracellular matrix as an inactive single chain precursor (pro-HGF (32-728)) and requires cleavage to form the biologically active alpha-beta heterodimer. HGF/MET signalling plays an important role in normal development and in tumor growth and metastasis (Rong et al. 1994, Schmidt et al. 1995, Uehara et al. 1995, Bladt et al. 1995, Schmidt et al. 1997, Pennacchietti et al. 2003, Stamos et al. 2004). HGF binds the SEMA and PSI domain of the MET receptor (Kirchhofer et al. 2004).
R-HSA-6800299 (Reactome) HGF is a pleiotropic factor and activates hepatocyte growth factor receptor (MET), a proto-oncogenic receptor tyrosine kinase. HGF is secreted into the extracellular matrix as an inactive single chain precursor (pro-HGF (32-728)) and requires cleavage at Arg494–Val495 to form the biologically active alpha-beta heterodimer. Hepatocyte growth factor activator (HGFAC, commonly known as HGFA) is a serine protease that converts HGF into its active form (Shia et al. 2005). The Kunitz-type protease inhibitor 1 (SPINT1, aka HAI1) is an inhibitor of HGFAC activity (Shia et al. 2005).
R-HSA-6806957 (Reactome) Upon ligand binding, MET receptor forms homodimers. Interaction between beta chains of two MET-bound HGF heterodimers may promote dimer formation (Stamos et al. 2004, Gherardi et al. 2006). Ligand bound MET dimers can further oligomerize (Hays and Watowich 2004).
R-HSA-6806974 (Reactome) The activated MET receptor autophosphorylates on four tyrosine residues. Two tyrosines, Y1234 and Y1235 are located in the kinase domain of MET and their phosphorylation increases the catalytic activity of MET. Y1235 is the major phosphorylation site (Ferracini et al. 1991, Longati et al. 1994, Rodrigues and Park 1994). The other two MET tyrosines that undergo autophosphorylation are Y1349 and Y1356. These two tyrosines are at the C-terminus of MET and serve as docking sites for binding of MET effectors (Ponzetto et al. 1994, Weidner et al. 1995). It is uncertain whether tyrosine residue Y1365 is also autophosphorylated.
R-HSA-6807008 (Reactome) PTPRJ (DEP1) protein tyrosine phosphatase dephosphorylates MET tyrosine residue Y1349. As Y1349 is a GAB1 docking site, PTPRJ-mediated dephosphorylation of MET prevents GAB1 binding to MET and activation of MET-initiated GAB1 signaling. PTPRJ can also dephosphorylate MET at Y1365, which is of unknown importance (Palka et al. 2003).
R-HSA-6807027 (Reactome) Protein tyrosine phosphatases PTPN1 (PTP1B) and PTPN2 (TCPTP) can dephosphorylate MET at tyrosine residues Y1234 and Y1235 in the activation loop of the MET kinase domain, resulting in the inhibition of MET catalytic activity (Sangwan et al. 2008).
R-HSA-8851804 (Reactome) Phosphorylated tyrosine residue Y1356 of MET receptor creates a docking site for the SH2 domain of GRB2 splicing isoform 1 (GRB2-1) (Ponzetto et al. 1994, Weidner et al. 1995). Asparagine residue N1358 of MET is important for GRB2-1 binding (Fournier et al. 1996). GRB2-1 and SOS1, which form a complex, are both important for RAS activation downstream of MET (Shen and Novak 1997, Besser et al. 1997).

MUC20 negatively regulates binding of GRB2-1 to MET (Higuchi et al. 2004).

R-HSA-8851827 (Reactome) GRB2-1 is an adaptor protein for the RAS guanyl nucleotide exchange factor SOS1. GRB2-1, through association with activated receptor tyrosine kinases, such as MET, mediates recruitment of SOS1 to the plasma membrane. At the plasma membrane, SOS1 catalyzes guanyl nucleotide exchange on RAS proteins from GDP to GTP, resulting in RAS activation downstream of MET (Shen and Novak 1997, Besser et al. 1997).
R-HSA-8851842 (Reactome) MUC20 (mucin 20) binds to both unphosphorylated and phosphorylated MET. MUC20 does not interfere with MET ligand-binding, dimerization and autophosphorylation, but association of MUC20 with activated MET specifically interferes with GRB2-1 recruitment to MET and the consequent RAS signaling activation. MUC20 oligomerization may facilitate binding to MET (Higuchi et al. 2004).
R-HSA-8851859 (Reactome) RANBP9 binds to activated MET receptor and recruits RAS guanyl nucleotide exchange factor SOS1. RANBP9 can associate with unphosphorylated MET, but has a higher affinity for the activated receptor. The interaction involves the sprouty (SPRY) domain of RANBP9 and the tyrosine kinase domain of MET (Wang et al. 2002). RANBP9 competes with RANBP10 for MET binding. RANBP10 does not interact with SOS1, and RANBP10 binding inhibits activation of RAS downstream of MET (Wang et al. 2004).
R-HSA-8851866 (Reactome) The sprouty (SPRY) domain of RANBP10 binds the tyrosine kinase domain of MET. RANBP10 binding inhibits binding of RANBP9 to MET and, as RANBP10 does not interact with SOS1, RANBP10 binding interferes with RAS activation (Wang et al. 2004).
R-HSA-8851877 (Reactome) RAS guanyl nucleotide exchange factor SOS1 recruited to MET receptor through association with RANBP9 catalyzes guanyl nucleotide exchange on RAS from GDP to GTP, resulting in RAS activation (Wang et al. 2002).
R-HSA-8851888 (Reactome) Phosphorylated tyrosine residues Y1349 and Y1356 in the cytoplasmic tail of MET create docking sites for the SH2 domain of SHC1 splicing isoform 2 (SHC1-2) (Pelicci et al. 1995).
R-HSA-8851890 (Reactome) Activated MET receptor phosphorylates the splicing isoform 2 of the adapter protein SHC1 (SHC1-2) on tyrosine residue Y317 (Pelicci et al. 1995).
R-HSA-8851899 (Reactome) SOS1, recruited to activated MET receptor via interaction of GRB2 with phosphorylated SHC1-2, catalyzes guanyl nucleotide exchange on RAS from GDP to GTP, resulting in RAS activation (Pelicci et al. 1995).
R-HSA-8851900 (Reactome) SHC1 splicing isoform 2 (SHC1-2) phosphorylated by MET on tyrosine residue Y317 recruits the GRB2:SOS1 complex to the activated MET receptor (Pelicci et al. 1995).
R-HSA-8851908 (Reactome) The adapter protein GAB1 can directly bind to phosphorylated MET receptor via its MET binding domain (MBD) (Schaeper et al. 2000, Lock et al. 2003).
R-HSA-8851919 (Reactome) While GAB1 can bind activated MET receptor directly, the presence of GRB2 results in a more stable association between GAB1 and MET (Weidner et al. 1996, Schaeper et al. 2000, Lock et al. 2003).
R-HSA-8851933 (Reactome) Activated MET phosphorylates GAB1 on at least five tyrosine residues: Y447, Y472, Y589, Y627 and Y659 (Schaeper et al. 2000, Chan et al. 2010).
R-HSA-8851954 (Reactome) Phosphorylated tyrosine residues Y447, Y472 and Y589 of GAB1 are docking sites for the regulatory subunit PIK3R1 of the phosphatidyl inositol-3 kinase (PI3K) complex (Rodrigues et al. 2000). GAB1, phosphorylated by MET, thus recruits PI3K to activated MET (Schaeper et al. 2000).
R-HSA-8852019 (Reactome) Phosphatidylinositol-4,5-bisphosphate 3-kinase, PI3K, recruited to activated receptor tyrosine kinases such as EGFR (Rodrigues et al. 2000) and MET (Schaeper et al. 2000) via GAB1, catalyzes phosphatidylinositol-3,4,5-triphosphate (PIP3) synthesis, triggering downstream signaling by AKT family kinases.
R-HSA-8865994 (Reactome) Phosphorylated tyrosine residues Y627 and Y659 of GAB1 serve as docking sites for the N-terminal and C-terminal SH2 domains of PTNP11 (SHP2), respectively, thus recruiting PTNP11 to the activated MET receptor (Schaeper et al. 2000, Cunnick et al. 2001). During mouse embryonic development, Gab1-mediated recruitment of Ptpn11 is crucial for Met receptor-directed placental development and migration of muscle progenitor cells to the limbs (Schaeper et al. 2007). PTPN11 is phosphorylated in response to HGF treatment, although phosphorylation sites and direct MET involvement have not been examined (Duan et al. 2006). Phosphorylation of PTPN11 at tyrosine residues Y542 and Y580 of splicing isoform 2 (matching Y546 and Y584 of PTPN11 splicing isoform 1) is required for PTPN11 phosphatase activity and for the recruitment of downstream effectors, such as GRB2 (Lu et al. 2001). Phosphorylation of PTPN11 in response to HGF treatment is required for the recruitment and activation of sphingosine kinase SPHK1, which may play a role in HGF-induced cell scattering (Duan et al. 2006). While PTPN11 promotes MAPK3/1 (ERK1/2) signaling downstream of MET, it can also dephosphorylate MET on unidentified tyrosine residues (Furcht et al. 2014).
R-HSA-8874078 (Reactome) Binding to activated MET promotes PTK2 (FAK1) autophosphorylation at tyrosine residue Y397, a step involved in HGF-triggered cell migration (Chen and Chen 2006). It was demonstrated that PTK2 may associate with activated MET as a homodimer and that autophosphorylation at Y397 of PTK2 may happen in trans (Brami-Cherrier et al. 2014).
R-HSA-8874079 (Reactome) PTK2 (FAK1) protein tyrosine kinase binds to activated MET receptor through the interaction of the FERM domain of PTK2 and phosphorylated tyrosine residues p-Y1349 and p-Y1356 of MET (Chen and Chen 2006). HGF-mediated activation of PTK2 requires interaction of integrins with the extracellular matrix components: collagen, laminin and fibronectin. HGF-mediated activation of MET causes extensive formation of new focal adhesions that contain PTK2 (Beviglia and Kramer 1999). Paxillin may also be involved in this interaction (Parr et al. 2001).
R-HSA-8874080 (Reactome) SRC phosphorylates PTK2 (FAK1) at tyrosine residues Y576 and Y577 in the activation loop of PTK2. Phosphorylation of PTK2 at Y576 and Y577 is required for the full catalytic activity of PTK2 (Calelb et al. 1995, Lietha et al. 2007) and is facilitated by MET-mediated phosphorylation of PTK2 at Y194. MET is able to phosphorylate PTK2 at Y576 and Y577 in vitro, in the absence of SRC (Chen et al. 2011).
R-HSA-8874082 (Reactome) Activated MET phosphorylates PTK2 (FAK1) at tyrosine residue Y194. Phosphorylation of PTK2 at Y194 facilitates SRC-mediated phosphorylation of PTK2 at Y577, but it has not been tested whether MET-mediated phosphorylation precedes SRC binding. MET may also phosphorylate PTK2 at Y5, although no functional significance of Y5 phosphorylation has been demonstrated. Activated EGFR and PDGFR can also phosphorylate PTK2 at Y5 and Y194 (Chen et al. 2011).
R-HSA-8874083 (Reactome) Phosphorylated tyrosine Y397 in the FERM domain of PTK2 (FAK1), along with an adjacent proline-rich motif, creates a docking site for the SRC kinase (Schaller et al. 1994, Xing et al. 1994, Thomas et al. 1998). It has not been specifically tested in this context whether PTK2 promotes SRC activation, and SRC is therefore represented in its active form.
R-HSA-8874685 (Reactome) The E3 ubiquitin ligase CBL can bind to the MET receptor either indirectly, through GRB2, or directly, through phosphorylated tyrosine Y1003 of MET (Peschard et al. 2001, Taher et al. 2002, Peschard et al. 2004). The kinase responsible for Y1003 phosphorylation is not known. Y1003 has not been reported as a MET autophosphorylation site, and is implicated as a possible PKC-alpha target (Zhao et al. 2013). As CBL-mediated ubiquitination of MET happens in response to HGF stimulation (Taher et al. 2002, Abella et al. 2005), it is likely that MET autophosphorylation precedes MET phosphorylation at Y1003.
R-HSA-8875183 (Reactome) CBL monoubiquitinates activated MET receptor probably at multiple lysine residues, triggering MET endocytosis and degradation through the lysosomal route (Abella et al. 2005, Veiga and Cossart 2005). InlB, a cell wall protein of Listeria monocytogenes, binds to MET receptor as an HGF agonist. The subsequent CBL-mediated monoubiquitination of MET promotes endocytosis of bacteria and entry of Listeria monocytogenes into host cells (Veiga and Cossart 2005).
R-HSA-8875374 (Reactome) LRIG1 can bind the MET receptor in the absence of HGF-mediated MET activation and trigger MET downregulation in a CBL-independent manner (Shattuck et al. 2007). MET targeting by the therapeutic antibody SAIT301 leads to LRIG1-mediated MET degradation through the lysosomal route. LRIG1-mediated MET downregulation requires ubiquitination of LRIG1 by an unknown ubiquitin ligase and can be inhibited by the ubiqitin hydrolase USP8, which deubiquitinates LRIG1 (Oh et al. 2014, Lee et al. 2014). Ubiquitinated LRIG1 binds to HGS (Hrs), a protein involved in clathrin-mediated endocytosis, and LRIG1 and MET co-localize with the lysosomal marker LAMP1 (Oh et al. 2014).
R-HSA-8875431 (Reactome) Upon binding to MET, LRIG1 undergoes ubiquitination by an unknown ubiquitin ligase (Oh et al. 2014).
R-HSA-8875443 (Reactome) The ubiquitin hydrolase USP8 can deubiquitinate LRIG1, thus interfering with LRIG1-mediated MET downregulation (Oh et al. 2014).
R-HSA-8875451 (Reactome) MET phosphorylates CBL on unknown tyrosine residues. This is thought to precede CBL-mediated MET ubiquitination and may promote stronger interaction of CBL with the activated MET receptor complex (Peschard et al. 2001, Petrelli et al. 2002).
R-HSA-8875482 (Reactome) CBL recruits the complex of SH3KBP1 (CIN85) and endophilin to the activated MET receptor. While CIN85 and endophilin are not involved in CBL tyrosine phosphorylation by activated MET and CBL-mediated MET ubiquitination, they are required for internalization and degradation of the activated MET receptor (Petrelli et al. 2002). CIN85 likely functions as a homotetramer (Watanabe et al. 2000). Endophilin A1 (SH3GL2), A2 (SH3GL1) and A3 (SH3GL3), which function as homodimers, can all be recruited to the activated MET receptor, with SH3GL3 being the most extensively studied (Petrelli et al. 2002).
R-HSA-8875490 (Reactome) EPS15 and HGS (Hrs) both bind MET receptor ubiquitinated by CBL upon HGF stimulation. EPS15 and HGS, which together form a ternary complex with STAM proteins (Bache et al. 2003) are involved in activated MET receptor endocytosis and degradation through the lysosomal route (Hammond et al. 2003). EPS15 can simultaneously interact with ubiquitinated MET and MET-bound GRB2 (Parachoniak et al. 2009). HGS also binds to ubiquitinated LRIG1 and is involved in LRIG1-trigerred lysosomal downregulation of MET in the absence of HGF stimulation (Oh et al. 2014). MET phosphorylates EPS15, HGS and STAM, but the functional significance of this phosphorylation for MET downregulation is not known (Row et al. 2005, Parachoniak et al. 2009).
R-HSA-8875523 (Reactome) Activated MET receptor binds to tensin-3 (TNS3). The functional role of this interaction is not known. TNS3 is downregulated in colorectal, lung, ovarian and gastric cancers that show upregulation of tensin-4 (TNS4) (Muharram et al. 2014).
R-HSA-8875531 (Reactome) Activated MET receptor binds the complex of tensin-4 (TNS4) and integrin beta-1 (ITGB1). This interaction involves arginine residue R474 at the SH2 domain of TNS4 and phosphorylated tyrosines Y1349 and Y1356 of MET. Phosphorylated Y1313 of MET contributes to TNS4 binding but the kinase responsible for phosphorylation of MET at Y1313 is not known. TNS4, ITGB1 and MET co-localize at paxillin-positive focal adhesion sites. Binding of MET to TNS4 contributes to cell motility and promotes activation of AKT, but not ERK, downstream of MET. TNS4 is upregulated in colorectal, lung, ovarian and gastric cancer, with concomitant downregulation of TNS3. TNS4 and MET expression correlate in colorectal and ovarian cancer (Muharram et al. 2014).
R-HSA-8875540 (Reactome) Splicing isoforms of adapter protein CRK, CRK-1 (CRKI) and CRK-2 (CRKII), as well as the related adapter protein CRKL can be recruited to the activated MET receptor via association with tyrosine phosphorylated GAB1 (Garcia-Guzman et al. 1999, Schaeper et al. 2000, Sakkab et al. 2000, Lamorte et al. 2000, Lamorte et al. 2002).
R-HSA-8875558 (Reactome) Once recruited to the activated MET receptor complex by binding to tyrosine phosphorylated GAB1, CRK or related CRKL bind the Rap guanine nucleotide exchange factor RAPGEF1 (C3G) (Sakkab et al. 2000, Lamorte et al. 2002).
R-HSA-8875568 (Reactome) The level of activated (GTP-bound) RAP1 increases rapidly after HGF stimulation. The recruitment of RAPGEF1 (C3G) to CRK or CRKL bound to MET-phosphorylated GAB1 brings RAPGEF1 to the plasma membrane, where it can act on its substrate, RAP1, catalyzing guanine nucleotide exchange from GDP to GTP (Sakkab et al. 2000, Lamorte et al. 2002).
R-HSA-8875576 (Reactome) Recruitment of CRK or related CRKL to MET-phosphorylated GAB1 results in increased level of activated RAC1 (RAC1:GTP), a necessary step in HGF-induced cell motility (Lamorte et al. 2002, Watanabe et al. 2006). DOCK7 was recently implicated as a RAC1 guanyl nucleotide exchange factor (GEF) recruited to activated MET receptor via GAB1. Binding of DOCK7 to GAB1-bound CRK or CRKL was proposed but has not been examined (Murray et al. 2014).
R-HSA-8875591 (Reactome) DOCK7, recruited to the activated MET receptor complex through GAB1 and, possibly, CRK or CRKL, stimulates guanyl nucleotide exchange on RAC1 from GDP to GTP, resulting in RAC1 activation and HGF-stimulated cell migration/invasion (Murray et al. 2014).
Activation of RAC1 in response to HGF stimulation was reported to depend on the endosomal protein RAB5 and RAC1 guanyl exchange factor (GEF) TIAM1 (Palamidessi et al. 2008).
R-HSA-8875659 (Reactome) RAB4 is needed for recycling of the activated MET receptor complex (Parachoniak et al. 2011).
R-HSA-8875661 (Reactome) GGA3 associates with the activated MET receptor through the CRK adapter and the ARF6:GTP complex and co-localizes with the MET receptor at early endosome membranes. The mechanistic details of GGA3 recruitment to MET have not been elucidated. GGA3 promotes recycling of the activated MET receptor through a RAB4-positive endosomal compartment (Parachoniak et al. 2011).
R-HSA-8875816 (Reactome) The STAT3 transcription factor may bind, directly and indirectly, to activated MET. Direct binding of STAT3 involves phosphorylated tyrosine residue Y1356 of MET. Indirect binding of STAT3 to activated MET involves GAB1, but this interaction has not been studied in detail (Schaper et al. 1997, Boccaccio et al. 1998).
R-HSA-8875817 (Reactome) Activated MET phosphorylates STAT3 at Y705, triggering STAT3 dimerization and nuclear translocation (Boccaccio et al. 1998, Zhang et al. 2002, Cramer et al. 2005). Endocytosis of MET and interaction with STAT3 at endosomes may be required for sustained STAT3 phosphorylation in response to HGF stimulation (Kermorgant and Parker 2008). Activated SRC may also contribute to phosphorylation of STAT3 at Y705. STAT3 may promote HGF transcription in a SRC-dependent way, but this autocrine HGF loop may be limited to breast cancer cells (Wojcik et al. 2006, Sam et al. 2007).
RAC1:GDPR-HSA-8875591 (Reactome)
RAC1:GTPArrowR-HSA-8875591 (Reactome)
RANBP10R-HSA-8851866 (Reactome)
RANBP9R-HSA-8851859 (Reactome)
RAP1:GDPR-HSA-8875568 (Reactome)
RAP1:GTPArrowR-HSA-8875568 (Reactome)
RAPGEF1R-HSA-8875558 (Reactome)
SHC1-2R-HSA-8851888 (Reactome)
SOS1R-HSA-8851859 (Reactome)
SPINT1,2TBarR-HSA-6800200 (Reactome)
SPINT1TBarR-HSA-6800299 (Reactome)
STAT3R-HSA-8875816 (Reactome)
TNS3R-HSA-8875523 (Reactome)
TNS4:ITGB1R-HSA-8875531 (Reactome)
USP8mim-catalysisR-HSA-8875443 (Reactome)
UbArrowR-HSA-8875443 (Reactome)
UbR-HSA-8875183 (Reactome)
UbR-HSA-8875431 (Reactome)
p-Y705-STAT3 dimerArrowR-HSA-2730595 (Reactome)
p-Y705-STAT3 dimerArrowR-HSA-2730599 (Reactome)
p-Y705-STAT3 dimerR-HSA-2730599 (Reactome)
p-Y705-STAT3ArrowR-HSA-8875817 (Reactome)
p-Y705-STAT3R-HSA-2730595 (Reactome)
p21 RAS:GDPR-HSA-8851827 (Reactome)
p21 RAS:GDPR-HSA-8851877 (Reactome)
p21 RAS:GDPR-HSA-8851899 (Reactome)
p21 RAS:GTPArrowR-HSA-8851827 (Reactome)
p21 RAS:GTPArrowR-HSA-8851877 (Reactome)
p21 RAS:GTPArrowR-HSA-8851899 (Reactome)
pro-HGFR-HSA-6800200 (Reactome)
pro-HGFR-HSA-6800299 (Reactome)
unknown ubiquitin ligasemim-catalysisR-HSA-8875431 (Reactome)
Personal tools