Cilium Assembly (Homo sapiens)

From WikiPathways

Jump to: navigation, search
11, 14, 42, 48, 61...11, 24, 78, 82, 98...24, 80, 135, 136, 14119, 99, 11812, 47, 60, 107, 115...11, 98, 107, 11129, 37, 60, 65, 68...47, 60, 67, 107, 114...15326, 50, 15325, 45, 47, 60, 133...10, 52, 59, 90, 96...13, 41, 59, 75, 76, 83...5, 8, 9, 15, 18...6, 21, 79, 140, 146...7, 60, 64, 68, 80...60, 123, 1313, 36, 7866, 9924, 92, 13617, 24, 42, 44, 78...30, 46, 49, 54, 61...19, 51, 55, 62, 84...7, 24, 68, 78, 80...11, 42, 44, 46, 53...15310, 20, 23, 59, 90...19, 51, 55, 62, 84...19, 51, 55, 62, 84...22, 43, 58, 78, 85...99, 1567, 11, 24, 60, 64...4, 6, 30, 35, 49...19, 992, 37, 56, 92, 109...6, 18, 27, 40, 138...9915, 33, 69, 88, 9547, 60, 134641, 59, 75, 9725, 28, 47, 60, 61, 86...31, 34, 67, 74, 79...3115, 82, 88, 9511, 42, 44, 145, 15432, 101, 14526, 50, 1536, 30, 49, 821, 8, 11, 16, 24...57, 59, 71, 75, 76, 83...Golgi lumenGolgi-associated vesicleciliumGolgi-associated vesiclecytosolendoplasmic reticulum lumenGolgi-associated vesiclePLK1 KIFAP3 ACTR1A CSNK1E SCLT1 HAUS2 PAFAH1B1 UNC119B TUBB4B FGFR1OP CKAP5 TCTEX1D1 IFT46 DYNC1H1 TUBB PCM1 TUBB4B CEP70 CDK5RAP2 CEP41 mothercentriole:C2CD3RAB8A TTBK2PPP2R1A HAUS1 MAPRE1 active kinesin-2motorsCNGA2 CNGA4 HSPB11 CEP162 KIF17 YWHAE ARF4 CEP72 TTC30B GTP IFT52IFT43WDR60 PCNT ACTR1A DCTN3 PCM1 GTP CEP89 IFT88 BBS5 CEP192 NEK2 NEDD1 CEP290 NEK2 B9D2 NDE1 RAB11FIP3 LZTFL1 ARL13B:INPP5E:PDE6DTUBB4B PRKACA CEP41 HAUS4 WDR60 PKD2 BBS5 DYNLL2 IFT20 RABL5 NDE1 IFT43 DYNC2H1 CEP164 CEP78 TRAF3IP1 ARL3 CEP192 TUBG1 BBS7 RP2:ARL3:GTP:UNC119BGTP CSNK1E NEK2 CNGA4 CEP152 TCTE3 PAFAH1B1 CNGA4 HAUS7 TCTN2 ACTR1A NEK2 CEP152 CNGA4 PKD2 retrograde IFTtrainsCEP83 HAUS6 TTC21B MKKS RAB11FIP3 EXOC3 IFT88 CEP164 RAB8A DYNLRB1 CC2D2A TTC21BTTC26 HDAC6CETN2 TCTN2 TTC21B IFT BDYNC1I2 B9D1 MyrG2-CYS1 RHO TRIP11 PKD2 CSNK1D TTC8 BBIP1 CEP78 B9D2 BBS9 IFT140 DYNLL2 SCLT1 ASAP1dimer:ARF4:GTP:VxPx-containing ciliary membrane proteinsTCTE3 AHI1 MyrG2-NPHP3 AKAP9 CEP164 GTP RHO NEDD1 YWHAG TTC26 TUBA1A DYNLRB2 DYNLL1 NPHP1 IFT74 OFD1 TCTEX1D1 TCTE3 DYNLRB2 AZI1 BBS4 ALMS1 PRKACA IFT122 CEP83 CLUAP PRKAR2B TUBB4B CLASP1 TUBB DYNLRB1 RHO ODF2 HAUS8 IFT27 ALMS1 RAB3IP CEP57 DYNC2LI1 exocyst complexHAUS6 SCLT1 PKD1 CNTRL TUBB PPP2R1A CEP78 BBS4 acetylated microtubule IFT80CNGB1 TUBB4B CEP162 ALMS1 CEP162 KIF3C CEP192 TUBB DYNC1I2 TUBA1A HAUS7 HAUS3 KIFAP3 RP2 CEP70 HSP90AA1 SDCCAG8 NEDD1 HAUS8 KIF3C HAUS3 IFT172 acetylatedmicrotubuleTTC30B GDP BBSome ciliary cargobasal bodySCLT1 WDR34 CNGB1 CEP162 CKAP5 CEP72 NINL TTC26 MARK4RAB3IPWDR19 Golgi-derived vesicle KIF17 exocystcomplex:RAB8A:GTP:RAB3IP:RAB11:GTP:RAB11FIP3 dimer:ASAP1 dimer:VxPx-containing ciliary membrane proteinsBBS1 IFT88 C2CD3DYNC2H1 PRKACA PRKAR2B PCM1 CEP70 TUBG1 ATATAZI1 PRKACA RHO CENPJ CEP41 acetylated microtubule PCM1 GTP KIFAP3 ARL6:GTP:BBSome:ciliary cargoTCTN1 HAUS7 RAB11A:GTP:RAB11FIP3dimer:ASAP1dimer:VxPx-containing ciliary membrane proteinsPKD2 CEP76 IFT43 TRAF3IP1 INPP5EGTP CCT8 TTC26 TTC30A IFT52 CDK5RAP2 IFT140HAUS2 IFT52 DYNC1I2 WDR60 DYNLL1 CEP57 NEK2 CKAP5 EXOC7 IFT88 FGFR1OP CEP76 TTC26 TUBG1 CEP83 TMEM67 AZI1 NEDD1 CDK1 HAUS3 RPGRIP1L SFI1 NDE1 WDR35 RAB3IP SSNA1 CLUAP TUBB4B NDE1 PRKACA CEP164IFT27 myristoylatedciliary proteinsMicrotubuleRAB8A CETN2 CCT3 ODF2 SMO CEP57 ARL3 IFT88 C2CD3 BBS7 DYNC2LI1 HAUS4 TTC30B IFT20 IFT46TTC30BBS9 GTP IFT122TUBA4A YWHAG CDK5RAP2 CEP41 RP2 CEP135 BBS5 ARL13B SDCCAG8 YWHAG CEP192 RPGRIP1L RABL5GDP PLK4 ALMS1 BBIP1 BBS1GTP TCTEX1D1 WDR60 PCNT HSP90AA1 DYNLRB2 HAUS6 HAUS2 ASAP1 CLASP1 BBS7RAB3IP PAFAH1B1 IFT140 HAUS7 RAB11FIP3 IFT57 SDCCAG8 TRAF3IP1 IFT172 PRKACA TMEM216 DYNLRB1 SCLT1DYNC1H1 CNGB1 DCTN3 KIF3B CNGB1 HAUS7 KIF24 NINL ARL3:GTP:UNC119B:myristoylated ciliary cargoCEP250 HAUS6 UNC119B:myristoylated ciliary cargoHAUS8 WDR60 active dynein-2motorsMyrG2-NPHP3 CEP162 CEP41 acetylatedmicrotubuleCENPJ RAB11A:GTP:RAB11FIP3dimer:ASAP1dimer:ARF4:GTP:VxPx-containing ciliary membrane proteinsIFT20 IFT27 MARK4 IFT20 CEP76 CEP152 CCT5 WDR19 DYNC1I2 CENPJ CEP41 CEP76 IFT122 MKS1 EXOC8 PAFAH1B1 TTC8 KIF17 acetylated microtubule NINL CDK5RAP2 CEP76 SCLT1 IFT43 IFT52 DYNC2LI1 AKAP9 RP2 SDCCAG8 CLASP1 TTC30B KIF3B IFT80 IQCB1 HAUS6 BBIP1TMEM67 GTP ARL3 MKS1 WDR19 DYNLL1 CEP162 CCP110 IFT74FBF1HAUS1 CCP110 DYNLL1 ASAP1 CEP135 IQCB1 Golgi-derived vesicle DYNC1H1 HAUS3 IQCB1 KIF17 DCTN2 IFT81 RAB11A ACTR1A DCTN3 IFT81 ACTR1A CLASP1 WDR34 WDR34 SFI1 WDR34 CEP76 BBS2DYNLRB1 DCTN1-2 KIF17 dimer:TNPO1EXOC2 RAB11A TUBG1 DCTN2 CEP250 NPHP complexDYNLRB1 CEP250 KIF17 WDR35 CSNK1E HAUS3 RHO CSNK1D CEP57 CDK1 IFT140 SFI1 MyrG2-NPHP3 TUBA4A BBS9 EXOC8 SSTR3 CNGA4 YWHAG LZTFL1oligomer:BBSomeCEP97 PLK4 CEP89TCTN2 KIF24 INPP5E HAUS5 BBIP1 HAUS5 NEK2 CLASP1 IFT80 KIF17 dimerTTC26 WDR35 CETN2 NEDD1 RAB3IP:BBSomePKD2 YWHAE CNTRL IFT74 DCTN1-2 PPP2R1A RAB3IP:RAB8A:GDPDCTN1-2 ARL3:GTPDCTN1-2 C2CD3 CEP72 NEDD1 CCP110CEP89 IFT74 PCM1 GTP KIF3C PKD2 TUBA4A SSTR3 IFT81 CNTRL INPP5E CENPJ PCM1 IFT74 ARL6:GTPUNC119B CEP290 DYNLRB2 KIF17 VxPx-containingciliary membraneproteinsCSNK1E GDP NINL IFT80 NPHP4 RAB11A KIF3A TCTEX1D1 FGFR1OP CEP164 B9D1 NPHP1 CLUAP DYNLL1 Microtubule protofilament IFT122 HSP90AA1 HAUS3 CEP83IFT57C2CD3 TTBK2 CNGB1 RP2TUBB4A acetylated microtubule CETN2 TTBK2 BBS4 KIF24 YWHAE ASAP1 CNGA4 PKD1 CDK1 DYNLL1 SSNA1 DYNLRB2 WDR60 DYNLL2 RAB11A UNC119B acetylated microtubule RAB11FIP3 RABL5 TTC30B TRAF3IP1 DCTN3 AZI1 HSPB11 ACTR1A CEP162 CNGA2 HAUS4 CNGA4 TUBA1A IFT81 DYNC1I2 ASAP1 dimerTUBB4A C2CD3 KIF17 TUBG1 CLUAPanterograde IFTtrainsTMEM216 PRKAR2B CEP97 IFT46 CNGA2 YWHAE TUBB4A PLK4 CCP110 RP2:ARL3:GTP:UNC119B(active)IFT46 CEP290 BBS2 HSPB11 SFI1 IFT AMARK4 ASAP1 IFT57 IFT81 TTBK2 TCTEX1D2 SEPT2Centrosome:C2CD3:distal appendage proteinsEXOC1 EXOC6 BBS10 HAUS4 KIF3B GTP SCLT1 FBF1 IFT140 TTC21B WDR35 CEP70 TUBG1 KIFAP3 IFT80 GDP OFD1 CSNK1D HAUS6 PAFAH1B1 DYNC2H1 TRAF3IP1TCTN3 WDR35 PLK1 HSP90AA1 myristoylatedciliary cargoTTC30B TTBK2 KIF17 ALMS1 IFT81ARL3 PKD1 HAUS2 PAFAH1B1 IFT46 IFT74 GTPTUBA1A C2CD3 TCTEX1D2 DCTN2 TUBB4A DCTN2 PDE6D NINL ARF4:GTPPDE6D:INPP5EBBS2 PRKACA UNC119B CSNK1D KIF24 NINL SFI1 MARK4 DYNC2LI1 HAUS6 KIFAP3 TTC30A IFT57 ALMS1 B9D1 ODF2 PPP2R1A IFT BPLK4 SSNA1 SSNA1 UNC119B ALMS1 SDCCAG8 IQCB1 RAB3IP:RAB11A:GTP:Golgi-derived vesicleKIF3C RAB11A CEP152 KIF3C IFT81 RHO TUBB4A NEK2 ALMS1 PKD1 AZI1 BBS/CCT complexCDK1 TTC30A RAB8A:GTP:RAB3IP:RAB11A:GTP:RAB11FIP3 dimer:ASAP1 dimer:VxPx-containing ciliary membrane proteinsCEP89 RAB11A BBS12 PKD2 BBS2 RAB3IP TTC30A TUBA1A YWHAG CEP72 CEP63 CNTRL PLK1 MCHR1 TMEM216 CENPJ RAB8A:GTPCLUAP AKAP9 CEP72 CNGA2 LZTFL1 basalbody:transitionzone proteinsCEP63 MAPRE1 NDE1 IFT140 UNC119BTUBB PRKAR2B IFT52 CEP97 RAB3IPKIF3A TCTEX1D1 ARF4 NINL IFT57 CEP57 PLK4 CC2D2A RAB8A PRKAR2B IFT122 RAB8A:GDP:RAB3IP:RAB11A:GTP:FIP3 dimer:ASAP1 dimer:VxPx-containing ciliary membrane proteinsNINL GDPHAUS8 TCTEX1D1 DYNC2H1 DCTN3 CEP135 IFT43 CSNK1E IQCB1 RP2:ARL3:GDP:UNC119BCDK5RAP2 CEP135 IFT172 HAUS5 DCTN2 HAUS2 HAUS5 NPHP4 CDK5RAP2 HAUS1 HAUS8 SDCCAG8 GTP GTP CNTRL KIF24 TTC21B CEP152 CNGA2 GTP Kinesin-2 motorsTUBB4B PLK1 DYNC2H1 CENPJ CENPJ TNPO1 GDP GTP HAUS8 DYNC2H1 DYNLRB1 PCM1 TTC21B CSNK1E CEP63 DCTN3 ARF4:GDPPLK1 BBIP1 LZTFL1 oligomerMAPRE1 TNPO1 TUBB PKD2 RHO ARL6 CEP83 IFT81 ARL13BNDE1 DYNLL1 IFT27ASAP1 TCP1 Centrosome:C2CD3:distal appendage proteins:TTBK2TUBB CETN2 KIF3C MyrG2-CYS1 Tectonic-likecomplexHSPB11 MyrG2-NPHP3 SFI1 CEP70 MyrG2-CYS1 MARK4 CEP97 DYNC1H1 HAUS7 CKAP5 PPP2R1A CEP57 HAUS4 DCTN1-2 CEP63 CNGA4 KIF24 RAB11FIP3 PDE6DCEP290 ODF2 TCTE3 INPP5E INPP5E PLK4 HAUS2 CEP78 WDR34 UNC119BCEP83 KIF3B TTBK2 PKD1 RAB11FIP3 dimerCEP57 HAUS5 MAPRE1 FBF1 PCNT EXOC3 IFT20RABL5 FBF1 DCTN2 AHI1 CEP152 CLUAP GTP RAB8A:GTP:RAB3IP:RAB11A:GTP:RAB11FIP3 dimer:ASAP1 dimer:VxPx-containing ciliary membrane proteinsCEP57 HSP90AA1 RAB11A:GTPHAUS6 TUBA4A TUBG1 MKS1 IFT20 CEP41 ASAP1 KIFAP3 UNC119B TMEM67 GTPCNGA2 IFT80 CNGB1 IFT57 CEP290 anterograde IFTtrainsARL3 CEP192 KIF24 EXOC4 CEP192 HAUS5 IFT172 CEP89 TCTN3 EXOC2 KIFAP3 PCNT CDK1 DYNLRB2 DYNLL1 TCTN1 dynein-2SSNA1 MCHR1 GDP TUBB4A IFT172 CEP78 GTP DYNLL1 CKAP5 MAPRE1 GTP TCTN1 CSNK1D CNGB1 HAUS7 RAB3IP CEP63 ODF2 HAUS1 RABL5 KIF3A PLK1 SMO ARL3:GDPACTR1A CEP250 GTP DYNC2LI1 FGFR1OP CNGA4 FBF1 KIF17 ARL13B BBS9 ARL3:GTP:UNC119BSFI1 IQCB1 CEP72 BBS7 CEP63 ARF4 HSPB11 CEP290 DYNC2H1 GTP TCTEX1D2 CEP76 CEP78 CEP89 BBS5 PCNT TUBA1A DYNC1H1 CC2D2A BBS2 CDK1 AKAP9 OFD1 GTP SFI1 CNGA2 YWHAE RAB8A AKAP9 IQCB1 TCTE3 PLK4 PAFAH1B1 KIF24 CNTRL YWHAG CSNK1D TTC30A ARF4 KIF3B CETN2 BBS5 IFT122 WDR60 BBIP1 OFD1 PKD1 RPGRIP1L DYNC2LI1 HAUS4 NPHP4 KIF3A BBSomeHSP90AA1 MyrG2-CYS1 TCTE3 PKD1 ARF4:GTP:VxPx-containing ciliary membrane proteinsCLUAP CEP78 PPP2R1A CNGA4 RAB3IP RAB8A MyrG2-CYS1 CEP290 ASAP1 CEP135 PCNT CSNK1D PKD2 EXOC5 DYNLRB2 IFT20 TCTEX1D2 DCTN1-2 CLASP1 EXOC4 DCTN2 CEP152 CEP192 IFT74 CETN2 mother centrioleBBS4OFD1 PRKAR2B OFD1 HAUS2 BBS2 WDR34 RAB3IP BBS1 HAUS1 TTC8 RAB8A IFT172 CDK1 DYNC1I2 RAB11A UNC119B FBF1 HAUS7 MAPRE1 BBS1 RAB3IP IFT140 DCTN2 SMO KIF3A PDE6D:INPP5EGDPTTC30A ARL6 GTP CEP250 CEP63 DCTN1-2 RAB11FIP3 IFT74 retrograde IFTtrainsDCTN3 CDK5RAP2 ODF2 TUBA4A UNC119B:myristoylated ciliary cargoDYNLL1 WDR19TRIP11EXOC1 TTC8 WDR19 BBS1 WDR35CETN2 ARL6:GTP:BBSome:ciliary cargoAc-CoACoA-SHPLK1 PKD1 WDR35 TNPO1HSPB11 BBS9DYNLRB1 IFT27 CNGA2 RAB8A:GDPDYNC1H1 IFT172 CEP135 CCP110 CEP70 TRAF3IP1 CEP192 HSPB11 basalbody:transitionzoneproteins:RAB3IP:RAB11A:GTP:Golgi-derived vesicleCENPJ CEP135 TUBG1 CLUAP DYNLL1 GBF1DYNLL2 PRKACA TTC30B RAB11A NPHP1 KIF3B CEP70 MAPRE1 KIF17 dimer:TNPO1PCM1 AZI1 IFT88 IFT172AZI1 DYNC1H1 IFT46 NDE1 ARF4 CEP164 RAB11A:GTP:Golgiderived vesicleIFT46 PLK4 RAB11A CCT2 AZI1 CCT4 DYNLL1 CEP89 EXOC5 TCTEX1D2 RABL5 TTC21B IFT80 AKAP9 TUBA4A RAB11A CEP97KIF3C RHO CEP83 EXOC6 ARL6 RHO HSP90AA1 YWHAG YWHAE IFT52 CEP63 PPP2R1A TUBA4A NEDD1 SSTR3 TCTEX1D1 ACTR1A FGFR1OP CKAP5 DCTN1-2 PRKAR2B CEP250 HAUS1 TCTE3 IFT27 centrosome:C2CD2:distal appendage proteins:TTBK2:MARK4BBS9 WDR19 HAUS1 CSNK1D CEP290 TTC30B HAUS4 HAUS5 MAPRE1 RHO KIF3B DYNLL1 MCHR1 SSNA1 IFT27 PDE6D CEP162 IFT46 MyrG2-NPHP3 TCTN3 CNGA2 DYNLL2 TTC8 PiBBS1 IFT122 HAUS5 BBS5ODF2 NEK2 IFT88 PAFAH1B1 Kinesin-2 motorsTUBA1A TTC30A HAUS8 PDE6D PKD1 CEP72 BBS4 TTC8NDE1 FBF1 DYNLL1 PDE6DWDR19 DYNC1I2 CCP110 DYNLL2 TRAF3IP1 PKD2 CEP76 VxPx-containingciliary membraneproteinsHAUS1 CNGA2 TTC26DYNLL1 SDCCAG8 OFD1 CKAP5 CEP250 AKAP9 CNTRL DYNLL2 PPP2R1A FGFR1OP PRKAR2B PCNT YWHAE TUBB4A YWHAE CEP97 KIF3A IFT80 IFT57 IFT52 ODF2 CEP250 PCNT SSNA1 HAUS4 DYNC1H1 ARL3 HSPB11TCTEX1D2 CEP70 PLK1 IFT57 B9D2 RABL5 CEP164 YWHAG TUBB4B ARL3 CNTRL ASAP1 FGFR1OP IFT27 C2CD3 CEP72 TTC30A BBS7 BBS4 PKD1 TUBB NEDD1 HAUS2 DYNC2LI1 HAUS3 acetylated microtubule protofilament HSP90AA1 IFT43 SSNA1 HAUS8 CNGB1 DYNC1I2 BBS7 DCTN3 IFT52 acetylated microtubule IFT20 CEP41 CNGB1 CEP152 IFT20:TRIP11CLASP1 GTPCEP78 SDCCAG8 CNGB1 IFT88FGFR1OP TUBB4A CDK5RAP2 TUBA4A RABL5 IFT43 TTC26 HAUS3 Golgi-derived vesicle CSNK1E GDPIQCB1 CKAP5 TRAF3IP1 CEP135 CLASP1 H2OCDK1 RAB11FIP3 C2CD3 KIF17 OFD1 EXOC7 TUBA1A AHI1 ARL13B:INPP5EWDR34 AKAP9 IFT ACSNK1E dynein-2KIF3A TCTEX1D2 IFT B*8, 140, 146, 14983154483154995983973783838, 140, 146, 14924, 7883414559


Description

Cilia are membrane covered organelles that extend from the surface of eukaryotic cells. Cilia may be motile, such as respiratory cilia) or non-motile (such as the primary cilium) and are distinguished by the structure of their microtubule-based axonemes. The axoneme consists of nine peripheral doublet microtubules, and in the case of many motile cilia, may also contain a pair of central single microtubules. These are referred to as 9+0 or 9+2 axonemes, respectively. Relative to their non-motile counterparts, motile cilia also contain additional structures that contribute to motion, including inner and outer dynein arms, radial spokes and nexin links. Four main types of cilia have been identified in humans: 9+2 motile (such as respiratory cilia), 9+0 motile (nodal cilia), 9+2 non-motile (kinocilium of hair cells) and 9+0 non-motile (primary cilium and photoreceptor cells) (reviewed in Fliegauf et al, 2007).

This pathway describes cilia formation, with an emphasis on the primary cilium. The primary cilium is a sensory organelle that is required for the transduction of numerous external signals such as growth factors, hormones and morphogens, and an intact primary cilium is needed for signaling pathways mediated by Hh, WNT, calcium, G-protein coupled receptors and receptor tyrosine kinases, among others (reviewed in Goetz and Anderson, 2010; Berbari et al, 2009; Nachury, 2014). Unlike the motile cilia, which are generally present in large numbers on epithelial cells and are responsible for sensory function as well as wave-like beating motions, the primary cilium is a non-motile sensory organelle that is present in a single copy at the apical surface of most quiescent cells (reviewed in Hsiao et al, 2012).

Cilium biogenesis involves the anchoring of the basal body, a centriole-derived organelle, near the plasma membrane and the subsequent polymerization of the microtubule-based axoneme and extension of the plasma membrane (reviewed in Ishikawa and Marshall, 2011; Reiter et al, 2012). Although the ciliary membrane is continuous with the plasma membrane, the protein and lipid content of the cilium and the ciliary membrane are distinct from those of the bulk cytoplasm and plasma membrane (reviewed in Emmer et al, 2010; Rohatgi and Snell, 2010). This specialized compartment is established and maintained during cilium biogenesis by the formation of a ciliary transition zone, a proteinaceous structure that, with the transition fibres, anchors the basal body to the plasma membrane and acts as a ciliary pore to limit free diffusion from the cytosol to the cilium (reviewed in Nachury et al, 2010; Reiter et al, 2012). Ciliary components are targeted from the secretory system to the ciliary base and subsequently transported to the ciliary tip, where extension of the axoneme occurs, by a motor-driven process called intraflagellar transport (IFT). Anterograde transport of cargo from the ciliary base to the tip of the cilium requires kinesin-2 type motors, while the dynein-2 motor is required for retrograde transport back to the ciliary base. In addition, both anterograde and retrograde transport depend on the IFT complex, a multiprotein assembly consisting of two subcomplexes, IFT A and IFT B. The primary cilium is a dynamic structure that undergoes continuous steady-state turnover of tubulin at the tip; as a consequence, the IFT machinery is required for cilium maintenance as well as biogenesis (reviewed in Bhogaraju et al, 2013; Hsiao et al, 2012; Li et al, 2012; Taschner et al, 2012; Sung and Leroux, 2013).

The importance of the cilium in signaling and cell biology is highlighted by the wide range of defects and disorders, collectively known as ciliopathies, that arise as the result of mutations in genes encoding components of the ciliary machinery (reviewed in Goetz and Anderson, 2010; Madhivanan and Aguilar, 2014).

View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 5617833
Reactome-version 
Reactome version: 75
Reactome Author 
Reactome Author: Rothfels, Karen

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Wei Q, Zhang Y, Li Y, Zhang Q, Ling K, Hu J.; ''The BBSome controls IFT assembly and turnaround in cilia.''; PubMed Europe PMC Scholia
  2. Benzing T, Schermer B.; ''Transition zone proteins and cilia dynamics.''; PubMed Europe PMC Scholia
  3. Zhang Y, Kwon S, Yamaguchi T, Cubizolles F, Rousseaux S, Kneissel M, Cao C, Li N, Cheng HL, Chua K, Lombard D, Mizeracki A, Matthias G, Alt FW, Khochbin S, Matthias P.; ''Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally.''; PubMed Europe PMC Scholia
  4. Asante D, Stevenson NL, Stephens DJ.; ''Subunit composition of the human cytoplasmic dynein-2 complex.''; PubMed Europe PMC Scholia
  5. Cole DG.; ''The intraflagellar transport machinery of Chlamydomonas reinhardtii.''; PubMed Europe PMC Scholia
  6. Cole DG, Snell WJ.; ''SnapShot: Intraflagellar transport.''; PubMed Europe PMC Scholia
  7. Knödler A, Feng S, Zhang J, Zhang X, Das A, Peränen J, Guo W.; ''Coordination of Rab8 and Rab11 in primary ciliogenesis.''; PubMed Europe PMC Scholia
  8. Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL.; ''Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons.''; PubMed Europe PMC Scholia
  9. Ou G, Koga M, Blacque OE, Murayama T, Ohshima Y, Schafer JC, Li C, Yoder BK, Leroux MR, Scholey JM.; ''Sensory ciliogenesis in Caenorhabditis elegans: assignment of IFT components into distinct modules based on transport and phenotypic profiles.''; PubMed Europe PMC Scholia
  10. Joo K, Kim CG, Lee MS, Moon HY, Lee SH, Kim MJ, Kweon HS, Park WY, Kim CH, Gleeson JG, Kim J.; ''CCDC41 is required for ciliary vesicle docking to the mother centriole.''; PubMed Europe PMC Scholia
  11. Sung CH, Leroux MR.; ''The roles of evolutionarily conserved functional modules in cilia-related trafficking.''; PubMed Europe PMC Scholia
  12. Shiba T, Koga H, Shin HW, Kawasaki M, Kato R, Nakayama K, Wakatsuki S.; ''Structural basis for Rab11-dependent membrane recruitment of a family of Rab11-interacting protein 3 (FIP3)/Arfophilin-1.''; PubMed Europe PMC Scholia
  13. Tsang WY, Dynlacht BD.; ''CP110 and its network of partners coordinately regulate cilia assembly.''; PubMed Europe PMC Scholia
  14. Madhivanan K, Aguilar RC.; ''Ciliopathies: the trafficking connection.''; PubMed Europe PMC Scholia
  15. Follit JA, Xu F, Keady BT, Pazour GJ.; ''Characterization of mouse IFT complex B.''; PubMed Europe PMC Scholia
  16. Pedersen LB, Rosenbaum JL.; ''Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling.''; PubMed Europe PMC Scholia
  17. Tobin JL, Beales PL.; ''The nonmotile ciliopathies.''; PubMed Europe PMC Scholia
  18. Bhogaraju S, Cajanek L, Fort C, Blisnick T, Weber K, Taschner M, Taschner M, Mizuno N, Lamla S, Bastin P, Nigg EA, Lorentzen E.; ''Molecular basis of tubulin transport within the cilium by IFT74 and IFT81.''; PubMed Europe PMC Scholia
  19. Schwarz N, Hardcastle AJ, Cheetham ME.; ''Arl3 and RP2 mediated assembly and traffic of membrane associated cilia proteins.''; PubMed Europe PMC Scholia
  20. Balestra FR, Strnad P, Flückiger I, Gönczy P.; ''Discovering regulators of centriole biogenesis through siRNA-based functional genomics in human cells.''; PubMed Europe PMC Scholia
  21. Jékely G, Arendt D.; ''Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium.''; PubMed Europe PMC Scholia
  22. Reed NA, Cai D, Blasius TL, Jih GT, Meyhofer E, Gaertig J, Verhey KJ.; ''Microtubule acetylation promotes kinesin-1 binding and transport.''; PubMed Europe PMC Scholia
  23. Hoover AN, Wynkoop A, Zeng H, Jia J, Niswander LA, Liu A.; ''C2cd3 is required for cilia formation and Hedgehog signaling in mouse.''; PubMed Europe PMC Scholia
  24. Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peränen J, Merdes A, Slusarski DC, Scheller RH, Bazan JF, Sheffield VC, Jackson PK.; ''A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis.''; PubMed Europe PMC Scholia
  25. Nie Z, Hirsch DS, Luo R, Jian X, Stauffer S, Cremesti A, Andrade J, Lebowitz J, Marino M, Ahvazi B, Hinshaw JE, Randazzo PA.; ''A BAR domain in the N terminus of the Arf GAP ASAP1 affects membrane structure and trafficking of epidermal growth factor receptor.''; PubMed Europe PMC Scholia
  26. Jacoby M, Cox JJ, Gayral S, Hampshire DJ, Ayub M, Blockmans M, Pernot E, Kisseleva MV, Compère P, Schiffmann SN, Gergely F, Riley JH, Pérez-Morga D, Woods CG, Schurmans S.; ''INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse.''; PubMed Europe PMC Scholia
  27. Ishikawa H, Ide T, Yagi T, Jiang X, Hirono M, Sasaki H, Yanagisawa H, Wemmer KA, Stainier DY, Qin H, Kamiya R, Marshall WF.; ''TTC26/DYF13 is an intraflagellar transport protein required for transport of motility-related proteins into flagella.''; PubMed Europe PMC Scholia
  28. Brown MT, Andrade J, Radhakrishna H, Donaldson JG, Cooper JA, Randazzo PA.; ''ASAP1, a phospholipid-dependent arf GTPase-activating protein that associates with and is phosphorylated by Src.''; PubMed Europe PMC Scholia
  29. Heider MR, Munson M.; ''Exorcising the exocyst complex.''; PubMed Europe PMC Scholia
  30. Iomini C, Babaev-Khaimov V, Sassaroli M, Piperno G.; ''Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases.''; PubMed Europe PMC Scholia
  31. Dishinger JF, Kee HL, Jenkins PM, Fan S, Hurd TW, Hammond JW, Truong YN, Margolis B, Martens JR, Verhey KJ.; ''Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-beta2 and RanGTP.''; PubMed Europe PMC Scholia
  32. Wei Q, Zhou W, Wang W, Gao B, Wang L, Cao J, Liu ZP.; ''Tumor-suppressive functions of leucine zipper transcription factor-like 1.''; PubMed Europe PMC Scholia
  33. Li C, Inglis PN, Leitch CC, Efimenko E, Zaghloul NA, Mok CA, Davis EE, Bialas NJ, Healey MP, Héon E, Zhen M, Swoboda P, Katsanis N, Leroux MR.; ''An essential role for DYF-11/MIP-T3 in assembling functional intraflagellar transport complexes.''; PubMed Europe PMC Scholia
  34. Insinna C, Pathak N, Perkins B, Drummond I, Besharse JC.; ''The homodimeric kinesin, Kif17, is essential for vertebrate photoreceptor sensory outer segment development.''; PubMed Europe PMC Scholia
  35. Pazour GJ, Wilkerson CG, Witman GB.; ''A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT).''; PubMed Europe PMC Scholia
  36. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP.; ''HDAC6 is a microtubule-associated deacetylase.''; PubMed Europe PMC Scholia
  37. Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ, Otto EA, Baye LM, Wen X, Scales SJ, Kwong M, Huntzicker EG, Sfakianos MK, Sandoval W, Bazan JF, Kulkarni P, Garcia-Gonzalo FR, Seol AD, O'Toole JF, Held S, Reutter HM, Lane WS, Rafiq MA, Noor A, Ansar M, Devi AR, Sheffield VC, Slusarski DC, Vincent JB, Doherty DA, Hildebrandt F, Reiter JF, Jackson PK.; ''Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways.''; PubMed Europe PMC Scholia
  38. Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL.; ''A motility in the eukaryotic flagellum unrelated to flagellar beating.''; PubMed Europe PMC Scholia
  39. Taschner M, Taschner M, Kotsis F, Braeuer P, Kuehn EW, Lorentzen E.; ''Crystal structures of IFT70/52 and IFT52/46 provide insight into intraflagellar transport B core complex assembly.''; PubMed Europe PMC Scholia
  40. Hou Y, Qin H, Follit JA, Pazour GJ, Rosenbaum JL, Witman GB.; ''Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella.''; PubMed Europe PMC Scholia
  41. Kim S, Dynlacht BD.; ''Assembling a primary cilium.''; PubMed Europe PMC Scholia
  42. Nachury MV, Seeley ES, Jin H.; ''Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier?''; PubMed Europe PMC Scholia
  43. Cai D, McEwen DP, Martens JR, Meyhofer E, Verhey KJ.; ''Single molecule imaging reveals differences in microtubule track selection between Kinesin motors.''; PubMed Europe PMC Scholia
  44. Zhang Q, Nishimura D, Seo S, Vogel T, Morgan DA, Searby C, Bugge K, Stone EM, Rahmouni K, Sheffield VC.; ''Bardet-Biedl syndrome 3 (Bbs3) knockout mouse model reveals common BBS-associated phenotypes and Bbs3 unique phenotypes.''; PubMed Europe PMC Scholia
  45. Jian X, Brown P, Schuck P, Gruschus JM, Balbo A, Hinshaw JE, Randazzo PA.; ''Autoinhibition of Arf GTPase-activating protein activity by the BAR domain in ASAP1.''; PubMed Europe PMC Scholia
  46. Liew GM, Ye F, Nager AR, Murphy JP, Lee JS, Aguiar M, Breslow DK, Gygi SP, Nachury MV.; ''The intraflagellar transport protein IFT27 promotes BBSome exit from cilia through the GTPase ARL6/BBS3.''; PubMed Europe PMC Scholia
  47. Mazelova J, Astuto-Gribble L, Inoue H, Tam BM, Schonteich E, Prekeris R, Moritz OL, Randazzo PA, Deretic D.; ''Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4.''; PubMed Europe PMC Scholia
  48. Nachury MV.; ''How do cilia organize signalling cascades?''; PubMed Europe PMC Scholia
  49. Buisson J, Chenouard N, Lagache T, Blisnick T, Olivo-Marin JC, Bastin P.; ''Intraflagellar transport proteins cycle between the flagellum and its base.''; PubMed Europe PMC Scholia
  50. Bielas SL, Silhavy JL, Brancati F, Kisseleva MV, Al-Gazali L, Sztriha L, Bayoumi RA, Zaki MS, Abdel-Aleem A, Rosti RO, Kayserili H, Swistun D, Scott LC, Bertini E, Boltshauser E, Fazzi E, Travaglini L, Field SJ, Gayral S, Jacoby M, Schurmans S, Dallapiccola B, Majerus PW, Valente EM, Gleeson JG.; ''Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies.''; PubMed Europe PMC Scholia
  51. Veltel S, Kravchenko A, Ismail S, Wittinghofer A.; ''Specificity of Arl2/Arl3 signaling is mediated by a ternary Arl3-effector-GAP complex.''; PubMed Europe PMC Scholia
  52. Tang Z, Lin MG, Stowe TR, Chen S, Zhu M, Stearns T, Franco B, Zhong Q.; ''Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites.''; PubMed Europe PMC Scholia
  53. Fan Y, Esmail MA, Ansley SJ, Blacque OE, Boroevich K, Ross AJ, Moore SJ, Badano JL, May-Simera H, Compton DS, Green JS, Lewis RA, van Haelst MM, Parfrey PS, Baillie DL, Beales PL, Katsanis N, Davidson WS, Leroux MR.; ''Mutations in a member of the Ras superfamily of small GTP-binding proteins causes Bardet-Biedl syndrome.''; PubMed Europe PMC Scholia
  54. Pigino G, Geimer S, Lanzavecchia S, Paccagnini E, Cantele F, Diener DR, Rosenbaum JL, Lupetti P.; ''Electron-tomographic analysis of intraflagellar transport particle trains in situ.''; PubMed Europe PMC Scholia
  55. Hurd TW, Fan S, Margolis BL.; ''Localization of retinitis pigmentosa 2 to cilia is regulated by Importin beta2.''; PubMed Europe PMC Scholia
  56. Williams CL, Li C, Kida K, Inglis PN, Mohan S, Semenec L, Bialas NJ, Stupay RM, Chen N, Blacque OE, Yoder BK, Leroux MR.; ''MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis.''; PubMed Europe PMC Scholia
  57. Jackson PK.; ''TTBK2 kinase: linking primary cilia and cerebellar ataxias.''; PubMed Europe PMC Scholia
  58. Shida T, Cueva JG, Xu Z, Goodman MB, Nachury MV.; ''The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation.''; PubMed Europe PMC Scholia
  59. Ye X, Zeng H, Ning G, Reiter JF, Liu A.; ''C2cd3 is critical for centriolar distal appendage assembly and ciliary vesicle docking in mammals.''; PubMed Europe PMC Scholia
  60. Deretic D.; ''Crosstalk of Arf and Rab GTPases en route to cilia.''; PubMed Europe PMC Scholia
  61. Bhogaraju S, Engel BD, Lorentzen E.; ''Intraflagellar transport complex structure and cargo interactions.''; PubMed Europe PMC Scholia
  62. Evans RJ, Schwarz N, Nagel-Wolfrum K, Wolfrum U, Hardcastle AJ, Cheetham ME.; ''The retinitis pigmentosa protein RP2 links pericentriolar vesicle transport between the Golgi and the primary cilium.''; PubMed Europe PMC Scholia
  63. Lucker BF, Miller MS, Dziedzic SA, Blackmarr PT, Cole DG.; ''Direct interactions of intraflagellar transport complex B proteins IFT88, IFT52, and IFT46.''; PubMed Europe PMC Scholia
  64. Hattula K, Furuhjelm J, Arffman A, Peränen J.; ''A Rab8-specific GDP/GTP exchange factor is involved in actin remodeling and polarized membrane transport.''; PubMed Europe PMC Scholia
  65. Das A, Guo W.; ''Rabs and the exocyst in ciliogenesis, tubulogenesis and beyond.''; PubMed Europe PMC Scholia
  66. Zhou C, Cunningham L, Marcus AI, Li Y, Kahn RA.; ''Arl2 and Arl3 regulate different microtubule-dependent processes.''; PubMed Europe PMC Scholia
  67. Jenkins PM, Hurd TW, Zhang L, McEwen DP, Brown RL, Margolis B, Verhey KJ, Martens JR.; ''Ciliary targeting of olfactory CNG channels requires the CNGB1b subunit and the kinesin-2 motor protein, KIF17.''; PubMed Europe PMC Scholia
  68. Feng S, Knödler A, Ren J, Zhang J, Zhang X, Hong Y, Huang S, Peränen J, Guo W.; ''A Rab8 guanine nucleotide exchange factor-effector interaction network regulates primary ciliogenesis.''; PubMed Europe PMC Scholia
  69. Omori Y, Zhao C, Saras A, Mukhopadhyay S, Kim W, Furukawa T, Sengupta P, Veraksa A, Malicki J.; ''Elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8.''; PubMed Europe PMC Scholia
  70. Porter ME, Bower R, Knott JA, Byrd P, Dentler W.; ''Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas.''; PubMed Europe PMC Scholia
  71. Houlden H, Johnson J, Gardner-Thorpe C, Lashley T, Hernandez D, Worth P, Singleton AB, Hilton DA, Holton J, Revesz T, Davis MB, Giunti P, Wood NW.; ''Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11.''; PubMed Europe PMC Scholia
  72. Wu S, Mehta SQ, Pichaud F, Bellen HJ, Quiocho FA.; ''Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo.''; PubMed Europe PMC Scholia
  73. Iomini C, Li L, Esparza JM, Dutcher SK.; ''Retrograde intraflagellar transport mutants identify complex A proteins with multiple genetic interactions in Chlamydomonas reinhardtii.''; PubMed Europe PMC Scholia
  74. Ou G, Blacque OE, Snow JJ, Leroux MR, Scholey JM.; ''Functional coordination of intraflagellar transport motors.''; PubMed Europe PMC Scholia
  75. Goetz SC, Liem KF, Anderson KV.; ''The spinocerebellar ataxia-associated gene Tau tubulin kinase 2 controls the initiation of ciliogenesis.''; PubMed Europe PMC Scholia
  76. Čajánek L, Nigg EA.; ''Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole.''; PubMed Europe PMC Scholia
  77. Berbari NF, O'Connor AK, Haycraft CJ, Yoder BK.; ''The primary cilium as a complex signaling center.''; PubMed Europe PMC Scholia
  78. Loktev AV, Zhang Q, Beck JS, Searby CC, Scheetz TE, Bazan JF, Slusarski DC, Sheffield VC, Jackson PK, Nachury MV.; ''A BBSome subunit links ciliogenesis, microtubule stability, and acetylation.''; PubMed Europe PMC Scholia
  79. Devos D, Dokudovskaya S, Alber F, Williams R, Chait BT, Sali A, Rout MP.; ''Components of coated vesicles and nuclear pore complexes share a common molecular architecture.''; PubMed Europe PMC Scholia
  80. Westlake CJ, Baye LM, Nachury MV, Wright KJ, Ervin KE, Phu L, Chalouni C, Beck JS, Kirkpatrick DS, Slusarski DC, Sheffield VC, Scheller RH, Jackson PK.; ''Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome.''; PubMed Europe PMC Scholia
  81. Zuo X, Guo W, Lipschutz JH.; ''The exocyst protein Sec10 is necessary for primary ciliogenesis and cystogenesis in vitro.''; PubMed Europe PMC Scholia
  82. Ishikawa H, Marshall WF.; ''Ciliogenesis: building the cell's antenna.''; PubMed Europe PMC Scholia
  83. Spektor A, Tsang WY, Khoo D, Dynlacht BD.; ''Cep97 and CP110 suppress a cilia assembly program.''; PubMed Europe PMC Scholia
  84. Kühnel K, Veltel S, Schlichting I, Wittinghofer A.; ''Crystal structure of the human retinitis pigmentosa 2 protein and its interaction with Arl3.''; PubMed Europe PMC Scholia
  85. Montagnac G, Meas-Yedid V, Irondelle M, Castro-Castro A, Franco M, Shida T, Nachury MV, Benmerah A, Olivo-Marin JC, Chavrier P.; ''αTAT1 catalyses microtubule acetylation at clathrin-coated pits.''; PubMed Europe PMC Scholia
  86. Che MM, Boja ES, Yoon HY, Gruschus J, Jaffe H, Stauffer S, Schuck P, Fales HM, Randazzo PA.; ''Regulation of ASAP1 by phospholipids is dependent on the interface between the PH and Arf GAP domains.''; PubMed Europe PMC Scholia
  87. Insinna C, Humby M, Sedmak T, Wolfrum U, Besharse JC.; ''Different roles for KIF17 and kinesin II in photoreceptor development and maintenance.''; PubMed Europe PMC Scholia
  88. Follit JA, San Agustin JT, Xu F, Jonassen JA, Samtani R, Lo CW, Pazour GJ.; ''The Golgin GMAP210/TRIP11 anchors IFT20 to the Golgi complex.''; PubMed Europe PMC Scholia
  89. Seo S, Baye LM, Schulz NP, Beck JS, Zhang Q, Slusarski DC, Sheffield VC.; ''BBS6, BBS10, and BBS12 form a complex with CCT/TRiC family chaperonins and mediate BBSome assembly.''; PubMed Europe PMC Scholia
  90. Winey M, O'Toole E.; ''Centriole structure.''; PubMed Europe PMC Scholia
  91. Akella JS, Wloga D, Kim J, Starostina NG, Lyons-Abbott S, Morrissette NS, Dougan ST, Kipreos ET, Gaertig J.; ''MEC-17 is an alpha-tubulin acetyltransferase.''; PubMed Europe PMC Scholia
  92. Reiter JF, Blacque OE, Leroux MR.; ''The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization.''; PubMed Europe PMC Scholia
  93. Kobayashi T, Tsang WY, Li J, Lane W, Dynlacht BD.; ''Centriolar kinesin Kif24 interacts with CP110 to remodel microtubules and regulate ciliogenesis.''; PubMed Europe PMC Scholia
  94. Tsang WY, Bossard C, Khanna H, Peränen J, Swaroop A, Malhotra V, Dynlacht BD.; ''CP110 suppresses primary cilia formation through its interaction with CEP290, a protein deficient in human ciliary disease.''; PubMed Europe PMC Scholia
  95. Follit JA, Tuft RA, Fogarty KE, Pazour GJ.; ''The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly.''; PubMed Europe PMC Scholia
  96. Singla V, Romaguera-Ros M, Garcia-Verdugo JM, Reiter JF.; ''Ofd1, a human disease gene, regulates the length and distal structure of centrioles.''; PubMed Europe PMC Scholia
  97. Kuhns S, Schmidt KN, Reymann J, Gilbert DF, Neuner A, Hub B, Carvalho R, Wiedemann P, Zentgraf H, Erfle H, Klingmüller U, Boutros M, Pereira G.; ''The microtubule affinity regulating kinase MARK4 promotes axoneme extension during early ciliogenesis.''; PubMed Europe PMC Scholia
  98. Hsiao YC, Tuz K, Ferland RJ.; ''Trafficking in and to the primary cilium.''; PubMed Europe PMC Scholia
  99. Wright KJ, Baye LM, Olivier-Mason A, Mukhopadhyay S, Sang L, Kwong M, Wang W, Pretorius PR, Sheffield VC, Sengupta P, Slusarski DC, Jackson PK.; ''An ARL3-UNC119-RP2 GTPase cycle targets myristoylated NPHP3 to the primary cilium.''; PubMed Europe PMC Scholia
  100. Bouskila M, Esoof N, Gay L, Fang EH, Deak M, Begley MJ, Cantley LC, Prescott A, Storey KG, Alessi DR.; ''TTBK2 kinase substrate specificity and the impact of spinocerebellar-ataxia-causing mutations on expression, activity, localization and development.''; PubMed Europe PMC Scholia
  101. Eguether T, San Agustin JT, Keady BT, Jonassen JA, Liang Y, Francis R, Tobita K, Johnson CA, Abdelhamed ZA, Lo CW, Pazour GJ.; ''IFT27 links the BBSome to IFT for maintenance of the ciliary signaling compartment.''; PubMed Europe PMC Scholia
  102. Sillibourne JE, Hurbain I, Grand-Perret T, Goud B, Tran P, Bornens M.; ''Primary ciliogenesis requires the distal appendage component Cep123.''; PubMed Europe PMC Scholia
  103. Lucker BF, Behal RH, Qin H, Siron LC, Taggart WD, Rosenbaum JL, Cole DG.; ''Characterization of the intraflagellar transport complex B core: direct interaction of the IFT81 and IFT74/72 subunits.''; PubMed Europe PMC Scholia
  104. Rogers KK, Wilson PD, Snyder RW, Zhang X, Guo W, Burrow CR, Lipschutz JH.; ''The exocyst localizes to the primary cilium in MDCK cells.''; PubMed Europe PMC Scholia
  105. Li Y, Wei Q, Zhang Y, Ling K, Hu J.; ''The small GTPases ARL-13 and ARL-3 coordinate intraflagellar transport and ciliogenesis.''; PubMed Europe PMC Scholia
  106. Goetz SC, Anderson KV.; ''The primary cilium: a signalling centre during vertebrate development.''; PubMed Europe PMC Scholia
  107. Wang J, Morita Y, Mazelova J, Deretic D.; ''The Arf GAP ASAP1 provides a platform to regulate Arf4- and Rab11-Rab8-mediated ciliary receptor targeting.''; PubMed Europe PMC Scholia
  108. Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF.; ''Vertebrate Smoothened functions at the primary cilium.''; PubMed Europe PMC Scholia
  109. Reiter JF, Skarnes WC.; ''Tectonic, a novel regulator of the Hedgehog pathway required for both activation and inhibition.''; PubMed Europe PMC Scholia
  110. Chih B, Liu P, Chinn Y, Chalouni C, Komuves LG, Hass PE, Sandoval W, Peterson AS.; ''A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain.''; PubMed Europe PMC Scholia
  111. Mazelova J, Ransom N, Astuto-Gribble L, Wilson MC, Deretic D.; ''Syntaxin 3 and SNAP-25 pairing, regulated by omega-3 docosahexaenoic acid, controls the delivery of rhodopsin for the biogenesis of cilia-derived sensory organelles, the rod outer segments.''; PubMed Europe PMC Scholia
  112. Zerial M, McBride H.; ''Rab proteins as membrane organizers.''; PubMed Europe PMC Scholia
  113. Scholey JM.; ''Intraflagellar transport motors in cilia: moving along the cell's antenna.''; PubMed Europe PMC Scholia
  114. Geng L, Okuhara D, Yu Z, Tian X, Cai Y, Shibazaki S, Somlo S.; ''Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif.''; PubMed Europe PMC Scholia
  115. Schonteich E, Pilli M, Simon GC, Matern HT, Junutula JR, Sentz D, Holmes RK, Prekeris R.; ''Molecular characterization of Rab11-FIP3 binding to ARF GTPases.''; PubMed Europe PMC Scholia
  116. Sacher M, Kim YG, Lavie A, Oh BH, Segev N.; ''The TRAPP complex: insights into its architecture and function.''; PubMed Europe PMC Scholia
  117. Evans JE, Snow JJ, Gunnarson AL, Ou G, Stahlberg H, McDonald KL, Scholey JM.; ''Functional modulation of IFT kinesins extends the sensory repertoire of ciliated neurons in Caenorhabditis elegans.''; PubMed Europe PMC Scholia
  118. Tao B, Bu S, Yang Z, Siroky B, Kappes JC, Kispert A, Guay-Woodford LM.; ''Cystin localizes to primary cilia via membrane microdomains and a targeting motif.''; PubMed Europe PMC Scholia
  119. Halbritter J, Bizet AA, Schmidts M, Porath JD, Braun DA, Gee HY, McInerney-Leo AM, Krug P, Filhol E, Davis EE, Airik R, Czarnecki PG, Lehman AM, Trnka P, Nitschké P, Bole-Feysot C, Schueler M, Knebelmann B, Burtey S, Szabó AJ, Tory K, Leo PJ, Gardiner B, McKenzie FA, Zankl A, Brown MA, Hartley JL, Maher ER, Li C, Leroux MR, Scambler PJ, Zhan SH, Jones SJ, Kayserili H, Tuysuz B, Moorani KN, Constantinescu A, Krantz ID, Kaplan BS, Shah JV, UK10K Consortium, Hurd TW, Doherty D, Katsanis N, Duncan EL, Otto EA, Beales PL, Mitchison HM, Saunier S, Hildebrandt F.; ''Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans.''; PubMed Europe PMC Scholia
  120. Verhey KJ, Dishinger J, Kee HL.; ''Kinesin motors and primary cilia.''; PubMed Europe PMC Scholia
  121. Garcia-Gonzalo FR, Corbit KC, Sirerol-Piquer MS, Ramaswami G, Otto EA, Noriega TR, Seol AD, Robinson JF, Bennett CL, Josifova DJ, García-Verdugo JM, Katsanis N, Hildebrandt F, Reiter JF.; ''A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition.''; PubMed Europe PMC Scholia
  122. Johnson KA.; ''The axonemal microtubules of the Chlamydomonas flagellum differ in tubulin isoform content.''; PubMed Europe PMC Scholia
  123. Li Y, Ling K, Hu J.; ''The emerging role of Arf/Arl small GTPases in cilia and ciliopathies.''; PubMed Europe PMC Scholia
  124. Tanos BE, Yang HJ, Soni R, Wang WJ, Macaluso FP, Asara JM, Tsou MF.; ''Centriole distal appendages promote membrane docking, leading to cilia initiation.''; PubMed Europe PMC Scholia
  125. Ward HH, Brown-Glaberman U, Wang J, Morita Y, Alper SL, Bedrick EJ, Gattone VH, Deretic D, Wandinger-Ness A.; ''A conserved signal and GTPase complex are required for the ciliary transport of polycystin-1.''; PubMed Europe PMC Scholia
  126. Fliegauf M, Benzing T, Omran H.; ''When cilia go bad: cilia defects and ciliopathies.''; PubMed Europe PMC Scholia
  127. Veltel S, Gasper R, Eisenacher E, Wittinghofer A.; ''The retinitis pigmentosa 2 gene product is a GTPase-activating protein for Arf-like 3.''; PubMed Europe PMC Scholia
  128. Emmer BT, Maric D, Engman DM.; ''Molecular mechanisms of protein and lipid targeting to ciliary membranes.''; PubMed Europe PMC Scholia
  129. Piperno G, Mead K.; ''Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella.''; PubMed Europe PMC Scholia
  130. Szyk A, Deaconescu AM, Spector J, Goodman B, Valenstein ML, Ziolkowska NE, Kormendi V, Grigorieff N, Roll-Mecak A.; ''Molecular basis for age-dependent microtubule acetylation by tubulin acetyltransferase.''; PubMed Europe PMC Scholia
  131. Szul T, Grabski R, Lyons S, Morohashi Y, Shestopal S, Lowe M, Sztul E.; ''Dissecting the role of the ARF guanine nucleotide exchange factor GBF1 in Golgi biogenesis and protein trafficking.''; PubMed Europe PMC Scholia
  132. Eathiraj S, Mishra A, Prekeris R, Lambright DG.; ''Structural basis for Rab11-mediated recruitment of FIP3 to recycling endosomes.''; PubMed Europe PMC Scholia
  133. Masuda M, Mochizuki N.; ''Structural characteristics of BAR domain superfamily to sculpt the membrane.''; PubMed Europe PMC Scholia
  134. Inoue H, Ha VL, Prekeris R, Randazzo PA.; ''Arf GTPase-activating protein ASAP1 interacts with Rab11 effector FIP3 and regulates pericentrosomal localization of transferrin receptor-positive recycling endosome.''; PubMed Europe PMC Scholia
  135. Rohatgi R, Snell WJ.; ''The ciliary membrane.''; PubMed Europe PMC Scholia
  136. Yoshimura S, Egerer J, Fuchs E, Haas AK, Barr FA.; ''Functional dissection of Rab GTPases involved in primary cilium formation.''; PubMed Europe PMC Scholia
  137. Hou Y, Pazour GJ, Witman GB.; ''A dynein light intermediate chain, D1bLIC, is required for retrograde intraflagellar transport.''; PubMed Europe PMC Scholia
  138. Bhogaraju S, Weber K, Engel BD, Lechtreck KF, Lorentzen E.; ''Getting tubulin to the tip of the cilium: one IFT train, many different tubulin cargo-binding sites?''; PubMed Europe PMC Scholia
  139. Kozminski KG, Beech PL, Rosenbaum JL.; ''The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane.''; PubMed Europe PMC Scholia
  140. Mukhopadhyay S, Wen X, Chih B, Nelson CD, Lane WS, Scales SJ, Jackson PK.; ''TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia.''; PubMed Europe PMC Scholia
  141. Schmidt KN, Kuhns S, Neuner A, Hub B, Zentgraf H, Pereira G.; ''Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis.''; PubMed Europe PMC Scholia
  142. Deretic D, Williams AH, Ransom N, Morel V, Hargrave PA, Arendt A.; ''Rhodopsin C terminus, the site of mutations causing retinal disease, regulates trafficking by binding to ADP-ribosylation factor 4 (ARF4).''; PubMed Europe PMC Scholia
  143. Ahmed NT, Gao C, Lucker BF, Cole DG, Mitchell DR.; ''ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery.''; PubMed Europe PMC Scholia
  144. Burke MC, Li FQ, Cyge B, Arashiro T, Brechbuhl HM, Chen X, Siller SS, Weiss MA, O'Connell CB, Love D, Westlake CJ, Reynolds SD, Kuriyama R, Takemaru K.; ''Chibby promotes ciliary vesicle formation and basal body docking during airway cell differentiation.''; PubMed Europe PMC Scholia
  145. Seo S, Zhang Q, Bugge K, Breslow DK, Searby CC, Nachury MV, Sheffield VC.; ''A novel protein LZTFL1 regulates ciliary trafficking of the BBSome and Smoothened.''; PubMed Europe PMC Scholia
  146. Taschner M, Taschner M, Bhogaraju S, Lorentzen E.; ''Architecture and function of IFT complex proteins in ciliogenesis.''; PubMed Europe PMC Scholia
  147. Zhang Q, Yu D, Seo S, Stone EM, Sheffield VC.; ''Intrinsic protein-protein interaction-mediated and chaperonin-assisted sequential assembly of stable bardet-biedl syndrome protein complex, the BBSome.''; PubMed Europe PMC Scholia
  148. Hu Q, Milenkovic L, Jin H, Scott MP, Nachury MV, Spiliotis ET, Nelson WJ.; ''A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution.''; PubMed Europe PMC Scholia
  149. Piperno G, Siuda E, Henderson S, Segil M, Vaananen H, Sassaroli M.; ''Distinct mutants of retrograde intraflagellar transport (IFT) share similar morphological and molecular defects.''; PubMed Europe PMC Scholia
  150. Wei Q, Xu Q, Zhang Y, Li Y, Zhang Q, Hu Z, Harris PC, Torres VE, Ling K, Hu J.; ''Transition fibre protein FBF1 is required for the ciliary entry of assembled intraflagellar transport complexes.''; PubMed Europe PMC Scholia
  151. Li FQ, Mofunanya A, Fischer V, Hall J, Takemaru K.; ''Nuclear-cytoplasmic shuttling of Chibby controls beta-catenin signaling.''; PubMed Europe PMC Scholia
  152. Chiang AP, Nishimura D, Searby C, Elbedour K, Carmi R, Ferguson AL, Secrist J, Braun T, Casavant T, Stone EM, Sheffield VC.; ''Comparative genomic analysis identifies an ADP-ribosylation factor-like gene as the cause of Bardet-Biedl syndrome (BBS3).''; PubMed Europe PMC Scholia
  153. Humbert MC, Weihbrecht K, Searby CC, Li Y, Pope RM, Sheffield VC, Seo S.; ''ARL13B, PDE6D, and CEP164 form a functional network for INPP5E ciliary targeting.''; PubMed Europe PMC Scholia
  154. Jin H, White SR, Shida T, Schulz S, Aguiar M, Gygi SP, Bazan JF, Nachury MV.; ''The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia.''; PubMed Europe PMC Scholia
  155. Blacque OE, Reardon MJ, Li C, McCarthy J, Mahjoub MR, Ansley SJ, Badano JL, Mah AK, Beales PL, Davidson WS, Johnsen RC, Audeh M, Plasterk RH, Baillie DL, Katsanis N, Quarmby LM, Wicks SR, Leroux MR.; ''Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport.''; PubMed Europe PMC Scholia
  156. Ismail SA, Chen YX, Miertzschke M, Vetter IR, Koerner C, Wittinghofer A.; ''Structural basis for Arl3-specific release of myristoylated ciliary cargo from UNC119.''; PubMed Europe PMC Scholia
  157. Gruss OJ.; ''Nuclear transport receptor goes moonlighting.''; PubMed Europe PMC Scholia
  158. Snow JJ, Ou G, Gunnarson AL, Walker MR, Zhou HM, Brust-Mascher I, Scholey JM.; ''Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114640view16:10, 25 January 2021ReactomeTeamReactome version 75
113088view11:15, 2 November 2020ReactomeTeamReactome version 74
112322view15:24, 9 October 2020ReactomeTeamReactome version 73
101221view11:11, 1 November 2018ReactomeTeamreactome version 66
100759view20:37, 31 October 2018ReactomeTeamreactome version 65
100303view19:14, 31 October 2018ReactomeTeamreactome version 64
99850view15:58, 31 October 2018ReactomeTeamreactome version 63
99407view14:34, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99096view12:39, 31 October 2018ReactomeTeamreactome version 62
93627view11:29, 9 August 2017ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
ACTR1A ProteinP61163 (Uniprot-TrEMBL)
AHI1 ProteinQ8N157 (Uniprot-TrEMBL)
AKAP9 ProteinQ99996 (Uniprot-TrEMBL)
ALMS1 ProteinQ8TCU4 (Uniprot-TrEMBL)
ARF4 ProteinP18085 (Uniprot-TrEMBL)
ARF4:GDPComplexR-HSA-5623424 (Reactome)
ARF4:GTP:VxPx-containing ciliary membrane proteinsComplexR-HSA-5620917 (Reactome)
ARF4:GTPComplexR-HSA-5623423 (Reactome)
ARL13B ProteinQ3SXY8 (Uniprot-TrEMBL)
ARL13B:INPP5E:PDE6DComplexR-HSA-5637977 (Reactome)
ARL13B:INPP5EComplexR-HSA-5624905 (Reactome)
ARL13BProteinQ3SXY8 (Uniprot-TrEMBL)
ARL3 ProteinP36405 (Uniprot-TrEMBL)
ARL3:GDPComplexR-HSA-5624072 (Reactome)
ARL3:GTP:UNC119B:myristoylated ciliary cargoComplexR-HSA-5624104 (Reactome)
ARL3:GTP:UNC119BComplexR-HSA-5624076 (Reactome)
ARL3:GTPComplexR-HSA-5624073 (Reactome)
ARL6 ProteinQ9H0F7 (Uniprot-TrEMBL)
ARL6:GTP:BBSome:ciliary cargoComplexR-HSA-5624112 (Reactome)
ARL6:GTP:BBSome:ciliary cargoComplexR-HSA-5624114 (Reactome)
ARL6:GTPComplexR-HSA-5624106 (Reactome)
ASAP1

dimer:

ARF4:GTP:VxPx-containing ciliary membrane proteins
ComplexR-HSA-5623429 (Reactome)
ASAP1 ProteinQ9ULH1 (Uniprot-TrEMBL)
ASAP1 dimerComplexR-HSA-5623427 (Reactome)
ATATProteinQ5SQI0 (Uniprot-TrEMBL)
AZI1 ProteinQ9UPN4 (Uniprot-TrEMBL)
Ac-CoAMetaboliteCHEBI:15351 (ChEBI)
B9D1 ProteinQ9UPM9 (Uniprot-TrEMBL)
B9D2 ProteinQ9BPU9 (Uniprot-TrEMBL)
BBIP1 ProteinA8MTZ0 (Uniprot-TrEMBL)
BBIP1ProteinA8MTZ0 (Uniprot-TrEMBL)
BBS/CCT complexComplexR-HSA-5624117 (Reactome)
BBS1 ProteinQ8NFJ9 (Uniprot-TrEMBL)
BBS10 ProteinQ8TAM1 (Uniprot-TrEMBL)
BBS12 ProteinQ6ZW61 (Uniprot-TrEMBL)
BBS1ProteinQ8NFJ9 (Uniprot-TrEMBL)
BBS2 ProteinQ9BXC9 (Uniprot-TrEMBL)
BBS2ProteinQ9BXC9 (Uniprot-TrEMBL)
BBS4 ProteinQ96RK4 (Uniprot-TrEMBL)
BBS4ProteinQ96RK4 (Uniprot-TrEMBL)
BBS5 ProteinQ8N3I7 (Uniprot-TrEMBL)
BBS5ProteinQ8N3I7 (Uniprot-TrEMBL)
BBS7 ProteinQ8IWZ6 (Uniprot-TrEMBL)
BBS7ProteinQ8IWZ6 (Uniprot-TrEMBL)
BBS9 ProteinQ3SYG4 (Uniprot-TrEMBL)
BBS9ProteinQ3SYG4 (Uniprot-TrEMBL)
BBSome ciliary cargoComplexR-HSA-5624113 (Reactome)
BBSomeComplexR-HSA-5617794 (Reactome)
C2CD3 ProteinQ4AC94 (Uniprot-TrEMBL)
C2CD3ProteinQ4AC94 (Uniprot-TrEMBL)
CC2D2A ProteinQ9P2K1 (Uniprot-TrEMBL)
CCP110 ProteinO43303 (Uniprot-TrEMBL)
CCP110ProteinO43303 (Uniprot-TrEMBL)
CCT2 ProteinP78371 (Uniprot-TrEMBL)
CCT3 ProteinP49368 (Uniprot-TrEMBL)
CCT4 ProteinP50991 (Uniprot-TrEMBL)
CCT5 ProteinP48643 (Uniprot-TrEMBL)
CCT8 ProteinP50990 (Uniprot-TrEMBL)
CDK1 ProteinP06493 (Uniprot-TrEMBL)
CDK5RAP2 ProteinQ96SN8 (Uniprot-TrEMBL)
CENPJ ProteinQ9HC77 (Uniprot-TrEMBL)
CEP135 ProteinQ66GS9 (Uniprot-TrEMBL)
CEP152 ProteinO94986 (Uniprot-TrEMBL)
CEP162 ProteinQ5TB80 (Uniprot-TrEMBL)
CEP164 ProteinQ9UPV0 (Uniprot-TrEMBL)
CEP164ProteinQ9UPV0 (Uniprot-TrEMBL)
CEP192 ProteinQ8TEP8 (Uniprot-TrEMBL)
CEP250 ProteinQ9BV73 (Uniprot-TrEMBL)
CEP290 ProteinO15078 (Uniprot-TrEMBL)
CEP41 ProteinQ9BYV8 (Uniprot-TrEMBL)
CEP57 ProteinQ86XR8 (Uniprot-TrEMBL)
CEP63 ProteinQ96MT8 (Uniprot-TrEMBL)
CEP70 ProteinQ8NHQ1 (Uniprot-TrEMBL)
CEP72 ProteinQ9P209 (Uniprot-TrEMBL)
CEP76 ProteinQ8TAP6 (Uniprot-TrEMBL)
CEP78 ProteinQ5JTW2 (Uniprot-TrEMBL)
CEP83 ProteinQ9Y592 (Uniprot-TrEMBL)
CEP83ProteinQ9Y592 (Uniprot-TrEMBL)
CEP89 ProteinQ96ST8 (Uniprot-TrEMBL)
CEP89ProteinQ96ST8 (Uniprot-TrEMBL)
CEP97 ProteinQ8IW35 (Uniprot-TrEMBL)
CEP97ProteinQ8IW35 (Uniprot-TrEMBL)
CETN2 ProteinP41208 (Uniprot-TrEMBL)
CKAP5 ProteinQ14008 (Uniprot-TrEMBL)
CLASP1 ProteinQ7Z460 (Uniprot-TrEMBL)
CLUAP ProteinQ96AJ1 (Uniprot-TrEMBL)
CLUAPProteinQ96AJ1 (Uniprot-TrEMBL)
CNGA2 ProteinQ16280 (Uniprot-TrEMBL)
CNGA4 ProteinQ8IV77 (Uniprot-TrEMBL)
CNGB1 ProteinQ14028 (Uniprot-TrEMBL)
CNTRL ProteinQ7Z7A1 (Uniprot-TrEMBL)
CSNK1D ProteinP48730 (Uniprot-TrEMBL)
CSNK1E ProteinP49674 (Uniprot-TrEMBL)
Centrosome:C2CD3:distal appendage proteins:TTBK2ComplexR-HSA-5626178 (Reactome)
Centrosome:C2CD3:distal appendage proteinsComplexR-HSA-5626176 (Reactome)
CoA-SHMetaboliteCHEBI:15346 (ChEBI)
DCTN1-2 ProteinQ14203-2 (Uniprot-TrEMBL)
DCTN2 ProteinQ13561 (Uniprot-TrEMBL)
DCTN3 ProteinO75935 (Uniprot-TrEMBL)
DYNC1H1 ProteinQ14204 (Uniprot-TrEMBL)
DYNC1I2 ProteinQ13409 (Uniprot-TrEMBL)
DYNC2H1 ProteinQ8NCM8 (Uniprot-TrEMBL)
DYNC2LI1 ProteinQ8TCX1 (Uniprot-TrEMBL)
DYNLL1 ProteinP63167 (Uniprot-TrEMBL)
DYNLL2 ProteinQ96FJ2 (Uniprot-TrEMBL)
DYNLRB1 ProteinQ9NP97 (Uniprot-TrEMBL)
DYNLRB2 ProteinQ8TF09 (Uniprot-TrEMBL)
EXOC1 ProteinQ9NV70 (Uniprot-TrEMBL)
EXOC2 ProteinQ96KP1 (Uniprot-TrEMBL)
EXOC3 ProteinO60645 (Uniprot-TrEMBL)
EXOC4 ProteinQ96A65 (Uniprot-TrEMBL)
EXOC5 ProteinO00471 (Uniprot-TrEMBL)
EXOC6 ProteinQ8TAG9 (Uniprot-TrEMBL)
EXOC7 ProteinQ9UPT5 (Uniprot-TrEMBL)
EXOC8 ProteinQ8IYI6 (Uniprot-TrEMBL)
FBF1 ProteinQ8TES7 (Uniprot-TrEMBL)
FBF1ProteinQ8TES7 (Uniprot-TrEMBL)
FGFR1OP ProteinO95684 (Uniprot-TrEMBL)
GBF1ProteinQ92538 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Golgi-derived vesicle R-ALL-5637956 (Reactome)
H2OMetaboliteCHEBI:15377 (ChEBI)
HAUS1 ProteinQ96CS2 (Uniprot-TrEMBL)
HAUS2 ProteinQ9NVX0 (Uniprot-TrEMBL)
HAUS3 ProteinQ68CZ6 (Uniprot-TrEMBL)
HAUS4 ProteinQ9H6D7 (Uniprot-TrEMBL)
HAUS5 ProteinO94927 (Uniprot-TrEMBL)
HAUS6 ProteinQ7Z4H7 (Uniprot-TrEMBL)
HAUS7 ProteinQ99871 (Uniprot-TrEMBL)
HAUS8 ProteinQ9BT25 (Uniprot-TrEMBL)
HDAC6ProteinQ9UBN7 (Uniprot-TrEMBL)
HSP90AA1 ProteinP07900 (Uniprot-TrEMBL)
HSPB11 ProteinQ9Y547 (Uniprot-TrEMBL)
HSPB11ProteinQ9Y547 (Uniprot-TrEMBL)
IFT AComplexR-HSA-5617795 (Reactome)
IFT AComplexR-HSA-5625350 (Reactome)
IFT B*ComplexR-HSA-5617798 (Reactome)
IFT BComplexR-HSA-5617799 (Reactome)
IFT BComplexR-HSA-5625418 (Reactome)
IFT122 ProteinQ9HBG6 (Uniprot-TrEMBL)
IFT122ProteinQ9HBG6 (Uniprot-TrEMBL)
IFT140 ProteinQ96RY7 (Uniprot-TrEMBL)
IFT140ProteinQ96RY7 (Uniprot-TrEMBL)
IFT172 ProteinQ9UG01 (Uniprot-TrEMBL)
IFT172ProteinQ9UG01 (Uniprot-TrEMBL)
IFT20 ProteinQ8IY31 (Uniprot-TrEMBL)
IFT20:TRIP11ComplexR-HSA-5617801 (Reactome)
IFT20ProteinQ8IY31 (Uniprot-TrEMBL)
IFT27 ProteinQ9BW83 (Uniprot-TrEMBL)
IFT27ProteinQ9BW83 (Uniprot-TrEMBL)
IFT43 ProteinQ96FT9 (Uniprot-TrEMBL)
IFT43ProteinQ96FT9 (Uniprot-TrEMBL)
IFT46 ProteinQ9NQC8 (Uniprot-TrEMBL)
IFT46ProteinQ9NQC8 (Uniprot-TrEMBL)
IFT52 ProteinQ9Y366 (Uniprot-TrEMBL)
IFT52ProteinQ9Y366 (Uniprot-TrEMBL)
IFT57 ProteinQ9NWB7 (Uniprot-TrEMBL)
IFT57ProteinQ9NWB7 (Uniprot-TrEMBL)
IFT74 ProteinQ96LB3 (Uniprot-TrEMBL)
IFT74ProteinQ96LB3 (Uniprot-TrEMBL)
IFT80 ProteinQ9P2H3 (Uniprot-TrEMBL)
IFT80ProteinQ9P2H3 (Uniprot-TrEMBL)
IFT81 ProteinQ8WYA0 (Uniprot-TrEMBL)
IFT81ProteinQ8WYA0 (Uniprot-TrEMBL)
IFT88 ProteinQ13099 (Uniprot-TrEMBL)
IFT88ProteinQ13099 (Uniprot-TrEMBL)
INPP5E ProteinQ9NRR6 (Uniprot-TrEMBL)
INPP5EProteinQ9NRR6 (Uniprot-TrEMBL)
IQCB1 ProteinQ15051 (Uniprot-TrEMBL)
KIF17 ProteinQ9P2E2 (Uniprot-TrEMBL)
KIF17 dimer:TNPO1ComplexR-HSA-5624928 (Reactome)
KIF17 dimer:TNPO1ComplexR-HSA-5624930 (Reactome)
KIF17 dimerComplexR-HSA-5624926 (Reactome)
KIF24 ProteinQ5T7B8 (Uniprot-TrEMBL)
KIF3A ProteinQ9Y496 (Uniprot-TrEMBL)
KIF3B ProteinO15066 (Uniprot-TrEMBL)
KIF3C ProteinO14782 (Uniprot-TrEMBL)
KIFAP3 ProteinQ92845 (Uniprot-TrEMBL)
Kinesin-2 motorsComplexR-HSA-5624910 (Reactome)
Kinesin-2 motorsComplexR-HSA-5625387 (Reactome)
LZTFL1 oligomer:BBSomeComplexR-HSA-5624121 (Reactome)
LZTFL1 ProteinQ9NQ48 (Uniprot-TrEMBL)
LZTFL1 oligomerComplexR-HSA-5624119 (Reactome)
MAPRE1 ProteinQ15691 (Uniprot-TrEMBL)
MARK4 ProteinQ96L34 (Uniprot-TrEMBL)
MARK4ProteinQ96L34 (Uniprot-TrEMBL)
MCHR1 ProteinQ99705 (Uniprot-TrEMBL)
MKKS ProteinQ9NPJ1 (Uniprot-TrEMBL)
MKS1 ProteinQ9NXB0 (Uniprot-TrEMBL)
Microtubule protofilament R-HSA-8982424 (Reactome)
MicrotubuleComplexR-HSA-190599 (Reactome)
MyrG2-CYS1 ProteinQ717R9 (Uniprot-TrEMBL)
MyrG2-NPHP3 ProteinQ7Z494 (Uniprot-TrEMBL)
NDE1 ProteinQ9NXR1 (Uniprot-TrEMBL)
NEDD1 ProteinQ8NHV4 (Uniprot-TrEMBL)
NEK2 ProteinP51955 (Uniprot-TrEMBL)
NINL ProteinQ9Y2I6 (Uniprot-TrEMBL)
NPHP complexComplexR-HSA-5626668 (Reactome)
NPHP1 ProteinO15259 (Uniprot-TrEMBL)
NPHP4 ProteinO75161 (Uniprot-TrEMBL)
ODF2 ProteinQ5BJF6 (Uniprot-TrEMBL)
OFD1 ProteinO75665 (Uniprot-TrEMBL)
PAFAH1B1 ProteinP43034 (Uniprot-TrEMBL)
PCM1 ProteinQ15154 (Uniprot-TrEMBL)
PCNT ProteinO95613 (Uniprot-TrEMBL)
PDE6D ProteinO43924 (Uniprot-TrEMBL)
PDE6D:INPP5EComplexR-HSA-5624934 (Reactome)
PDE6D:INPP5EComplexR-HSA-5624936 (Reactome)
PDE6DProteinO43924 (Uniprot-TrEMBL)
PKD1 ProteinP98161 (Uniprot-TrEMBL)
PKD2 ProteinQ13563 (Uniprot-TrEMBL)
PLK1 ProteinP53350 (Uniprot-TrEMBL)
PLK4 ProteinO00444 (Uniprot-TrEMBL)
PPP2R1A ProteinP30153 (Uniprot-TrEMBL)
PRKACA ProteinP17612 (Uniprot-TrEMBL)
PRKAR2B ProteinP31323 (Uniprot-TrEMBL)
PiMetaboliteCHEBI:43474 (ChEBI)
RAB11A ProteinP62491 (Uniprot-TrEMBL)
RAB11A:GTP:Golgi derived vesicleComplexR-HSA-5637979 (Reactome)
RAB11A:GTP:RAB11FIP3

dimer:ASAP1

dimer:ARF4:GTP:VxPx-containing ciliary membrane proteins
ComplexR-HSA-5623434 (Reactome)
RAB11A:GTP:RAB11FIP3

dimer:ASAP1

dimer:VxPx-containing ciliary membrane proteins
ComplexR-HSA-5623437 (Reactome)
RAB11A:GTPComplexR-HSA-5623431 (Reactome)
RAB11FIP3 ProteinO75154 (Uniprot-TrEMBL)
RAB11FIP3 dimerComplexR-HSA-5623435 (Reactome)
RAB3IP ProteinQ96QF0 (Uniprot-TrEMBL)
RAB3IP:BBSomeComplexR-HSA-5617806 (Reactome)
RAB3IP:RAB11A:GTP:Golgi-derived vesicleComplexR-HSA-5637982 (Reactome)
RAB3IP:RAB8A:GDPComplexR-HSA-5623440 (Reactome)
RAB3IPProteinQ96QF0 (Uniprot-TrEMBL)
RAB8A ProteinP61006 (Uniprot-TrEMBL)
RAB8A:GDP:RAB3IP:RAB11A:GTP:FIP3 dimer:ASAP1 dimer:VxPx-containing ciliary membrane proteinsComplexR-HSA-5623444 (Reactome)
RAB8A:GDPComplexR-HSA-5623441 (Reactome)
RAB8A:GTP:RAB3IP:RAB11A:GTP:RAB11FIP3 dimer:ASAP1 dimer:VxPx-containing ciliary membrane proteinsComplexR-HSA-5623447 (Reactome)
RAB8A:GTP:RAB3IP:RAB11A:GTP:RAB11FIP3 dimer:ASAP1 dimer:VxPx-containing ciliary membrane proteinsComplexR-HSA-5623450 (Reactome)
RAB8A:GTPComplexR-HSA-5623445 (Reactome)
RABL5 ProteinQ9H7X7 (Uniprot-TrEMBL)
RABL5ProteinQ9H7X7 (Uniprot-TrEMBL)
RHO ProteinP08100 (Uniprot-TrEMBL)
RP2 ProteinO75695 (Uniprot-TrEMBL)
RP2:ARL3:GDP:UNC119BComplexR-HSA-5637984 (Reactome)
RP2:ARL3:GTP:UNC119B(active)ComplexR-HSA-5637988 (Reactome)
RP2:ARL3:GTP:UNC119BComplexR-HSA-5637985 (Reactome)
RP2ProteinO75695 (Uniprot-TrEMBL)
RPGRIP1L ProteinQ68CZ1 (Uniprot-TrEMBL)
SCLT1 ProteinQ96NL6 (Uniprot-TrEMBL)
SCLT1ProteinQ96NL6 (Uniprot-TrEMBL)
SDCCAG8 ProteinQ86SQ7 (Uniprot-TrEMBL)
SEPT2ProteinQ15019 (Uniprot-TrEMBL)
SFI1 ProteinA8K8P3 (Uniprot-TrEMBL)
SMO ProteinQ99835 (Uniprot-TrEMBL)
SSNA1 ProteinO43805 (Uniprot-TrEMBL)
SSTR3 ProteinP32745 (Uniprot-TrEMBL)
TCP1 ProteinP17987 (Uniprot-TrEMBL)
TCTE3 ProteinQ8IZS6 (Uniprot-TrEMBL)
TCTEX1D1 ProteinQ8N7M0 (Uniprot-TrEMBL)
TCTEX1D2 ProteinQ8WW35 (Uniprot-TrEMBL)
TCTN1 ProteinQ2MV58 (Uniprot-TrEMBL)
TCTN2 ProteinQ96GX1 (Uniprot-TrEMBL)
TCTN3 ProteinQ6NUS6 (Uniprot-TrEMBL)
TMEM216 ProteinQ9P0N5 (Uniprot-TrEMBL)
TMEM67 ProteinQ5HYA8 (Uniprot-TrEMBL)
TNPO1 ProteinQ92973 (Uniprot-TrEMBL)
TNPO1ProteinQ92973 (Uniprot-TrEMBL)
TRAF3IP1 ProteinQ8TDR0 (Uniprot-TrEMBL)
TRAF3IP1ProteinQ8TDR0 (Uniprot-TrEMBL)
TRIP11 ProteinQ15643 (Uniprot-TrEMBL)
TRIP11ProteinQ15643 (Uniprot-TrEMBL)
TTBK2 ProteinQ6IQ55 (Uniprot-TrEMBL)
TTBK2ProteinQ6IQ55 (Uniprot-TrEMBL)
TTC21B ProteinQ7Z4L5 (Uniprot-TrEMBL)
TTC21BProteinQ7Z4L5 (Uniprot-TrEMBL)
TTC26 ProteinA0AVF1 (Uniprot-TrEMBL)
TTC26ProteinA0AVF1 (Uniprot-TrEMBL)
TTC30A ProteinQ86WT1 (Uniprot-TrEMBL)
TTC30B ProteinQ8N4P2 (Uniprot-TrEMBL)
TTC30ComplexR-HSA-5637976 (Reactome)
TTC8 ProteinQ8TAM2 (Uniprot-TrEMBL)
TTC8ProteinQ8TAM2 (Uniprot-TrEMBL)
TUBA1A ProteinQ71U36 (Uniprot-TrEMBL)
TUBA4A ProteinP68366 (Uniprot-TrEMBL)
TUBB ProteinP07437 (Uniprot-TrEMBL)
TUBB4A ProteinP04350 (Uniprot-TrEMBL)
TUBB4B ProteinP68371 (Uniprot-TrEMBL)
TUBG1 ProteinP23258 (Uniprot-TrEMBL)
Tectonic-like complexComplexR-HSA-5626670 (Reactome)
UNC119B ProteinA6NIH7 (Uniprot-TrEMBL)
UNC119B:myristoylated ciliary cargoComplexR-HSA-5624105 (Reactome)
UNC119B:myristoylated ciliary cargoComplexR-HSA-5624122 (Reactome)
UNC119BProteinA6NIH7 (Uniprot-TrEMBL)
VxPx-containing

ciliary membrane

proteins
ComplexR-HSA-5620919 (Reactome)
VxPx-containing

ciliary membrane

proteins
ComplexR-HSA-5623420 (Reactome)
WDR19 ProteinQ8NEZ3 (Uniprot-TrEMBL)
WDR19ProteinQ8NEZ3 (Uniprot-TrEMBL)
WDR34 ProteinQ96EX3 (Uniprot-TrEMBL)
WDR35 ProteinQ9P2L0 (Uniprot-TrEMBL)
WDR35ProteinQ9P2L0 (Uniprot-TrEMBL)
WDR60 ProteinQ8WVS4 (Uniprot-TrEMBL)
YWHAE ProteinP62258 (Uniprot-TrEMBL)
YWHAG ProteinP61981 (Uniprot-TrEMBL)
acetylated microtubuleComplexR-HSA-5618327 (Reactome)
acetylated microtubuleR-HSA-5624939 (Reactome)
acetylated microtubule R-HSA-5624939 (Reactome)
acetylated microtubule protofilament R-HSA-8982429 (Reactome)
active dynein-2 motorsComplexR-HSA-5625410 (Reactome)
active kinesin-2 motorsComplexR-HSA-5624943 (Reactome)
anterograde IFT trainsComplexR-HSA-5624945 (Reactome)
anterograde IFT trainsComplexR-HSA-5625417 (Reactome)
basal

body:transition zone

proteins:RAB3IP:RAB11A:GTP:Golgi-derived vesicle
ComplexR-HSA-5637989 (Reactome)
basal

body:transition

zone proteins
ComplexR-HSA-5626673 (Reactome)
basal bodyComplexR-HSA-5626181 (Reactome)
centrosome:C2CD2:distal appendage proteins:TTBK2:MARK4ComplexR-HSA-5626678 (Reactome)
dynein-2ComplexR-HSA-5624940 (Reactome)
dynein-2ComplexR-HSA-5625411 (Reactome)
exocyst complex:RAB8A:GTP:RAB3IP:RAB11:GTP:RAB11FIP3 dimer:ASAP1 dimer:VxPx-containing ciliary membrane proteinsComplexR-HSA-5623455 (Reactome)
exocyst complexComplexR-HSA-5623453 (Reactome)
mother centriole:C2CD3ComplexR-HSA-5626175 (Reactome)
mother centrioleComplexR-HSA-5626171 (Reactome)
myristoylated ciliary cargoComplexR-HSA-5624099 (Reactome)
myristoylated ciliary proteinsComplexR-HSA-5624102 (Reactome)
retrograde IFT trainsComplexR-HSA-5624947 (Reactome)
retrograde IFT trainsComplexR-HSA-5625425 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ARF4:GDPArrowR-HSA-5623513 (Reactome)
ARF4:GDPR-HSA-5623508 (Reactome)
ARF4:GTP:VxPx-containing ciliary membrane proteinsArrowR-HSA-5620914 (Reactome)
ARF4:GTP:VxPx-containing ciliary membrane proteinsR-HSA-5620918 (Reactome)
ARF4:GTPArrowR-HSA-5623508 (Reactome)
ARF4:GTPR-HSA-5620914 (Reactome)
ARL13B:INPP5E:PDE6DArrowR-HSA-5624953 (Reactome)
ARL13B:INPP5E:PDE6DR-HSA-5638012 (Reactome)
ARL13B:INPP5EArrowR-HSA-5638012 (Reactome)
ARL13BR-HSA-5624953 (Reactome)
ARL3:GDPArrowR-HSA-5638016 (Reactome)
ARL3:GTP:UNC119B:myristoylated ciliary cargoArrowR-HSA-5624133 (Reactome)
ARL3:GTP:UNC119B:myristoylated ciliary cargoR-HSA-5624130 (Reactome)
ARL3:GTP:UNC119BArrowR-HSA-5624130 (Reactome)
ARL3:GTP:UNC119BR-HSA-5638004 (Reactome)
ARL3:GTPR-HSA-5624133 (Reactome)
ARL6:GTP:BBSome:ciliary cargoArrowR-HSA-5624126 (Reactome)
ARL6:GTP:BBSome:ciliary cargoArrowR-HSA-5624127 (Reactome)
ARL6:GTP:BBSome:ciliary cargoR-HSA-5624127 (Reactome)
ARL6:GTPR-HSA-5624126 (Reactome)
ASAP1

dimer:

ARF4:GTP:VxPx-containing ciliary membrane proteins
ArrowR-HSA-5620918 (Reactome)
ASAP1

dimer:

ARF4:GTP:VxPx-containing ciliary membrane proteins
R-HSA-5620921 (Reactome)
ASAP1 dimerR-HSA-5620918 (Reactome)
ATATmim-catalysisR-HSA-5618328 (Reactome)
Ac-CoAArrowR-HSA-5618331 (Reactome)
Ac-CoAR-HSA-5618328 (Reactome)
BBIP1R-HSA-5624125 (Reactome)
BBS/CCT complexArrowR-HSA-5624125 (Reactome)
BBS1R-HSA-5624125 (Reactome)
BBS2R-HSA-5624125 (Reactome)
BBS4R-HSA-5624125 (Reactome)
BBS5R-HSA-5624125 (Reactome)
BBS7R-HSA-5624125 (Reactome)
BBS9R-HSA-5624125 (Reactome)
BBSome ciliary cargoR-HSA-5624126 (Reactome)
BBSomeArrowR-HSA-5624125 (Reactome)
BBSomeR-HSA-5617815 (Reactome)
BBSomeR-HSA-5624126 (Reactome)
BBSomeR-HSA-5624129 (Reactome)
C2CD3R-HSA-5626220 (Reactome)
CCP110ArrowR-HSA-5626227 (Reactome)
CEP164R-HSA-5626223 (Reactome)
CEP83R-HSA-5626223 (Reactome)
CEP89R-HSA-5626223 (Reactome)
CEP97ArrowR-HSA-5626227 (Reactome)
CLUAPR-HSA-5617820 (Reactome)
Centrosome:C2CD3:distal appendage proteins:TTBK2ArrowR-HSA-5626228 (Reactome)
Centrosome:C2CD3:distal appendage proteins:TTBK2R-HSA-5626699 (Reactome)
Centrosome:C2CD3:distal appendage proteinsArrowR-HSA-5626223 (Reactome)
Centrosome:C2CD3:distal appendage proteinsR-HSA-5626228 (Reactome)
CoA-SHArrowR-HSA-5618328 (Reactome)
CoA-SHR-HSA-5618331 (Reactome)
FBF1R-HSA-5626223 (Reactome)
GBF1mim-catalysisR-HSA-5623508 (Reactome)
GDPArrowR-HSA-5617816 (Reactome)
GDPArrowR-HSA-5623508 (Reactome)
GDPArrowR-HSA-5623521 (Reactome)
GTPR-HSA-5617816 (Reactome)
GTPR-HSA-5623508 (Reactome)
GTPR-HSA-5623521 (Reactome)
H2OR-HSA-5623513 (Reactome)
HDAC6mim-catalysisR-HSA-5618331 (Reactome)
HSPB11R-HSA-5617820 (Reactome)
IFT AArrowR-HSA-5617829 (Reactome)
IFT AArrowR-HSA-5625421 (Reactome)
IFT AArrowR-HSA-5625424 (Reactome)
IFT AR-HSA-5624949 (Reactome)
IFT AR-HSA-5624952 (Reactome)
IFT B*ArrowR-HSA-5617820 (Reactome)
IFT B*R-HSA-5617825 (Reactome)
IFT BArrowR-HSA-5617825 (Reactome)
IFT BArrowR-HSA-5625421 (Reactome)
IFT BArrowR-HSA-5625424 (Reactome)
IFT BR-HSA-5624949 (Reactome)
IFT BR-HSA-5624952 (Reactome)
IFT122R-HSA-5617829 (Reactome)
IFT140R-HSA-5617829 (Reactome)
IFT172R-HSA-5617820 (Reactome)
IFT20:TRIP11R-HSA-5617828 (Reactome)
IFT20ArrowR-HSA-5617828 (Reactome)
IFT20R-HSA-5617825 (Reactome)
IFT27R-HSA-5617820 (Reactome)
IFT43R-HSA-5617829 (Reactome)
IFT46R-HSA-5617820 (Reactome)
IFT52R-HSA-5617820 (Reactome)
IFT57R-HSA-5617820 (Reactome)
IFT74R-HSA-5617820 (Reactome)
IFT80R-HSA-5617820 (Reactome)
IFT81R-HSA-5617820 (Reactome)
IFT88R-HSA-5617820 (Reactome)
INPP5ER-HSA-5624956 (Reactome)
KIF17 dimer:TNPO1ArrowR-HSA-5624948 (Reactome)
KIF17 dimer:TNPO1ArrowR-HSA-5624951 (Reactome)
KIF17 dimer:TNPO1R-HSA-5624948 (Reactome)
KIF17 dimerR-HSA-5624951 (Reactome)
Kinesin-2 motorsArrowR-HSA-5625421 (Reactome)
Kinesin-2 motorsArrowR-HSA-5625424 (Reactome)
Kinesin-2 motorsR-HSA-5624952 (Reactome)
LZTFL1 oligomer:BBSomeArrowR-HSA-5624129 (Reactome)
LZTFL1 oligomer:BBSomeTBarR-HSA-5624127 (Reactome)
LZTFL1 oligomerR-HSA-5624129 (Reactome)
MARK4R-HSA-5626699 (Reactome)
MicrotubuleArrowR-HSA-5618331 (Reactome)
MicrotubuleR-HSA-5618328 (Reactome)
NPHP complexR-HSA-5626681 (Reactome)
PDE6D:INPP5EArrowR-HSA-5624954 (Reactome)
PDE6D:INPP5EArrowR-HSA-5624956 (Reactome)
PDE6D:INPP5ER-HSA-5624953 (Reactome)
PDE6D:INPP5ER-HSA-5624954 (Reactome)
PDE6DArrowR-HSA-5638012 (Reactome)
PDE6DR-HSA-5624956 (Reactome)
PiArrowR-HSA-5623513 (Reactome)
R-HSA-5617815 (Reactome) The BBS1 component of the BBSome complex binds RAB3IP, a GEF for the small GTPase RAB8A. RAB3IP is required for RAB8A to localize to the cilium, and depletion of RAB3IP compromises cilia formation (Nachury et al, 2007; Loktev et al, 2008). GTP-bound RAB8A may promote ciliogenesis by promoting the traffic of post-Golgi vesicles to the base of the cilium (Nachury et al, 2007; reviewed in Zerial and McBride, 2001; Ishikawa et al, 2011; Hsiao et al, 2012; Sung and Leroux, 2013).
R-HSA-5617816 (Reactome) RAB3IP is a GEF for RAB8A, the only RAB GTPase localized in the cilium. GTP-bound RAB8A may play a role in recruiting vesicles from the Golgi to the ciliary base and is required for cilia formation (Nachury et al, 2007; Yoshimura et al, 2007; reviewed in Reiter et al, 2012).
R-HSA-5617820 (Reactome) Based on studies done in C. reinhardtii, C. elegans and mouse, the human IFT B complex likely consists of, minimally, IFT20, RABL5/IFT22, HSPB11/IFT25, IFT27, IFT46, IFT52, TRAF3IP1/IFT54, IFT74, IFT80, IFT81, IFT88, CLUAP/QILIN, IFT70/TTC30, and TTC26/IFT56, with IFT172 being an additional candidate (Follit et al, 2009; Piperno and Mead, 1997; Cole et al, 1998; Cole, 2003; Ou, 2007; Hallbritter et al, 2013; reviewed in Taschner et al, 2012). Work in C. reinhardtii and mouse suggests that IFT B consists of a salt stable core complex of IFT88, IFT81, IFT74, IFT70, IFT52, IFT46 IFT 27, IFT25 and IFT22 with peripheral, weakly associated subunits IFT 172, IFT80, IFT57, CLUAP, TTC26 and IFT20 (Lucker et al, 2005; Lucker et al, 2010; Follit et al, 2009; Bhogaraju et al, 2011). In Chlamydomonas, core components IFT81 and IFT74 have been shown to interact directly and a stable sub-complex of IFT81/74/27/25 has been demonstrated (Lucker et al, 2005; Taschner et al, 2011). Human IFT81 and IFT74 have likewise been shown to directly interact and to form a tubulin-binding complex (Bhogaraju et al, 2013). A recent study has elucidated more detail of the protein-protein interactions that direct the assembly of the IFTB complex (Taschner et al, 2014).
This reaction shows putative human IFT B proteins assembling in a single step; details of how and when this assembly occurs are not shown, nor are the specific protein-protein interactions within the complex or details of how IFT B is regulated. Moreover, this reaction shows the formation of a presumptive IFT B* complex, lacking IFT20, to allow the recruitment of IFT20 from the Golgi compartment to be depicted.
R-HSA-5617825 (Reactome) IFT20 is unique among IFT B components in that, in addition to being localized at the cilium and the centrosome, a pool of IFT20 exists at the Golgi in complex with the golgin protein TRIP11 (Follit et al, 2006; Follit et al, 2008; Follit et al, 2009). Independent of its interaction with TRIP11, IFT20 has been shown to interact with the IFT B complex member TRAF3IP1 at the cilium, and overexpression of TRAF3IP1 displaces IFT20 from the Golgi (Follit et al, 2009). Partial depletion of IFT20 disrupts the traffic of membrane proteins to the cilium (Follit et al, 2006; Follit et al, 2009). Taken together, these data suggest a model where TRAF3IP1 mediates recruitment of IFT20-carrying vesicles from the Golgi to the site of cilium assembly, thus completing assembly of the IFT B complex and delivering both lipid and protein cargo for cilium biogenesis (Follit et al, 2008; Follit et al, 2009; reviewed in Ishikawa et al, 2011).
R-HSA-5617828 (Reactome) IFT20 is a member of the IFT B anterograde complex that is required for cilia formation and that, uniquely among IFT proteins, is found at the Golgi in addition to the centrosome and the cilium. Fluorescently-labelled IFT20 shuttles between the Golgi complex and the cilium and the ciliary microtubules (Follit et al, 2006; Follit et al, 2009). Golgi-association of IFT20 depends on interaction with the peripheral membrane protein TRIP11 and this interaction occurs independently of the IFT B complex (Follit et al, 2008). Golgi-localization of IFT20 is abolished in cells lacking TRIP11, and cilia in these cells are short and have a depleted complement of polycystin-2, a ciliary-localized membrane protein (Follit et al, 2008). RNAi-depletion of IFT20 in mammalian cells similarly compromises the traffic of polycystin-2 to the cilium (Follit et al, 2006). These data suggest that IFT20 may have a role at the Golgi complex in sorting and transporting membrane proteins that are destined for the cilium (Follit et al, 2006; Follit et al, 2008; Follit et al, 2009). IFT54, another IFT B component that is localized at the cilia, interacts with IFT20 but not with TRIP11, and overexpression of IFT54 displaces IFT20 from the Golgi. This supports a model where, after dissociation of the TRIP11:IFT20 complex, IFT54 docks IFT20 at the cilium, possibly on the surface of Golgi-derived vesicles, thus completing assembly of the IFT B complex and delivering ciliary membrane and membrane proteins to the site of cilium assembly (Follit et al, 2009; Omori et al, 2008; Li et al, 2008).
R-HSA-5617829 (Reactome) The IFT A complex is believed to be composed of six components: WDR19/IFT144, IFT140, IFT122, TTC21B/IFT139, WDR35/IFT121 and IFT43 (Piperno et al, 1998; Cole and Snell, 2009; reviewed in Taschner et al, 2012). Each of these proteins was identified as a TULP3-interacting protein in human cells, supporting the notion established in other organisms that they are all components of the IFT A complex (Mukhopadhyay et al, 2010; reviewed in Taschner et al, 2012). The IFT A proteins are large and generally have similar domain organization, consisting of N-terminal WD motifs and C-terminal TPR repeats. These protein interaction domains may help the IFT A complex scaffold recruitment of the IFT B complex, as well as recruit ciliary cargo and motor proteins. Intriguingly, the domain structure of IFT A proteins is similar to that of nucleoporins and coat proteins and it has been suggested that they evolved from a coat protein precursor, consistent with a role in vesicle trafficking (Devos et al, 2004; Jekely and Arendt, 2006).
Details of protein-protein interactions within the IFT A complex are not known, nor are the details of how and where the complex assembles in a human cell.
R-HSA-5618328 (Reactome) Cilia are enriched in acetylated tubulin, a marker that is associated with stability, and the kinesin motor preferentially travels on acetylated microtubules (Johnson et al, 1998; Reed et al, 2006; Cai et al, 2009). Alpha tubulin acetyltransferase (ATAT), also known as MEC17, has been shown to catalyze the acetylation of alpha tubulin at K40 (Akella et al, 2010; Shida et al, 2010; Montagnac et al, 2013). ATAT preferentially acetylates polymerized alpha tubulin and may access the luminal K40 residue through 'breathing' of the microtubules protofilaments (Shida et al, 2010). ATAT was identified as an interacting protein with components of the BBSome, and siRNA knockdown of ATAT delays assembly of the primary cilium (Jin et al, 2010; Shida et al, 2010). BBIP1 is another component of the BBSome that has been shown to affect tubulin acetylation and stability, potentially through its interaction with HDAC6. BBIP1 exerts its effect on microtubule acetylation independently of its role as a component of the BBSome; it may exert its indirect effect by promoting ATAT-mediated acceleration, by counteracting HDAC6-mediated deacetylation, or by another mechanism (Loktev et al, 2008)
R-HSA-5618331 (Reactome) HDAC6 is a microtubule-associated deacetylase that targets the K40 acetyl groups of alpha tubulin (Hubbert et al, 2002; Loktev et al, 2008; Zhang et al, 2008). HDAC6 also interacts with BBIP1, a component of the BBSome that is required for BBSome assembly, and additionally (and independently of its role in the BBSome) plays a role in microtubule polymerization and acetylation (Loktev et al, 2008). Depletion of BBIP1 causes a marked reduction in cytoplasmic microtubule acetylation, and this defect is partially overcome by inhibition of HDAC6. These data suggest that BBIP1 may exert its effect on microtubule acetylation by negatively regulating HDAC6, although other mechanisms are also possible (Loktev et al, 2008).
R-HSA-5620914 (Reactome) ARF4 is a small GTPase that faciliates the targeting of some membrane proteins destined for the cilium. ARF4-mediated targeting of these cargo may depend in part on a VxPx-like motif in the C-terminal tails (Deretic et al, 2005; Geng et al, 2006; Jenkins et al, 2006; Mazelova et al, 2009; Ward et al, 2011; Wang et al, 2012; reviewed in Li et al, 2012). ARF4 is the only ARF protein with a role in ciliogenesis, and its localization at the TGN positions it to act as primary sorting mechanism for membrane proteins destined for the cilium (reviewed in Deretic, 2013; Li et al, 2012). ARF4 is myristoylated at the N-terminus and is membrane-associated in its GTP-bound form (reviewed in Li et al, 2012).
R-HSA-5620918 (Reactome) ASAP1 is a dimeric ARF GTPase activating protein (GAP) and scaffolding protein that is recruited to the trans-Golgi network (TGN) through interactions with activated ARF4, PI(4,5)P2 and acidic phospholipids (Brown et al, 1998; Che et al, 2005; Nie et al, 2006). Once at the TGN, ASAP1 forms a tripartite complex with ARF4 and ciliary cargo, possibly by interacting with a putative C-terminal FR targeting motif present in a number of membrane proteins destined for the cilium, although this remains to be conclusively demonstrated (Corbit et al, 2005; Wang et al, 2012; reviewed in Bhogaraju et al, 2013). In addition to its role as an ARF GAP, ASAP1 also scaffolds the recruitment of a number of other proteins required for ciliary targeting, including RAB11 and the RAB11 effector FIP3 (Mazelova et al, 2009; Inoue et al, 2008; reviewed in Deretic 2013).
R-HSA-5620921 (Reactome) Recruitment of ASAP1 to the TGN facilitates the subsequent recruitment of both RAB11A and the RAB11 effector protein FIP3 to the ciliary targeting complex. RAB11FIP3 functions as a homodimer and can bind simultaneously to RAB11 and ARF4 through its C-terminal region (Inoue et al, 2008; Mazelova et al, 2009; Wang et al, 2012; Shiba et al, 2006; Eathiraj et al, 2006; Schonteich et al, 2007). RAB11FIP3 also interacts with the BAR domain of ASAP1 and in this way may play a role in stimulating the ARF GAP activity of ASAP1, promoting the inactivation ARF4 and its subsequent dissociation from the TGN (Inoue et al, 2008; reviewed in Deretic, 2013).
R-HSA-5623508 (Reactome) GBF1 promotes guanine nucleotide exchange on ARF4 at the Golgi membrane, activating the small GTPase and promoting its association with the Golgi membrane (Szul et al, 2007; reviewed in Deretic, 2013). Activated ARF4 at the trans-Golgi network may represent the initial sorting point for membrane proteins destined for the cilium (reviewed in Li et al, 2012).
R-HSA-5623513 (Reactome) Recruitment of RAB11FIP3 to the trans-Golgi network (TGN) simulates ASAP1 to activate the ARF4 GTPase activity, causing the hydrolysis of GTP and the release of ARF4:GDP from the Golgi membrane (Mazelova et al, 2009; Inoue et al, 2008; reviewed in Deretic, 2013).
R-HSA-5623519 (Reactome) RAB8A is another small GTPase that is required for ciliogenesis. RAB8A is recruited to the ciliary targeting complex at the trans-Golgi network (TGN) through interactions of the RAB8A guanine nucleotide exchange factor (GEF) RAB3IP (also known as RABIN8) with ASAP1 and RAB11 (Wang et al, 2012; Westlake et al, 2011; Feng et al, 2012; reviewed in Deretic, 2013). RAB8A is recruited in the inactive GDP bound form, and is activated at the TGN by RAB3IP in a RAB11A-dependent fashion (Hatulla et al, 2002; Knodler et al, 2010; Westlake et al, 2012; Wang et al, 2012; Feng et al, 2012).
R-HSA-5623521 (Reactome) Once recruited to the ciliary targeting complex, RAB3IP/RABIN8 stimulates nucleotide exchange on RAB8A. Activated RAB8A is required for ciliogenesis and plays a role in mediating vesicle docking at the basal body, providing both lipid and protein content to the emerging cilium (Hattula et al, 2002; Knodler et al, 2010; Nachury et al, 2007; Wang et al, 2012; Westlake et al, 2011; Yoshimura et al, 2007; reviewed in Deretic, 2013; Sung and Leroux, 2013).


R-HSA-5623524 (Reactome) RAB3IP interacts directly with the EXOC6/SEC15 component of the exocyst, recruiting this membrane-targeting complex to the Golgi-derived vesicles (Feng et al, 2012; reviewed in Deretic, 2013). The exocyst is an octameric complex with roles in tethering and fusion of secretory vesicles with target membranes. A number of the exocyst components have been shown to be localized to the ciliary base and/or to be required for ciliogenesis. Consistent with this, IQCB1/NPHP5, a component of the basal body, has been shown to interact with members of the exocyst complex (Wu et al, 2005; Rogers et al, 2004; Zuo et al, 2009; Feng et al, 2012; Sang et al, 2011; reviewed in Das and Guo, 2011; Heider and Munson, 2012).
R-HSA-5623525 (Reactome) Membrane budding at the trans-Golgi network is promoted at least in part by the BAR domain of ASAP1, which is involved in sensing and inducing membrane curvature as well as providing the recognition site for small GTPases (Nie et al, 2006; Jian et al, 2009; Inoue et al, 2008; reviewed in Masuda et al, 2010). Oligomerization between ASAP1 and RAB11FIP3 may contribute to coat formation on vesicles budding from the TGN and destined for the plasma or ciliary membrane (Inoue et al, 2008; Mazelova et al, 2009; reviewed in Deretic, 2013).
R-HSA-5623527 (Reactome) Exocyst-mediated fusion of the Golgi-derived vesicle delivers the VxPx-containing membrane proteins to the ciliary membrane, although the precise mechanisms remain to be worked out (Mazelova et al, 2009; Wang et al, 2012; reviewed in Sung and Leroux, 2013). Vesicles carrying membrane proteins destined for the cilum may fuse at the periciliary membrane at the base of the cilium and deliver cargo to the IFT system. Ciliary membrane proteins may also diffuse laterally into the periciliary membrane after fusion of vesicles with the plasma membrane (reviewed in Hsiao et al, 2012; Sung and Leroux, 2013). Although not depicted in this reaction, there is evidence that some of the protein-protein interactions of the ciliary-targeting complex may persist into the periciliary or ciliary membrane region (Wang et al, 2012).
R-HSA-5624125 (Reactome) The BBSome is a complex of 8 conserved proteins with roles in ciliary trafficking (Nachury et al, 2007; Loktev et al, 2008; reviewed in Nachury et al, 2010; Hsiao et al, 2012). Mutations in the BBS genes leads to Bardet-Biedl syndrome, a heterogeneous ciliopathy characterized by obesity, blindness, cystic kidney disease, retinitis pigmentosa, polydactyly, mental retardation, and renal failure in some cases (reviewed in Tobin and Beales, 2009). The BBSome is the primary effector of ARL6/BBS3, a small GTPase that recruits the BBSome and associated membrane proteins destined for the cilium to membranes (Jin et al, 2010; Nachury et al, 2007; Zhang et al, 2011; Seo et al 2011). The BBSome also interacts with the RAB8A guanine nucleotide exchange factor RAB3IP, and in this way promotes the recruitment of RAB8A to the cilium (Nachury et al, 2007). Components of the BBSome are enriched in beta propeller and TPR domains and have been shown to form linear arrays on liposomes (Jin et al, 2010). Where these arrays form, and how they contribute to ciliary targeting remains to be elucidated (Jin et al, 2010; reviewed in Nachury et al, 2010).

In mammalian cells, formation of the BBSome depends on a BBS/CCT complex that consists of MKKS/BBS6, BBS10, BBS12 and 6 members of the CCT/TRiC family of chaperonins. The BBS/CCT complex interacts with a subset of the BBSome protein and plays a role in the BBS7 stability, promoting the formation of an intermediate "BBSome core complex" (Seo et al, 2010; Jin et al, 2010; Zhang el al, 2012).
R-HSA-5624126 (Reactome) ARL6 is a small GTPase that was also identified as BBS3, a gene that when mutated gives rise to the ciliopathy Bardet-Biedel syndrome (Chiang et al, 2004; Fan et al, 2004). In its GTP-form, membrane-associated ARL6 recruits the BBSome along with BBSome-associated cargo such as SSTR3, MHCR1 or SMO to the cilium (Jin et al, 2010; Zhang et al, 2011; Seo et al, 2011). Binding of IFT27 to the nucleotide-free form of ARL6 may also play a role in promoting the exit of the BBSome from the cilium (Liew et al, 2014). The BBSome, a complex consisting of BBS1, BBS2, BBS4, BBS5, BBS7, BBC9, TTC8/BBS8 and BBIP10 is thought to contribute to ciliary targeting, either by promoting budding of vesicles from the secretory pathway or through lateral diffusion of BBSome-enriched 'rafts' from the plasma membrane as indicated in this reaction (Jin et al, 2010; reviewed in Li et al, 2012; Sung and Leroux, 2013; Nachury et al, 2010). The interaction between the BBSome and ARL6 is mediated by the N-terminal B-propeller domain of BBSome component BBS1 (Jin et al, 2010). BBSome function is negatively regulated by LZTFL1, which forms a complex with the BBSome in the cytosol and inhibits its traffic to the cilium (Seo et al, 2011).
R-HSA-5624127 (Reactome) ARL6:GTP and the BBSome complex are required for the ciliary accumulation of proteins such as SSTR3, MHRC1 and SMO (Zhang et al, 2011; Jin et al, 2010; Seo et al, 2011; reviewed in Nachury et al, 2010; Sung and Leroux, 2013). BBSome localization to the primary cilium is negatively regulated by LZTFL1, and ciliary accumulation of some BBSome cargo is increased by LZTFL1 depletion (Seo et al, 2011).
R-HSA-5624129 (Reactome) LZTFL1 was identified as a tumor suppressor and as a protein that interacts with components of the BBSome (Wei et al, 2010; Seo et al, 2011). LZTFL1 forms cytosolic complexes with the BBSome and negatively regulates its entry into the cilium without affecting the assembly or stability of the BBSome complex. Both the BBSome and LZTFL1 have been shown to regulate the localization of the Hh signaling protein SMO (Seo et al, 2011). A recent study suggests that LZTFL1 may additionally play a role in coordinating the interaction between the BBSome and the IFT B component IFT27 and in this way contribute to the traffic of Hh pathway proteins into and out of the cilium (Eguether et al, 2014).
R-HSA-5624130 (Reactome) Binding of ARL3 to UNC119B induces a conformational change that obstructs UNC119B cargo-binding and promotes the release of the myrisoylated cargo into the ciliary membrane (Wright et al, 2011; Ismail et al, 2012).
R-HSA-5624131 (Reactome) UNC119B is an ARL3 effector that binds directly to the myristoyl moieties at glycine 2 of NPHP3 and CYS1 (Wright et al, 2011). Myristoylation is required for the ciliary localization of these proteins (Wright et al, 2011; Tao et al, 2006), and both mutation of the glycine 2 myristoylation target in NPHP3 and siRNA knockdown of UNC119B dramatically reduce the ciliary localization of NPHP3 and CYS1 (Tao et al, 2006; Wright et al, 2011; reviewed in Schwarz et al, 2012).
R-HSA-5624132 (Reactome) UNC119B promotes the translocation of myristoylated NPHP3 from the ER membrane to the cilium by an unknown mechanism. Ciliary localization depends both on myristoylation and UNC119B, as mutation of the glycine 2 acceptor site or siRNA knockdown of UNC119B drastically reduces the amount of NPHP3 or CYS1 in the cilium (Wright et al, 2011).
R-HSA-5624133 (Reactome) ARL3 is an ARF-like small GTPase that is localized to the cilium in both the GDP- and the GTP-bound form (Zhou et al, 2006; Wright et al, 2011). ARL3 binds UNC119B in a GTP-dependent fashion and is required for the ciliary localization of NPHP3 and CYS1. Upon GTPase activation, ARL3 promotes the transfer of the myristoylated cargo into the ciliary membrane (Wright et al, 2011).
R-HSA-5624948 (Reactome) Ciliary localization of the alternative kinesin-2 motor KIF17 depends on TNPO1 and the RAN:GDP/RAN:GTP gradient. Once in the cilium, the TNPO1:KIF17 complex is likely dissociated by RAN:GTP binding and subsequent GTP hydrolysis, freeing KIF17 to play its role in anterograde IFT transport (Dishinger et al, 2010).
R-HSA-5624949 (Reactome) IFT particles were first characterized in Chlamydomonas reinhardtii, where they were observed by differential interference contrast microscopy as electron-dense granules that move along doublet microtubules of the ciliary axoneme (Kozminski et al, 1993; Kozminski et al, 1995; reviewed in Pedersen et al, 2008). More recent ultrastructural analysis of Chlamydomonas flagella confirms the presence of two distinct types of IFT trains, a longer, less electron-opaque anterograde train and shorter, more opaque retrograde trains. Both the anterograde and retrograde trains are associated with the outer microtubule doublets and with the inner surface of the flagellar membrane (Pigino et al, 2009). Isolation and characterization of IFT particles revealed that they consist of 2 biochemically distinct subcomplexes, IFT A and IFT B that are widely conserved in ciliated organisms (Piperno et al, 1997; Cole et al, 1998; reviewed in Sung and Leroux, 2013). Anterograde traffic is driven by kinesin-2 type motors in an ATP-dependent manner. Evidence from C. elegans suggests distinct and sequential roles for the canonical heterotrimeric kinesin-2 motor and the alternate homodimeric kinesin-2, OSM-3 (homologue of human KIF17) in mediating anterograde transport, but this has not been demonstrated in human cells where the canonical kinesin-2 motor predominates (Evans et al, 2006; Snow et al, 2004; Ou et al, 2005). Human KIF17 appears to be required in some cell types for cilia formation, and plays a role in the import of some ciliary cargo (Jenkins et al, 2006; Insinna et al, 2008; Insinna et al, 2009; Dishinger et al, 2010; reviewed in Verhey et al, 2011). Assembly of the anterograde IFT trains at the base of the cilium may be facilitated by the BBSome complex, which has also been shown to display IFT-like movement along the axoneme; however, the BBSome is highly sub-stoichiometric with respect to the IFT complex, so this notion requires more substantiation (Ou et al, 2005; Wei et al, 2012; Blacque et al, 2004; Nachury et al, 2007; Lechtreck et al, 2009; reviewed in Sung and Leroux, 2013). Studies in C. elegans also suggest a role for ARL13B and ARL3 in regulating the stability of the anterograde IFT train (Li et al, 2010).
R-HSA-5624951 (Reactome) KIF17 is an alternate kinesin-2 motor that is required in some cell types for anterograde IFT and for the ciliary localization of CNG (Ou et al, 2005; Jenkins et al, 2006; Insinna et al, 2008; Insinna et al, 2009; Li et al, 2010; reviewed in Scholey, 2008; Verhey et al, 2011). KIF17 contains a C-terminal ciliary localization signal that mediates its interaction with nuclear import factor TNPO1 (importin beta-2). This interaction is required for the ciliary targeting of KIF17 and is regulated by RAN GTP levels such that the interaction is promoted in the cytosol where RAN:GTP levels are low, and is destabilized in the cilium where RAN:GTP levels are high (Dishinger et al, 2010). The roles of TNPO1 and the RAN:GTP gradient in promoting ciliary localization of KIF17 are analogous to their roles in nuclear import and provide evidence for the first time of conserved mechanisms governing nuclear and ciliary localization (Dishinger et al, 2010; Devos et al, 2004; Gruss, 2010).
R-HSA-5624952 (Reactome) Remodelling of IFT trains is thought to occur at the ciliary tip (Iomini et al, 2001; Buisson et al, 2013; reviewed in Snell and Cole, 2009). Retrograde transport is driven by the multi-subunit dynein-2 motor in an ATP-dependent fashion (Hou et al, 2004; Pazour et al, 1999; Porter et al, 1999; reviewed in Cole and Snell, 2009; Ishikawa et al, 2011). Mutations in genes encoding members of the IFT A complex or the dynein-2 motor generally result in short, swollen cilia that abnormally acccumulate IFT components (Iomini et al, 2009; Piperno et al, 1998; Pazour et al, 1999). The subunit composition of the human dynein-2 complex has recently been analyzed and preliminary characterization of the IFT A complex has begun, but detailed understanding of the molecular architecture of the retrograde IFT trains is still lacking (Assante et al, 2014; Piperno et al, 1998; Mukhopadhyay et al, 2010; reviewed in Taschner et al, 2012).
R-HSA-5624953 (Reactome) The small GTPase ARL13B is required for the ciliary localization of INPP5E. ARL13B binds directly to INPP5E and is thought to displace PDE6D from the complex (Humbert et al, 2012).
R-HSA-5624954 (Reactome) INPP5E is a ciliary peripheral membrane protein that is associated with the ciliopathy Joubert's Syndrome (Bielas et al, 2009; Jacoby et al, 2009). Ciliary localization of the full-length protein depends on a targeting sequence and interactions with PDE6D and ARL13B, although the detailed mechanism remains unresolved (Humbert et al, 2012).
R-HSA-5624956 (Reactome) The inositol polyphosphate phosphatase INPP5E is a ciliary localized peripheral membrane protein with a CaaX prenylation motif in its C-terminus (Jacoby et al, 2009; Bielas et al, 2009; Humbert et al, 2012). This motif is downstream of the ciliary targeting sequence and prenylation is not required for the ciliary localization of INPP5E. The CaaX motif is required for the interaction between INPP5E and the phosphodiesterase PDE6D, and PDE6D is required for the ciliary localization of full length INPP5E but not a truncated solubilized form. These data suggest that PDE6D may play a role in extracting prenylated INPP5E from a donor membrane prior to ciliary targeting (Humbert et al, 2012).
R-HSA-5625416 (Reactome) Anterograde trains travel along the axoneme of the cilium at an estimated rate of 2 micrometers per second in an ATP- and kinesin-2-dependent fashion (reviewed in Cole and Snell, 2009). Although the particulars of IFT train-cargo interactions have not been fully elaborated, recent studies in C. reinhardtii and human cells have shown that the IFT B components IFT74 and IFT81 have tubulin-binding sites, while IFT46 is required for the ciliary transport of the outer dynein arm, and more recently, TTC26 has been shown to be required for the transport of motility-related proteins into the flagella (Bhogaraju et al, 2013; Ahmed et al, 2008; Hou et al, 2007; Ishikawa et al, 2014; reviewed in Bhogarju et al, 2014).
R-HSA-5625421 (Reactome) Based on work done in C. reinhardtii and Trypanosoma brucei, anterograde IFT trains are believed to disassemble at the ciliary tip, releasing cargo and the IFT motors. Smaller retrograde trains are subsequently reassembled for transport back to the ciliary base (Iomini et al, 2001; Buisson et al, 2013; Pigino et al, 2009; reviewed in Ishikawa et al, 2011; Bhogaraju et al, 2013). A direct interaction between IFT27 and the nucleotide-free form of ARL6 may contribute to ARL6 activation and in this way contribute to ciliary exit of some cargo (Liew et al, 2014).
R-HSA-5625424 (Reactome) At the base of the cilium, retrograde trains are believed to disassemble and recycle for a subsequent round of IFT transport (Iomini et al, 2001; Buisson et al, 2013; reviewed in Ishikawa et al, 2011; Cole and Snell, 2009).
R-HSA-5625426 (Reactome) Retrograde trains are shorter than anterograde particles and travel along the cilliary axoneme at an estimated rate of 3 micrometers per second (reviewed in Cole and Snell, 2009).
R-HSA-5626220 (Reactome) C2 domain-containing protein 3 (C2CD3) is basal body-localized protein that is required for ciliogenesis and Hh signaling (Hoover et al, 2008; Balestra et al, 2013). C2CD3 is recruited to the centrosome in a pericentriolar material 1 protein (PCM1)- and microtubule-dependent manner and is required for the subsequent recruitment of the distal appendage proteins to the mother centriole (Tanos et al, 2013; Sillibourne et al, 2013; Ye et al, 2014; reviewed in Winey and O'Toole, 2014). The distal appendage proteins are thought to be a component of the transition fibres that anchor the basal body to the membrane at the base of the cilium and are themselves required for the recruitment of Tau-tubulin kinase 2 (TTBK2) and for docking ciliary vesicles to the mother centriole (Tanos et al, 2013; Wei et al, 2013; Joo et al, 2013; Schmidt et al, 2012; Sillibourne et al, 2013; Burke et al, 2014).
R-HSA-5626223 (Reactome) C2CD3 and the centrosome component OFD1 are required for the recruitment of distal appendage proteins CEP164, CEP83/CCDC41, CEP89, FBF1 and SCLT1 to the mother centriole (Ye et al, 2014; Tang et al, 2013; Singla et al, 2010). Distal appendage proteins are believed to form part of the transition fibres that anchor the basal bodies to the actin rich cortex at the base of the emerging cilium, and are also required for the recruitment and binding of ciliary vesicles and intraflagellar transport (IFT) complexes (Tanos et al, 2013; Wei et al, 2013; Joo et al, 2010; Schmidt et al, 2012; Sillibourne et al, 2013; Ye et al, 2014; reviewed in Winey and O'Toole, 2014).
R-HSA-5626227 (Reactome) CCP110 is a negative regulator of ciliogenesis that caps the mother centriole. CCP110 may inhibit ciliogenesis in part by preventing the CEP290-dependent recruitment of RAB8A to the centrosome and cilia (Spektor et al, 2007; Tsang et al, 2008; reviewed in Tsang and Dynlacht, 2013). CCP110 and CEP97 also form a complex with the KIF24, a kinesin with centriolar microtubule depolymerizing activity that is required for the initial recruitment and/or stability of CCP110 at the centriole (Kobayashi et al, 2011). Recruitment of TTBK2 promotes the displacement of CCP110 and its binding partner CEP97. This results in the formation of a basal body and promotes recruitment of IFT complex members and allows axonemal extension to occur (Goetz et al, 2012; Ye et al, 2014; reviewed in Tsang and Dynlacht, 2013). Although the kinase activity of TTBK2 is required for cilium formation and TTBK2 has been shown to phosphorylate CEP164, the relevant physiological target during ciliogenesis has not been unambiguously identified (Cajanek et al, 2014). Similarly, the kinase activity of MARK4 is also required for ciliogenesis, and the interaction between MARK4 and ODF2, a putative substrate, is needed to promote the dissociation of the CCP110 and CEP97 proteins from the centriole (Kuhns et al, 2013; reviewed in Kim and Dynlacht, 2013).
R-HSA-5626228 (Reactome) C2CD3 and the distal appendage protein CEP164 are required for the recruitment of the kinase Tau tubulin kinase 2 (TTBK2) to the centriole (Ye et al, 2014; Cajanek et al, 2014). TTBK2 recruitment promotes the release of CCP110, a negative regulator of ciliogenesis that caps the mother centriole (Goetz et al, 2012; Ye et al, 2014; Tsang et al, 2008; Spektor et al, 2007). CCP110 is initially recruited and/or stabilized at the mother centriole in a KIF24-dependent manner; KIF24, a kinesin-like protein, also restricts ciliogenesis through its microtubule depolymerizing activity (Kobayashi et al, 2011). In addition to promoting the release of CCP110, TTBK2 also plays a role in the recruitment of intraflagellar transport (IFT) proteins and in this way contributes to extension of the ciliary axoneme (Goetz et al, 2012; Ye et al, 2014). Mutations in TTBK2 disrupt ciliogenesis and are associated with the development of spinocerebellar ataxia (Houlden et al, 2007; Bouskila et al, 2011; reviewed in Jackson, 2012).
R-HSA-5626681 (Reactome) The transition zone is a protein-rich zone at the base of the cilium that forms after maturation of the mother centriole and prior to or concurrent with the initiation of intraflagellar transport (IFT) (reviewed in Benzing and Schermer, 2011; Reiter et al, 2012). The transition zone consists of a growing number of proteins and protein complexes, many of whose genes are associated with ciliopathies such as nephronophthisis, Meckel-Gruber syndrome and Joubert's syndrome (Reiter et al, 2006; Hu et al, 2010; Sang et al, 2011; Williams et al, 2011; Garcia-Gonzalo et al, 2011; Chih et al, 2012; reviewed in Reiter et al, 2012). In conjunction with SEPT2, which was recently shown to form a septin ring diffusion barrier at the base of the cilium, the transition zone and its resident proteins contribute to protein sorting and ciliary membrane composition and act as a ciliary gate (Hu et al, 2010; Williams et al, 2011; Garcia-Gonzalo et al, 2011; Chih et al, 2012; reviewed in Reiter et al, 2012).
R-HSA-5626699 (Reactome) MARK4 (microtubule associated protein/microtubule affinity regulating kinase 4) was identified in a screen as a positive regulator of ciliogenesis (Kuhns et al, 2013). MARK4 interacts at the centriole with the subdistal appendage component ODF2 and this interaction is required to promote axonemal extension (Kuhns et al, 2013; reviewed in Kim and Dynlacht, 2013). Like Tau tubulin kinase 2 (TTBK2), MARK4 appears to have a role in promoting the dissociation of CCP110 and CEP97, uncapping the centriole and allowing axonemal extension to take place (Kuhns et al, 2013; Ye et al, 2014;; Goetz et al, 2012). Although this reaction shows that MARK4 is recruited to the centriole subsequent to TTBK2, the timing of the ODF2:MARK4 interaction is not known.
R-HSA-5638004 (Reactome) RP2 is an ARL3 GAP that is localized to the cilium and plays a role in trafficking proteins from the Golgi to the ciliary membrane (Veltel et al, 2008a; Hurd et al, 2011; Evans et al, 2010; Wright et al, 2011). RP2 forms a ternary complex with UNC119B and ARL3, activating the ARL3 GTPase activity and promoting the release of UNC119B (Veltel et al, 2008b; Wright et al, 2011; Kuhnel et al, 2006; reviewed in Schwarz et al, 2012; Li et al, 2012)
R-HSA-5638006 (Reactome) RP2 is an ARL3 GAP that is localized to the cilium and plays a role in trafficking proteins from the Golgi to the ciliary membrane (Veltel et al, 2008a; Hurd et al, 2011; Evans et al, 2010; Wright et al, 2011). RP2 forms a ternary complex with UNC119B and ARL3, activating the ARL3 GTPase activity and promoting the release of UNC119B (Veltel et al, 2008b; Wright et al, 2011; Kuhnel et al, 2006; reviewed in Schwarz et al, 2012; Li et al, 2012)
R-HSA-5638007 (Reactome) RP2 is an ARL3 GAP that is localized to the cilium and plays a role in trafficking proteins from the Golgi to the ciliary membrane (Veltel et al, 2008a; Hurd et al, 2011; Evans et al, 2010; Wright et al, 2011). RP2 forms a ternary complex with UNC119B and ARL3, activating the ARL3 GTPase activity and promoting the release of UNC119B (Veltel et al, 2008b; Wright et al, 2011; Kuhnel et al, 2006; reviewed in Schwarz et al, 2012; Li et al, 2012)
R-HSA-5638009 (Reactome) The distal appendage protein CEP164 interacts with RAB3IP, and in this way recruits Golgi-derived vesicles to the basal body to initiate ciliary membrane biogenesis (Schmidt et al, 2012; Westlake et al, 2011; Rohatgi and Snell, 2010). RAB3IP recruitment to the distal appendages of centrioles promotes the appropriate localization and activation of RAB8A (Nachury et al, 2007; Yoshimura et al, 2007; Westlake et al, 2011; Schmidt et al, 2012).
R-HSA-5638012 (Reactome) ARL13B promotes the ciliary localization of INPP5E by interacting with it directly and displacing PDE6D from the complex (Humbert et al, 2012).
R-HSA-5638014 (Reactome) The RAB8 guanine nucleotide exchange factor RAB3IP/RABIN8 is recruited to vesicles through interaction with membrane-tethered RAB11:GTP (Westlake et al, 2011; Knodler et al, 2010). Recruitment of RAB3IP may also depend on the TRAPPCII complex, a multiprotein complex with roles in vesicular trafficking (Westlake et al, 2011; reviewed in Sacher et al, 2008). RAB3IP is required for RAB8A to localize to the cilium, and depletion of RAB3IP compromises cilia formation (Nachury et al, 2007; Loktev et al, 2008). GTP-bound RAB8A may promote ciliogenesis by promoting the traffic of post-Golgi vesicles to the base of the cilium (Nachury et al, 2007; Westlake et al, 2011; Feng et al, 2012; reviewed in Reiter et al, 2012)
R-HSA-5638016 (Reactome) ARL3 hydrolysis of GTP promotes the release of UNC119B, dissociating the complex (Wright et al, 2011; reveiwed in Schwarz et al, 2012).
RAB11A:GTP:Golgi derived vesicleR-HSA-5638014 (Reactome)
RAB11A:GTP:RAB11FIP3

dimer:ASAP1

dimer:ARF4:GTP:VxPx-containing ciliary membrane proteins
ArrowR-HSA-5620921 (Reactome)
RAB11A:GTP:RAB11FIP3

dimer:ASAP1

dimer:ARF4:GTP:VxPx-containing ciliary membrane proteins
R-HSA-5623513 (Reactome)
RAB11A:GTP:RAB11FIP3

dimer:ASAP1

dimer:ARF4:GTP:VxPx-containing ciliary membrane proteins
mim-catalysisR-HSA-5623513 (Reactome)
RAB11A:GTP:RAB11FIP3

dimer:ASAP1

dimer:VxPx-containing ciliary membrane proteins
ArrowR-HSA-5623513 (Reactome)
RAB11A:GTP:RAB11FIP3

dimer:ASAP1

dimer:VxPx-containing ciliary membrane proteins
R-HSA-5623519 (Reactome)
RAB11A:GTPR-HSA-5620921 (Reactome)
RAB11FIP3 dimerR-HSA-5620921 (Reactome)
RAB3IP:BBSomeArrowR-HSA-5617815 (Reactome)
RAB3IP:RAB11A:GTP:Golgi-derived vesicleArrowR-HSA-5638014 (Reactome)
RAB3IP:RAB11A:GTP:Golgi-derived vesicleR-HSA-5638009 (Reactome)
RAB3IP:RAB8A:GDPR-HSA-5623519 (Reactome)
RAB3IPR-HSA-5617815 (Reactome)
RAB3IPR-HSA-5638014 (Reactome)
RAB8A:GDP:RAB3IP:RAB11A:GTP:FIP3 dimer:ASAP1 dimer:VxPx-containing ciliary membrane proteinsArrowR-HSA-5623519 (Reactome)
RAB8A:GDP:RAB3IP:RAB11A:GTP:FIP3 dimer:ASAP1 dimer:VxPx-containing ciliary membrane proteinsR-HSA-5623521 (Reactome)
RAB8A:GDP:RAB3IP:RAB11A:GTP:FIP3 dimer:ASAP1 dimer:VxPx-containing ciliary membrane proteinsmim-catalysisR-HSA-5623521 (Reactome)
RAB8A:GDPR-HSA-5617816 (Reactome)
RAB8A:GTP:RAB3IP:RAB11A:GTP:RAB11FIP3 dimer:ASAP1 dimer:VxPx-containing ciliary membrane proteinsArrowR-HSA-5623521 (Reactome)
RAB8A:GTP:RAB3IP:RAB11A:GTP:RAB11FIP3 dimer:ASAP1 dimer:VxPx-containing ciliary membrane proteinsArrowR-HSA-5623525 (Reactome)
RAB8A:GTP:RAB3IP:RAB11A:GTP:RAB11FIP3 dimer:ASAP1 dimer:VxPx-containing ciliary membrane proteinsR-HSA-5623524 (Reactome)
RAB8A:GTP:RAB3IP:RAB11A:GTP:RAB11FIP3 dimer:ASAP1 dimer:VxPx-containing ciliary membrane proteinsR-HSA-5623525 (Reactome)
RAB8A:GTPArrowR-HSA-5617816 (Reactome)
RABL5R-HSA-5617820 (Reactome)
RP2:ARL3:GDP:UNC119BArrowR-HSA-5638006 (Reactome)
RP2:ARL3:GDP:UNC119BR-HSA-5638016 (Reactome)
RP2:ARL3:GTP:UNC119B(active)ArrowR-HSA-5638007 (Reactome)
RP2:ARL3:GTP:UNC119B(active)R-HSA-5638006 (Reactome)
RP2:ARL3:GTP:UNC119B(active)mim-catalysisR-HSA-5638006 (Reactome)
RP2:ARL3:GTP:UNC119BArrowR-HSA-5638004 (Reactome)
RP2:ARL3:GTP:UNC119BR-HSA-5638007 (Reactome)
RP2ArrowR-HSA-5638016 (Reactome)
RP2R-HSA-5638004 (Reactome)
RP2mim-catalysisR-HSA-5638007 (Reactome)
SCLT1R-HSA-5626223 (Reactome)
SEPT2ArrowR-HSA-5626681 (Reactome)
TNPO1R-HSA-5624951 (Reactome)
TRAF3IP1R-HSA-5617820 (Reactome)
TRIP11ArrowR-HSA-5617828 (Reactome)
TTBK2R-HSA-5626228 (Reactome)
TTC21BR-HSA-5617829 (Reactome)
TTC26R-HSA-5617820 (Reactome)
TTC30R-HSA-5617820 (Reactome)
TTC8R-HSA-5624125 (Reactome)
Tectonic-like complexR-HSA-5626681 (Reactome)
UNC119B:myristoylated ciliary cargoArrowR-HSA-5624131 (Reactome)
UNC119B:myristoylated ciliary cargoArrowR-HSA-5624132 (Reactome)
UNC119B:myristoylated ciliary cargoR-HSA-5624132 (Reactome)
UNC119B:myristoylated ciliary cargoR-HSA-5624133 (Reactome)
UNC119BArrowR-HSA-5638016 (Reactome)
UNC119BR-HSA-5624131 (Reactome)
VxPx-containing

ciliary membrane

proteins
ArrowR-HSA-5623527 (Reactome)
VxPx-containing

ciliary membrane

proteins
R-HSA-5620914 (Reactome)
WDR19R-HSA-5617829 (Reactome)
WDR35R-HSA-5617829 (Reactome)
acetylated microtubuleArrowR-HSA-5618328 (Reactome)
acetylated microtubuleArrowR-HSA-5625421 (Reactome)
acetylated microtubuleArrowR-HSA-5625424 (Reactome)
acetylated microtubuleR-HSA-5618331 (Reactome)
active dynein-2 motorsR-HSA-5624952 (Reactome)
active kinesin-2 motorsR-HSA-5624949 (Reactome)
anterograde IFT trainsArrowR-HSA-5624949 (Reactome)
anterograde IFT trainsArrowR-HSA-5625416 (Reactome)
anterograde IFT trainsR-HSA-5625416 (Reactome)
anterograde IFT trainsR-HSA-5625421 (Reactome)
basal

body:transition zone

proteins:RAB3IP:RAB11A:GTP:Golgi-derived vesicle
ArrowR-HSA-5638009 (Reactome)
basal

body:transition zone

proteins:RAB3IP:RAB11A:GTP:Golgi-derived vesicle
mim-catalysisR-HSA-5617816 (Reactome)
basal

body:transition

zone proteins
ArrowR-HSA-5626681 (Reactome)
basal

body:transition

zone proteins
R-HSA-5638009 (Reactome)
basal bodyArrowR-HSA-5626227 (Reactome)
basal bodyR-HSA-5626681 (Reactome)
centrosome:C2CD2:distal appendage proteins:TTBK2:MARK4ArrowR-HSA-5626699 (Reactome)
centrosome:C2CD2:distal appendage proteins:TTBK2:MARK4R-HSA-5626227 (Reactome)
dynein-2ArrowR-HSA-5625421 (Reactome)
dynein-2ArrowR-HSA-5625424 (Reactome)
dynein-2R-HSA-5624949 (Reactome)
exocyst complex:RAB8A:GTP:RAB3IP:RAB11:GTP:RAB11FIP3 dimer:ASAP1 dimer:VxPx-containing ciliary membrane proteinsArrowR-HSA-5623524 (Reactome)
exocyst complex:RAB8A:GTP:RAB3IP:RAB11:GTP:RAB11FIP3 dimer:ASAP1 dimer:VxPx-containing ciliary membrane proteinsR-HSA-5623527 (Reactome)
exocyst complexR-HSA-5623524 (Reactome)
mother centriole:C2CD3ArrowR-HSA-5626220 (Reactome)
mother centriole:C2CD3R-HSA-5626223 (Reactome)
mother centrioleR-HSA-5626220 (Reactome)
myristoylated ciliary cargoR-HSA-5624131 (Reactome)
myristoylated ciliary proteinsArrowR-HSA-5624130 (Reactome)
retrograde IFT trainsArrowR-HSA-5624952 (Reactome)
retrograde IFT trainsArrowR-HSA-5625426 (Reactome)
retrograde IFT trainsR-HSA-5625424 (Reactome)
retrograde IFT trainsR-HSA-5625426 (Reactome)
Personal tools