G alpha (i) signaling events (Homo sapiens)

From WikiPathways

Jump to: navigation, search
29, 41232, 252, 25185, 19, 2412, 157, 14, 39182, 2533522, 23, 26, 397, 14, 397, 14, 391817cytosolPPYR1 TAS2R42 GNG5 UTP NPY1R MLT Cucurbitacin B Mg2+ GNG2 TAS2R60 G alpha (i): GTPHTR1D GNG4 GALR1 APP(672-713) SAA1(19-122) Cascarillin GNAI2 Cucurbitacin E PENK(210-214) GNG2 PNOC(130-146) RGS12 NMU GNAT3 NPY2R TAS2R5 FPR2 FPR3 CCR9 ASP GPR55 Limonin DRD3 GNG2 CCL27 Mg2+ Phenethyl isothiocyanate NPB(25-53) GRM3 GNG13 PENK(210-214) FMLP 5HT HCAR3 CXCR3 TAS2R4 CCR7 Hist RGS21 GNG7 ADCY8 TAS2R14 GTP AITC RXFP4 CCL19 Somatostatin CXCR5 LACT GRM8 TAS2R31 NAd Papaverine LPA GTP GNB4 MT-RNR2 CXCL3(35-107) GALR3 D-Trp TAS2R1 Cnicin GDP TAS2R3 HRH4 CXCR6 GNAI1 Quinine TAS2R9 Amygdalin TAS2R43 GNAI3 PMCH(147-165) GNG13 Limonin GALR3 RGS3 PSAP(326-340) Chloramphenicol CX3CL1 GNAT3 2AG HCAR2 p-Y416-SRCPENK(230-234) CHRM2 GNAT1 CCL4L1 RHO OPRD1 S1PR4 Camphor Absynthin CCR2 C3a Thiamine CXCR6 GNAT1 7alpha,25-dihydroxycholesterol GNGT1 cis-isohumulone CXCR4 CORT(89-105) PGE2 OPN1SW NPBWR1 GNB3 TAS2R10 GTPcis-isohumulone RGS7 CXCL12(22-93) GNGT2 Crispolide GNAZ ADCY1 GNAI1 GNG7 P2RY13 GNGT1 HTR1D TAS2R9 Tatridin B IL8 GRM8 BDKRB2 CCL28 Tatridin B GABA GNB4 GNAI3 Strychnine HRH4 CXCL6(38-114) GABA PGD2 TAS2R3 HCAR3 GNB5 TAS2R45 GRM8 PENK(210-214) RGS10 NPB(25-48) TAS2R40 GNAI2 GNB2 GNG13 CCR10 ADCY4 GALR1 GNB4 GNG12 C3AR1 Arbutin 3-hydroxyoctanoic acid LPAR5 Yohimbine Ethylpyrazine SSTR5 GPR37L1 GNG3 GNAI3 TAS2R13 CX3CR1 GPR31 ADCY9 LACT NMUR1 GTP GNG11 Coumarin S1PR5 ASP Brucine HTR1B SSTR2 SUCCA GNG3 CXCL16 DA GNG4 RGSL1 GRM7 CNR2 GRM7 NPB(25-53) CCR9 RGS20 GNG3 NCA CHRM4 CCL23-2 RXFP4 S1PR2 TAS2R50 GTPMCHR1 PENK(107-111) RGS10 CCR7 OPN1LW C5AR1 GNAI1 CXCR5 Absynthin GNGT2 OPRM1 OPRM1 ADRA2A RXFP4 NPW(33-62) Crispolide Aristolochic acid CCR4 Colchicine RGS9 CCL28 OXER1 SSTR2 Amygdalin 5-oxoETE TAS2R38 AcCho Noscapine Mg2+ BDKRB1 CHRM2 RGS8 SAA1(19-122) FPR3 TAS2R5 CXCL2(35-107) CCL13 TAS1R2 GNG12 P2RY4 G-alpha(t)-GTPRGS11 RGS6 GPR183 TAS1R1 GNG3 GNB3 GPR55 LTE4 MCHR2 FPR2 SACC RLN3(26-52) UDP-Glc POMC(237-267) PF4(48-101) TAS2R7 GNB1 LPAR1 GNG12 NMU RGS13 Ethylpyrazine RGS3 Strychnine GNG13 Somatostatin GNGT1 Quassin Limonin TAS2R31 ADCY3 GPR37 SRC GPSM2 ADCY7 SSTR4 TAS2R14 GNG7 Suc Sinigrin GNG4 Salicin Arbutin CCL21 GNB1 GNG10 L-Glu CCL5(24-91) GNG11 HCAR3 Cucurbitacin E CXCL12(22-93) GABA CCR8 PMCH(147-165) GNG8 Ligand:GPCRcomplexes thatactivateGi:HeterotrimericG-protein Gi(inactive)GALR2 ADCY1 CXCL10(22-98) GRM2 LPAR3 G alpha (i):GTP:RGSNPB(25-53) CCL23-2 HTR1E HTR1E CCL1 CXCL10(22-98) GNGT1 Yohimbine Andrographolide GPER1 ESTG GNB5 CXCR2 FMLP VisualphototransductionCCL25 CCR6 CCR8 GNG10 CCR6 GNG12 GNG11 SUCCA TAS2R46 PPYR1 RGS16 CCR7 NPY1R GNAI2 AGT(34-41) BDKRB2 GTP GNG10 RHO SSTR5 ADCY6 APLNR PSAP(?-?) GNGT2 GNAT1 RGS10 GAL RGS16 PGD2 CXCL2(35-107) Helicin ADCY9 TAS2R30 TAS2R4 TAS1R2 Artemorin OPRL1 PGD2 DRD4 Cnicin GNAT1 NAGLY HTR5A NPW(33-62) CXCR2 ESTG GRM4 RGS18 TAS1R3 CASR GRM4 NMUR2 CCL1 OPRL1 NMS APLN(65-77) HTR1B GNB4 RRH OPRD1 GNB1 Parthenolide PENK(107-111) SSTR2 CXCL13 GNAI3 CCL21 ADP GNB3 GABBR1 RGS13 CXCL1(35-107) LPAR3 GPSM1 CXCL16 CXCL11 Andrographolide GABBR1 CCL16 PSAP(326-340) GPR18 POMC(237-241) SSTR4 TAS2R7 SSTR1 IL8 AEA NPW(33-55) PENK(107-111) G-alpha(t):GDP:G-beta-gamma:OpsinsBDKRB1 ADR RGR Photon Photon RGS7 CCL1 GNAI3 TAS1R1 GTP GNAI1 LPA CCL13 CNR1 RHO Alpha-thujone GNGT2 NPB(25-48) GNAT3 G alpha(s):GTP:AdenylatecyclaseTAS1R1 LPAR3 HEBP1(1-21) NAGLY PENK(136-140) GNAT2 Tatridin B LXA4 CASR GNG7 C5a APLN(50-77) GNAI3 Grosshemin ADR D-Trp Grosshemin DRD3 OPN1MW C3a GNAI2 C3AR1 LPAR2 GNG12 GNG11 GNGT1 SACC CNR1 GNG13 SUCNR1 NPY5R RGS9 GNGT2 Colchicine PPiOPN3 GNB2 GNB2 CCL23-2 Adenylate cyclase(Mg2+ cofactor)PTGER3 PGE2 GRM6 AITC CCL25 TAS2R7 GNG7 TAS2R19 S1PR3 GNAS1 OPRK1 DRD4 CCL21 LPAR5 SSTR1 CCR4 RGS20 CCL20(27-96) RGS5 TAS2R40 Grosshemin AEA ANXA1 FPR1 APLN(50-77) NMU NPY2R Alpha-thujone ADORA1 MCHR1 GNG4 CX3CL1 Cascarillin CCL19 OPRL1 GALR2 CX3CR1 ANXA1 OPN1SW ADCY6 RGS13 GNGT2 GALR2 CCR2 RGS17 ADCY9 Cucurbitacin B GNB2 RGS20 RGS21 UDP-Glc LTD4 GNG10 NPY5R PGE2 TAS2R10 GABBR2 ADCY5 Falcarindiol PTGDR2 GPR31 RGS1 GRM2 Cucurbitacin E RLN3(26-52) TAS2R16 RGS19 LXA4 MLT RGS1 FPR2 C5AR1 GNB1 PSAP(?-?) GPR37 GDP GNAI3 TAS2R13 TAS2R10 CCL4L1 RGS7 Brucine TAS2R46 S1P GNAI1 AGTR2 Parthenolide CNR2 RXFP3 GNAI2 HTR1F RGS17 CCL20(27-96) CCR3 CCL13 C5AR1 LTC4 GPSM3 GDP L-Glu ADCY5 GNG13 CCL5(24-91) GPR18 TAS2R16 CHRM4 Chloramphenicol HTR5A INSL5(115-135) RGS12 POMC(237-241) LTD4 APLN(42-77) RGS12 TAS2R60 GNG11 ADCY1 Bradykinin LXA4 RGR GNAT3 Helicin CCL25 LPA 5-oxoETE TAS1R3 Ade-Rib RGS8 PPY(30-65) PNOC(130-146) PYY(29-64) TAS2R20 GNAS2 NAd S1PR3 CXCR4 RGS4 ADRA2B Artemorin GTP CXCL2(35-107) NMUR2 GNG8 TAS2R30 Suc C3AR1 CCL20(27-96) MCHR1 PF4(48-101) PPY(30-65) GNG2 Parthenolide ADORA3 GNG3 LTC4 RGS21 RRH CCR2 C3a GRM6 P2RY14 POMC(237-241) NPBWR2 CCR5 CORT(89-105) GNG2 Papaverine GNAI3 TAS2R19 TAS2R38 NPY GNG8 GRM3 Arborescin GTP GNAI2 GPR17 Bradykinin Caffeine GPER1 GNG2 APLN(47-77) POMC(237-267) Arborescin Phenethyl isothiocyanate OPN3 TAS2R30 RLN3(26-52) OPN5 OPN1SW OPRM1 Ca2+ GNB4 GNG13 POMC(237-267) Ade-Rib CXCR7 TAS2R13 CNR2 CCR9 RGS18 GNB1 RGS16 RGS19 PCP2 NCA Salicin Salicin GDPGNGT1 RGS5 Helicin GNAI2 TAS2R45 SSTR3 Quinine OPN5 SRCMg2+ GNAT2 LPAR5 Arglabin OXER1 CCL4(24-92) SSTR4 RLN3(119-142) ESTG DA CXCR3 CHRM2 RXFP3 LPAR1 GNG5 Suc CX3CR1 Papaverine FPR1 GNAI1 ATP2OG S1PR5 GNB5 CCR1 MT-RNR2 TAS1R2 FMLP HEBP1(1-21) 3-hydroxybutyric acid p-Y416-SRC ADCY3 ADP Ligand:GPCRcomplexes thatactivate GiS1PR4 OXER1 Falcarindiol ADRA2B GRM7 RGS11 Colchicine NMUR1 RGS14 PENK(100-104) ADCY4 TAS2R20 HCAR2 GNG7 NAGLY HCAR1 CXCL3(35-107) ADCY4 SUCCA 5-oxoETE GNAT3 APLN(42-77) 2OG PiSUCNR1 ADCY2 UDP-Glc 3-hydroxyoctanoic acid LTE4 HCAR1 GPSM1, GPSM3,(GPSM2,PCP2)NMUR2 TAS2R3 PTGDR2 SUCNR1 GNAI3 TAS2R39 PSAP(326-340) Arglabin 7alpha,25-dihydroxycholesterol RGS14 RGS1 Dynorphins RGS11 GNG12 RGS4 RGS4 APP(672-713) Coumarin Opioid SignallingGNB2 CXCL10(22-98) ATPHCAR2 RGS12 MCHR2 CXCL12(22-93) Thiamine DRD3 NMS PENK(100-104) CXCR4 Yohimbine PPYR1 ADCY2 SACC G-alpha(t):GTP:G-beta-gamma:OpsinsGDP Absynthin P2RY14 GNAI3 GNG11 RGS1 3-hydroxybutyric acid P2RY13 GNAT2 Amygdalin ADORA1 LACT CXCR2 ADCY1 Aloin AGT(34-41) 12(S)-HETE Hist APP(672-713) 12(S)-HETE NPY5R GALR1 TAS2R31 TAS2R8 MTNR1A ADRA2C GDP HRH4 PPBP(35-128) TAS2R60 GNB3 ADCY6 RGS proteins activefor G alpha (i)C5a RGS19 LPAR1 RXFP3 RRH Aloin PENK(136-140) GNG5 TAS2R5 RLN3(119-142) TAS2R19 RGS16 CCL4(24-92) CXCR6 Bradykinin PiRLN3(119-142) GALR3 Strychnine INSL5(115-135) GNB1 cAMPTAS2R43 PTGDR2 GRM2 HTR1F GNAI1 Crispolide Picrotoxinin LTD4 MTNR1A PENK(136-140) AGTR2 CCR5 GDP GNG11 ANXA1 NPY CCR1 NAd GNAT3 SAA1(19-122) ADRA2C APLN(65-77) RGS3 RGS17 cis-isohumulone Artemorin Aristolochic acid NMUR1 MTNR1A G-protein alpha(z):GTP:AdenylatecyclaseTAS2R39 GNB5 GABBR1 CCR5 RGS8 RGS5 GPR183 Erythromycin RGS1,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21ADRA2B GNG7 CORT(89-105) RGS19 GRM6 OPN1MW P2RY13 RGS7 RGR RGS18 GNAT3 CCL5(24-91) Erythromycin OPRD1 GNB5 ASP GNG10 GNAI2 ADORA3 AcCho CXCR1 CXCL9 FPR1 APLN(47-77) DRD4 TAS2R42 GNAI2 CXCL6(38-114) APLNR 7alpha,25-dihydroxycholesterol GNG12 APLN(47-77) GNG5 G-protein beta:gammasignallingIL8 ADCY8 APLN(42-77) OPRK1 CCL16 Noscapine AGTR2 GNAT3 Amarogentin NPY1R GTP GPR183 PENK(230-234) P2RY12 PF4(48-101) CXCL9 CXCL3(35-107) Ade-Rib GNB3 RGS13 CCL28 LTC4 ADP Caffeine OXGR1 Photon CXCL1(35-107) LPAR2 Amarogentin ADCY6 RGS9 AEA HEBP1(1-21) SSTR3 Coumarin INSL5(23-48) HTR5A S1PR2 NPW(33-55) CCL27 RGS6 Chloramphenicol RGS18 INSL5(23-48) Ethylpyrazine TAS2R43 GNB5 C5a Quinine Thiamine GNB3 GPR37L1 TAS2R1 GNG4 SSTR5 S1PR5 P2RY4 NPBWR2 ADCY9 GPR18 PSAP(?-?) GDPADCY8 CCR6 Sinigrin GNB2 CXCR3 ADCY7 CCR4 ADRA2C INSL5(115-135) RGS4 Hist GNAT2 Camphor RGS8 S1PR2 G-alpha(t)-GDP:G-beta-gammaCCR3 CXCL5(37-114) CXCR5 NPBWR2 PPBP(35-128) G-protein beta-gammacomplexGNG3 Dynorphins TAS2R41 TAS2R38 CXCR1 Arbutin APLN(65-77) MT-RNR2 Sinigrin TAS2R39 GRM3 CCL19 GPR37L1 APLN(50-77) S1P AcCho SSTR1 TAS1R3 PNOC(130-146) CXCL6(38-114) MLT ADCY5 CXCL9 GNG8 MTNR1B TAS2R9 NPBWR1 INSL5(23-48) CXCL13 Quassin HTR1E NMS TAS2R1 TAS2R4 CCL4L1 PTGER3 TAS2R8 RGS20 CXCL11 ADCY2 RGS5 OPN5 ADORA3 RGS14 P2RY12 TAS2R50 GNAI1 GNAT3 Erythromycin GPER1 CXCL5(37-114) GPR37 5HT ADORA1 GNB3 Andrographolide GNAI1 CXCL13 TAS2R41 5HT UTP P2RY4 GNB4 GNB1 GNB2 NCA SSTR3 L-Glu ADCY2 GPR31 PTGER3 Ca2+ HCAR1 Cucurbitacin B PENK(100-104) GNAI1 TAS2R46 MTNR1B TAS2R50 GAL TAS2R16 RGS6 GNG10 GRM4 ADCY3 CXCL16 PYY(29-64) Alpha-thujone Ligand:GPCRcomplexes thatactivateGi:HeterotrimericG-protein Gi(active)ADCY8 GNG10 PYY(29-64) GNG4 CCR10 RGS6 NPY CCR1 CCR10 TAS2R20 RGS10 Cnicin S1P PPY(30-65) GNAI2 GABBR2 NPBWR1 Opsins:photonCXCL11 P2RY12 TAS2R45 CXCR7 G alpha(i):GTP:SRC-1Phenethyl isothiocyanate TAS2R8 OPN1LW Arglabin GPR55 CX3CL1 D-Trp RGS14 Cascarillin 2AG GNB4 PENK(230-234) NPB(25-48) GNB5 GNG5 HTR1B Quassin OPN3 Camphor TAS2R40 Brucine GPR17 3-hydroxybutyric acid CCL16 TAS2R42 GNG8 NPY2R GNG5 GTP Picrotoxinin GPR17 12(S)-HETE GNG8 GTP TAS2R14 GNG4 UTP RGS22 LTE4 CCL4(24-92) Aloin G alpha (i):GDP:RGSArborescin RGS9 PMCH(147-165) CXCR7 OXGR1 FPR3 Noscapine AGT(34-41) CASR CXCR1 LPAR2 MCHR2 ADRA2A BDKRB1 CXCL1(35-107) ADR OPRK1 Falcarindiol 2OG G-protein alpha(i):GDPG-protein alpha(i):GTP:AdenylatecyclaseGABBR2 GNGT1 NPW(33-55) Aristolochic acid S1PR3 GNGT2 CXCL5(37-114) BDKRB2 CNR1 ADPGNG2 ADCY3 MTNR1B CCR8 2AG CHRM4 3-hydroxyoctanoic acid P2RY14 PPBP(35-128) HTR1D NPW(33-62) GNAT3 Picrotoxinin GNG3 CCL27 HeterotrimericG-protein Gi(inactive)ADCY4 GNG5 HTR1F GAL Amarogentin OXGR1 OPN1MW RGS21 S1PR4 ADCY7 DA ADRA2A AITC Caffeine ADCY5 Dynorphins GNG8 Somatostatin RGS11 OPN1LW Ca2+ CCR3 APLNR TAS2R41 G protein alpha(i):GTP:p-Y416-SRCADCY7 91, 4, 11, 16, 20...10, 30, 436, 13, 27, 33, 37...8


Description

The classical signalling mechanism for G alpha (i) is inhibition of the cAMP dependent pathway through inhibition of adenylate cyclase (Dessauer C W et al. 2002). Decreased production of cAMP from ATP results in decreased activity of cAMP-dependent protein kinases. Other functions of G alpha (i) includes activation of the protein tyrosine kinase c-Src (Ma Y C et al. 2000). Regulator of G-protein Signalling (RGS) proteins can regulate the activity of G alpha (i) (Soundararajan et al. 2008). View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 418594
Reactome-version 
Reactome version: 74
Reactome Author 
Reactome Author: Jupe, Steve

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Blomhoff R, Blomhoff HK.; ''Overview of retinoid metabolism and function.''; PubMed Europe PMC Scholia
  2. Neubig RR, Siderovski DP.; ''Regulators of G-protein signalling as new central nervous system drug targets.''; PubMed Europe PMC Scholia
  3. Kleuss C, Raw AS, Lee E, Sprang SR, Gilman AG.; ''Mechanism of GTP hydrolysis by G-protein alpha subunits.''; PubMed Europe PMC Scholia
  4. von Lintig J.; ''Metabolism of carotenoids and retinoids related to vision.''; PubMed Europe PMC Scholia
  5. Dessauer CW, Chen-Goodspeed M, Chen J.; ''Mechanism of Galpha i-mediated inhibition of type V adenylyl cyclase.''; PubMed Europe PMC Scholia
  6. Berman DM, Wilkie TM, Gilman AG.; ''GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein alpha subunits.''; PubMed Europe PMC Scholia
  7. Chen CK.; ''The vertebrate phototransduction cascade: amplification and termination mechanisms.''; PubMed Europe PMC Scholia
  8. Dupré DJ, Robitaille M, Rebois RV, Hébert TE.; ''The role of Gbetagamma subunits in the organization, assembly, and function of GPCR signaling complexes.''; PubMed Europe PMC Scholia
  9. Kach J, Sethakorn N, Dulin NO.; ''A finer tuning of G-protein signaling through regulated control of RGS proteins.''; PubMed Europe PMC Scholia
  10. Hamm HE.; ''The many faces of G protein signaling.''; PubMed Europe PMC Scholia
  11. von Lintig J, Kiser PD, Golczak M, Palczewski K.; ''The biochemical and structural basis for trans-to-cis isomerization of retinoids in the chemistry of vision.''; PubMed Europe PMC Scholia
  12. Oldham WM, Hamm HE.; ''Structural basis of function in heterotrimeric G proteins.''; PubMed Europe PMC Scholia
  13. Gagnon AW, Murray DL, Leadley RJ.; ''Cloning and characterization of a novel regulator of G protein signalling in human platelets.''; PubMed Europe PMC Scholia
  14. Morris TA, Fong SL.; ''Characterization of the gene encoding human cone transducin alpha-subunit (GNAT2).''; PubMed Europe PMC Scholia
  15. Siderovski DP, Willard FS.; ''The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits.''; PubMed Europe PMC Scholia
  16. D'Ambrosio DN, Clugston RD, Blaner WS.; ''Vitamin A metabolism: an update.''; PubMed Europe PMC Scholia
  17. SUTHERLAND EW, RALL TW.; ''Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles.''; PubMed Europe PMC Scholia
  18. Ma YC, Huang J, Ali S, Lowry W, Huang XY.; ''Src tyrosine kinase is a novel direct effector of G proteins.''; PubMed Europe PMC Scholia
  19. Taussig R, Iñiguez-Lluhi JA, Gilman AG.; ''Inhibition of adenylyl cyclase by Gi alpha.''; PubMed Europe PMC Scholia
  20. Wang JS, Kefalov VJ.; ''The cone-specific visual cycle.''; PubMed Europe PMC Scholia
  21. Korenbrot JI.; ''Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models.''; PubMed Europe PMC Scholia
  22. Van Dop C, Medynski DC, Apone LM.; ''Nucleotide sequence for a cDNA encoding the alpha subunit of retinal transducin (GNAT1) isolated from the human eye.''; PubMed Europe PMC Scholia
  23. Itoh H, Toyama R, Kozasa T, Tsukamoto T, Matsuoka M, Kaziro Y.; ''Presence of three distinct molecular species of Gi protein alpha subunit. Structure of rat cDNAs and human genomic DNAs.''; PubMed Europe PMC Scholia
  24. Taussig R, Tang WJ, Hepler JR, Gilman AG.; ''Distinct patterns of bidirectional regulation of mammalian adenylyl cyclases.''; PubMed Europe PMC Scholia
  25. Soundararajan M, Willard FS, Kimple AJ, Turnbull AP, Ball LJ, Schoch GA, Gileadi C, Fedorov OY, Dowler EF, Higman VA, Hutsell SQ, Sundström M, Doyle DA, Siderovski DP.; ''Structural diversity in the RGS domain and its interaction with heterotrimeric G protein alpha-subunits.''; PubMed Europe PMC Scholia
  26. Takami S, Getchell TV, McLaughlin SK, Margolskee RF, Getchell ML.; ''Human taste cells express the G protein alpha-gustducin and neuron-specific enolase.''; PubMed Europe PMC Scholia
  27. Hollinger S, Hepler JR.; ''Cellular regulation of RGS proteins: modulators and integrators of G protein signaling.''; PubMed Europe PMC Scholia
  28. Wolf G.; ''The visual cycle of the cone photoreceptors of the retina.''; PubMed Europe PMC Scholia
  29. Gilman AG.; ''G proteins: transducers of receptor-generated signals.''; PubMed Europe PMC Scholia
  30. Martin-Kleiner I, Balog T, Gabrilovac J.; ''Signal transduction induced by opioids in immune cells: a review.''; PubMed Europe PMC Scholia
  31. Burns ME, Pugh EN.; ''Lessons from photoreceptors: turning off g-protein signaling in living cells.''; PubMed Europe PMC Scholia
  32. Kefalov VJ.; ''Rod and cone visual pigments and phototransduction through pharmacological, genetic, and physiological approaches.''; PubMed Europe PMC Scholia
  33. Wang J, Ducret A, Tu Y, Kozasa T, Aebersold R, Ross EM.; ''RGSZ1, a Gz-selective RGS protein in brain. Structure, membrane association, regulation by Galphaz phosphorylation, and relationship to a Gz gtpase-activating protein subfamily.''; PubMed Europe PMC Scholia
  34. Pugh EN, Lamb TD.; ''Amplification and kinetics of the activation steps in phototransduction.''; PubMed Europe PMC Scholia
  35. Lambert NA.; ''Dissociation of heterotrimeric g proteins in cells.''; PubMed Europe PMC Scholia
  36. Harrison EH, Hussain MM.; ''Mechanisms involved in the intestinal digestion and absorption of dietary vitamin A.''; PubMed Europe PMC Scholia
  37. Traver S, Splingard A, Gaudriault G, De Gunzburg J.; ''The RGS (regulator of G-protein signalling) and GoLoco domains of RGS14 co-operate to regulate Gi-mediated signalling.''; PubMed Europe PMC Scholia
  38. Harrison EH.; ''Mechanisms of digestion and absorption of dietary vitamin A.''; PubMed Europe PMC Scholia
  39. Lerea CL, Bunt-Milam AH, Hurley JB.; ''Alpha transducin is present in blue-, green-, and red-sensitive cone photoreceptors in the human retina.''; PubMed Europe PMC Scholia
  40. Hunt TW, Fields TA, Casey PJ, Peralta EG.; ''RGS10 is a selective activator of G alpha i GTPase activity.''; PubMed Europe PMC Scholia
  41. Hildebrandt JD.; ''Role of subunit diversity in signaling by heterotrimeric G proteins.''; PubMed Europe PMC Scholia
  42. Posner BA, Gilman AG, Harris BA.; ''Regulators of G protein signaling 6 and 7. Purification of complexes with gbeta5 and assessment of their effects on g protein-mediated signaling pathways.''; PubMed Europe PMC Scholia
  43. Standifer KM, Pasternak GW.; ''G proteins and opioid receptor-mediated signalling.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
116410view09:05, 7 May 2021EweitzModified title
113220view11:28, 2 November 2020ReactomeTeamReactome version 74
101714view14:52, 1 November 2018DeSlOntology Term : 'G protein mediated signaling pathway' added !
101349view11:23, 1 November 2018ReactomeTeamreactome version 66
100887view20:57, 31 October 2018ReactomeTeamreactome version 65
100428view19:31, 31 October 2018ReactomeTeamreactome version 64
100272view16:57, 31 October 2018ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
12(S)-HETE MetaboliteCHEBI:34146 (ChEBI)
2AG MetaboliteCHEBI:52392 (ChEBI)
2OG MetaboliteCHEBI:16810 (ChEBI)
3-hydroxybutyric acid MetaboliteCHEBI:20067 (ChEBI)
3-hydroxyoctanoic acid MetaboliteCHEBI:37098 (ChEBI)
5-oxoETE MetaboliteCHEBI:52449 (ChEBI)
5HT MetaboliteCHEBI:28790 (ChEBI)
7alpha,25-dihydroxycholesterol MetaboliteCHEBI:37623 (ChEBI)
ADCY1 ProteinQ08828 (Uniprot-TrEMBL)
ADCY2 ProteinQ08462 (Uniprot-TrEMBL)
ADCY3 ProteinO60266 (Uniprot-TrEMBL)
ADCY4 ProteinQ8NFM4 (Uniprot-TrEMBL)
ADCY5 ProteinO95622 (Uniprot-TrEMBL)
ADCY6 ProteinO43306 (Uniprot-TrEMBL)
ADCY7 ProteinP51828 (Uniprot-TrEMBL)
ADCY8 ProteinP40145 (Uniprot-TrEMBL)
ADCY9 ProteinO60503 (Uniprot-TrEMBL)
ADORA1 ProteinP30542 (Uniprot-TrEMBL)
ADORA3 ProteinP0DMS8 (Uniprot-TrEMBL)
ADP MetaboliteCHEBI:456216 (ChEBI)
ADPMetaboliteCHEBI:456216 (ChEBI)
ADR MetaboliteCHEBI:28918 (ChEBI)
ADRA2A ProteinP08913 (Uniprot-TrEMBL)
ADRA2B ProteinP18089 (Uniprot-TrEMBL)
ADRA2C ProteinP18825 (Uniprot-TrEMBL)
AEA MetaboliteCHEBI:2700 (ChEBI)
AGT(34-41) ProteinP01019 (Uniprot-TrEMBL)
AGTR2 ProteinP50052 (Uniprot-TrEMBL)
AITC MetaboliteCHEBI:73224 (ChEBI)
ANXA1 ProteinP04083 (Uniprot-TrEMBL)
APLN(42-77) ProteinQ9ULZ1 (Uniprot-TrEMBL)
APLN(47-77) ProteinQ9ULZ1 (Uniprot-TrEMBL)
APLN(50-77) ProteinQ9ULZ1 (Uniprot-TrEMBL)
APLN(65-77) ProteinQ9ULZ1 (Uniprot-TrEMBL)
APLNR ProteinP35414 (Uniprot-TrEMBL)
APP(672-713) ProteinP05067 (Uniprot-TrEMBL)
ASP MetaboliteCHEBI:2877 (ChEBI)
ATPMetaboliteCHEBI:30616 (ChEBI)
Absynthin MetaboliteCHEBI:2366 (ChEBI)
AcCho MetaboliteCHEBI:15355 (ChEBI)
Ade-Rib MetaboliteCHEBI:16335 (ChEBI)
Adenylate cyclase (Mg2+ cofactor)ComplexR-HSA-170665 (Reactome)
Aloin MetaboliteCHEBI:73222 (ChEBI)
Alpha-thujone MetaboliteCHEBI:50042 (ChEBI)
Amarogentin MetaboliteCHEBI:2622 (ChEBI)
Amygdalin MetaboliteCHEBI:27613 (ChEBI)
Andrographolide MetaboliteCHEBI:65408 (ChEBI)
Arborescin MetaboliteCHEBI:73226 (ChEBI)
Arbutin MetaboliteCHEBI:18305 (ChEBI)
Arglabin MetaboliteCHEBI:73228 (ChEBI)
Aristolochic acid MetaboliteCHEBI:2825 (ChEBI)
Artemorin MetaboliteCHEBI:2853 (ChEBI)
BDKRB1 ProteinP46663 (Uniprot-TrEMBL)
BDKRB2 ProteinP30411 (Uniprot-TrEMBL)
Bradykinin ProteinP01042 (Uniprot-TrEMBL)
Brucine MetaboliteCHEBI:3193 (ChEBI)
C3AR1 ProteinQ16581 (Uniprot-TrEMBL)
C3a ProteinP01024 (Uniprot-TrEMBL)
C5AR1 ProteinP21730 (Uniprot-TrEMBL)
C5a ProteinP01031 (Uniprot-TrEMBL)
CASR ProteinP41180 (Uniprot-TrEMBL)
CCL1 ProteinP22362 (Uniprot-TrEMBL)
CCL13 ProteinQ99616 (Uniprot-TrEMBL)
CCL16 ProteinO15467 (Uniprot-TrEMBL)
CCL19 ProteinQ99731 (Uniprot-TrEMBL)
CCL20(27-96) ProteinP78556 (Uniprot-TrEMBL)
CCL21 ProteinO00585 (Uniprot-TrEMBL)
CCL23-2 ProteinP55773-2 (Uniprot-TrEMBL)
CCL25 ProteinO15444 (Uniprot-TrEMBL)
CCL27 ProteinQ9Y4X3 (Uniprot-TrEMBL)
CCL28 ProteinQ9NRJ3 (Uniprot-TrEMBL)
CCL4(24-92) ProteinP13236 (Uniprot-TrEMBL)
CCL4L1 ProteinQ8NHW4 (Uniprot-TrEMBL)
CCL5(24-91) ProteinP13501 (Uniprot-TrEMBL)
CCR1 ProteinP32246 (Uniprot-TrEMBL)
CCR10 ProteinP46092 (Uniprot-TrEMBL)
CCR2 ProteinP41597 (Uniprot-TrEMBL)
CCR3 ProteinP51677 (Uniprot-TrEMBL)
CCR4 ProteinP51679 (Uniprot-TrEMBL)
CCR5 ProteinP51681 (Uniprot-TrEMBL)
CCR6 ProteinP51684 (Uniprot-TrEMBL)
CCR7 ProteinP32248 (Uniprot-TrEMBL)
CCR8 ProteinP51685 (Uniprot-TrEMBL)
CCR9 ProteinP51686 (Uniprot-TrEMBL)
CHRM2 ProteinP08172 (Uniprot-TrEMBL)
CHRM4 ProteinP08173 (Uniprot-TrEMBL)
CNR1 ProteinP21554 (Uniprot-TrEMBL)
CNR2 ProteinP34972 (Uniprot-TrEMBL)
CORT(89-105) ProteinO00230 (Uniprot-TrEMBL)
CX3CL1 ProteinP78423 (Uniprot-TrEMBL)
CX3CR1 ProteinP49238 (Uniprot-TrEMBL)
CXCL1(35-107) ProteinP09341 (Uniprot-TrEMBL)
CXCL10(22-98) ProteinP02778 (Uniprot-TrEMBL)
CXCL11 ProteinO14625 (Uniprot-TrEMBL)
CXCL12(22-93) ProteinP48061 (Uniprot-TrEMBL)
CXCL13 ProteinO43927 (Uniprot-TrEMBL)
CXCL16 ProteinQ9H2A7 (Uniprot-TrEMBL)
CXCL2(35-107) ProteinP19875 (Uniprot-TrEMBL)
CXCL3(35-107) ProteinP19876 (Uniprot-TrEMBL)
CXCL5(37-114) ProteinP42830 (Uniprot-TrEMBL)
CXCL6(38-114) ProteinP80162 (Uniprot-TrEMBL)
CXCL9 ProteinQ07325 (Uniprot-TrEMBL)
CXCR1 ProteinP25024 (Uniprot-TrEMBL)
CXCR2 ProteinP25025 (Uniprot-TrEMBL)
CXCR3 ProteinP49682 (Uniprot-TrEMBL)
CXCR4 ProteinP61073 (Uniprot-TrEMBL)
CXCR5 ProteinP32302 (Uniprot-TrEMBL)
CXCR6 ProteinO00574 (Uniprot-TrEMBL)
CXCR7 ProteinP25106 (Uniprot-TrEMBL)
Ca2+ MetaboliteCHEBI:29108 (ChEBI)
Caffeine MetaboliteCHEBI:27732 (ChEBI)
Camphor MetaboliteCHEBI:36773 (ChEBI)
Cascarillin MetaboliteCHEBI:3445 (ChEBI)
Chloramphenicol MetaboliteCHEBI:17698 (ChEBI)
Cnicin MetaboliteCHEBI:3768 (ChEBI)
Colchicine MetaboliteCHEBI:23359 (ChEBI)
Coumarin MetaboliteCHEBI:28794 (ChEBI)
Crispolide MetaboliteCHEBI:73231 (ChEBI)
Cucurbitacin B MetaboliteCHEBI:3941 (ChEBI)
Cucurbitacin E MetaboliteCHEBI:3944 (ChEBI)
D-Trp MetaboliteCHEBI:16296 (ChEBI)
DA MetaboliteCHEBI:18243 (ChEBI)
DRD3 ProteinP35462 (Uniprot-TrEMBL)
DRD4 ProteinP21917 (Uniprot-TrEMBL)
Dynorphins R-HSA-374372 (Reactome)
ESTG MetaboliteCHEBI:50114 (ChEBI)
Erythromycin MetaboliteCHEBI:48923 (ChEBI)
Ethylpyrazine MetaboliteCHEBI:73232 (ChEBI)
FMLP MetaboliteCHEBI:53490 (ChEBI)
FPR1 ProteinP21462 (Uniprot-TrEMBL)
FPR2 ProteinP25090 (Uniprot-TrEMBL)
FPR3 ProteinP25089 (Uniprot-TrEMBL)
Falcarindiol MetaboliteCHEBI:69236 (ChEBI)
G alpha (i):GTP:SRC-1ComplexR-HSA-8964344 (Reactome)
G alpha

(s):GTP:Adenylate

cyclase
ComplexR-HSA-163622 (Reactome)
G alpha (i): GTPComplexR-HSA-392161 (Reactome)
G alpha (i):GDP:RGSComplexR-HSA-8982015 (Reactome)
G alpha (i):GTP:RGSComplexR-HSA-8982011 (Reactome)
G protein alpha (i):GTP:p-Y416-SRCComplexR-HSA-8964231 (Reactome)
G-alpha(t)-GDP:G-beta-gammaComplexR-HSA-420877 (Reactome)
G-alpha(t)-GTPComplexR-HSA-420891 (Reactome)
G-alpha(t):GDP:G-beta-gamma:OpsinsComplexR-HSA-8982635 (Reactome)
G-alpha(t):GTP:G-beta-gamma:OpsinsComplexR-HSA-8982649 (Reactome)
G-protein alpha (i):GDPComplexR-HSA-392164 (Reactome)
G-protein alpha

(i):GTP:Adenylate

cyclase
ComplexR-HSA-396910 (Reactome)
G-protein alpha

(z):GTP:Adenylate

cyclase
ComplexR-HSA-392049 (Reactome)
G-protein beta-gamma complexComplexR-HSA-167434 (Reactome)
G-protein beta:gamma signallingPathwayR-HSA-397795 (Reactome) The classical role of the G-protein beta/gamma dimer was believed to be the inactivation of the alpha subunit, Gbeta/gamma was viewed as a negative regulator of Galpha signalling. It is now known that Gbeta/gamma subunits can directly modulate many effectors, including some also regulated by G alpha.
GABA MetaboliteCHEBI:59888 (ChEBI)
GABBR1 ProteinQ9UBS5 (Uniprot-TrEMBL)
GABBR2 ProteinO75899 (Uniprot-TrEMBL)
GAL ProteinP22466 (Uniprot-TrEMBL)
GALR1 ProteinP47211 (Uniprot-TrEMBL)
GALR2 ProteinO43603 (Uniprot-TrEMBL)
GALR3 ProteinO60755 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GDPMetaboliteCHEBI:17552 (ChEBI)
GNAI1 ProteinP63096 (Uniprot-TrEMBL)
GNAI2 ProteinP04899 (Uniprot-TrEMBL)
GNAI3 ProteinP08754 (Uniprot-TrEMBL)
GNAS1 ProteinQ5JWF2 (Uniprot-TrEMBL)
GNAS2 ProteinP63092 (Uniprot-TrEMBL)
GNAT1 ProteinP11488 (Uniprot-TrEMBL)
GNAT2 ProteinP19087 (Uniprot-TrEMBL)
GNAT3 ProteinA8MTJ3 (Uniprot-TrEMBL)
GNAZ ProteinP19086 (Uniprot-TrEMBL)
GNB1 ProteinP62873 (Uniprot-TrEMBL)
GNB2 ProteinP62879 (Uniprot-TrEMBL)
GNB3 ProteinP16520 (Uniprot-TrEMBL)
GNB4 ProteinQ9HAV0 (Uniprot-TrEMBL)
GNB5 ProteinO14775 (Uniprot-TrEMBL)
GNG10 ProteinP50151 (Uniprot-TrEMBL)
GNG11 ProteinP61952 (Uniprot-TrEMBL)
GNG12 ProteinQ9UBI6 (Uniprot-TrEMBL)
GNG13 ProteinQ9P2W3 (Uniprot-TrEMBL)
GNG2 ProteinP59768 (Uniprot-TrEMBL)
GNG3 ProteinP63215 (Uniprot-TrEMBL)
GNG4 ProteinP50150 (Uniprot-TrEMBL)
GNG5 ProteinP63218 (Uniprot-TrEMBL)
GNG7 ProteinO60262 (Uniprot-TrEMBL)
GNG8 ProteinQ9UK08 (Uniprot-TrEMBL)
GNGT1 ProteinP63211 (Uniprot-TrEMBL)
GNGT2 ProteinO14610 (Uniprot-TrEMBL)
GPER1 ProteinQ99527 (Uniprot-TrEMBL)
GPR17 ProteinQ13304 (Uniprot-TrEMBL)
GPR18 ProteinQ14330 (Uniprot-TrEMBL)
GPR183 ProteinP32249 (Uniprot-TrEMBL) GPR183 (originally called EBI2) binds the oxysterol 7alpha,25-dihydroxycholesterol (7a,25-OHC) (Hannedouche et al. 2011, Liu et al. 2011). GPR183 is believed to played a key role in regulating B cell migration and responses (Gatto et al. 2009, Pereira et al. 2009, Yi et al. 2012, Sun & Liu 2015). It signals via Gi (Rosenkilde et al. 2006).
GPR31 ProteinO00270 (Uniprot-TrEMBL)
GPR37 ProteinO15354 (Uniprot-TrEMBL)
GPR37L1 ProteinO60883 (Uniprot-TrEMBL)
GPR55 ProteinQ9Y2T6 (Uniprot-TrEMBL)
GPSM1 ProteinQ86YR5 (Uniprot-TrEMBL)
GPSM1, GPSM3,(GPSM2, PCP2)ComplexR-HSA-8949487 (Reactome)
GPSM2 ProteinP81274 (Uniprot-TrEMBL)
GPSM3 ProteinQ9Y4H4 (Uniprot-TrEMBL)
GRM2 ProteinQ14416 (Uniprot-TrEMBL)
GRM3 ProteinQ14832 (Uniprot-TrEMBL)
GRM4 ProteinQ14833 (Uniprot-TrEMBL)
GRM6 ProteinO15303 (Uniprot-TrEMBL)
GRM7 ProteinQ14831 (Uniprot-TrEMBL)
GRM8 ProteinO00222 (Uniprot-TrEMBL)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Grosshemin MetaboliteCHEBI:5547 (ChEBI)
HCAR1 ProteinQ9BXC0 (Uniprot-TrEMBL)
HCAR2 ProteinQ8TDS4 (Uniprot-TrEMBL)
HCAR3 ProteinP49019 (Uniprot-TrEMBL)
HEBP1(1-21) ProteinQ9NRV9 (Uniprot-TrEMBL)
HRH4 ProteinQ9H3N8 (Uniprot-TrEMBL)
HTR1B ProteinP28222 (Uniprot-TrEMBL)
HTR1D ProteinP28221 (Uniprot-TrEMBL)
HTR1E ProteinP28566 (Uniprot-TrEMBL)
HTR1F ProteinP30939 (Uniprot-TrEMBL)
HTR5A ProteinP47898 (Uniprot-TrEMBL)
Helicin MetaboliteCHEBI:73235 (ChEBI)
Heterotrimeric

G-protein Gi

(inactive)
ComplexR-HSA-392165 (Reactome)
Hist MetaboliteCHEBI:18295 (ChEBI)
IL8 ProteinP10145 (Uniprot-TrEMBL)
INSL5(115-135) ProteinQ9Y5Q6 (Uniprot-TrEMBL)
INSL5(23-48) ProteinQ9Y5Q6 (Uniprot-TrEMBL)
L-Glu MetaboliteCHEBI:29985 (ChEBI)
LACT MetaboliteCHEBI:422 (ChEBI)
LPA MetaboliteCHEBI:52288 (ChEBI)
LPAR1 ProteinQ92633 (Uniprot-TrEMBL)
LPAR2 ProteinQ9HBW0 (Uniprot-TrEMBL)
LPAR3 ProteinQ9UBY5 (Uniprot-TrEMBL)
LPAR5 ProteinQ9H1C0 (Uniprot-TrEMBL)
LTC4 MetaboliteCHEBI:16978 (ChEBI)
LTD4 MetaboliteCHEBI:28666 (ChEBI)
LTE4 MetaboliteCHEBI:15650 (ChEBI)
LXA4 MetaboliteCHEBI:6498 (ChEBI)
Ligand:GPCR

complexes that activate Gi:Heterotrimeric G-protein Gi

(active)
ComplexR-HSA-749445 (Reactome)
Ligand:GPCR

complexes that activate Gi:Heterotrimeric G-protein Gi

(inactive)
ComplexR-HSA-749455 (Reactome)
Ligand:GPCR

complexes that

activate Gi
ComplexR-HSA-380091 (Reactome)
Limonin MetaboliteCHEBI:16226 (ChEBI)
MCHR1 ProteinQ99705 (Uniprot-TrEMBL)
MCHR2 ProteinQ969V1 (Uniprot-TrEMBL)
MLT MetaboliteCHEBI:16796 (ChEBI)
MT-RNR2 ProteinQ8IVG9 (Uniprot-TrEMBL)
MTNR1A ProteinP48039 (Uniprot-TrEMBL)
MTNR1B ProteinP49286 (Uniprot-TrEMBL)
Mg2+ MetaboliteCHEBI:18420 (ChEBI)
NAGLY MetaboliteCHEBI:58961 (ChEBI)
NAd MetaboliteCHEBI:18357 (ChEBI)
NCA MetaboliteCHEBI:15940 (ChEBI)
NMS ProteinQ5H8A3 (Uniprot-TrEMBL)
NMU ProteinP48645 (Uniprot-TrEMBL)
NMUR1 ProteinQ9HB89 (Uniprot-TrEMBL)
NMUR2 ProteinQ9GZQ4 (Uniprot-TrEMBL)
NPB(25-48) ProteinQ8NG41 (Uniprot-TrEMBL)
NPB(25-53) ProteinQ8NG41 (Uniprot-TrEMBL)
NPBWR1 ProteinP48145 (Uniprot-TrEMBL)
NPBWR2 ProteinP48146 (Uniprot-TrEMBL)
NPW(33-55) ProteinQ8N729 (Uniprot-TrEMBL)
NPW(33-62) ProteinQ8N729 (Uniprot-TrEMBL)
NPY ProteinP01303 (Uniprot-TrEMBL)
NPY1R ProteinP25929 (Uniprot-TrEMBL)
NPY2R ProteinP49146 (Uniprot-TrEMBL)
NPY5R ProteinQ15761 (Uniprot-TrEMBL)
Noscapine MetaboliteCHEBI:73237 (ChEBI)
OPN1LW ProteinP04000 (Uniprot-TrEMBL)
OPN1MW ProteinP04001 (Uniprot-TrEMBL)
OPN1SW ProteinP03999 (Uniprot-TrEMBL)
OPN3 ProteinQ9H1Y3 (Uniprot-TrEMBL)
OPN5 ProteinQ6U736 (Uniprot-TrEMBL)
OPRD1 ProteinP41143 (Uniprot-TrEMBL)
OPRK1 ProteinP41145 (Uniprot-TrEMBL)
OPRL1 ProteinP41146 (Uniprot-TrEMBL)
OPRM1 ProteinP35372 (Uniprot-TrEMBL)
OXER1 ProteinQ8TDS5 (Uniprot-TrEMBL)
OXGR1 ProteinQ96P68 (Uniprot-TrEMBL)
Opioid SignallingPathwayR-HSA-111885 (Reactome) Opioids are chemical substances similar to opiates, the active substances found in opium (morphine, codeine etc.). Opioid action is mediated by the receptors for endogenous opioids; peptides such as the enkephalins, the endorphins or the dynorphins. Opioids possess powerful analgesic and sedative effects, and are widely used as pain-killers. Their main side-effect is the rapid establishment of a strong addiction. Opioids receptors are G-protein coupled receptors (GPCR). There are four classes of receptors: mu (MOR), kappa (KOR) and delta (DOR), and the nociceptin receptor (NOP).
Opsins:photonComplexR-HSA-419779 (Reactome)
P2RY12 ProteinQ9H244 (Uniprot-TrEMBL)
P2RY13 ProteinQ9BPV8 (Uniprot-TrEMBL)
P2RY14 ProteinQ15391 (Uniprot-TrEMBL)
P2RY4 ProteinP51582 (Uniprot-TrEMBL)
PCP2 ProteinQ8IVA1 (Uniprot-TrEMBL)
PENK(100-104) ProteinP01210 (Uniprot-TrEMBL)
PENK(107-111) ProteinP01210 (Uniprot-TrEMBL)
PENK(136-140) ProteinP01210 (Uniprot-TrEMBL)
PENK(210-214) ProteinP01210 (Uniprot-TrEMBL)
PENK(230-234) ProteinP01210 (Uniprot-TrEMBL)
PF4(48-101) ProteinP02776 (Uniprot-TrEMBL)
PGD2 MetaboliteCHEBI:15555 (ChEBI)
PGE2 MetaboliteCHEBI:15551 (ChEBI)
PMCH(147-165) ProteinP20382 (Uniprot-TrEMBL)
PNOC(130-146) ProteinQ13519 (Uniprot-TrEMBL)
POMC(237-241) ProteinP01189 (Uniprot-TrEMBL)
POMC(237-267) ProteinP01189 (Uniprot-TrEMBL)
PPBP(35-128) ProteinP02775 (Uniprot-TrEMBL)
PPY(30-65) ProteinP01298 (Uniprot-TrEMBL)
PPYR1 ProteinP50391 (Uniprot-TrEMBL)
PPiMetaboliteCHEBI:29888 (ChEBI)
PSAP(326-340) ProteinP07602 (Uniprot-TrEMBL) TXLIDNNATEEILY where X is a D-alanine
PSAP(?-?) ProteinP07602 (Uniprot-TrEMBL) TXLIDNNATEEILY where X is a D-alanine
PTGDR2 ProteinQ9Y5Y4 (Uniprot-TrEMBL)
PTGER3 ProteinP43115 (Uniprot-TrEMBL)
PYY(29-64) ProteinP10082 (Uniprot-TrEMBL)
Papaverine MetaboliteCHEBI:28241 (ChEBI)
Parthenolide MetaboliteCHEBI:7939 (ChEBI)
Phenethyl isothiocyanate MetaboliteCHEBI:351346 (ChEBI)
Photon MetaboliteCHEBI:30212 (ChEBI)
PiMetaboliteCHEBI:43474 (ChEBI)
Picrotoxinin MetaboliteCHEBI:8206 (ChEBI)
Quassin MetaboliteCHEBI:8692 (ChEBI)
Quinine MetaboliteCHEBI:15854 (ChEBI)
RGR ProteinP47804 (Uniprot-TrEMBL)
RGS proteins active for G alpha (i)ComplexR-HSA-921124 (Reactome)
RGS1 ProteinQ08116 (Uniprot-TrEMBL)
RGS1,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21ComplexR-HSA-8982016 (Reactome)
RGS10 ProteinO43665 (Uniprot-TrEMBL)
RGS11 ProteinO94810 (Uniprot-TrEMBL)
RGS12 ProteinO14924 (Uniprot-TrEMBL)
RGS13 ProteinO14921 (Uniprot-TrEMBL)
RGS14 ProteinO43566 (Uniprot-TrEMBL)
RGS16 ProteinO15492 (Uniprot-TrEMBL)
RGS17 ProteinQ9UGC6 (Uniprot-TrEMBL)
RGS18 ProteinQ9NS28 (Uniprot-TrEMBL)
RGS19 ProteinP49795 (Uniprot-TrEMBL)
RGS20 ProteinO76081 (Uniprot-TrEMBL)
RGS21 ProteinQ2M5E4 (Uniprot-TrEMBL)
RGS22 ProteinQ8NE09 (Uniprot-TrEMBL)
RGS3 ProteinP49796 (Uniprot-TrEMBL)
RGS4 ProteinP49798 (Uniprot-TrEMBL)
RGS5 ProteinO15539 (Uniprot-TrEMBL)
RGS6 ProteinP49758 (Uniprot-TrEMBL)
RGS7 ProteinP49802 (Uniprot-TrEMBL)
RGS8 ProteinP57771 (Uniprot-TrEMBL)
RGS9 ProteinO75916 (Uniprot-TrEMBL)
RGSL1 ProteinA5PLK6 (Uniprot-TrEMBL)
RHO ProteinP08100 (Uniprot-TrEMBL)
RLN3(119-142) ProteinQ8WXF3 (Uniprot-TrEMBL)
RLN3(26-52) ProteinQ8WXF3 (Uniprot-TrEMBL)
RRH ProteinO14718 (Uniprot-TrEMBL)
RXFP3 ProteinQ9NSD7 (Uniprot-TrEMBL)
RXFP4 ProteinQ8TDU9 (Uniprot-TrEMBL)
S1P MetaboliteCHEBI:37550 (ChEBI)
S1PR2 ProteinO95136 (Uniprot-TrEMBL)
S1PR3 ProteinQ99500 (Uniprot-TrEMBL)
S1PR4 ProteinO95977 (Uniprot-TrEMBL)
S1PR5 ProteinQ9H228 (Uniprot-TrEMBL)
SAA1(19-122) ProteinP0DJI8 (Uniprot-TrEMBL)
SACC MetaboliteCHEBI:32111 (ChEBI)
SRC ProteinP12931 (Uniprot-TrEMBL)
SRCProteinP12931 (Uniprot-TrEMBL)
SSTR1 ProteinP30872 (Uniprot-TrEMBL)
SSTR2 ProteinP30874 (Uniprot-TrEMBL)
SSTR3 ProteinP32745 (Uniprot-TrEMBL)
SSTR4 ProteinP31391 (Uniprot-TrEMBL)
SSTR5 ProteinP35346 (Uniprot-TrEMBL)
SUCCA MetaboliteCHEBI:30031 (ChEBI)
SUCNR1 ProteinQ9BXA5 (Uniprot-TrEMBL)
Salicin MetaboliteCHEBI:17814 (ChEBI)
Sinigrin MetaboliteCHEBI:9162 (ChEBI)
Somatostatin R-HSA-374714 (Reactome)
Strychnine MetaboliteCHEBI:28973 (ChEBI)
Suc MetaboliteCHEBI:17992 (ChEBI)
TAS1R1 ProteinQ7RTX1 (Uniprot-TrEMBL)
TAS1R2 ProteinQ8TE23 (Uniprot-TrEMBL)
TAS1R3 ProteinQ7RTX0 (Uniprot-TrEMBL)
TAS2R1 ProteinQ9NYW7 (Uniprot-TrEMBL)
TAS2R10 ProteinQ9NYW0 (Uniprot-TrEMBL)
TAS2R13 ProteinQ9NYV9 (Uniprot-TrEMBL)
TAS2R14 ProteinQ9NYV8 (Uniprot-TrEMBL)
TAS2R16 ProteinQ9NYV7 (Uniprot-TrEMBL)
TAS2R19 ProteinP59542 (Uniprot-TrEMBL)
TAS2R20 ProteinP59543 (Uniprot-TrEMBL)
TAS2R3 ProteinQ9NYW6 (Uniprot-TrEMBL)
TAS2R30 ProteinP59541 (Uniprot-TrEMBL)
TAS2R31 ProteinP59538 (Uniprot-TrEMBL)
TAS2R38 ProteinP59533 (Uniprot-TrEMBL)
TAS2R39 ProteinP59534 (Uniprot-TrEMBL)
TAS2R4 ProteinQ9NYW5 (Uniprot-TrEMBL)
TAS2R40 ProteinP59535 (Uniprot-TrEMBL)
TAS2R41 ProteinP59536 (Uniprot-TrEMBL)
TAS2R42 ProteinQ7RTR8 (Uniprot-TrEMBL)
TAS2R43 ProteinP59537 (Uniprot-TrEMBL)
TAS2R45 ProteinP59539 (Uniprot-TrEMBL)
TAS2R46 ProteinP59540 (Uniprot-TrEMBL)
TAS2R5 ProteinQ9NYW4 (Uniprot-TrEMBL)
TAS2R50 ProteinP59544 (Uniprot-TrEMBL)
TAS2R60 ProteinP59551 (Uniprot-TrEMBL)
TAS2R7 ProteinQ9NYW3 (Uniprot-TrEMBL)
TAS2R8 ProteinQ9NYW2 (Uniprot-TrEMBL)
TAS2R9 ProteinQ9NYW1 (Uniprot-TrEMBL)
Tatridin B MetaboliteCHEBI:73239 (ChEBI)
Thiamine MetaboliteCHEBI:26948 (ChEBI)
UDP-Glc MetaboliteCHEBI:18066 (ChEBI)
UTP MetaboliteCHEBI:15713 (ChEBI)
Visual phototransductionPathwayR-HSA-2187338 (Reactome) Visual phototransduction is the process by which photon absorption by visual pigment molecules in photoreceptor cells is converted to an electrical cellular response. The events in this process are photochemical, biochemical and electrophysiological and are highly conserved across many species. This process occurs in two types of photoreceptors in the retina, rods and cones. Each type consists of two parts, the outer segment which detects a photon signal and the inner segment which contains the necessary machinery for cell metabolism. Each type of cell functions differently. Rods are very light sensitive but their flash response is slow so they work best in twilight conditions but are not good at detecting objects moving quickly. Cones are less light-sensitive and have a fast flash response so they work best in daylight conditions and are better at detecting fast moving objects than rods.

The visual pigment consists of a chromophore (11-cis-retinal, 11cRAL, A1) covalently attached to a GPCR opsin family member. The linkage is via a Schiff base forming retinylidene protein. Upon photon absorption, 11cRAL isomerises to all-trans retinal (atRAL), changing the conformation of opsin to an activated form which can activate the regulatory G protein transducin (Gt). The alpha subunit of Gt activates phosphodiesterase which hydrolyses cGMP to 5'-GMP. As high level of cGMP keep cGMP-gated sodium channels open, the lowering of cGMP levels closes these channels which causes hyperpolarization of the cell and subsequently, closure of voltage-gated calcium channels. As calcium levels drop, the level of the neurotransmitter glutamate also drops causing depolarization of the cell. This effectively relays the light signal to postsynaptic neurons as electrical signal (Burns & Pugh 2010, Korenbrot 2012, Pugh & Lamb 1993).

11cRAL cannot be synthesised in vertebrates. Vitamin A from many dietary sources is the precursor for 11cRAL. It is taken from food in the form of esters such as retinyl acetate or palmitate or one of four caretenoids (alpha-carotene, beta-carotene, gamma-carotene and beta-cryptoxanthin). Retinoids are transported from the gut to be stored in liver, until required by target organs such as the eye (Harrison & Hussain 2001, Harrison 2005). In the eye, in the form 11cRAL, it is used in the retinoid (visual) cycle to initiate phototransduction and for visual pigment regeneration to ready the photoreceptor for the next phototransduction event (von Lintig 2012, Blomhoff & Blomhoff 2006, von Lintig et al. 2010, D'Ambrosio et al. 2011, Wang & Kefalov 2011, Kefalov 2012, Wolf 2004).
Yohimbine MetaboliteCHEBI:10093 (ChEBI)
cAMPMetaboliteCHEBI:17489 (ChEBI)
cis-isohumulone MetaboliteCHEBI:73236 (ChEBI)
p-Y416-SRC ProteinP12931 (Uniprot-TrEMBL)
p-Y416-SRCProteinP12931 (Uniprot-TrEMBL)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ADPArrowR-HSA-8964242 (Reactome)
ATPR-HSA-392129 (Reactome)
ATPR-HSA-8964242 (Reactome)
Adenylate cyclase (Mg2+ cofactor)R-HSA-392206 (Reactome)
G alpha (i):GTP:SRC-1ArrowR-HSA-8964311 (Reactome)
G alpha (i):GTP:SRC-1R-HSA-8964242 (Reactome)
G alpha (i):GTP:SRC-1mim-catalysisR-HSA-8964242 (Reactome)
G alpha

(s):GTP:Adenylate

cyclase
mim-catalysisR-HSA-392129 (Reactome)
G alpha (i): GTPArrowR-HSA-749454 (Reactome)
G alpha (i): GTPArrowR-HSA-8964329 (Reactome)
G alpha (i): GTPR-HSA-392206 (Reactome)
G alpha (i): GTPR-HSA-392212 (Reactome)
G alpha (i): GTPR-HSA-8964311 (Reactome)
G alpha (i): GTPR-HSA-8982019 (Reactome)
G alpha (i): GTPmim-catalysisR-HSA-392212 (Reactome)
G alpha (i):GDP:RGSArrowR-HSA-8982020 (Reactome)
G alpha (i):GDP:RGSR-HSA-8982012 (Reactome)
G alpha (i):GTP:RGSArrowR-HSA-8982019 (Reactome)
G alpha (i):GTP:RGSR-HSA-8982020 (Reactome)
G alpha (i):GTP:RGSmim-catalysisR-HSA-8982020 (Reactome)
G protein alpha (i):GTP:p-Y416-SRCArrowR-HSA-8964242 (Reactome)
G protein alpha (i):GTP:p-Y416-SRCR-HSA-8964329 (Reactome)
G-alpha(t)-GDP:G-beta-gammaR-HSA-8982637 (Reactome)
G-alpha(t)-GTPArrowR-HSA-8982640 (Reactome)
G-alpha(t):GDP:G-beta-gamma:OpsinsArrowR-HSA-8982637 (Reactome)
G-alpha(t):GDP:G-beta-gamma:OpsinsR-HSA-420883 (Reactome)
G-alpha(t):GTP:G-beta-gamma:OpsinsArrowR-HSA-420883 (Reactome)
G-alpha(t):GTP:G-beta-gamma:OpsinsR-HSA-8982640 (Reactome)
G-protein alpha (i):GDPArrowR-HSA-392212 (Reactome)
G-protein alpha (i):GDPArrowR-HSA-8982012 (Reactome)
G-protein alpha (i):GDPR-HSA-751001 (Reactome)
G-protein alpha

(i):GTP:Adenylate

cyclase
ArrowR-HSA-392206 (Reactome)
G-protein alpha

(z):GTP:Adenylate

cyclase
TBarR-HSA-392129 (Reactome)
G-protein beta-gamma complexArrowR-HSA-749454 (Reactome)
G-protein beta-gamma complexArrowR-HSA-8982640 (Reactome)
G-protein beta-gamma complexR-HSA-751001 (Reactome)
GDPArrowR-HSA-380073 (Reactome)
GDPArrowR-HSA-420883 (Reactome)
GPSM1, GPSM3,(GPSM2, PCP2)TBarR-HSA-380073 (Reactome)
GTPR-HSA-380073 (Reactome)
GTPR-HSA-420883 (Reactome)
Heterotrimeric

G-protein Gi

(inactive)
ArrowR-HSA-751001 (Reactome)
Heterotrimeric

G-protein Gi

(inactive)
R-HSA-749456 (Reactome)
Ligand:GPCR

complexes that activate Gi:Heterotrimeric G-protein Gi

(active)
ArrowR-HSA-380073 (Reactome)
Ligand:GPCR

complexes that activate Gi:Heterotrimeric G-protein Gi

(active)
R-HSA-749454 (Reactome)
Ligand:GPCR

complexes that activate Gi:Heterotrimeric G-protein Gi

(inactive)
ArrowR-HSA-749456 (Reactome)
Ligand:GPCR

complexes that activate Gi:Heterotrimeric G-protein Gi

(inactive)
R-HSA-380073 (Reactome)
Ligand:GPCR

complexes that activate Gi:Heterotrimeric G-protein Gi

(inactive)
mim-catalysisR-HSA-380073 (Reactome)
Ligand:GPCR

complexes that

activate Gi
ArrowR-HSA-749454 (Reactome)
Ligand:GPCR

complexes that

activate Gi
R-HSA-749456 (Reactome)
Opsins:photonArrowR-HSA-8982640 (Reactome)
Opsins:photonR-HSA-8982637 (Reactome)
Opsins:photonmim-catalysisR-HSA-420883 (Reactome)
Opsins:photonmim-catalysisR-HSA-8982637 (Reactome)
Opsins:photonmim-catalysisR-HSA-8982640 (Reactome)
PPiArrowR-HSA-392129 (Reactome)
PiArrowR-HSA-392212 (Reactome)
PiArrowR-HSA-8982020 (Reactome)
R-HSA-380073 (Reactome) The liganded receptor undergoes a conformational change, generating a signal that is propagated in a manner that is not completely understood to the the G-protein. This stimulates the exchange of GDP for GTP in the G-protein alpha subunit, activating the G-protein. This event is negatively regulated by some Activators of G protein signaling (AGS) proteins, a class of proteins identified in yeast functional screens for proteins able to activate G protein signaling in the absence of a G protein–coupled receptor (GPCR) (Cismowski et al. 1999, Takesono et al. 1999). AGS proteins contain G protein regulatory (GPR) motifs (also referred to as the GoLoco motif) that bind and stabilize the Galpha subunit in its GDP-bound conformation (Mochizuki et al. 1996, Peterson et al. 2000, Cao et al. 2004, Blumer & Lanier 2014). Some RGS proteins similarly bind to Galpha preventing the exchange of GDP for GTP (Soundararajan et al. 2008).
R-HSA-392129 (Reactome) The activation of adenylyl (adenylate) cyclase (AC) results in the production of adenosine-3',5'-monophosphate i.e. cyclic AMP. Humans have 9 genes encoding membrane-associated AC and one encoding a soluble AC. Two of the classes of heterotrimeric G-proteins are named according to their effect on AC; G(s) stimulates all membrane-bound ACs (the s in G(s) denotes AC stimulatory); the G(i) class inhibits some AC isoforms, particularly 5 and 6. Beta-gamma subunits of heterotrimeric G-proteins can also regulate AC. Ca2+/Calmodulin activates some AC isoforms (1, 8 and 3) but is inhibitory to others (5 and 6).
R-HSA-392206 (Reactome) G-proteins in the Gi class inhibit adenylate cyclase activity, decreasing the production of cAMP from ATP, which has many consequences but classically results in decreased activity of Protein Kinase A (PKA). cAMP also activates the cyclic nucleotide-gated ion channels, a process that is particularly important in olfactory cells.
R-HSA-392212 (Reactome) When a ligand activates a G protein-coupled receptor, it induces a conformational change in the receptor (a change in shape) that allows the receptor to function as a guanine nucleotide exchange factor (GEF), stimulating the exchange of GDP for GTP on the G alpha subunit. In the traditional view of heterotrimeric protein activation, this exchange triggers the dissociation of the now active G alpha subunit from the beta:gamma dimer, initiating downstream signalling events. The G alpha subunit has intrinsic GTPase activity and will eventually hydrolyze the attached GTP to GDP, allowing reassociation with G beta:gamma. Additional GTPase-activating proteins (GAPs) stimulate the GTPase activity of G alpha, leading to more rapid termination of the transduced signal. In some cases the downstream effector may have GAP activity, helping to deactivate the pathway. This is the case for phospholipase C beta, which possesses GAP activity within its C-terminal region (Kleuss et al. 1994).
R-HSA-420883 (Reactome) Transducin (Gt) is a heterotrimeric G protein encoded by GNAT genes and is naturally expressed in vertebrate retina rods and cones. There are two types, alpha-1 chain (expressed in rods by GNAT1) (Lerea CL et al, 1989) and alpha-2 chain (expressed in cones by GNAT2) (Morris TA and Fong SL, 1993). Stimulated opsins can act as GEFs for G (t) alpha subunits by replacing GDP with GTP. Consequently, the G (t) alpha subunit is activated and results in the "vertebrate phototransduction cascade" (Chen CK, 2005). Cyclic GMP Phosphodiesterase is activated which lowers cGMP levels (an intracellular second messenger molecule). Lower cGMP levels can then lead to the closure of cGMP-regulated Na+ and Ca2+ ion channels and a hyperpolarized membrane potential.

R-HSA-749454 (Reactome) The classical view of G-protein signalling is that the G-protein alpha subunit dissociates from the beta:gamma dimer. Activated G alpha (i) and the beta:gamma dimer then participate in separate signaling cascades. Although G protein dissociation has been contested (e.g. Bassi et al. 1996), recent in vivo experiments have demonstrated that dissociation does occur, though possibly not to completion (Lambert 2008).
R-HSA-749456 (Reactome) Many unrelated GPCRs couple with the Gi G-protein subtype. The G-alpha (i) subunit inhibits the production of cAMP from ATP. In turn, this results in decreased activity of cAMP-dependent protein kinase. There are 8 types of G-alpha (i) known to date:G(i)1, G(i)2, G(i)3, G(i)o, G(i)z, G(i)gust (gustducin) and two G(i)t (retinal transducin) (Downes GB and Gautam N, 1999). Once GDP is exchanged for GTP on the alpha subunit, it dissociates from the G-beta-gamma subunit.
R-HSA-751001 (Reactome) The classical model of G-protein signaling suggests that the G-protein dissociates upon GPCR activation. The active G alpha (i) subunit then participates in signaling, until its intrinsic GTPase activity degrades the bound GTP to GDP. The inactive G alpha (i):GDP complex has much higher affinity for the G beta:gamma complex and consequently reassociates.
R-HSA-8964242 (Reactome) G-Protein Coupled Receptors sense extracellular signals and activate different Guanine nucleotide binding proteins. Upon activation, the alpha subunit of the G protein (GNAI) can directly bind to SRC. In the presence of active GNAI, SRC can autophosphorylate the 416-tyrosine residue, which leads to the subsequent activation of SRC. Physiologically, the SRC family have implications in cell growth and cancer.
R-HSA-8964311 (Reactome) G-Protein Coupled Receptors (GPCR) sense extracellular signals and activate different Guanine nucleotide binding proteins. Upon activation, the Guanine nucleotide-binding protein G(i) subunit alpha (GNAI) can bind directly to proto-oncogene tyrosine-protein kinase Src (SRC) in vitro and in vivo. This binding results in autophosphorylation of SRC and subsequently its activation. Physiologically, the SRC family have implications in cell growth and cancer.
R-HSA-8964329 (Reactome) G-Protein Coupled Receptors sense extracellular signals and activate different Guanine nucleotide binding proteins. Upon activation, the Guanine nucleotide-binding protein G(i) subunit alpha (GNAI) can directly bind to proto-oncogene tyrosine-protein kinase Src (SRC). When bound to active GNAI, SRC can autophosphorylate the 416-tyrosine residue. Upon autophosphorylation, SRC dissociates from GNAI and is subsequently activated. GNAI increases SRC enzymatic activity by decreasing Km and not affecting Vm. Physiologically, the SRC family have implications in cell growth and cancer.
R-HSA-8982012 (Reactome) G Protein Coupled Receptors (GPCR) sense extracellular signals and activate different Guanine nucleotide binding proteins (G proteins). Upon activation, GPCRs can replace the GDP with GTP in the alpha subunit of G proteins. GTP binding modifies the conformation of G alpha proteins and activates them. The Regulator of G protein Signalling (RGS) are GTPase Accelerating Proteins (GAPs) that can directly inhibit the G alpha subunit activity. There are at least 25 different types of RGS proteins known. Several of these RGS proteins (1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21) can bind and stabilize the transition state of Guanine nucleotide binding protein G(i) subunit alpha (GNAI). Subsequently, RGS proteins in the complex facilitate the hydrolyses of GNAI:GTP to GNAI:GDP. Following this, the complex dissociates releasing inactive GNAI (Neubig & Siderovski 2002, Kach et al. 2012).
R-HSA-8982019 (Reactome) G Protein Coupled Receptors (GPCR) sense extracellular signals and activate different Guanine nucleotide binding proteins (G proteins). Upon activation, GPCRs can replace the GDP with GTP in the alpha subunit of G proteins. GTP binding modifies the conformation of G alpha proteins and activates them. The Regulator of G protein Signalling (RGS) proteins are GTPase Accelerating Proteins (GAPs) that can inhibit the G alpha subunit activity via their GAP activity. There are at least 25 different types of RGS proteins known. Several of these RGS proteins (1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21) can bind and stabilize the transition state for GTP hydrolysis of Guanine nucleotide binding protein G(i) subunit alpha (GNAI). Subsequently, this leads to GTP hydrolysis and inactivation of GNAI and terminating downstream signalling (Neubig & Siderovski DP 2002, Kach et al. 2012). The primary function of GNAI is the inhibition of adenylate cyclase.
R-HSA-8982020 (Reactome) G Protein Coupled Receptors (GPCR) sense extracellular signals and activate different Guanine nucleotide binding proteins (G proteins). Upon activation, GPCRs can replace the GDP with GTP in the alpha subunit of G proteins. GTP binding modifies the conformation of G alpha proteins and activates them. The Regulator of G protein Signalling (RGS) are GTPase Accelerating Proteins (GAPs) that can directly inhibit the G alpha subunit activity. There are at least 25 different types of RGS proteins known. Several of these RGS proteins (1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21) can bind and stabilize the transition state of Guanine nucleotide binding protein G(i) subunit alpha (GNAI). Following this, the RGS domain of the proteins exert GAP activity on GNAI and allosterically modulate residues within G-alpha subunit to accelerate the intrinsic GTPase activity that hydrolyses GTP to GDP. This inactivates GNAI and terminates downstream signalling (Neubig & Siderovski 2002, Kach et al. 2012).
R-HSA-8982637 (Reactome) Transducin (Gt) is a heterotrimeric G protein encoded by GNAT genes and is naturally expressed in vertebrate retina rods and cones. There are two types, alpha-1 chain (expressed in rods by GNAT1) (Lerea CL et al, 1989) and alpha-2 chain (expressed in cones by GNAT2) (Morris TA and Fong SL, 1993). Photon activated-opsins can bind to G(t) alpha subunits and stimulate them. Activation of the G(t) alpha subunit results in the "vertebrate phototransduction cascade" (Chen CK, 2005). Cyclic GMP Phosphodiesterase is activated which lowers cGMP levels (an intracellular second messenger molecule). Lower cGMP levels can then lead to the closure of cGMP-regulated Na+ and Ca2+ ion channels and a hyperpolarized membrane potential.

R-HSA-8982640 (Reactome) Transducin (Gt) is a heterotrimeric G protein encoded by GNAT genes and is naturally expressed in vertebrate retina rods and cones. There are two types, alpha-1 chain (expressed in rods by GNAT1) (Lerea CL et al, 1989) and alpha-2 chain (expressed in cones by GNAT2) (Morris TA and Fong SL, 1993). Stimulated opsins can bind to and act as GEFs for G (t) alpha subunits thereby replacing the GDP with GTP. Subsequently, activated G (t) alpha proteins dissociate from the complex. Activation of the G (t) alpha subunit results in the "vertebrate phototransduction cascade" (Chen CK, 2005). Cyclic GMP Phosphodiesterase is activated which lowers cGMP levels (an intracellular second messenger molecule). Lower cGMP levels can then lead to the closure of cGMP-regulated Na+ and Ca2+ ion channels and a hyperpolarized membrane potential.

RGS proteins active for G alpha (i)ArrowR-HSA-392212 (Reactome)
RGS1,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21ArrowR-HSA-8982012 (Reactome)
RGS1,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21R-HSA-8982019 (Reactome)
SRCR-HSA-8964311 (Reactome)
TBarR-HSA-392129 (Reactome)
cAMPArrowR-HSA-392129 (Reactome)
p-Y416-SRCArrowR-HSA-8964329 (Reactome)
Personal tools