NF-kB signaling and ARTD family members (Homo sapiens)

From WikiPathways

Jump to: navigation, search
ArcPathVisio Brace Ellipse EndoplasmicReticulum GolgiApparatus HexagonPathVisio MimDegradation Mitochondria Octagon PentagonPathVisio Rectangle RoundedRectangle SarcoplasmicReticulum TriangleEquilateralEast TrianglePathVisio none SCF-bTrCPLegendCanonicalNFKB signalingp100IKBKGCHUKIKBKBCytokinereceptorTNFreceptorT-cellreceptorB-cellreceptorNFKBIAEIF2AK3ERN1EP300CREBBPPARP1PARP10GSK3BMAVSRIGIZC3HAV1PARP14PARP12TIPARPTBK1MAP3K14NFKB2RELBp52NFKB2RELBCHUKRBX1SKP1CUL1BTRCNFKBNFKB1RELANFKB2RELBRELNFKBNFKB1RELANFKB2RELBRELNFKBNFKB1RELANFKB2RELBRELNFKBNFKB1RELANFKB2RELBRELNFKBNFKB1RELANFKB2RELBRELNFKBNFKB1RELANFKB2RELBRELPARP1NFKBIASCF-bTrCPRBX1SKP1CUL1BTRCPARP10PARP1PARP16NFKB2RELBNon-canonicalNFKB signalingTNFreceptorNon-enzymatic / unknownName: NF-kB signaling and ARTD family membersOrganism: Homo sapiens


Description

NF-κB binds to and represses the PARP10 promoter, resulting in transcriptional suppression in hepatocellular carcinoma.

In prostate carcinoma resistant to gemcitabine, constitutive activation of NF-κB signaling is crucial, and elevated levels of PARP14 (ARTD8) are associated with poor patient outcomes.

PARP14 plays a key role in cell survival and is essential for sustaining NF-κB signaling. Mechanistically, the reduction in NF-κB signaling is attributed to decreased phosphorylation of IκBα.

The canonical NF-κB pathway is activated in response to viral infections. Mechanistically, the binding of 5′-triphosphate-modified RNA to RIG-I complexes enhances its interaction with MAVS, activating the IKK complex, which leads to IκBα degradation and the release of NF-κB dimers. Interestingly, the catalytically inactive RNA-binding protein PARP13 (ARTD13) restricts the replication of oncogenic viruses by stabilizing the activated RIG-I complex's binding to MAVS, thus enhancing NF-κB signaling. This suggests that PARP13 may play a protective role against malignant transformation and cancer progression.

PARP12 localizes to p62/SQSTM1 foci, and its activity is essential for initiating the NF-κB signaling cascade.

ER-stress-induced inflammation and activation of the unfolded protein response (UPR) are transmitted through ER-associated stress sensors. These sensors significantly contribute to tumor progression and metastasis in an NF-κB-dependent manner. Mechanistically, activated IRE-1α recruits TRAF2, which activates the canonical pathway via IKK, leading to the release of NF-κB dimers. Simultaneously, PERK triggers an eIF2α-dependent reduction in translation, lowering overall IκB levels and shifting the equilibrium from complexed, inactive NF-κB to a free, transiently active form. During ER stress, PARP16, an ER-anchored protein, modifies itself and two stress sensors, IRE-1α and PERK. Activation of PARP16 promotes IRE-1α and PERK signaling, even in the absence of ER stress, and is crucial for their activity during the UPR.

Both PARP1 (ARTD1) and its enzymatic activity are linked to increased NF-κB signaling. In TNFα-stimulated NIH3T3 fibroblasts lacking PARP1, NF-κB target gene expression is suppressed, despite NF-κB being localized in the nucleus. Moreover, LPS treatment of wild-type or PARP1-deficient mice reinforces the involvement of PARP1 in NF-κB's transcriptional activity. Mechanistically, LPS-dependent NF-κB activation in primary murine fibroblasts is driven by the interaction of PARP1 with transcriptional coactivators CREB-binding protein (CBP) and p300. This complex formation leads to PARP1 acetylation, enabling the PARP1-CBP-p300 complex to interact with the p50 subunit of NF-κB, thus activating NF-κB signaling and initiating the transcription of proinflammatory cytokines, chemokines, transcription factors, and other inflammatory mediators.

In non-canonical NF-κB signaling, NF-κB2 processing is regulated by NIK, which is downregulated by non-canonical IKK TBK1. In an NF-κB-independent context, TBK1 activates IRF3 in response to viral infections. Notably, TBK1 kinase activity and antiviral response efficacy are negatively regulated by PARP7 (ARTD14/TIPARP)-mediated ADP-ribosylation.

In HeLa and U2OS cells, PARP10 inhibits IKK complex activation and NF-κB signaling. Mechanistically, PARP10 reduces K63-linked polyubiquitination of NEMO, which prevents IKK complex assembly and activation.

Inspired by Figure 1 and associated description in [Boehi et al. (2021)](https://pmc.ncbi.nlm.nih.gov/articles/PMC8560908/).

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Image:Curated.pngApproved version

Ontology Terms

Bibliography

No bibliography


History

View all...
CompareRevisionActionTimeUserComment
138261
Approved
view03:59, 27 March 2025EweitzEconomize layout
138260view03:57, 27 March 2025EweitzAdd legend
138259view03:29, 27 March 2025EweitzAssign identifiers to gene families
138258view03:18, 27 March 2025EweitzAdd cell membrane proteins
138257view03:03, 27 March 2025EweitzLabel pathways
138256view02:52, 27 March 2025EweitzOntology Term : 'viral infectious disease' added !
138255view02:50, 27 March 2025EweitzOntology Term : 'prostate carcinoma' added !
138254view02:50, 27 March 2025EweitzOntology Term : 'hepatocellular carcinoma' added !
138253view02:50, 27 March 2025EweitzOntology Term : 'nuclear factor kappa B signaling pathway' added !
138252view02:48, 27 March 2025EweitzModified description
138251view01:19, 27 March 2025EweitzAdd interactions
138250view00:59, 27 March 2025EweitzAdd interactions
138249view00:54, 27 March 2025EweitzAdd cell compartments
138248view00:46, 27 March 2025EweitzAdd interactions
138247view00:10, 27 March 2025EweitzArrange nodes
138246view23:49, 26 March 2025EweitzResolve "IKB" gene
138245view23:37, 26 March 2025EweitzAssign identifiers for genes
138244view23:18, 26 March 2025EweitzExpand NFKB complex
138243view23:16, 26 March 2025EweitzExpand SCF-bTrCP complex
138242view13:02, 26 March 2025EweitzAssign identifiers to genes
138241view12:54, 26 March 2025EweitzUse gene symbols
138240view12:39, 26 March 2025EweitzNew pathway

External references

DataNodes

View all...
Name  ↓Type  ↓Database reference  ↓Comment  ↓
B-cell receptorPathwayWP23 (WikiPathways)
BTRCGeneProductENSG00000166167 (Ensembl)
CHUKGeneProductENSG00000213341 (Ensembl) "IKK1" in source
CREBBPGeneProductENSG00000005339 (Ensembl) "CBP" in source
CUL1GeneProductENSG00000055130 (Ensembl)
Cytokine receptorPathwayWP5473 (WikiPathways)
EIF2AK3GeneProductENSG00000172071 (Ensembl) "PERK" in source
EP300GeneProductENSG00000100393 (Ensembl) "p300" in source
ERN1GeneProductENSG00000178607 (Ensembl) "IRE-1a" in source
GSK3BGeneProductENSG00000082701 (Ensembl)
IKBKBGeneProductENSG00000104365 (Ensembl) "IKK2" in source
IKBKGGeneProductENSG00000269335 (Ensembl) "NEMO" in source
MAP3K14GeneProductENSG00000006062 (Ensembl) "NIK" in source
MAVSGeneProductENSG00000088888 (Ensembl)
NFKB1GeneProductENSG00000114515 (Ensembl)
NFKB2GeneProductENSG00000077150 (Ensembl) "P52" in source
NFKB2GeneProductENSG00000114526 (Ensembl)
NFKBIAGeneProductENSG00000100906 (Ensembl) "IKB" in source
PARP10GeneProductENSG00000178685 (Ensembl)
PARP12GeneProductENSG00000059378 (Ensembl)
PARP14GeneProductENSG00000173193 (Ensembl)
PARP16GeneProductENSG00000138617 (Ensembl)
PARP1GeneProductENSG00000143799 (Ensembl)
RBX1GeneProductENSG00000100387 (Ensembl)
RELAGeneProductENSG00000184697 (Ensembl)
RELBGeneProductENSG00000103171 (Ensembl)
RELBGeneProductENSG00000104856 (Ensembl)
RELGeneProductENSG00000105825 (Ensembl)
RIGIGeneProductENSG00000107201 (Ensembl) "RIG-I" in source
SKP1GeneProductENSG00000113558 (Ensembl)
T-cell receptorPathwayWP69 (WikiPathways)
TBK1GeneProductENSG00000183735 (Ensembl)
TIPARPGeneProductENSG00000163659 (Ensembl) "PARP7" in source
TNF receptorGeneProduct
ZC3HAV1GeneProductENSG00000105939 (Ensembl) "PARP13" in source

Annotated Interactions

No annotated interactions

Personal tools