Portal:ExRNA/FeaturedPathways
From WikiPathways
(Difference between revisions)
Line 14: | Line 14: | ||
|width=100px; cell padding=50px|{{#pwImage:Pathway:WP2583|250px||T-Cell Receptor and Co-stimulatory Signaling}} | |width=100px; cell padding=50px|{{#pwImage:Pathway:WP2583|250px||T-Cell Receptor and Co-stimulatory Signaling}} | ||
[http://dx.doi.org/10.1002/hep.27043 Takahashi, et al. Long non-coding RNA in liver diseases] | [http://dx.doi.org/10.1002/hep.27043 Takahashi, et al. Long non-coding RNA in liver diseases] | ||
- | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP2865|250px||IL1 and megakaryotyces in obesity}} |
- | [http://dx.doi.org/10. | + | [http://dx.doi.org/10.1161/ATVBAHA.113.302700 Beaulieu, et al. Interleukin 1 receptor 1 and interleukin 1beta regulate megakaryocyte maturation, platelet activation, and transcript profile during inflammation in mice and humans] |
|width=100px|{{#pwImage:Pathway:WP2805|250px||RNA interference}} | |width=100px|{{#pwImage:Pathway:WP2805|250px||RNA interference}} | ||
[http://dx.doi.org/10.1016/j.addr.2013.12.008 Ozpolat, et al. Liposomal siRNA nanocarriers for cancer therapy] | [http://dx.doi.org/10.1016/j.addr.2013.12.008 Ozpolat, et al. Liposomal siRNA nanocarriers for cancer therapy] | ||
Line 25: | Line 25: | ||
|width=100px|{{#pwImage:Pathway:WP2866|250px||mir34a and TGIF2 in osteoclastogenesis}} | |width=100px|{{#pwImage:Pathway:WP2866|250px||mir34a and TGIF2 in osteoclastogenesis}} | ||
[http://dx.doi.org/10.1038/nature13375 Krzeszinski, et al. miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2] | [http://dx.doi.org/10.1038/nature13375 Krzeszinski, et al. miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2] | ||
- | |width=100px|{{#pwImage:Pathway: | + | |width=100px|{{#pwImage:Pathway:WP2811|250px||mir219 in Oligodendrocyte Differentiation and Myelination}} |
- | [http://dx.doi.org/10. | + | [http://dx.doi.org/10.1002/glia.22606 Pusic, et al. Youth and environmental enrichment generate serum exosomes containing miR-219 that promote CNS myelination] |
+ | |||
|width=100px|{{#pwImage:Pathway:WP2864|250px||Apoptosis-related network due to altered Notch3 in ovarian cancer}} | |width=100px|{{#pwImage:Pathway:WP2864|250px||Apoptosis-related network due to altered Notch3 in ovarian cancer}} | ||
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2066 Hu, et al. Notch3 pathway alterations in ovarian cancer] | [http://dx.doi.org/10.1158/0008-5472.CAN-13-2066 Hu, et al. Notch3 pathway alterations in ovarian cancer] |
Revision as of 19:25, 4 November 2014
- miRNA Regulation of DNA Damage Response (Homo sapiens)
- miR-targeted genes in adipocytes - TarBase (Homo sapiens)
- miR-targeted genes in epithelium - TarBase (Homo sapiens)
- miR-targeted genes in leukocytes - TarBase (Homo sapiens)
- miR-targeted genes in lymphocytes - TarBase (Homo sapiens)
- miR-targeted genes in muscle cell - TarBase (Homo sapiens)
- miR-targeted genes in squamous cell - TarBase (Homo sapiens)
- TarBasePathway (Homo sapiens)
- MicroRNAs in cardiomyocyte hypertrophy (Homo sapiens)
- SREBF and miR33 in cholesterol and lipid homeostasis (Homo sapiens)
- SRF and miRs in Smooth Muscle Differentiation and Proliferation (Homo sapiens)
Image does not exist |
Image does not exist |
Image does not exist Ozpolat, et al. Liposomal siRNA nanocarriers for cancer therapy |
Image does not exist |
Image does not exist |
Image does not exist |
Image does not exist |
Image does not exist |
Image does not exist |