SUMOylation of transcription cofactors (Homo sapiens)

From WikiPathways

Revision as of 21:34, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
1-45-7nucleoplasmDDX17SUMO1-C93-UBE2I UBE2IDDX17-G97-SUMO1 SUMO1:DDX17SUMO1-K50-DDX17 SUMO1:C93-UBE2IUBE2I-G97-SUMO1 5, 7


Description

SUMO1,2, and 3 are predominantly located in the nucleus and targets of SUMOylation are predominantly nuclear. Transcription cofactors are nuclear proteins that generally do not bind DNA themselves but interact with DNA-bound factors and influence transcription. SUMOylation of transcription cofactors usually inhibits the activity of the cofactor (reviewed in Girdwood et al. 2004, Gill 2005, Lyst and Stancheva 2007, Garcia-Dominguez and Reyes 2009). In the cases of coactivators such as PPARGC1A (PGC-1alpha) this results in decreased transcription; in the cases of corepressors such as MBD1 this results in increased transcription. View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 3899300
Reactome-version 
Reactome version: 64
Reactome Author 
Reactome Author: May, Bruce

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Blomster HA, Hietakangas V, Wu J, Kouvonen P, Hautaniemi S, Sistonen L.; ''Novel proteomics strategy brings insight into the prevalence of SUMO-2 target sites.''; PubMed Europe PMC Scholia
  2. Vennemann A, Hofmann TG.; ''SUMO regulates proteasome-dependent degradation of FLASH/Casp8AP2.''; PubMed Europe PMC Scholia
  3. Matafora V, D'Amato A, Mori S, Blasi F, Bachi A.; ''Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition.''; PubMed Europe PMC Scholia
  4. Zeng L, Yap KL, Ivanov AV, Wang X, Mujtaba S, Plotnikova O, Rauscher FJ, Zhou MM.; ''Structural insights into human KAP1 PHD finger-bromodomain and its role in gene silencing.''; PubMed Europe PMC Scholia
  5. Mascle XH, Germain-Desprez D, Huynh P, Estephan P, Aubry M.; ''Sumoylation of the transcriptional intermediary factor 1beta (TIF1beta), the Co-repressor of the KRAB Multifinger proteins, is required for its transcriptional activity and is modulated by the KRAB domain.''; PubMed Europe PMC Scholia
  6. Oh Y, Chung KC.; ''UHRF2, a ubiquitin E3 ligase, acts as a small ubiquitin-like modifier E3 ligase for zinc finger protein 131.''; PubMed Europe PMC Scholia
  7. Jacobs AM, Nicol SM, Hislop RG, Jaffray EG, Hay RT, Fuller-Pace FV.; ''SUMO modification of the DEAD box protein p68 modulates its transcriptional activity and promotes its interaction with HDAC1.''; PubMed Europe PMC Scholia
  8. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM.; ''A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis.''; PubMed Europe PMC Scholia
  9. Uchimura Y, Ichimura T, Uwada J, Tachibana T, Sugahara S, Nakao M, Saitoh H.; ''Involvement of SUMO modification in MBD1- and MCAF1-mediated heterochromatin formation.''; PubMed Europe PMC Scholia
  10. Su HL, Li SS.; ''Molecular features of human ubiquitin-like SUMO genes and their encoded proteins.''; PubMed Europe PMC Scholia
  11. Knutti D, Kaul A, Kralli A.; ''A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen.''; PubMed Europe PMC Scholia
  12. Hendriks IA, D'Souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC.; ''Uncovering global SUMOylation signaling networks in a site-specific manner.''; PubMed Europe PMC Scholia
  13. Alm-Kristiansen AH, Norman IL, Matre V, Gabrielsen OS.; ''SUMO modification regulates the transcriptional activity of FLASH.''; PubMed Europe PMC Scholia
  14. Liu X, Liu Z, Jang SW, Ma Z, Shinmura K, Kang S, Dong S, Chen J, Fukasawa K, Ye K.; ''Sumoylation of nucleophosmin/B23 regulates its subcellular localization, mediating cell proliferation and survival.''; PubMed Europe PMC Scholia
  15. Ythier D, Larrieu D, Binet R, Binda O, Brambilla C, Gazzeri S, Pedeux R.; ''Sumoylation of ING2 regulates the transcription mediated by Sin3A.''; PubMed Europe PMC Scholia
  16. Lyst MJ, Nan X, Stancheva I.; ''Regulation of MBD1-mediated transcriptional repression by SUMO and PIAS proteins.''; PubMed Europe PMC Scholia
  17. Fan J, Ren H, Fei E, Jia N, Ying Z, Jiang P, Wu M, Wang G.; ''Sumoylation is critical for DJ-1 to repress p53 transcriptional activity.''; PubMed Europe PMC Scholia
  18. Ivanov AV, Peng H, Yurchenko V, Yap KL, Negorev DG, Schultz DC, Psulkowski E, Fredericks WJ, White DE, Maul GG, Sadofsky MJ, Zhou MM, Rauscher FJ.; ''PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing.''; PubMed Europe PMC Scholia
  19. Liu HW, Banerjee T, Guan X, Freitas MA, Parvin JD.; ''The chromatin scaffold protein SAFB1 localizes SUMO-1 to the promoters of ribosomal protein genes to facilitate transcription initiation and splicing.''; PubMed Europe PMC Scholia
  20. Merrill JC, Melhuish TA, Kagey MH, Yang SH, Sharrocks AD, Wotton D.; ''A role for non-covalent SUMO interaction motifs in Pc2/CBX4 E3 activity.''; PubMed Europe PMC Scholia
  21. Jang MS, Ryu SW, Kim E.; ''Modification of Daxx by small ubiquitin-related modifier-1.''; PubMed Europe PMC Scholia
  22. Girdwood D, Bumpass D, Vaughan OA, Thain A, Anderson LA, Snowden AW, Garcia-Wilson E, Perkins ND, Hay RT.; ''P300 transcriptional repression is mediated by SUMO modification.''; PubMed Europe PMC Scholia
  23. Gill G.; ''Something about SUMO inhibits transcription.''; PubMed Europe PMC Scholia
  24. Lin DY, Huang YS, Jeng JC, Kuo HY, Chang CC, Chao TT, Ho CC, Chen YC, Lin TP, Fang HI, Hung CC, Suen CS, Hwang MJ, Chang KS, Maul GG, Shih HM.; ''Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors.''; PubMed Europe PMC Scholia
  25. Mooney SM, Grande JP, Salisbury JL, Janknecht R.; ''Sumoylation of p68 and p72 RNA helicases affects protein stability and transactivation potential.''; PubMed Europe PMC Scholia
  26. Pungaliya P, Kulkarni D, Park HJ, Marshall H, Zheng H, Lackland H, Saleem A, Rubin EH.; ''TOPORS functions as a SUMO-1 E3 ligase for chromatin-modifying proteins.''; PubMed Europe PMC Scholia
  27. Shinbo Y, Niki T, Taira T, Ooe H, Takahashi-Niki K, Maita C, Seino C, Iguchi-Ariga SM, Ariga H.; ''Proper SUMO-1 conjugation is essential to DJ-1 to exert its full activities.''; PubMed Europe PMC Scholia
  28. Oh Y, Chung KC.; ''Small ubiquitin-like modifier (SUMO) modification of zinc finger protein 131 potentiates its negative effect on estrogen signaling.''; PubMed Europe PMC Scholia
  29. Yang SH, Sharrocks AD.; ''The SUMO E3 ligase activity of Pc2 is coordinated through a SUMO interaction motif.''; PubMed Europe PMC Scholia
  30. Takahashi K, Taira T, Niki T, Seino C, Iguchi-Ariga SM, Ariga H.; ''DJ-1 positively regulates the androgen receptor by impairing the binding of PIASx alpha to the receptor.''; PubMed Europe PMC Scholia
  31. Chauchereau A, Amazit L, Quesne M, Guiochon-Mantel A, Milgrom E.; ''Sumoylation of the progesterone receptor and of the steroid receptor coactivator SRC-1.''; PubMed Europe PMC Scholia
  32. Rytinki MM, Palvimo JJ.; ''SUMOylation modulates the transcription repressor function of RIP140.''; PubMed Europe PMC Scholia
  33. Fuller-Pace FV, Nicol SM.; ''DEAD-box RNA helicases as transcription cofactors.''; PubMed Europe PMC Scholia
  34. Girdwood DW, Tatham MH, Hay RT.; ''SUMO and transcriptional regulation.''; PubMed Europe PMC Scholia
  35. Garcia-Dominguez M, Reyes JC.; ''SUMO association with repressor complexes, emerging routes for transcriptional control.''; PubMed Europe PMC Scholia
  36. Lalioti VS, Vergarajauregui S, Pulido D, Sandoval IV.; ''The insulin-sensitive glucose transporter, GLUT4, interacts physically with Daxx. Two proteins with capacity to bind Ubc9 and conjugated to SUMO1.''; PubMed Europe PMC Scholia
  37. Kagey MH, Melhuish TA, Wotton D.; ''The polycomb protein Pc2 is a SUMO E3.''; PubMed Europe PMC Scholia
  38. Kamitani T, Kito K, Nguyen HP, Fukuda-Kamitani T, Yeh ET.; ''Characterization of a second member of the sentrin family of ubiquitin-like proteins.''; PubMed Europe PMC Scholia
  39. Gresko E, Möller A, Roscic A, Schmitz ML.; ''Covalent modification of human homeodomain interacting protein kinase 2 by SUMO-1 at lysine 25 affects its stability.''; PubMed Europe PMC Scholia
  40. Li X, Lee YK, Jeng JC, Yen Y, Schultz DC, Shih HM, Ann DK.; ''Role for KAP1 serine 824 phosphorylation and sumoylation/desumoylation switch in regulating KAP1-mediated transcriptional repression.''; PubMed Europe PMC Scholia
  41. Impens F, Radoshevich L, Cossart P, Ribet D.; ''Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli.''; PubMed Europe PMC Scholia
  42. Alm-Kristiansen AH, Lorenzo PI, Molværsmyr AK, Matre V, Ledsaak M, Sæther T, Gabrielsen OS.; ''PIAS1 interacts with FLASH and enhances its co-activation of c-Myb.''; PubMed Europe PMC Scholia
  43. Hofmann TG, Jaffray E, Stollberg N, Hay RT, Will H.; ''Regulation of homeodomain-interacting protein kinase 2 (HIPK2) effector function through dynamic small ubiquitin-related modifier-1 (SUMO-1) modification.''; PubMed Europe PMC Scholia
  44. Lee YK, Thomas SN, Yang AJ, Ann DK.; ''Doxorubicin down-regulates Kruppel-associated box domain-associated protein 1 sumoylation that relieves its transcription repression on p21WAF1/CIP1 in breast cancer MCF-7 cells.''; PubMed Europe PMC Scholia
  45. Lyst MJ, Stancheva I.; ''A role for SUMO modification in transcriptional repression and activation.''; PubMed Europe PMC Scholia
  46. Garee JP, Meyer R, Oesterreich S.; ''Co-repressor activity of scaffold attachment factor B1 requires sumoylation.''; PubMed Europe PMC Scholia
  47. Nakagawa K, Kuzumaki N.; ''Transcriptional activity of megakaryoblastic leukemia 1 (MKL1) is repressed by SUMO modification.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
115061view17:00, 25 January 2021ReactomeTeamReactome version 75
113505view11:58, 2 November 2020ReactomeTeamReactome version 74
112705view16:10, 9 October 2020ReactomeTeamReactome version 73
101685view14:02, 1 November 2018DeSlOntology Term : 'sumoylation pathway' added !
101620view11:48, 1 November 2018ReactomeTeamreactome version 66
101156view21:34, 31 October 2018ReactomeTeamreactome version 65
100733view20:12, 31 October 2018ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
DDX17-G97-SUMO1 ProteinP63165 (Uniprot-TrEMBL)
DDX17ProteinQ92841 (Uniprot-TrEMBL)
SUMO1-C93-UBE2I ProteinP63279 (Uniprot-TrEMBL)
SUMO1-K50-DDX17 ProteinQ92841 (Uniprot-TrEMBL)
SUMO1:C93-UBE2IComplexR-HSA-2993783 (Reactome)
SUMO1:DDX17ComplexR-HSA-3900118 (Reactome)
UBE2I-G97-SUMO1 ProteinP63165 (Uniprot-TrEMBL)
UBE2IProteinP63279 (Uniprot-TrEMBL)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
DDX17R-HSA-3900047 (Reactome)
R-HSA-3900047 (Reactome) DDX17 is SUMOylated at lysine-50 with SUMO1 or SUMO2 (Mooney et al. 2010, Fuller-Pace and Nicol 2012, Impens et al. 2014). SUMOylation reduces the transactivation activity of DDX17 with the estrogen receptor and with p53. SUMOylation also promotes association of DDX17 with HDAC1.
SUMO1:C93-UBE2IR-HSA-3900047 (Reactome)
SUMO1:C93-UBE2Imim-catalysisR-HSA-3900047 (Reactome)
SUMO1:DDX17ArrowR-HSA-3900047 (Reactome)
UBE2IArrowR-HSA-3900047 (Reactome)
Personal tools