Glutamate and glutamine metabolism (Homo sapiens)

From WikiPathways

Revision as of 18:17, 9 October 2020 by DeSl (Talk | contribs)
Jump to: navigation, search
4, 5, 91, 16, 21, 2411, 12, 253, 19, 231417, 22, 258, 15, 207, 13, 2276102, 2618, 258, 15, 20cytosolmitochondrial intermembrane spacemitochondrial matrixALDH18A1-2 NAD(P)+ALDH18A1-1 GLUD2 GLUD1 GTPPXLP-KYAT1 dimerPYCR1 GLUD hexamerGLS dimersNH4+H2OGOT2 dimerH2OPXLP-K247-KYAT1 PYCRL decamerGLUL ATP2OGAL-GluL-GlnGLS NADHH+H2ONAD(P)HH+PiNADP+ 2OGPYRL-ProNH4+GLS2 RIMKLB OAAPXLP-K279-GOT2 NAANAD+OAT hexamerL-ProATPNADH NADPHADPL-AspNADP+L-AlaL-GluGLUL decamerPYCR2 decamerRIMKLA PiNAAGADPPYCR1 decamerNADPH PYCRL H+NAD+ 1PYR-5COOHNADPHPYCR2 PXLP-OAT(26-439) L-Glu5SRIMKLA, RIMKLBH+L-GlnNH4+L-OrnP5CS dimersADPNADP+1PYR-5COOH22212252018251, 16, 211, 21814


Description

These reactions mediate the synthesis of glutamate and glutamine from ammonia and TCA cycle intermediates and allow the utilization of the carbon atoms from these amino acids for glucose synthesis under fasting conditions. These reactions also provide a means to collect nitrogen, both as ammonia and as amino groups, and direct it towards urea synthesis. Transamination, the conversion of an amino acid to the corresponding alpha-keto acid coupled to the conversion of a molecule of 2-oxoglutarate (alpha-ketoglutarate) to glutamate, is the first step in the catabolism of most amino acids. Transamination reactions are freely reversible so they also provide a means to balance concentrations of various amino acids and 2-oxo (alpha-keto) acids in the cell (Felig 1975; Häussinger 1990; Owen et al. 1979). View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 8964539
Reactome-version 
Reactome version: 73
Reactome Author 
Reactome Author: Jassal, Bijay

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Hu CA, Lin WW, Obie C, Valle D.; ''Molecular enzymology of mammalian Delta1-pyrroline-5-carboxylate synthase. Alternative splice donor utilization generates isoforms with different sensitivity to ornithine inhibition.''; PubMed Europe PMC Scholia
  2. De Ingeniis J, Ratnikov B, Richardson AD, Scott DA, Aza-Blanc P, De SK, Kazanov M, Pellecchia M, Ronai Z, Osterman AL, Smith JW.; ''Functional specialization in proline biosynthesis of melanoma.''; PubMed Europe PMC Scholia
  3. Han Q, Robinson H, Cai T, Tagle DA, Li J.; ''Structural insight into the inhibition of human kynurenine aminotransferase I/glutamine transaminase K.''; PubMed Europe PMC Scholia
  4. Elgadi KM, Meguid RA, Qian M, Souba WW, Abcouwer SF.; ''Cloning and analysis of unique human glutaminase isoforms generated by tissue-specific alternative splicing.''; PubMed Europe PMC Scholia
  5. Häussinger D.; ''Liver glutamine metabolism.''; PubMed Europe PMC Scholia
  6. Meng Z, Lou Z, Liu Z, Li M, Zhao X, Bartlam M, Rao Z.; ''Crystal structure of human pyrroline-5-carboxylate reductase.''; PubMed Europe PMC Scholia
  7. Martini F, Angelaccio S, Barra D, Pascarella S, Maras B, Doonan S, Bossa F.; ''The primary structure of mitochondrial aspartate aminotransferase from human heart.''; PubMed Europe PMC Scholia
  8. Julliard JH, Smith EL.; ''Partial amino acid sequence of the glutamate dehydrogenase of human liver and a revision of the sequence of the bovine enzyme.''; PubMed Europe PMC Scholia
  9. Fang J, Hsu BY, MacMullen CM, Poncz M, Smith TJ, Stanley CA.; ''Expression, purification and characterization of human glutamate dehydrogenase (GDH) allosteric regulatory mutations.''; PubMed Europe PMC Scholia
  10. Nakayama T, Al-Maawali A, El-Quessny M, Rajab A, Khalil S, Stoler JM, Tan WH, Nasir R, Schmitz-Abe K, Hill RS, Partlow JN, Al-Saffar M, Servattalab S, LaCoursiere CM, Tambunan DE, Coulter ME, Elhosary PC, Gorski G, Barkovich AJ, Markianos K, Poduri A, Mochida GH.; ''Mutations in PYCR2, Encoding Pyrroline-5-Carboxylate Reductase 2, Cause Microcephaly and Hypomyelination.''; PubMed Europe PMC Scholia
  11. Owen OE, Reichard GA, Patel MS, Boden G.; ''Energy metabolism in feasting and fasting.''; PubMed Europe PMC Scholia
  12. Felig P.; ''Amino acid metabolism in man.''; PubMed Europe PMC Scholia
  13. Baran H, Okuno E, Kido R, Schwarcz R.; ''Purification and characterization of kynurenine aminotransferase I from human brain.''; PubMed Europe PMC Scholia
  14. Häberle J, Görg B, Rutsch F, Schmidt E, Toutain A, Benoist JF, Gelot A, Suc AL, Höhne W, Schliess F, Häussinger D, Koch HG.; ''Congenital glutamine deficiency with glutamine synthetase mutations.''; PubMed Europe PMC Scholia
  15. Smith TJ, Schmidt T, Fang J, Wu J, Siuzdak G, Stanley CA.; ''The structure of apo human glutamate dehydrogenase details subunit communication and allostery.''; PubMed Europe PMC Scholia
  16. Reversade B, Escande-Beillard N, Dimopoulou A, Fischer B, Chng SC, Li Y, Shboul M, Tham PY, Kayserili H, Al-Gazali L, Shahwan M, Brancati F, Lee H, O'Connor BD, Schmidt-von Kegler M, Merriman B, Nelson SF, Masri A, Alkazaleh F, Guerra D, Ferrari P, Nanda A, Rajab A, Markie D, Gray M, Nelson J, Grix A, Sommer A, Savarirayan R, Janecke AR, Steichen E, Sillence D, Hausser I, Budde B, Nürnberg G, Nürnberg P, Seemann P, Kunkel D, Zambruno G, Dallapiccola B, Schuelke M, Robertson S, Hamamy H, Wollnik B, Van Maldergem L, Mundlos S, Kornak U.; ''Mutations in PYCR1 cause cutis laxa with progeroid features.''; PubMed Europe PMC Scholia
  17. Krajewski WW, Collins R, Holmberg-Schiavone L, Jones TA, Karlberg T, Mowbray SL.; ''Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design.''; PubMed Europe PMC Scholia
  18. Quesada AR, Sanchez-Jimenez F, Perez-Rodriguez J, Marquez J, Medina MA, Nuñez de Castro I.; ''Purification of phosphate-dependent glutaminase from isolated mitochondria of Ehrlich ascites-tumour cells.''; PubMed Europe PMC Scholia
  19. Collard F, Stroobant V, Lamosa P, Kapanda CN, Lambert DM, Muccioli GG, Poupaert JH, Opperdoes F, Van Schaftingen E.; ''Molecular identification of N-acetylaspartylglutamate synthase and beta-citrylglutamate synthase.''; PubMed Europe PMC Scholia
  20. Rossi F, Han Q, Li J, Li J, Rizzi M.; ''Crystal structure of human kynurenine aminotransferase I.''; PubMed Europe PMC Scholia
  21. Gómez-Fabre PM, Aledo JC, Del Castillo-Olivares A, Alonso FJ, Núñez De Castro I, Campos JA, Márquez J.; ''Molecular cloning, sequencing and expression studies of the human breast cancer cell glutaminase.''; PubMed Europe PMC Scholia
  22. Shen BW, Hennig M, Hohenester E, Jansonius JN, Schirmer T.; ''Crystal structure of human recombinant ornithine aminotransferase.''; PubMed Europe PMC Scholia
  23. Ohura T, Kominami E, Tada K, Katunuma N.; ''Crystallization and properties of human liver ornithine aminotransferase.''; PubMed Europe PMC Scholia
  24. Perry S, Harries H, Scholfield C, Lock T, King L, Gibson G, Goldfarb P.; ''Molecular cloning and expression of a cDNA for human kidney cysteine conjugate beta-lyase.''; PubMed Europe PMC Scholia
  25. Merrill MJ, Yeh GC, Phang JM.; ''Purified human erythrocyte pyrroline-5-carboxylate reductase. Preferential oxidation of NADPH.''; PubMed Europe PMC Scholia
  26. Brody LC, Mitchell GA, Obie C, Michaud J, Steel G, Fontaine G, Robert MF, Sipila I, Kaiser-Kupfer M, Valle D.; ''Ornithine delta-aminotransferase mutations in gyrate atrophy. Allelic heterogeneity and functional consequences.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114824view16:32, 25 January 2021ReactomeTeamReactome version 75
113269view11:33, 2 November 2020ReactomeTeamReactome version 74
112810view18:18, 9 October 2020DeSlOntology Term : 'glutamic acid/glutamate biosynthetic pathway' added !
112809view18:17, 9 October 2020DeSlOntology Term : 'glutamine metabolic pathway' added !
112758view16:16, 9 October 2020ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
1PYR-5COOHMetaboliteCHEBI:17388 (ChEBI)
2OGAMetaboliteCHEBI:30882 (ChEBI)
2OGMetaboliteCHEBI:16810 (ChEBI)
ADPMetaboliteCHEBI:456216 (ChEBI)
ALDH18A1-1 ProteinP54886-1 (Uniprot-TrEMBL)
ALDH18A1-2 ProteinP54886-2 (Uniprot-TrEMBL)
ATPMetaboliteCHEBI:30616 (ChEBI)
GLS ProteinO94925 (Uniprot-TrEMBL)
GLS dimersComplexR-HSA-507859 (Reactome)
GLS2 ProteinQ9UI32 (Uniprot-TrEMBL)
GLUD hexamerComplexR-HSA-70583 (Reactome)
GLUD1 ProteinP00367 (Uniprot-TrEMBL)
GLUD2 ProteinP49448 (Uniprot-TrEMBL)
GLUL ProteinP15104 (Uniprot-TrEMBL)
GLUL decamerComplexR-HSA-70604 (Reactome)
GOT2 dimerComplexR-HSA-70594 (Reactome)
GTPMetaboliteCHEBI:15996 (ChEBI)
H+MetaboliteCHEBI:15378 (ChEBI)
H2OMetaboliteCHEBI:15377 (ChEBI)
L-AlaMetaboliteCHEBI:57972 (ChEBI)
L-AspMetaboliteCHEBI:29991 (ChEBI)
L-GlnMetaboliteCHEBI:58359 (ChEBI)
L-Glu5SMetaboliteCHEBI:17232 (ChEBI)
L-GluMetaboliteCHEBI:29985 (ChEBI)
L-OrnMetaboliteCHEBI:15729 (ChEBI)
L-ProMetaboliteCHEBI:60039 (ChEBI)
NAAMetaboliteCHEBI:21547 (ChEBI)
NAAGMetaboliteCHEBI:76931 (ChEBI)
NAD(P)+ComplexR-ALL-517495 (Reactome)
NAD(P)HComplexR-ALL-517496 (Reactome)
NAD+ MetaboliteCHEBI:57540 (ChEBI)
NAD+MetaboliteCHEBI:57540 (ChEBI)
NADH MetaboliteCHEBI:57945 (ChEBI)
NADHMetaboliteCHEBI:57945 (ChEBI)
NADP+ MetaboliteCHEBI:18009 (ChEBI)
NADP+MetaboliteCHEBI:18009 (ChEBI)
NADPH MetaboliteCHEBI:16474 (ChEBI)
NADPHMetaboliteCHEBI:16474 (ChEBI)
NH4+MetaboliteCHEBI:28938 (ChEBI)
OAAMetaboliteCHEBI:30744 (ChEBI)
OAT hexamerComplexR-HSA-70639 (Reactome)
P5CS dimersComplexR-HSA-508070 (Reactome)
PXLP-K247-KYAT1 ProteinQ16773 (Uniprot-TrEMBL)
PXLP-K279-GOT2 ProteinP00505 (Uniprot-TrEMBL)
PXLP-KYAT1 dimerComplexR-HSA-893603 (Reactome)
PXLP-OAT(26-439) ProteinP04181 (Uniprot-TrEMBL)
PYCR1 ProteinP32322 (Uniprot-TrEMBL)
PYCR1 decamerComplexR-HSA-70662 (Reactome)
PYCR2 ProteinQ96C36 (Uniprot-TrEMBL)
PYCR2 decamerComplexR-HSA-6783952 (Reactome)
PYCRL ProteinQ53H96 (Uniprot-TrEMBL)
PYCRL decamerComplexR-HSA-6783932 (Reactome)
PYRMetaboliteCHEBI:15361 (ChEBI)
PiMetaboliteCHEBI:18367 (ChEBI)
RIMKLA ProteinQ8IXN7 (Uniprot-TrEMBL)
RIMKLA, RIMKLBComplexR-HSA-8942565 (Reactome)
RIMKLB ProteinQ9ULI2 (Uniprot-TrEMBL)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
1PYR-5COOHArrowR-HSA-70655 (Reactome)
1PYR-5COOHR-HSA-6783939 (Reactome)
1PYR-5COOHR-HSA-6783955 (Reactome)
1PYR-5COOHR-HSA-70664 (Reactome)
2OGAArrowR-HSA-893616 (Reactome)
2OGArrowR-HSA-70600 (Reactome)
2OGArrowR-HSA-70613 (Reactome)
2OGArrowR-HSA-70666 (Reactome)
2OGR-HSA-70589 (Reactome)
2OGR-HSA-70654 (Reactome)
ADPArrowR-HSA-508040 (Reactome)
ADPArrowR-HSA-70589 (Reactome)
ADPArrowR-HSA-70600 (Reactome)
ADPArrowR-HSA-70606 (Reactome)
ADPArrowR-HSA-8942575 (Reactome)
ATPR-HSA-508040 (Reactome)
ATPR-HSA-70606 (Reactome)
ATPR-HSA-8942575 (Reactome)
GLS dimersmim-catalysisR-HSA-70609 (Reactome)
GLUD hexamermim-catalysisR-HSA-70589 (Reactome)
GLUD hexamermim-catalysisR-HSA-70600 (Reactome)
GLUL decamermim-catalysisR-HSA-70606 (Reactome)
GOT2 dimermim-catalysisR-HSA-70613 (Reactome)
GTPTBarR-HSA-70589 (Reactome)
GTPTBarR-HSA-70600 (Reactome)
H+ArrowR-HSA-70600 (Reactome)
H+R-HSA-508040 (Reactome)
H+R-HSA-6783939 (Reactome)
H+R-HSA-6783955 (Reactome)
H+R-HSA-70589 (Reactome)
H+R-HSA-70664 (Reactome)
H2OArrowR-HSA-70589 (Reactome)
H2OArrowR-HSA-70655 (Reactome)
H2OR-HSA-70600 (Reactome)
H2OR-HSA-70609 (Reactome)
L-AlaArrowR-HSA-893616 (Reactome)
L-AspArrowR-HSA-70613 (Reactome)
L-GlnArrowR-HSA-70606 (Reactome)
L-GlnR-HSA-70609 (Reactome)
L-GlnR-HSA-893616 (Reactome)
L-Glu5SArrowR-HSA-508040 (Reactome)
L-Glu5SArrowR-HSA-70654 (Reactome)
L-Glu5SR-HSA-70655 (Reactome)
L-Glu5SR-HSA-70666 (Reactome)
L-GluArrowR-HSA-70589 (Reactome)
L-GluArrowR-HSA-70609 (Reactome)
L-GluArrowR-HSA-70654 (Reactome)
L-GluR-HSA-508040 (Reactome)
L-GluR-HSA-70600 (Reactome)
L-GluR-HSA-70606 (Reactome)
L-GluR-HSA-70613 (Reactome)
L-GluR-HSA-70666 (Reactome)
L-GluR-HSA-8942575 (Reactome)
L-OrnArrowR-HSA-70666 (Reactome)
L-OrnR-HSA-70654 (Reactome)
L-ProArrowR-HSA-6783939 (Reactome)
L-ProArrowR-HSA-6783955 (Reactome)
L-ProArrowR-HSA-70664 (Reactome)
NAAGArrowR-HSA-8942575 (Reactome)
NAAR-HSA-8942575 (Reactome)
NAD(P)+ArrowR-HSA-70589 (Reactome)
NAD(P)+R-HSA-70600 (Reactome)
NAD(P)HArrowR-HSA-70600 (Reactome)
NAD(P)HR-HSA-70589 (Reactome)
NAD+ArrowR-HSA-6783939 (Reactome)
NAD+ArrowR-HSA-70664 (Reactome)
NADHR-HSA-6783939 (Reactome)
NADHR-HSA-70664 (Reactome)
NADP+ArrowR-HSA-508040 (Reactome)
NADP+ArrowR-HSA-6783955 (Reactome)
NADPHR-HSA-508040 (Reactome)
NADPHR-HSA-6783955 (Reactome)
NH4+ArrowR-HSA-70600 (Reactome)
NH4+ArrowR-HSA-70609 (Reactome)
NH4+R-HSA-70589 (Reactome)
NH4+R-HSA-70606 (Reactome)
OAAR-HSA-70613 (Reactome)
OAT hexamermim-catalysisR-HSA-70654 (Reactome)
OAT hexamermim-catalysisR-HSA-70666 (Reactome)
P5CS dimersmim-catalysisR-HSA-508040 (Reactome)
PXLP-KYAT1 dimermim-catalysisR-HSA-893616 (Reactome)
PYCR1 decamermim-catalysisR-HSA-70664 (Reactome)
PYCR2 decamermim-catalysisR-HSA-6783939 (Reactome)
PYCRL decamermim-catalysisR-HSA-6783955 (Reactome)
PYRR-HSA-893616 (Reactome)
PiArrowR-HSA-508040 (Reactome)
PiArrowR-HSA-70606 (Reactome)
R-HSA-508040 (Reactome) Delta-1-pyrroline-5-carboxylate synthetase associated with the inner mitochondrial membrane catalyzes the two-step reaction that converts glutamate, ATP, and NADPH + H+ to L-glutamate gamma-semialdehyde, NADP+, ADP, and orthophosphate. Two P5CS isoforms have been identified; both are active when expressed in enzyme-deficient cells in culture (Hu et al. 1999). Unpublished crystallographic data (PDB 2H5G) indicate that the enzyme is a dimer.
R-HSA-6783939 (Reactome) Pyrroline-5-carboxylate reductase 2 (PYCR2) catalyzes the reaction of (S)-1-pyrroline-5-carboxylate with NADH + H+ to form proline and NAD+ (De Ingeniis et al. 2012). The active enzyme is inferred to be a homodecamer by virtue of its similarity to PYCR1 (Meng et al. 2006). Subcellular fractionation (De Ingeniis et al. 2012) and co-localization studies (Nakayama et al. 2015) indicate that PYCR1 is mitochondrial. Its deficiency is associated with microcephaly and hypomyelination (Nakayama et al. 2015).
R-HSA-6783955 (Reactome) Pyrroline-5-carboxylate reductase-like (PYCRL) catalyzes the reaction of (S)-1-pyrroline-5-carboxylate with NADPH + H+ to form proline and NADP+ in the cytosol (De Ingeniis et al. 2012). While the pyrroline-5-carboxylate reductase described by Merrill et al. (1989) is taken to be the PYCR1 or PYCR2 gene product, its abundance in red blood cell cytosol and its strong preference for NADP as a cofactor suggest the alternative interpretation that it is the product of PYCRL.
R-HSA-70589 (Reactome) Mitochondrial glutamate dehydrogenase 1 (GLUD1) catalyzes the reversible reaction of 2-oxoglutarate, NAD(P)H + H+, and ammonia to form glutamate and NAD(P)+ (Fang et al. 2002). Mature GLUD1 protein lacks the 53 aminoterminal residues of the nascent protein (Julliard and Smith 1979), which function as a mitochondrial import signal. The active form of the enzyme is a hexamer, allosterically activated by ADP and inhibited by GTP (Fang et al. 2002; Smith et al. 2002).
R-HSA-70600 (Reactome) Mitochondrial glutamate dehydrogenase 1 (GLUD1) catalyzes the reversible reaction of glutamate and NAD(P)+ to form 2-oxoglutarate, NAD(P)H + H+, and ammonia (Fang et al. 2002). Mature GLUD1 protein lacks the 53 aminoterminal residues of the nascent protein (Julliard and Smith 1979), which function as a mitochondrial import signal. The active form of the enzyme is a hexamer, allosterically activated by ADP and inhibited by GTP (Fang et al. 2002; Smith et al. 2002).
R-HSA-70606 (Reactome) Cytosolic glutamine synthetase (glutamate-ammonia ligase - GLUL) catalyzes the reaction of glutamate, ammonia, and ATP to form glutamine, ADP, and orthophosphate. The enzyme is a decamer (Krajewski et al. 2008). Mutations in the gene encoding GLUL cause glutamine deficiency in vivo (Haberle et al. 2005).
R-HSA-70609 (Reactome) Mitochondrial glutaminase (GLS) catalyzes the hydrolysis of glutamine to yield glutamate and ammonia. Two GLS enzymes have been identified, one abundantly expressed in the liver (GLS - Elgadi et al. 1999) and one abundantly expressed in kidney (GLS2 - Gomez-Fabre et al. 2000). Their biochemical properties are similar. The enzymes are inferred to function as dimers based on unpublished crystallographic data for GLS (PDB 3CZD) and studies of glutaminase enzyme purified from Ehrlich Ascites cells (Quesada et al. 1988).
R-HSA-70613 (Reactome) Mitochondrial aspartate aminotransferase catalyzes the reversible reaction of oxaloacetate and glutamate to form aspartate and 2-oxoglutarate (alpha-ketoglutarate) (Martini et al. 1985). The active form of the enzyme is inferred to be a dimer with one molecule of pyridoxal phosphate associated with each monomer.
R-HSA-70654 (Reactome) Mitochondrial ornithine aminotransferase (OAT) catalyzes the reversible reaction of ornithine and alpha-ketoglutarate to form glutamate semialdehyde and glutamate (Ohura et al. 1982). The active enzyme is a hexamer (Shen et al. 1998). Inherited OAT deficiency leads to ornithine accumulation in vivo and gyrate atrophy of the choroid and retina (Brody et al. 1992; Valle and Simell 2001).
R-HSA-70655 (Reactome) The interconversion of glutamate 5-semialdehyde (L-GluSS) and (S)-1-pyrroline-5-carboxylate (1PYR-5COOH) is a spontaneous reaction (Scriver et al. 2001).
R-HSA-70664 (Reactome) Pyrroline-5-carboxylate reductase 1 (PYCR1) catalyzes the reaction of (S)-1-pyrroline-5-carboxylate with NADH + H+ to form proline and NAD+ (De Ingeniis et al. 2012). The active enzyme is a homodecamer (Meng et al. 2006). Subcellular fractionation (De Ingeniis et al. 2012) and co-localization studies (Reversade et al. 2009) indicate that PYCR1 is mitochondrial. Its deficiency is associated with cutis laxa (Reversade et al. 2009).
R-HSA-70666 (Reactome) Mitochondrial ornithine aminotransferase (OAT) catalyzes the reversible reaction of glutamate semialdehyde and glutamate to form ornithine and alpha-ketoglutarate (Ohura et al. 1982). The active enzyme is a hexamer (Shen et al. 1998). Inherited OAT deficiency leads to ornithine accumulation in vivo and gyrate atrophy of the choroid and retina (Brody et al. 1992; Vallee and Simell 2001).
R-HSA-893616 (Reactome) CCBL1 (KAT 1) catalyzes the reaction of glutamine and pyruvate to form 2-oxoglutaramate and alanine. The active form of CCBL1 is a homodimer with one molecule of pyridoxal phosphate bound to each monomer (Baran et al. 1994; Han et al. 2009; Rossi et al. 2004). The enzyme's cytosolic localization is inferred from that of recombinant protein overexpressed in transfected cells (Perry et al. 1995).
R-HSA-8942575 (Reactome) N-Acetylaspartylglutamate (NAAG) is found at high concentrations in the vertebrate nervous system. It is an agonist of group II metabotropic glutamate receptors. A number of other functions have been proposed for NAAG, including a role as a non-excitotoxic transport form of glutamate and a molecular water pump (Lodder-Gadaczek et al. 2011, Neale et al. 2011). NAAG is synthesized by N-acetylaspartylglutamate synthase A (RIMKLA, NAAG synthetase A) and Beta-citrylglutamate synthase B (RIMKLB, NAAG synthetase B), which more efficiently catalyzes the synthesis of beta-citryl-L-glutamate (Collard et al. 2010, Lodder-Gadaczek et al. 2011).
RIMKLA, RIMKLBmim-catalysisR-HSA-8942575 (Reactome)
Personal tools