Mitotic G2-G2/M phases (Homo sapiens)

From WikiPathways

Revision as of 16:18, 25 January 2021 by ReactomeTeam (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search
26, 30, 5878344978456687408460, 8633, 39, 632, 12, 64, 7310, 17, 20, 44, 793, 36, 45189552471, 74, 8525559, 27345127, 4220827919, 61, 75298840358093848746, 5383408414, 572, 32, 5255, 67, 688260, 868, 776048, 8537, 53, 76805804027, 724215, 482013, 22, 23, 28, 41...48181705442812114, 579, 47, 59728433, 6311, 22, 31722127, 42Golgi membranecytosolnucleoplasmHAUS6 PPME1NEDD1 HAUS6 ADPCEP135 CEP135 ADPPSMD5 DYNC1I2 PCM1 PAFAH1B1 HAUS2 PolyUb-TP53 CEP76 PPP2R1A CEP152 TUBB G2/M transitionproteinsG2/M transitionproteinsCEP57 LCMT1p-S435-GTSE1:PolyUb-TP53 TetramerCEP63 HAUS8 p-S198-CDC25CHAUS4 UBC(533-608) YWHAG CDC25CHAUS4 UBA52(1-76) p-S252-BORA MAPRE1 AKAP9 TUBA4A TUBG1 ADPTUBG1 DYNC1I2 ADPTUBA4A DCTN1-2 CEP250 CDK5RAP2 EP300 TPX2p-T611-FOXM1p-T611,S730,S739-FOXM1:CENPF GenePLK1 DCTN3 PSME2 HAUS8 p-4S-CCNB1 Centrosome:p-T288-AURKA:TPX2:HMMRPSMA1 CCNB1 HAUS3 UBB(77-152) CETN2 PSMD6 CDK1 TUBA1A NINL LIN37 ALMS1 PSME2 PCNT CETN2 ADPFGFR1OP CEP76 TUBB4B HAUS5 TUBA4A ACTR1A PAFAH1B1 ACTR1A CEP72 PSMD14 DCTN2 UBC(1-76) CEP57 PCNT CETN2 CKAP5 GTSE1 CDK5RAP2 ALMS1 PSMC6 UBC(1-76) CNTRL CENPJ AZI1 PLK4 p-S198-CDC25C PHLDA1HSP90AB1 CCNB2 ADPCEP72 Microtubule protofilament SFI1 PSMD1 PCM1 TUBB PRKAR2B DYNLL1 TUBB4A MZT2B AZI1 ATPCCNB:CDK1TUBGCP6 TUBA4A HAUS7 DYNLL1 PLK1 PSMB8 CLASP1 MZT2B HAUS7 p-S53-WEE1HAUS8 MAPRE1:microtubuleplus endCNTRL p-T611,S730,S739-FOXM1 AKAP9 CCNA:p-T160-CDK2NEK2 p-S252-BORA:p-T210-PLK1CEP63 p-T160-CDK2 DYNC1I2 PCM1 Cyclin A2:Cdk2phosphorylated G2/Mtransition proteinPolyUb-AURKA RBX1PRKAR2B CNTRL CCNA:p-T161-CDK1p-S435-GTSE1 TUBB4A NDE1 SKP1 AZI1 NINL CEP192 CKAP5 ODF2 CCP110 UBC(381-456) HAUS4 CENPJ CSNK1D UBC(533-608) UbTUBG1 CEP152 PSMD2 PCNT DYNC1H1 PAFAH1B1 GTSE1:CDKN1A:FKBPL:HSP90PolyUb-TP53 GTSE1 PKMYT1UBB(153-228) ATPHAUS4 CEP164 YWHAG HAUS4 NINL CEP63 PAFAH1B1 CEP78 CEP164 CEP135 CCNA:p-T160-CDK2:E2F1/E2F3MAPRE1 DYNLL1 YWHAG GTP SSNA1 PCM1 DYNLL1 YWHAE CDK11A PLK4 HAUS4 CUL1TUBB4A DCTN3 PSMA7 DCTN3 p-T160-CDK2 AZI1 PolyUb-TP53 phospho-G2/Mtransition proteinCEP72 PSMB4 PSMD9 CEP70 CCNH DYNLL1 PSME3 p-CDK1/2:CCNA/p-T161-CDK1:CCNB1NINL DYNC1I2 LIN9 HAUS8 Mitotic kinaseADPSDCCAG8 CEP63 HAUS6 FGFR1OP CENPF GeneH2OHAUS8 UBB(153-228) PSMD7 TUBB4A SSNA1 PSMD11 CEP250 TUBA4A RPS27A(1-76) CCNA1 SSNA1 HAUS6 CEP72 RBX1 SFI1 CCNA1 DYNC1H1 DCTN3 UBB(77-152) NEK2 PSMB1 HAUS7 RPS27A(1-76) HAUS8 DYNLL1 UBB(153-228) HAUS3 CCNA:p-T14,Y15,T161-CDK1NDE1 Cyclin A1:Cdk2phosphorylated G2/Mtransition proteinPSMB9 PSMA8 UBC(305-380) ODF2 CENPJ ODF2 CEP192 CEP72 CCNB1 TUBB4B DYNLL1 PSMD13 DYNC1H1 HAUS4 PPP2R1A p-T14-CDK1 CEP290 NEDD1 CKAP5 HAUS3 CEP135 CEP164 CEP164 CEP78 ADPNDE1 PRKAR2B HAUS3 AKAP9 CCNB1:p-T161-CDK1HAUS1 HAUS3 HAUS5 PRKACA CEP78 MAPRE1 SFI1 YWHAG CCNA2 CSNK1D PSMB5 NDE1 UBB(153-228) ADPDCTN1-2 PSMA2 FKBPLPSMC3 ALMS1 CEP41 FGFR1OP ODF2 DCTN3 AKAP9 p-S435-GTSE1HAUS5 HMMR PLK4 p-S252-BORA CDC25A gene MAPRE1 PLK4 PP2A-PPP2R2ACEP70 TUBB FGFR1OP CDK1 AJUBA RAB8A E2F3 DCTN1-2 NINL p-S252,S497,T501-BORA CDK1 FGFR1OP CDK11p58CCP110 p-4S-CCNB1 CEP63 p-E2F1 NEDD1 UBB(77-152) CEP57 DCTN1-2 SDCCAG8 PSMB6 SSNA1 CLASP1 CSNK1D E2F1 DYNC1H1 CDC25B HAUS6 PPP2R1A methanolPAFAH1B1 DCTN2 SHFM1 PPP2R1A TUBA4A FBXL7 UBC(77-152) CSNK1E CETN2 CEP70 CENPJ CKAP5 PLK1 CENPJ PLK1 ADPAKAP9 Microtubule protofilament p-T288-AURKA HSP90AA1 CCNB1 TUBB4B LIN9 UBC(153-228) PLK4 PSMD12 CEP78 CEP57 CETN2 TUBB4A HSP90AA1 RBX1 MZT2A UBC(381-456) CDK11B UBC(533-608) CCNB1 CRS kinaseCEP250H2OALMS1 SSNA1 PPP2R1B ALMS1 NEK2 PRKAR2B CCNB1:p-T14,Y15,T161-CDK1NME7 UBC(77-152) HAUS7 HAUS3 PCM1 PRKAR2B FBXW11 DYNC1H1 CEP72 RBBP4 RBBP4 SKP1 DYNC1H1 CETN2 CDK1 AKAP9 PSMD10 UBB(1-76) CEP192 CEP250 CEP152 SFI1 DCTN3 DCTN1-2 PLK1 TUBG1 p-T14,Y15,T161-CDK1 HAUS4 HSP90AA1 PSMB11 TUBB4B SFI1 OFD1 PLK4 ALMS1 PPP2R3B HAUS3 TUBB4B AURKAGTP FGFR1OP CCP110 UBC(229-304) CDK11A CEP290 CEP250 CEP192 CSNK1E MAPRE1 TUBGCP5 TUBA1A ODF2 CEP78 CLASP1 PPP2R1A HAUS7 UBC(609-684) HSP90AA1 RBX1 UBC(609-684) CCNA2 NINL ATPCEP250 CKAP5 OPTN:RAB8A:GTPTUBGCP5 DCTN2 PSMA3 SDCCAG8 Centrosome:AURKACCP110 PSMC5 CEP135 p-S177-OPTNHAUS3 DCTN2 CCNA1 CNTRL AKAP9 TUBG1 CLASP1 YWHAG CNTRL TUBG1 TUBB p-T14,Y15,T161-CDK1 CENPF Gene CEP192 DYNLL1 CEP135 ATPCCNB1,CCNB2:p-T14,Y15,T161-CDK1PCNT PSME1 HAUS5 AKAP9 CEP70 CCNB2CEP290 CEP290 TUBGCP2 PPP2CB CENPJ HAUS2 HAUS1 PSMB11 PRKAR2B NEK2 NEK2 CSNK1D ALMS1 HSP90AA1 UBC(305-380) CCNB2 CEP164 DYNC1H1 p-T611,S730,S739-FOXM1 CCNB1 p-T14-CDK1 DCTN2 HAUS1 CCNB1 MeL-PPP2CB PSMC1 SSNA1 ADPAKAP9 ADPAKAP9 ATPUBC(609-684) PSMD10 AZI1 SKP1CCNA2 CEP70 CEP76 PSMB6 NEDD1 HAUS6 TUBB TUBGCP4 CCP110 TUBA1A PLK4 HAUS2 PRKACA DYNC1I2 UBC(381-456) CDC25BPLK4 CEP76 SKP1 CCNA2 YWHAE ADPp-S198-CDC25C TUBA1A DCTN2 ATPHAUS4 CDC25ACEP78 H2OCUL1 HAUS5 CEP41 PSMC2 CEP135 PSMB4 CCNB1 CDK1 CEP250 PAFAH1B1 UBB(1-76) PPP1R12B-4 PLK1 DYNLL1 FBXL7ACTR1A TUBA1A p-T288-AURKA CEP76 DCTN1-2 p-S198-CDC25CSDCCAG8 SDCCAG8 CETN2 CEP250 CEP78 PSMB2 NINL HAUS1 PCNT CSNK1D NEDD1 CEP57 ODF2 CENPJ CEP57 p-T161-CDK1 CNTRL DCTN3 ATPUBB(1-76) AURKA PSMD8 SDCCAG8 DCTN1-2 CEP164 CCNA2 UBC(457-532) PSME4 DCTN3 ODF2 HAUS5 PSMD7 CDK5RAP2 TUBA4A DCTN2 TUBB4B CSNK1D CCNB1,CCNB2:p-T161-CDK1PCNT NDE1 H2OCCNB1,CCNB2:p-T161-CDK1 YWHAE HAUS1 TUBA4A ALMS1 Centrosome:p-T288-AURKACentrosome:AURKA:AJUBAMYBL2 PSMD14 CSNK1E SDCCAG8 PSMB3 p-T611,S730,S739-FOXM1 CCNA2 MYBL2p-NINLp-S177-OPTNCDK5RAP2 MAPRE1 p-T161-CDK1 CEP70 PPP1CB Microtubule protofilament ATPTUBB4A CSNK1E p-T161-CDK1 AURKA CCP110 CEP78 UBB(77-152) OFD1 TUBB CCNB1 PCM1 CENPJ DCTN2 AZI1 CDKN1Acentrosomecontainingphosphorylated NlpNDE1 p-S95-PHLDA1cytoplasmic CyclinB1:Cdc2 complexesCEP152 MZT2A PKMYT1AKAP9 SCF-FBXL7:PolyUb-AURKAHAUS3 TUBB4A UBA52(1-76) DCTN2 HAUS2 MZT1 CEP290 OFD1 p-T160-CDK2 DYNLL1 CCNA1 PLK4 HAUS3 FGFR1OP UBC(305-380) CKAP5 ADPTUBA1A YWHAE CCNB2 p-S252,S497,T501-BORAODF2 ODF2 PRKACA SFI1 PSME1 DCTN2 CCNB1 Gene FGFR1OP ATPp-NINL UBC(381-456) PPP2R1A ACTR1A PRKAR2B CEP152 CEP152 PCM1 p-4S-CCNB1 Centrosome:AURKA:TPX2:HMMRHAUS7 OFD1 MeL-PPP2CA DYNC1I2 PLK4 HAUS1 CETN2 CKAP5 gamma-tubulincomplexPPP2R1A CNTRL CDK1 ADPGTSE1:MAPRE1:microtubule plus endAdoHcySKP1 CKAP5 CCNB2 HAUS6 UBC(153-228) UBC(457-532) p-S435-GTSE1p-T161-CDK1 PRKAR2B TUBB PRKAR2B CSNK1E CEP57 SFI1 PLK4 ACTR1A CEP41 UBC(229-304) HSP90AA1 UBC(533-608) RPS27A(1-76) p-T210-PLK1p-T14,Y15,T161-CDK1 p-T161-CDK1 TUBA4A CAKRPS27A(1-76) AJUBACEP152 PSMA4 p-T14-CDK1 ADPPSMD2 MYBL2 CEP76 PSMA2 MAPRE1 TUBA4A CCNA1 HSP90AB1 PolyUb-K109-FBXL7HSP90AA1 DCTN3 MuvB complexNEDD1 p-E2F3 OPTN CCNB1 CEP63 CEP41 UBB(1-76) CNTRL OFD1 SFI1 CEP152 CDK1 PSMC1 CCNB2 Gene SSNA1 PCM1 PCNT CLASP1 PCNT CEP41 LIN54 SFI1 CETN2 CEP76 CEP192 PSMB9 ADPSSNA1 OFD1 HAUS2 CSNK1D p-S252,S497,T501-BORA:SCF-beta-TrCp1/2PRKACA PPP2R2A UBC(457-532) TUBA1A PCM1 CLASP1 DCTN2 CEP76 HSP90AA1 UBC(305-380) PSMC4 ATPDYNC1I2 NINL PSMA3 CEP78 CSNK1D CLASP1 CEP135 ALMS1 TUBA4A RBBP4 YWHAE CCNB2 FBXL18 UBC(229-304) CEP70 CEP192 p-T611,S730,S739-FOXM1:MuvB:MYBL2:PLK1 GeneCEP78 MAPRE1 CEP152 AZI1 HAUS2 CEP41 SKP1 TUBB4A CCNB1 CCNA:p-T14-CDK126S proteasomePPP2R1A UBC(609-684) CCP110 HAUS5 CDK1 CEP250 SCF-FBXL7:AURKAHAUS8 CCP110 AURKA ATPPRKACA CCNB1CSNK1D CEP70 CSNK1D CDK1 CEP76 UBB(153-228) YWHAG DYNC1H1 CEP290 LIN9 CEP152 HAUS7 HAUS7 CCNA:CDK1UBC(1-76) TUBB4A PSMA6 CCNB1:p-T14,Y15,T161-CDK1CEP152 PCNT (BTRC:CUL1:SKP1),(FBXW11:CUL1:SKP1)MAPRE1 HAUS2 p-T288-AURKA CLASP1 TUBA1A PSMA5 PRKAR2B PPP2R2A HAUS6 OFD1 YWHAE TUBB4B PCNT CCNB1 Genep-T611,S730,S739-FOXM1:EP300:CDC25A GenePPP2R2A ATPPLK1 CDK5RAP2 PSMD6 TPX2 DCTN1-2 CCNB1 UBC(1-76) p-T161-CDK1 UBC(457-532) Nlp-depletedcentrosomep-T161-CDK1 NDE1 TUBB CSNK1D CEP164 DCTN1-2 HAUS1 OFD1 PLK1 Gene Centrosome:p-T288-AURKA:p-S252-BORA:PLK1p-T611-FOXM1:p-T210-PLK1Centrosomeassociated Plk1p-T14-CDK1 p-T14-CDK1 CSNK1E CEP164 AZI1 ACTR1A HAUS8 PSMD9 p-T161-CDK1 CCNB:p-T14-CDK1PLK1 TUBA1A CENPJ DCTN1-2 PPP2CA CCNA2 HMMRSFI1 PSMD4 CEP135 CDK1 ATPAURKA HAUS2 p-T210-PLK1 DYNLL1 TUBG1 CEP290 cNAP-1 depletedcentrosomeATPHAUS4 YWHAE SSNA1 PAFAH1B1 CEP72 HAUS6 CEP164 CDK5RAP2 TUBA1A PLK4 CEP72 PCM1 CCNB1 CSNK1E CDC25CEP290 PAFAH1B1 PCNT p-T513,T526-GTSE1NEDD1 TUBGCP4 CDC25DYNLL1 AZI1 SDCCAG8 CUL1 TUBGCP3 LIN37 PSMD3 p-T611,S730,S739-FOXM1 MNAT1 GTSE1PRKAR2B HAUS1 PSMB7 CDK5RAP2 DYNC1I2 SDCCAG8 TUBB AURKA NEK2 CCNA:p-CDK1/2 BTRC CEP192 ATPPSMC5 ODF2 CETN2 HAUS3 HAUS7 CSNK1D CDK5RAP2 CEP57 CEP290 CETN2 UBC(153-228) p-T161-CDK1 DYNC1I2 AZI1 PSMB5 TUBB4B HAUS8 CDC25B PLK1 SKP1:CUL1:RBX1:FBXL18DCTN2 MAPRE1 CEP152 DYNC1I2 TUBG1 PolyUb-TP53 TetramerCEP57 CCP110 CENPJ CEP250 CDKN1A DCTN3 CUL1 CSNK1E CCNB1:p-T161-CDK1ACTR1A CCNA1 ADPTUBA4A ADPHAUS8 OFD1 CEP250 p-T14,Y15,T161-CDK1 CEP78 CNTRL ATPHAUS8 PSMD11 CEP192 CDK1 HSP90AA1 CEP76 HAUS7 TUBG1 FOXM1ALMS1 CDK11B PRKAR2B PPP2R1A CCNA2 AKAP9 SFI1 HAUS6 CEP57 p-T210-PLK1DYNC1I2 ODF2 CCNA2:p-T161-CDK1CEP70 NINL TUBB4B PSMB1 CEP72 CCNB1 LIN37 ATPCEP70 YWHAG PiCEP57 HAUS5 CDK1 CEP63 p-S435-GTSE1:PolyUb-TP53 TetramerTranscriptionalRegulation by TP53CEP57 CEP192 PSMB7 YWHAE CDK5RAP2 CEP70 CCNA2 CKAP5 NINL YWHAG CCNA:p-T160-CDK2:p-E2F1/p-E2F3HSP90AA1 CKAP5 PSMB10 CEP164 ATPPSMA8 p-T161-CDK1 CEP250 CEP78 NDE1 UBC(457-532) FGFR1OP ADPcentrosomeLIN54 TUBG1 PRKAR2B CEP76 RPS27A(1-76) NEDD1 HAUS4 YWHAG p-T210-PLK1 H2OLIN52 HAUS1 TUBGCP2 DCTN1-2 HAUS2 TUBG1 MeL-PP2APSMD3 PSMA4 p-T14-CDK1 SFI1 MZT1 CEP63 TUBG2 NEDD1 AURKA:PHLDA1H2OSKP1:CUL1:RBX1:FBXL7HAUS7 PRKACA TUBB4A CEP164 CEP72 CUL1 CCNB1 CLASP1 AZI1 ATPp-T14,T161-CDK1 UBC(153-228) CEP290 PSMC2 PSMD12 FGFR1OP CEP290 PSME3 CSNK1E NEDD1 ACTR1A PLK1ATPPPP2R1A UBC(229-304) PP2AHAUS1 GTSE1:p-T210-PLK1PCNT PiPLK4 HAUS1 NDE1 DCTN1-2 DYNC1H1 RAB8A:GTPCEP63 ADPDYNC1I2 SSNA1 PLK1 CEP135 CEP192 UBC(77-152) CEP164 p-T210-PLK1LIN54 TUBA1A HAUS7 CDC25A CSNK1E UBC(77-152) PLK1 PAFAH1B1 CCNA:p-T14,T161-CDK1CEP76 FBXL7 UBC(305-380) SKP1 CEP41 phospho-cyclinB1(CRS):phosph-Cdc2(Thr 161)Centrosomescontainingrecruited CDK11p58PSMA6 YWHAE CCNAp-T14,Y15,T161-CDK1 RBBP4 HAUS2 PRKACA PRKACA p-T14,Y15,T161-CDK1 TUBG1 CCNA:p-T14-CDK1DYNC1H1 PPP2CB CNTRL TUBB4B ALMS1 TUBA4A TUBB PSMB10 CCNA2 PSMD4 YWHAE CETN2 CSNK1E LIN54 PSMD8 CLASP1 CNTRL p-S252,S497,T501-BORA DYNC1H1 CCNB1:p-T14,T161-CDK1ADPCEP135 CEP63 CCNA1 PCM1 SDCCAG8 PPP2R1B CCNB1 MAPRE1 TUBB4B GTSE1:microtubuleNEK2 FGFR1OP SSNA1 YWHAG PSMB8 YWHAE TUBG1 PCM1 Mature centrosomesenriched ingamma-TURCcomplexesGTSE1 PRKACA UBC(381-456) PPP2R1A ATPp-T611-FOXM1 CLASP1 p-PKMYT1UBC(229-304) CENPFPHLDA1 p-S473-PPP1R12A CEP70 MAPRE1 E2F1 PAFAH1B1 CCNA2 HAUS1 PLK1 NEDD1 PSMF1 NEK2 p-T210-PLK1 CKAP5 HSP90AA1 ACTR1A OFD1 DYNC1H1 HSP90AA1 CEP63 PPP2R1A CDK5RAP2 p-T161-CDK1 SSNA1 CEP70 CEP57 BORAEP300CLASP1 HAUS5 CEP78 CDK1 CENPJ CSNK1E SFI1 FGFR1OP NEK2 CEP164 TUBB4A CEP250 PRKACA CCNA1 p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB1 GeneFKBPL MAPRE1 UbCEP41 RAB8A OFD1 DCTN2 PSMC3 HAUS4 TUBB YWHAG CDK7 CEP192 UBC(1-76) NEDD1 p-T611,S730,S739-FOXM1FGFR1OP ALMS1 CEP290 CCNBODF2 HAUS6 TUBGCP3 p-T611,S730,S739-FOXM1 CDK1 CEP152 CCNA1 HAUS3 PPP2R1A PSME4 OFD1 CKAP5 HAUS5 PPP2R1B CKAP5 ACTR1A PAFAH1B1 YWHAG TUBA1A UBC(77-152) NEK2 PCM1 ACTR1A HSP90AA1 TUBB4A CCP110 UBC(533-608) HAUS6 PSMD13 p-T161-CDK1 MAPRE1 FBXL7 DCTN3 HAUS8 CDK5RAP2 Ub-p-S252,S497,T501-BORAPRKACA CUL1 NDE1 CCNB1:p-T14-CDK1CDK1NDE1 E2F1/E2F3TUBB4A UBC(153-228) PRKACA SDCCAG8 ATPTUBG2 HAUS3 PSMA1 CNTRL ATPCNTRL LIN9 PhosphorylatedMyosin PhosphataseCEP41 DCTN1-2 TPX2 DYNC1I2 CEP41 PSMB3 UBA52(1-76) CEP63 LIN52 UBB(77-152) CCNB2 GeneCDC25A geneACTR1A CCP110 p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB2 GeneCDK5RAP2 CEP192 HAUS1 PSMC6 UbMAPRE1 CUL1 PiCEP41 PSMD1 HAUS5 PSMA5 HAUS6 HSP90AA1 TUBB4B PPP2R1A TUBB PSMC4 GTSE1 p-S435-GTSE1 CEP135 DCTN3 FBXW11 AZI1 CEP72 Phospho-CyclinB1(CRS):phospho-Cdc2(Thr 161)HAUS2 CEP135 NEK2 CEP41 SDCCAG8 ADPNME7 PSMA7 PPP2R3B PCNT UBA52(1-76) PSMD5 NEDD1 CENPJ CCNA1 HSP90:HSP90PRKACA WEE1Microtubule protofilament HAUS5 PLK1 PPP2CA nuclear CyclinB1:Cdc2 complexesHAUS5 p-4S-CCNB1 HSP90AA1 CCP110 CLASP1 DCTN3 NDE1 CDC25A ADPPLK1CDC25BPPP2R1A CEP72 26S proteasomeCETN2 phospho-CyclinB1(CRS):phospho-Cdc2 (Thr 161)ACTR1A p-4S-CCNB1 MicrotubuleSDCCAG8 p-T14,T161-CDK1 PAFAH1B1 PLK1 CENPJ PPP2R1A RBX1 TUBA1A LIN52 SHFM1 LIN37 ATPUBA52(1-76) CDK5RAP2 NDE1 ALMS1 CDK1 CCP110 CEP41 AdoMetp-S252-BORAPSMF1 TUBB UBB(1-76) YWHAE TUBG1 HAUS2 NEDD1 TUBGCP6 PiPAFAH1B1 AZI1 BTRC MYBL2 UBC(609-684) SSNA1 HAUS2 CEP72 p-S-AJUBATUBB4B HAUS4 LIN52 p-T161-CDK1 NEK2 XPO1PSMB2 AKAP9 CEP76 CCNA1 YWHAE CCNA1:p-T161-CDK1UbODF2 CSNK1D PLK1 GeneCSNK1E NINL CEP290 E2F3 HMMR DYNLL1 NEK2 CEP63 DYNC1H1 HAUS8 HAUS7 OFD1 YWHAG 6240219, 6180434340726027, 426078804250406, 163427811, 743, 65943, 6582842


Description

Mitotic G2 (gap 2) phase is the second growth phase during eukaryotic mitotic cell cycle. G2 encompasses the interval between the completion of DNA synthesis and the beginning of mitosis. During G2, the cytoplasmic content of the cell increases. At G2/M transition, duplicated centrosomes mature and separate and CDK1:cyclin B complexes become active, setting the stage for spindle assembly and chromosome condensation that occur in the prophase of mitosis (O'Farrell 2001, Bruinsma et al. 2012, Jiang et al. 2014). View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 453274
Reactome-version 
Reactome version: 74

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Bublik DR, Scolz M, Triolo G, Monte M, Schneider C.; ''Human GTSE-1 regulates p21(CIP1/WAF1) stability conferring resistance to paclitaxel treatment.''; PubMed Europe PMC Scholia
  2. Chiyoda T, Sugiyama N, Shimizu T, Naoe H, Kobayashi Y, Ishizawa J, Arima Y, Tsuda H, Ito M, Kaibuchi K, Aoki D, Ishihama Y, Saya H, Kuninaka S.; ''LATS1/WARTS phosphorylates MYPT1 to counteract PLK1 and regulate mammalian mitotic progression.''; PubMed Europe PMC Scholia
  3. Chan EH, Santamaria A, Silljé HH, Nigg EA.; ''Plk1 regulates mitotic Aurora A function through betaTrCP-dependent degradation of hBora.''; PubMed Europe PMC Scholia
  4. Strausfeld U, Labbé JC, Fesquet D, Cavadore JC, Picard A, Sadhu K, Russell P, Dorée M.; ''Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein.''; PubMed Europe PMC Scholia
  5. Kruiswijk F, Labuschagne CF, Vousden KH.; ''p53 in survival, death and metabolic health: a lifeguard with a licence to kill.''; PubMed Europe PMC Scholia
  6. Källström H, Lindqvist A, Pospisil V, Lundgren A, Rosenthal CK.; ''Cdc25A localisation and shuttling: characterisation of sequences mediating nuclear export and import.''; PubMed Europe PMC Scholia
  7. Bonnet J, Mayonove P, Morris MC.; ''Differential phosphorylation of Cdc25C phosphatase in mitosis.''; PubMed Europe PMC Scholia
  8. Seki A, Coppinger JA, Du H, Jang CY, Yates JR, Fang G.; ''Plk1- and beta-TrCP-dependent degradation of Bora controls mitotic progression.''; PubMed Europe PMC Scholia
  9. Parker LL, Piwnica-Worms H.; ''Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase.''; PubMed Europe PMC Scholia
  10. Macůrek L, Lindqvist A, Lim D, Lampson MA, Klompmaker R, Freire R, Clouin C, Taylor SS, Yaffe MB, Medema RH.; ''Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery.''; PubMed Europe PMC Scholia
  11. Strausfeld U, Fernandez A, Capony JP, Girard F, Lautredou N, Derancourt J, Labbe JC, Lamb NJ.; ''Activation of p34cdc2 protein kinase by microinjection of human cdc25C into mammalian cells. Requirement for prior phosphorylation of cdc25C by p34cdc2 on sites phosphorylated at mitosis.''; PubMed Europe PMC Scholia
  12. Hirota T, Kunitoku N, Sasayama T, Marumoto T, Zhang D, Nitta M, Hatakeyama K, Saya H.; ''Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells.''; PubMed Europe PMC Scholia
  13. Seki A, Coppinger JA, Jang CY, Yates JR, Fang G.; ''Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry.''; PubMed Europe PMC Scholia
  14. Bruinsma W, Raaijmakers JA, Medema RH.; ''Switching Polo-like kinase-1 on and off in time and space.''; PubMed Europe PMC Scholia
  15. Alvarez-Fernández M, Halim VA, Aprelia M, Laoukili J, Mohammed S, Medema RH.; ''Protein phosphatase 2A (B55α) prevents premature activation of forkhead transcription factor FoxM1 by antagonizing cyclin A/cyclin-dependent kinase-mediated phosphorylation.''; PubMed Europe PMC Scholia
  16. McGowan CH, Russell P.; ''Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15.''; PubMed Europe PMC Scholia
  17. Xu M, Sheppard KA, Peng CY, Yee AS, Piwnica-Worms H.; ''Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation.''; PubMed Europe PMC Scholia
  18. Jang YJ, Ma S, Terada Y, Erikson RL.; ''Phosphorylation of threonine 210 and the role of serine 137 in the regulation of mammalian polo-like kinase.''; PubMed Europe PMC Scholia
  19. Xing Y, Li Z, Chen Y, Stock JB, Jeffrey PD, Shi Y.; ''Structural mechanism of demethylation and inactivation of protein phosphatase 2A.''; PubMed Europe PMC Scholia
  20. Kumagai A, Dunphy WG.; ''Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts.''; PubMed Europe PMC Scholia
  21. Krek W, Ewen ME, Shirodkar S, Arany Z, Kaelin WG, Livingston DM.; ''Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase.''; PubMed Europe PMC Scholia
  22. Laoukili J, Alvarez M, Meijer LA, Stahl M, Mohammed S, Kleij L, Heck AJ, Medema RH.; ''Activation of FoxM1 during G2 requires cyclin A/Cdk-dependent relief of autorepression by the FoxM1 N-terminal domain.''; PubMed Europe PMC Scholia
  23. Yu D, Jing T, Liu B, Yao J, Tan M, McDonnell TJ, Hung MC.; ''Overexpression of ErbB2 blocks Taxol-induced apoptosis by upregulation of p21Cip1, which inhibits p34Cdc2 kinase.''; PubMed Europe PMC Scholia
  24. Mailand N, Podtelejnikov AV, Groth A, Mann M, Bartek J, Lukas J.; ''Regulation of G(2)/M events by Cdc25A through phosphorylation-dependent modulation of its stability.''; PubMed Europe PMC Scholia
  25. Voges D, Zwickl P, Baumeister W.; ''The 26S proteasome: a molecular machine designed for controlled proteolysis.''; PubMed Europe PMC Scholia
  26. Sakchaisri K, Asano S, Yu LR, Shulewitz MJ, Park CJ, Park JE, Cho YW, Veenstra TD, Thorner J, Lee KS.; ''Coupling morphogenesis to mitotic entry.''; PubMed Europe PMC Scholia
  27. Liu D, Liao C, Wolgemuth DJ.; ''A role for cyclin A1 in the activation of MPF and G2-M transition during meiosis of male germ cells in mice.''; PubMed Europe PMC Scholia
  28. Scolz M, Widlund PO, Piazza S, Bublik DR, Reber S, Peche LY, Ciani Y, Hubner N, Isokane M, Monte M, Ellenberg J, Hyman AA, Schneider C, Bird AW.; ''GTSE1 is a microtubule plus-end tracking protein that regulates EB1-dependent cell migration.''; PubMed Europe PMC Scholia
  29. Mailand N, Falck J, Lukas C, Syljuâsen RG, Welcker M, Bartek J, Lukas J.; ''Rapid destruction of human Cdc25A in response to DNA damage.''; PubMed Europe PMC Scholia
  30. Teixidó-Travesa N, Villén J, Lacasa C, Bertran MT, Archinti M, Gygi SP, Caelles C, Roig J, Lüders J.; ''The gammaTuRC revisited: a comparative analysis of interphase and mitotic human gammaTuRC redefines the set of core components and identifies the novel subunit GCP8.''; PubMed Europe PMC Scholia
  31. Hagting A, Karlsson C, Clute P, Jackman M, Pines J.; ''MPF localization is controlled by nuclear export.''; PubMed Europe PMC Scholia
  32. Nakajima H, Toyoshima-Morimoto F, Taniguchi E, Nishida E.; ''Identification of a consensus motif for Plk (Polo-like kinase) phosphorylation reveals Myt1 as a Plk1 substrate.''; PubMed Europe PMC Scholia
  33. Fu Z, Malureanu L, Huang J, Wang W, Li H, van Deursen JM, Tindall DJ, Chen J.; ''Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression.''; PubMed Europe PMC Scholia
  34. Lindqvist A, Källström H, Karlsson Rosenthal C.; ''Characterisation of Cdc25B localisation and nuclear export during the cell cycle and in response to stress.''; PubMed Europe PMC Scholia
  35. Scrofani J, Sardon T, Meunier S, Vernos I.; ''Microtubule nucleation in mitosis by a RanGTP-dependent protein complex.''; PubMed Europe PMC Scholia
  36. Takizawa CG, Weis K, Morgan DO.; ''Ran-independent nuclear import of cyclin B1-Cdc2 by importin beta.''; PubMed Europe PMC Scholia
  37. Xu X, Wang X, Xiao Z, Li Y, Wang Y.; ''Two TPX2-dependent switches control the activity of Aurora A.''; PubMed Europe PMC Scholia
  38. Honda R, Ohba Y, Nagata A, Okayama H, Yasuda H.; ''Dephosphorylation of human p34cdc2 kinase on both Thr-14 and Tyr-15 by human cdc25B phosphatase.''; PubMed Europe PMC Scholia
  39. Maxwell CA, Keats JJ, Belch AR, Pilarski LM, Reiman T.; ''Receptor for hyaluronan-mediated motility correlates with centrosome abnormalities in multiple myeloma and maintains mitotic integrity.''; PubMed Europe PMC Scholia
  40. Mayor T, Stierhof YD, Tanaka K, Fry AM, Nigg EA.; ''The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion.''; PubMed Europe PMC Scholia
  41. Yamashiro S, Yamakita Y, Totsukawa G, Goto H, Kaibuchi K, Ito M, Hartshorne DJ, Matsumura F.; ''Myosin phosphatase-targeting subunit 1 regulates mitosis by antagonizing polo-like kinase 1.''; PubMed Europe PMC Scholia
  42. Vousden KH, Prives C.; ''Blinded by the Light: The Growing Complexity of p53.''; PubMed Europe PMC Scholia
  43. Sadasivam S, Duan S, DeCaprio JA.; ''The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression.''; PubMed Europe PMC Scholia
  44. Jackman M, Firth M, Pines J.; ''Human cyclins B1 and B2 are localized to strikingly different structures: B1 to microtubules, B2 primarily to the Golgi apparatus.''; PubMed Europe PMC Scholia
  45. Dodson CA, Bayliss R.; ''Activation of Aurora-A kinase by protein partner binding and phosphorylation are independent and synergistic.''; PubMed Europe PMC Scholia
  46. Taniguchi E, Toyoshima-Morimoto F, Nishida E.; ''Nuclear translocation of plk1 mediated by its bipartite nuclear localization signal.''; PubMed Europe PMC Scholia
  47. Shi P, Zhu S, Lin Y, Liu Y, Liu Y, Chen Z, Shi Y, Qian Y.; ''Persistent stimulation with interleukin-17 desensitizes cells through SCFβ-TrCP-mediated degradation of Act1.''; PubMed Europe PMC Scholia
  48. Sen I, Veprintsev D, Akhmanova A, Steinmetz MO.; ''End binding proteins are obligatory dimers.''; PubMed Europe PMC Scholia
  49. Johnson EO, Chang KH, de Pablo Y, Ghosh S, Mehta R, Badve S, Shah K.; ''PHLDA1 is a crucial negative regulator and effector of Aurora A kinase in breast cancer.''; PubMed Europe PMC Scholia
  50. Petretti C, Savoian M, Montembault E, Glover DM, Prigent C, Giet R.; ''The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation.''; PubMed Europe PMC Scholia
  51. De Baere I, Derua R, Janssens V, Van Hoof C, Waelkens E, Merlevede W, Goris J.; ''Purification of porcine brain protein phosphatase 2A leucine carboxyl methyltransferase and cloning of the human homologue.''; PubMed Europe PMC Scholia
  52. Wang G, Jiang Q, Zhang C.; ''The role of mitotic kinases in coupling the centrosome cycle with the assembly of the mitotic spindle.''; PubMed Europe PMC Scholia
  53. Liu Y, Lear T, Zhao Y, Zhao J, Zou C, Chen BB, Mallampalli RK.; ''F-box protein Fbxl18 mediates polyubiquitylation and proteasomal degradation of the pro-apoptotic SCF subunit Fbxl7.''; PubMed Europe PMC Scholia
  54. Hutterer A, Berdnik D, Wirtz-Peitz F, Zigman M, Schleiffer A, Knoblich JA.; ''Mitotic activation of the kinase Aurora-A requires its binding partner Bora.''; PubMed Europe PMC Scholia
  55. Hutchins JR, Toyoda Y, Hegemann B, Poser I, Hériché JK, Sykora MM, Augsburg M, Hudecz O, Buschhorn BA, Bulkescher J, Conrad C, Comartin D, Schleiffer A, Sarov M, Pozniakovsky A, Slabicki MM, Schloissnig S, Steinmacher I, Leuschner M, Ssykor A, Lawo S, Pelletier L, Stark H, Nasmyth K, Ellenberg J, Durbin R, Buchholz F, Mechtler K, Hyman AA, Peters JM.; ''Systematic analysis of human protein complexes identifies chromosome segregation proteins.''; PubMed Europe PMC Scholia
  56. Timofeev O, Cizmecioglu O, Hu E, Orlik T, Hoffmann I.; ''Human Cdc25A phosphatase has a non-redundant function in G2 phase by activating Cyclin A-dependent kinases.''; PubMed Europe PMC Scholia
  57. Monte M, Benetti R, Buscemi G, Sandy P, Del Sal G, Schneider C.; ''The cell cycle-regulated protein human GTSE-1 controls DNA damage-induced apoptosis by affecting p53 function.''; PubMed Europe PMC Scholia
  58. Takahashi M, Yamagiwa A, Nishimura T, Mukai H, Ono Y.; ''Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex.''; PubMed Europe PMC Scholia
  59. Casenghi M, Meraldi P, Weinhart U, Duncan PI, Körner R, Nigg EA.; ''Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation.''; PubMed Europe PMC Scholia
  60. Dynlacht BD, Flores O, Lees JA, Harlow E.; ''Differential regulation of E2F transactivation by cyclin/cdk2 complexes.''; PubMed Europe PMC Scholia
  61. O'Farrell PH.; ''Triggering the all-or-nothing switch into mitosis.''; PubMed Europe PMC Scholia
  62. Galaktionov K, Beach D.; ''Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins.''; PubMed Europe PMC Scholia
  63. Kachaner D, Filipe J, Laplantine E, Bauch A, Bennett KL, Superti-Furga G, Israël A, Weil R.; ''Plk1-dependent phosphorylation of optineurin provides a negative feedback mechanism for mitotic progression.''; PubMed Europe PMC Scholia
  64. Pines J, Hunter T.; ''Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport.''; PubMed Europe PMC Scholia
  65. Graves PR, Lovly CM, Uy GL, Piwnica-Worms H.; ''Localization of human Cdc25C is regulated both by nuclear export and 14-3-3 protein binding.''; PubMed Europe PMC Scholia
  66. Coon TA, Glasser JR, Mallampalli RK, Chen BB.; ''Novel E3 ligase component FBXL7 ubiquitinates and degrades Aurora A, causing mitotic arrest.''; PubMed Europe PMC Scholia
  67. Sullivan C, Liu Y, Shen J, Curtis A, Newman C, Hock JM, Li X.; ''Novel interactions between FOXM1 and CDC25A regulate the cell cycle.''; PubMed Europe PMC Scholia
  68. Laoukili J, Kooistra MR, Brás A, Kauw J, Kerkhoven RM, Morrison A, Clevers H, Medema RH.; ''FoxM1 is required for execution of the mitotic programme and chromosome stability.''; PubMed Europe PMC Scholia
  69. Bayliss R, Sardon T, Vernos I, Conti E.; ''Structural basis of Aurora-A activation by TPX2 at the mitotic spindle.''; PubMed Europe PMC Scholia
  70. Goda T, Ishii T, Nakajo N, Sagata N, Kobayashi H.; ''The RRASK motif in Xenopus cyclin B2 is required for the substrate recognition of Cdc25C by the cyclin B-Cdc2 complex.''; PubMed Europe PMC Scholia
  71. Chen X, Müller GA, Quaas M, Fischer M, Han N, Stutchbury B, Sharrocks AD, Engeland K.; ''The forkhead transcription factor FOXM1 controls cell cycle-dependent gene expression through an atypical chromatin binding mechanism.''; PubMed Europe PMC Scholia
  72. Jascur T, Brickner H, Salles-Passador I, Barbier V, El Khissiin A, Smith B, Fotedar R, Fotedar A.; ''Regulation of p21(WAF1/CIP1) stability by WISp39, a Hsp90 binding TPR protein.''; PubMed Europe PMC Scholia
  73. Monte M, Benetti R, Collavin L, Marchionni L, Del Sal G, Schneider C.; ''hGTSE-1 expression stimulates cytoplasmic localization of p53.''; PubMed Europe PMC Scholia
  74. Draviam VM, Orrechia S, Lowe M, Pardi R, Pines J.; ''The localization of human cyclins B1 and B2 determines CDK1 substrate specificity and neither enzyme requires MEK to disassemble the Golgi apparatus.''; PubMed Europe PMC Scholia
  75. Desai D, Wessling HC, Fisher RP, Morgan DO.; ''Effects of phosphorylation by CAK on cyclin binding by CDC2 and CDK2.''; PubMed Europe PMC Scholia
  76. Timofeev O, Cizmecioglu O, Settele F, Kempf T, Hoffmann I.; ''Cdc25 phosphatases are required for timely assembly of CDK1-cyclin B at the G2/M transition.''; PubMed Europe PMC Scholia
  77. Bellanger S, de Gramont A, Sobczak-Thépot J.; ''Cyclin B2 suppresses mitotic failure and DNA re-replication in human somatic cells knocked down for both cyclins B1 and B2.''; PubMed Europe PMC Scholia
  78. Watanabe N, Arai H, Nishihara Y, Taniguchi M, Watanabe N, Hunter T, Osada H.; ''M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP.''; PubMed Europe PMC Scholia
  79. Major ML, Lepe R, Costa RH.; ''Forkhead box M1B transcriptional activity requires binding of Cdk-cyclin complexes for phosphorylation-dependent recruitment of p300/CBP coactivators.''; PubMed Europe PMC Scholia
  80. Toyoshima-Morimoto F, Taniguchi E, Nishida E.; ''Plk1 promotes nuclear translocation of human Cdc25C during prophase.''; PubMed Europe PMC Scholia
  81. Yang J, Bardes ES, Moore JD, Brennan J, Powers MA, Kornbluth S.; ''Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1.''; PubMed Europe PMC Scholia
  82. Liu XS, Li H, Song B, Liu X.; ''Polo-like kinase 1 phosphorylation of G2 and S-phase-expressed 1 protein is essential for p53 inactivation during G2 checkpoint recovery.''; PubMed Europe PMC Scholia
  83. Takizawa CG, Morgan DO.; ''Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C.''; PubMed Europe PMC Scholia
  84. Groen AC, Cameron LA, Coughlin M, Miyamoto DT, Mitchison TJ, Ohi R.; ''XRHAMM functions in ran-dependent microtubule nucleation and pole formation during anastral spindle assembly.''; PubMed Europe PMC Scholia
  85. Wei SJ, Williams JG, Dang H, Darden TA, Betz BL, Humble MM, Chang FM, Trempus CS, Johnson K, Cannon RE, Tennant RW.; ''Identification of a specific motif of the DSS1 protein required for proteasome interaction and p53 protein degradation.''; PubMed Europe PMC Scholia
  86. Hagting A, Jackman M, Simpson K, Pines J.; ''Translocation of cyclin B1 to the nucleus at prophase requires a phosphorylation-dependent nuclear import signal.''; PubMed Europe PMC Scholia
  87. Golsteyn RM, Mundt KE, Fry AM, Nigg EA.; ''Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function.''; PubMed Europe PMC Scholia
  88. Liu F, Stanton JJ, Wu Z, Piwnica-Worms H.; ''The human Myt1 kinase preferentially phosphorylates Cdc2 on threonine 14 and localizes to the endoplasmic reticulum and Golgi complex.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114706view16:18, 25 January 2021ReactomeTeamReactome version 75
113151view11:21, 2 November 2020ReactomeTeamReactome version 74
112379view15:31, 9 October 2020ReactomeTeamReactome version 73
101750view12:30, 5 November 2018DeSlOntology Term : 'G2/M transition pathway' added !
101749view12:29, 5 November 2018DeSlOntology Term : 'G2 phase pathway' added !
101282view11:17, 1 November 2018ReactomeTeamreactome version 66
100819view20:47, 31 October 2018ReactomeTeamreactome version 65
100360view19:22, 31 October 2018ReactomeTeamreactome version 64
99905view16:06, 31 October 2018ReactomeTeamreactome version 63
99461view14:38, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
94019view13:51, 16 August 2017ReactomeTeamreactome version 61
93638view11:29, 9 August 2017ReactomeTeamreactome version 61
86753view09:25, 11 July 2016ReactomeTeamreactome version 56
83378view11:04, 18 November 2015ReactomeTeamVersion54
81553view13:05, 21 August 2015ReactomeTeamVersion53
77022view08:32, 17 July 2014ReactomeTeamFixed remaining interactions
76727view12:09, 16 July 2014ReactomeTeamFixed remaining interactions
75762view11:26, 10 June 2014ReactomeTeamReactome 48 Update
75112view14:06, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74759view08:50, 30 April 2014ReactomeTeamReactome46
44913view10:36, 6 October 2011MartijnVanIerselOntology Term : 'cell cycle pathway, mitotic' added !
42077view21:55, 4 March 2011MaintBotAutomatic update
39885view05:54, 21 January 2011MaintBotNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
(BTRC:CUL1:SKP1),(FBXW11:CUL1:SKP1)ComplexR-HSA-1168601 (Reactome)
26S proteasomeComplexR-HSA-68819 (Reactome)
ACTR1A ProteinP61163 (Uniprot-TrEMBL)
ADPMetaboliteCHEBI:456216 (ChEBI)
AJUBA ProteinQ96IF1 (Uniprot-TrEMBL)
AJUBAProteinQ96IF1 (Uniprot-TrEMBL)
AKAP9 ProteinQ99996 (Uniprot-TrEMBL)
ALMS1 ProteinQ8TCU4 (Uniprot-TrEMBL)
ATPMetaboliteCHEBI:30616 (ChEBI)
AURKA ProteinO14965 (Uniprot-TrEMBL)
AURKA:PHLDA1ComplexR-HSA-8853432 (Reactome)
AURKAProteinO14965 (Uniprot-TrEMBL)
AZI1 ProteinQ9UPN4 (Uniprot-TrEMBL)
AdoHcyMetaboliteCHEBI:16680 (ChEBI)
AdoMetMetaboliteCHEBI:15414 (ChEBI)
BORAProteinQ6PGQ7 (Uniprot-TrEMBL)
BTRC ProteinQ9Y297 (Uniprot-TrEMBL)
CAKComplexR-HSA-69221 (Reactome)
CCNA1 ProteinP78396 (Uniprot-TrEMBL)
CCNA1:p-T161-CDK1ComplexR-HSA-68892 (Reactome)
CCNA2 ProteinP20248 (Uniprot-TrEMBL)
CCNA2:p-T161-CDK1ComplexR-HSA-68906 (Reactome)
CCNA:CDK1ComplexR-HSA-170091 (Reactome)
CCNA:p-CDK1/2 R-HSA-4088020 (Reactome)
CCNA:p-T14,T161-CDK1ComplexR-HSA-170092 (Reactome)
CCNA:p-T14,Y15,T161-CDK1ComplexR-HSA-170147 (Reactome)
CCNA:p-T14-CDK1ComplexR-HSA-170085 (Reactome)
CCNA:p-T14-CDK1ComplexR-HSA-170090 (Reactome)
CCNA:p-T160-CDK2:E2F1/E2F3ComplexR-HSA-187932 (Reactome)
CCNA:p-T160-CDK2:p-E2F1/p-E2F3ComplexR-HSA-187944 (Reactome)
CCNA:p-T160-CDK2ComplexR-HSA-187952 (Reactome)
CCNA:p-T161-CDK1ComplexR-HSA-170146 (Reactome)
CCNAComplexR-HSA-170089 (Reactome)
CCNB1 Gene ProteinENSG00000134057 (Ensembl)
CCNB1 GeneGeneProductENSG00000134057 (Ensembl)
CCNB1 ProteinP14635 (Uniprot-TrEMBL)
CCNB1,CCNB2:p-T14,Y15,T161-CDK1ComplexR-HSA-8981821 (Reactome)
CCNB1,CCNB2:p-T161-CDK1 R-HSA-2311324 (Reactome)
CCNB1,CCNB2:p-T161-CDK1ComplexR-HSA-2311324 (Reactome)
CCNB1:p-T14,T161-CDK1ComplexR-HSA-170073 (Reactome)
CCNB1:p-T14,Y15,T161-CDK1ComplexR-HSA-170065 (Reactome)
CCNB1:p-T14,Y15,T161-CDK1ComplexR-HSA-170068 (Reactome)
CCNB1:p-T14-CDK1ComplexR-HSA-170056 (Reactome)
CCNB1:p-T161-CDK1ComplexR-HSA-157456 (Reactome)
CCNB1:p-T161-CDK1ComplexR-HSA-170160 (Reactome)
CCNB1ProteinP14635 (Uniprot-TrEMBL)
CCNB2 Gene ProteinENSG00000157456 (Ensembl)
CCNB2 GeneGeneProductENSG00000157456 (Ensembl)
CCNB2 ProteinO95067 (Uniprot-TrEMBL)
CCNB2ProteinO95067 (Uniprot-TrEMBL)
CCNB:CDK1ComplexR-HSA-170077 (Reactome)
CCNB:p-T14-CDK1ComplexR-HSA-170069 (Reactome)
CCNBComplexR-HSA-157461 (Reactome)
CCNH ProteinP51946 (Uniprot-TrEMBL)
CCP110 ProteinO43303 (Uniprot-TrEMBL)
CDC25A ProteinP30304 (Uniprot-TrEMBL)
CDC25A gene ProteinENSG00000164045 (Ensembl)
CDC25A geneGeneProductENSG00000164045 (Ensembl)
CDC25AProteinP30304 (Uniprot-TrEMBL)
CDC25B ProteinP30305 (Uniprot-TrEMBL)
CDC25BProteinP30305 (Uniprot-TrEMBL)
CDC25CProteinP30307 (Uniprot-TrEMBL)
CDC25ComplexR-HSA-170108 (Reactome)
CDC25ComplexR-HSA-69261 (Reactome)
CDK1 ProteinP06493 (Uniprot-TrEMBL)
CDK11A ProteinQ9UQ88 (Uniprot-TrEMBL)
CDK11B ProteinP21127 (Uniprot-TrEMBL)
CDK11p58ComplexR-HSA-380452 (Reactome)
CDK1ProteinP06493 (Uniprot-TrEMBL)
CDK5RAP2 ProteinQ96SN8 (Uniprot-TrEMBL)
CDK7 ProteinP50613 (Uniprot-TrEMBL)
CDKN1A ProteinP38936 (Uniprot-TrEMBL)
CDKN1AProteinP38936 (Uniprot-TrEMBL)
CENPF Gene ProteinENSG00000117724 (Ensembl)
CENPF GeneGeneProductENSG00000117724 (Ensembl)
CENPFProteinP49454 (Uniprot-TrEMBL)
CENPJ ProteinQ9HC77 (Uniprot-TrEMBL)
CEP135 ProteinQ66GS9 (Uniprot-TrEMBL)
CEP152 ProteinO94986 (Uniprot-TrEMBL)
CEP164 ProteinQ9UPV0 (Uniprot-TrEMBL)
CEP192 ProteinQ8TEP8 (Uniprot-TrEMBL)
CEP250 ProteinQ9BV73 (Uniprot-TrEMBL)
CEP250ProteinQ9BV73 (Uniprot-TrEMBL)
CEP290 ProteinO15078 (Uniprot-TrEMBL)
CEP41 ProteinQ9BYV8 (Uniprot-TrEMBL)
CEP57 ProteinQ86XR8 (Uniprot-TrEMBL)
CEP63 ProteinQ96MT8 (Uniprot-TrEMBL)
CEP70 ProteinQ8NHQ1 (Uniprot-TrEMBL)
CEP72 ProteinQ9P209 (Uniprot-TrEMBL)
CEP76 ProteinQ8TAP6 (Uniprot-TrEMBL)
CEP78 ProteinQ5JTW2 (Uniprot-TrEMBL)
CETN2 ProteinP41208 (Uniprot-TrEMBL)
CKAP5 ProteinQ14008 (Uniprot-TrEMBL)
CLASP1 ProteinQ7Z460 (Uniprot-TrEMBL)
CNTRL ProteinQ7Z7A1 (Uniprot-TrEMBL)
CRS kinaseComplexR-HSA-170106 (Reactome)
CSNK1D ProteinP48730 (Uniprot-TrEMBL)
CSNK1E ProteinP49674 (Uniprot-TrEMBL)
CUL1 ProteinQ13616 (Uniprot-TrEMBL)
CUL1ProteinQ13616 (Uniprot-TrEMBL)
Centrosome associated Plk1ComplexR-HSA-380288 (Reactome)
Centrosome:AURKA:AJUBAComplexR-HSA-2574836 (Reactome)
Centrosome:AURKA:TPX2:HMMRComplexR-HSA-8853414 (Reactome)
Centrosome:AURKAComplexR-HSA-2574827 (Reactome)
Centrosome:p-T288-AURKA:TPX2:HMMRComplexR-HSA-8853422 (Reactome)
Centrosome:p-T288-AURKA:p-S252-BORA:PLK1ComplexR-HSA-3000313 (Reactome)
Centrosome:p-T288-AURKAComplexR-HSA-3000302 (Reactome)
Centrosomes

containing

recruited CDK11p58
ComplexR-HSA-380453 (Reactome)
Cyclin A1:Cdk2

phosphorylated G2/M

transition protein
R-HSA-617372 (Reactome)
Cyclin A2:Cdk2

phosphorylated G2/M

transition protein
R-HSA-617371 (Reactome)
DCTN1-2 ProteinQ14203-2 (Uniprot-TrEMBL)
DCTN2 ProteinQ13561 (Uniprot-TrEMBL)
DCTN3 ProteinO75935 (Uniprot-TrEMBL)
DYNC1H1 ProteinQ14204 (Uniprot-TrEMBL)
DYNC1I2 ProteinQ13409 (Uniprot-TrEMBL)
DYNLL1 ProteinP63167 (Uniprot-TrEMBL)
E2F1 ProteinQ01094 (Uniprot-TrEMBL)
E2F1/E2F3ComplexR-HSA-187942 (Reactome)
E2F3 ProteinO00716 (Uniprot-TrEMBL)
EP300 ProteinQ09472 (Uniprot-TrEMBL)
EP300ProteinQ09472 (Uniprot-TrEMBL)
FBXL18 ProteinQ96ME1 (Uniprot-TrEMBL)
FBXL7 ProteinQ9UJT9 (Uniprot-TrEMBL)
FBXL7ProteinQ9UJT9 (Uniprot-TrEMBL)
FBXW11 ProteinQ9UKB1 (Uniprot-TrEMBL)
FGFR1OP ProteinO95684 (Uniprot-TrEMBL)
FKBPL ProteinQ9UIM3 (Uniprot-TrEMBL)
FKBPLProteinQ9UIM3 (Uniprot-TrEMBL)
FOXM1ProteinQ08050 (Uniprot-TrEMBL)
G2/M transition proteinsR-HSA-617370 (Reactome)
G2/M transition proteinsR-HSA-617374 (Reactome)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTSE1 ProteinQ9NYZ3 (Uniprot-TrEMBL)
GTSE1:CDKN1A:FKBPL:HSP90ComplexR-HSA-8852380 (Reactome)
GTSE1:MAPRE1:microtubule plus endComplexR-HSA-8852295 (Reactome)
GTSE1:microtubuleComplexR-HSA-8852286 (Reactome)
GTSE1:p-T210-PLK1ComplexR-HSA-8852323 (Reactome)
GTSE1ProteinQ9NYZ3 (Uniprot-TrEMBL)
H2OMetaboliteCHEBI:15377 (ChEBI)
HAUS1 ProteinQ96CS2 (Uniprot-TrEMBL)
HAUS2 ProteinQ9NVX0 (Uniprot-TrEMBL)
HAUS3 ProteinQ68CZ6 (Uniprot-TrEMBL)
HAUS4 ProteinQ9H6D7 (Uniprot-TrEMBL)
HAUS5 ProteinO94927 (Uniprot-TrEMBL)
HAUS6 ProteinQ7Z4H7 (Uniprot-TrEMBL)
HAUS7 ProteinQ99871 (Uniprot-TrEMBL)
HAUS8 ProteinQ9BT25 (Uniprot-TrEMBL)
HMMR ProteinO75330 (Uniprot-TrEMBL)
HMMRProteinO75330 (Uniprot-TrEMBL)
HSP90:HSP90ComplexR-HSA-3371429 (Reactome)
HSP90AA1 ProteinP07900 (Uniprot-TrEMBL)
HSP90AB1 ProteinP08238 (Uniprot-TrEMBL)
LCMT1ProteinQ9UIC8 (Uniprot-TrEMBL)
LIN37 ProteinQ96GY3 (Uniprot-TrEMBL)
LIN52 ProteinQ52LA3 (Uniprot-TrEMBL)
LIN54 ProteinQ6MZP7 (Uniprot-TrEMBL)
LIN9 ProteinQ5TKA1 (Uniprot-TrEMBL)
MAPRE1 ProteinQ15691 (Uniprot-TrEMBL)
MAPRE1:microtubule plus endComplexR-HSA-8852300 (Reactome)
MNAT1 ProteinP51948 (Uniprot-TrEMBL)
MYBL2 ProteinP10244 (Uniprot-TrEMBL)
MYBL2ProteinP10244 (Uniprot-TrEMBL)
MZT1 ProteinQ08AG7 (Uniprot-TrEMBL)
MZT2A ProteinQ6P582 (Uniprot-TrEMBL)
MZT2B ProteinQ6NZ67 (Uniprot-TrEMBL)
Mature centrosomes

enriched in gamma-TURC

complexes
ComplexR-HSA-380440 (Reactome)
MeL-PP2AComplexR-HSA-8857787 (Reactome)
MeL-PPP2CA ProteinP67775 (Uniprot-TrEMBL)
MeL-PPP2CB ProteinP62714 (Uniprot-TrEMBL)
Microtubule protofilament R-HSA-8982424 (Reactome)
MicrotubuleComplexR-HSA-190599 (Reactome)
Mitotic kinaseComplexR-HSA-8853807 (Reactome)
MuvB complexComplexR-HSA-1362248 (Reactome)
NDE1 ProteinQ9NXR1 (Uniprot-TrEMBL)
NEDD1 ProteinQ8NHV4 (Uniprot-TrEMBL)
NEK2 ProteinP51955 (Uniprot-TrEMBL)
NINL ProteinQ9Y2I6 (Uniprot-TrEMBL)
NME7 ProteinQ9Y5B8 (Uniprot-TrEMBL)
Nlp-depleted centrosomeComplexR-HSA-380705 (Reactome)
ODF2 ProteinQ5BJF6 (Uniprot-TrEMBL)
OFD1 ProteinO75665 (Uniprot-TrEMBL)
OPTN ProteinQ96CV9 (Uniprot-TrEMBL)
OPTN:RAB8A:GTPComplexR-HSA-2562537 (Reactome)
PAFAH1B1 ProteinP43034 (Uniprot-TrEMBL)
PCM1 ProteinQ15154 (Uniprot-TrEMBL)
PCNT ProteinO95613 (Uniprot-TrEMBL)
PHLDA1 ProteinQ8WV24 (Uniprot-TrEMBL)
PHLDA1ProteinQ8WV24 (Uniprot-TrEMBL)
PKMYT1ProteinQ99640 (Uniprot-TrEMBL)
PLK1 Gene ProteinENSG00000166851 (Ensembl)
PLK1 GeneGeneProductENSG00000166851 (Ensembl)
PLK1 ProteinP53350 (Uniprot-TrEMBL)
PLK1ProteinP53350 (Uniprot-TrEMBL)
PLK4 ProteinO00444 (Uniprot-TrEMBL)
PP2A-PPP2R2AComplexR-HSA-4088142 (Reactome)
PP2AComplexR-HSA-1363265 (Reactome)
PPME1ProteinQ9Y570 (Uniprot-TrEMBL)
PPP1CB ProteinP62140 (Uniprot-TrEMBL)
PPP1R12B-4 ProteinO60237-4 (Uniprot-TrEMBL)
PPP2CA ProteinP67775 (Uniprot-TrEMBL)
PPP2CB ProteinP62714 (Uniprot-TrEMBL)
PPP2R1A ProteinP30153 (Uniprot-TrEMBL)
PPP2R1B ProteinP30154 (Uniprot-TrEMBL)
PPP2R2A ProteinP63151 (Uniprot-TrEMBL)
PPP2R3B ProteinQ9Y5P8 (Uniprot-TrEMBL)
PRKACA ProteinP17612 (Uniprot-TrEMBL)
PRKAR2B ProteinP31323 (Uniprot-TrEMBL)
PSMA1 ProteinP25786 (Uniprot-TrEMBL)
PSMA2 ProteinP25787 (Uniprot-TrEMBL)
PSMA3 ProteinP25788 (Uniprot-TrEMBL)
PSMA4 ProteinP25789 (Uniprot-TrEMBL)
PSMA5 ProteinP28066 (Uniprot-TrEMBL)
PSMA6 ProteinP60900 (Uniprot-TrEMBL)
PSMA7 ProteinO14818 (Uniprot-TrEMBL)
PSMA8 ProteinQ8TAA3 (Uniprot-TrEMBL)
PSMB1 ProteinP20618 (Uniprot-TrEMBL)
PSMB10 ProteinP40306 (Uniprot-TrEMBL)
PSMB11 ProteinA5LHX3 (Uniprot-TrEMBL)
PSMB2 ProteinP49721 (Uniprot-TrEMBL)
PSMB3 ProteinP49720 (Uniprot-TrEMBL)
PSMB4 ProteinP28070 (Uniprot-TrEMBL)
PSMB5 ProteinP28074 (Uniprot-TrEMBL)
PSMB6 ProteinP28072 (Uniprot-TrEMBL)
PSMB7 ProteinQ99436 (Uniprot-TrEMBL)
PSMB8 ProteinP28062 (Uniprot-TrEMBL)
PSMB9 ProteinP28065 (Uniprot-TrEMBL)
PSMC1 ProteinP62191 (Uniprot-TrEMBL)
PSMC2 ProteinP35998 (Uniprot-TrEMBL)
PSMC3 ProteinP17980 (Uniprot-TrEMBL)
PSMC4 ProteinP43686 (Uniprot-TrEMBL)
PSMC5 ProteinP62195 (Uniprot-TrEMBL)
PSMC6 ProteinP62333 (Uniprot-TrEMBL)
PSMD1 ProteinQ99460 (Uniprot-TrEMBL)
PSMD10 ProteinO75832 (Uniprot-TrEMBL)
PSMD11 ProteinO00231 (Uniprot-TrEMBL)
PSMD12 ProteinO00232 (Uniprot-TrEMBL)
PSMD13 ProteinQ9UNM6 (Uniprot-TrEMBL)
PSMD14 ProteinO00487 (Uniprot-TrEMBL)
PSMD2 ProteinQ13200 (Uniprot-TrEMBL)
PSMD3 ProteinO43242 (Uniprot-TrEMBL)
PSMD4 ProteinP55036 (Uniprot-TrEMBL)
PSMD5 ProteinQ16401 (Uniprot-TrEMBL)
PSMD6 ProteinQ15008 (Uniprot-TrEMBL)
PSMD7 ProteinP51665 (Uniprot-TrEMBL)
PSMD8 ProteinP48556 (Uniprot-TrEMBL)
PSMD9 ProteinO00233 (Uniprot-TrEMBL)
PSME1 ProteinQ06323 (Uniprot-TrEMBL)
PSME2 ProteinQ9UL46 (Uniprot-TrEMBL)
PSME3 ProteinP61289 (Uniprot-TrEMBL)
PSME4 ProteinQ14997 (Uniprot-TrEMBL)
PSMF1 ProteinQ92530 (Uniprot-TrEMBL)
Phospho-Cyclin

B1

(CRS):phospho-Cdc2(Thr 161)
ComplexR-HSA-170121 (Reactome)
Phosphorylated Myosin PhosphataseComplexR-HSA-3002804 (Reactome) All known myosin phosphatases consist of PP1 beta and both a large and a small myosin phosphatase targetting (Mypt) subunit. The large Mypt targets PP1 beta to myosin and determines the substrate specifity of the phosphatase. The Large Mypt subunit is encoded by one of three human genes, PPP1R12A (MYPT1), PPP1R12B (MYPT2) and PPP1R12C. Only MYPT1 is represented here. The small subunit is an alternative transcript of MYPT2. The function of the small Mypt subunit remains unclear, but because it is known to interact directly with myosin and the large Mypt it is thought to have an unspecified regulatory role.
PiMetaboliteCHEBI:43474 (ChEBI)
PolyUb-AURKA ProteinO14965 (Uniprot-TrEMBL)
PolyUb-K109-FBXL7ProteinQ9UJT9 (Uniprot-TrEMBL)
PolyUb-TP53 ProteinP04637 (Uniprot-TrEMBL)
PolyUb-TP53 TetramerComplexR-HSA-3209186 (Reactome)
RAB8A ProteinP61006 (Uniprot-TrEMBL)
RAB8A:GTPComplexR-HSA-2562539 (Reactome)
RBBP4 ProteinQ09028 (Uniprot-TrEMBL)
RBX1 ProteinP62877 (Uniprot-TrEMBL)
RBX1ProteinP62877 (Uniprot-TrEMBL)
RPS27A(1-76) ProteinP62979 (Uniprot-TrEMBL)
SCF-FBXL7:AURKAComplexR-HSA-8854031 (Reactome)
SCF-FBXL7:PolyUb-AURKAComplexR-HSA-8854038 (Reactome)
SDCCAG8 ProteinQ86SQ7 (Uniprot-TrEMBL)
SFI1 ProteinA8K8P3 (Uniprot-TrEMBL)
SHFM1 ProteinP60896 (Uniprot-TrEMBL)
SKP1 ProteinP63208 (Uniprot-TrEMBL)
SKP1:CUL1:RBX1:FBXL18ComplexR-HSA-8854059 (Reactome)
SKP1:CUL1:RBX1:FBXL7ComplexR-HSA-8854030 (Reactome)
SKP1ProteinP63208 (Uniprot-TrEMBL)
SSNA1 ProteinO43805 (Uniprot-TrEMBL)
TPX2 ProteinQ9ULW0 (Uniprot-TrEMBL)
TPX2ProteinQ9ULW0 (Uniprot-TrEMBL)
TUBA1A ProteinQ71U36 (Uniprot-TrEMBL)
TUBA4A ProteinP68366 (Uniprot-TrEMBL)
TUBB ProteinP07437 (Uniprot-TrEMBL)
TUBB4A ProteinP04350 (Uniprot-TrEMBL)
TUBB4B ProteinP68371 (Uniprot-TrEMBL)
TUBG1 ProteinP23258 (Uniprot-TrEMBL)
TUBG2 ProteinQ9NRH3 (Uniprot-TrEMBL)
TUBGCP2 ProteinQ9BSJ2 (Uniprot-TrEMBL)
TUBGCP3 ProteinQ96CW5 (Uniprot-TrEMBL)
TUBGCP4 ProteinQ9UGJ1 (Uniprot-TrEMBL)
TUBGCP5 ProteinQ96RT8 (Uniprot-TrEMBL)
TUBGCP6 ProteinQ96RT7 (Uniprot-TrEMBL)
Transcriptional Regulation by TP53PathwayR-HSA-3700989 (Reactome) The tumor suppressor TP53 (encoded by the gene p53) is a transcription factor. Under stress conditions, it recognizes specific responsive DNA elements and thus regulates the transcription of many genes involved in a variety of cellular processes, such as cellular metabolism, survival, senescence, apoptosis and DNA damage response. Because of its critical function, p53 is frequently mutated in around 50% of all malignant tumors. For a recent review, please refer to Vousden and Prives 2009 and Kruiswijk et al. 2015.
UBA52(1-76) ProteinP62987 (Uniprot-TrEMBL)
UBB(1-76) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(153-228) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(77-152) ProteinP0CG47 (Uniprot-TrEMBL)
UBC(1-76) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(153-228) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(229-304) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(305-380) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(381-456) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(457-532) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(533-608) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(609-684) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(77-152) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-p-S252,S497,T501-BORAComplexR-HSA-3000337 (Reactome)
UbComplexR-HSA-113595 (Reactome)
WEE1ProteinP30291 (Uniprot-TrEMBL)
XPO1ProteinO14980 (Uniprot-TrEMBL)
YWHAE ProteinP62258 (Uniprot-TrEMBL)
YWHAG ProteinP61981 (Uniprot-TrEMBL)
cNAP-1 depleted centrosomeComplexR-HSA-380698 (Reactome)
centrosome

containing

phosphorylated Nlp
ComplexR-HSA-380704 (Reactome)
centrosomeComplexR-HSA-380268 (Reactome)
cytoplasmic Cyclin B1:Cdc2 complexesComplexR-HSA-170079 (Reactome)
gamma-tubulin complexComplexR-HSA-379277 (Reactome) A current model of the arrangement of subunits within the TuRC postulates that 6-7 TuSC subcomplexes are held together by the other Grip proteins, which together form the cap subunits(Reviewed in Wiese and Zheng, 2006).
methanolMetaboliteCHEBI:17790 (ChEBI)
nuclear Cyclin B1:Cdc2 complexesComplexR-HSA-170051 (Reactome)
p-4S-CCNB1 ProteinP14635 (Uniprot-TrEMBL)
p-CDK1/2:CCNA/p-T161-CDK1:CCNB1ComplexR-HSA-4088061 (Reactome)
p-E2F1 ProteinQ01094 (Uniprot-TrEMBL)
p-E2F3 ProteinO00716 (Uniprot-TrEMBL)
p-NINL ProteinQ9Y2I6 (Uniprot-TrEMBL)
p-NINLProteinQ9Y2I6 (Uniprot-TrEMBL)
p-PKMYT1ProteinQ99640 (Uniprot-TrEMBL)
p-S-AJUBAProteinQ96IF1 (Uniprot-TrEMBL)
p-S177-OPTNProteinQ96CV9 (Uniprot-TrEMBL)
p-S198-CDC25C ProteinP30307 (Uniprot-TrEMBL)
p-S198-CDC25CProteinP30307 (Uniprot-TrEMBL)
p-S252,S497,T501-BORA ProteinQ6PGQ7 (Uniprot-TrEMBL)
p-S252,S497,T501-BORA:SCF-beta-TrCp1/2ComplexR-HSA-3000340 (Reactome)
p-S252,S497,T501-BORAProteinQ6PGQ7 (Uniprot-TrEMBL)
p-S252-BORA ProteinQ6PGQ7 (Uniprot-TrEMBL)
p-S252-BORA:p-T210-PLK1ComplexR-HSA-3000305 (Reactome)
p-S252-BORAProteinQ6PGQ7 (Uniprot-TrEMBL)
p-S435-GTSE1 ProteinQ9NYZ3 (Uniprot-TrEMBL)
p-S435-GTSE1:PolyUb-TP53 TetramerComplexR-HSA-8852344 (Reactome)
p-S435-GTSE1:PolyUb-TP53 TetramerComplexR-HSA-8852349 (Reactome)
p-S435-GTSE1ProteinQ9NYZ3 (Uniprot-TrEMBL)
p-S473-PPP1R12A ProteinO14974 (Uniprot-TrEMBL)
p-S53-WEE1ProteinP30291 (Uniprot-TrEMBL)
p-S95-PHLDA1ProteinQ8WV24 (Uniprot-TrEMBL)
p-T14,T161-CDK1 ProteinP06493 (Uniprot-TrEMBL)
p-T14,Y15,T161-CDK1 ProteinP06493 (Uniprot-TrEMBL)
p-T14-CDK1 ProteinP06493 (Uniprot-TrEMBL)
p-T160-CDK2 ProteinP24941 (Uniprot-TrEMBL)
p-T161-CDK1 ProteinP06493 (Uniprot-TrEMBL)
p-T210-PLK1 ProteinP53350 (Uniprot-TrEMBL)
p-T210-PLK1ProteinP53350 (Uniprot-TrEMBL)
p-T288-AURKA ProteinO14965 (Uniprot-TrEMBL)
p-T513,T526-GTSE1ProteinQ9NYZ3 (Uniprot-TrEMBL)
p-T611,S730,S739-FOXM1 ProteinQ08050 (Uniprot-TrEMBL)
p-T611,S730,S739-FOXM1:CENPF GeneComplexR-HSA-4088442 (Reactome)
p-T611,S730,S739-FOXM1:EP300:CDC25A GeneComplexR-HSA-4088158 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB1 GeneComplexR-HSA-4088308 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB2 GeneComplexR-HSA-4088297 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:PLK1 GeneComplexR-HSA-4088300 (Reactome)
p-T611,S730,S739-FOXM1ProteinQ08050 (Uniprot-TrEMBL)
p-T611-FOXM1 ProteinQ08050 (Uniprot-TrEMBL)
p-T611-FOXM1:p-T210-PLK1ComplexR-HSA-4088136 (Reactome)
p-T611-FOXM1ProteinQ08050 (Uniprot-TrEMBL)
phospho-Cyclin B1(CRS):phospho-Cdc2 (Thr 161)ComplexR-HSA-170127 (Reactome)
phospho-G2/M transition proteinR-HSA-69753 (Reactome)
phospho-cyclin B1(CRS):phosph-Cdc2(Thr 161)ComplexR-HSA-170047 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
(BTRC:CUL1:SKP1),(FBXW11:CUL1:SKP1)ArrowR-HSA-3000335 (Reactome)
(BTRC:CUL1:SKP1),(FBXW11:CUL1:SKP1)R-HSA-3000339 (Reactome)
26S proteasomemim-catalysisR-HSA-8852354 (Reactome)
26S proteasomemim-catalysisR-HSA-8854044 (Reactome)
26S proteasomemim-catalysisR-HSA-8854071 (Reactome)
ADPArrowR-HSA-156678 (Reactome)
ADPArrowR-HSA-156699 (Reactome)
ADPArrowR-HSA-162657 (Reactome)
ADPArrowR-HSA-170055 (Reactome)
ADPArrowR-HSA-170070 (Reactome)
ADPArrowR-HSA-170076 (Reactome)
ADPArrowR-HSA-170087 (Reactome)
ADPArrowR-HSA-170116 (Reactome)
ADPArrowR-HSA-170126 (Reactome)
ADPArrowR-HSA-170156 (Reactome)
ADPArrowR-HSA-187959 (Reactome)
ADPArrowR-HSA-2562526 (Reactome)
ADPArrowR-HSA-2574840 (Reactome)
ADPArrowR-HSA-3000310 (Reactome)
ADPArrowR-HSA-3000327 (Reactome)
ADPArrowR-HSA-380272 (Reactome)
ADPArrowR-HSA-4086410 (Reactome)
ADPArrowR-HSA-4088024 (Reactome)
ADPArrowR-HSA-4088134 (Reactome)
ADPArrowR-HSA-69754 (Reactome)
ADPArrowR-HSA-69756 (Reactome)
ADPArrowR-HSA-8852306 (Reactome)
ADPArrowR-HSA-8852317 (Reactome)
ADPArrowR-HSA-8853419 (Reactome)
ADPArrowR-HSA-8853444 (Reactome)
AJUBAR-HSA-2574845 (Reactome)
ATPR-HSA-156678 (Reactome)
ATPR-HSA-156699 (Reactome)
ATPR-HSA-162657 (Reactome)
ATPR-HSA-170055 (Reactome)
ATPR-HSA-170070 (Reactome)
ATPR-HSA-170076 (Reactome)
ATPR-HSA-170087 (Reactome)
ATPR-HSA-170116 (Reactome)
ATPR-HSA-170126 (Reactome)
ATPR-HSA-170156 (Reactome)
ATPR-HSA-187959 (Reactome)
ATPR-HSA-2562526 (Reactome)
ATPR-HSA-2574840 (Reactome)
ATPR-HSA-3000310 (Reactome)
ATPR-HSA-3000327 (Reactome)
ATPR-HSA-380272 (Reactome)
ATPR-HSA-4086410 (Reactome)
ATPR-HSA-4088024 (Reactome)
ATPR-HSA-4088134 (Reactome)
ATPR-HSA-69754 (Reactome)
ATPR-HSA-69756 (Reactome)
ATPR-HSA-8852306 (Reactome)
ATPR-HSA-8852317 (Reactome)
ATPR-HSA-8853419 (Reactome)
ATPR-HSA-8853444 (Reactome)
AURKA:PHLDA1ArrowR-HSA-8853429 (Reactome)
AURKA:PHLDA1R-HSA-8853444 (Reactome)
AURKA:PHLDA1mim-catalysisR-HSA-8853444 (Reactome)
AURKAArrowR-HSA-8853444 (Reactome)
AURKAR-HSA-8853429 (Reactome)
AURKAR-HSA-8853496 (Reactome)
AdoHcyArrowR-HSA-8856945 (Reactome)
AdoMetR-HSA-8856945 (Reactome)
BORAR-HSA-4086410 (Reactome)
CAKmim-catalysisR-HSA-170076 (Reactome)
CAKmim-catalysisR-HSA-170087 (Reactome)
CCNA1:p-T161-CDK1mim-catalysisR-HSA-69754 (Reactome)
CCNA2:p-T161-CDK1mim-catalysisR-HSA-69756 (Reactome)
CCNA:CDK1ArrowR-HSA-170084 (Reactome)
CCNA:CDK1R-HSA-170116 (Reactome)
CCNA:p-T14,T161-CDK1ArrowR-HSA-170087 (Reactome)
CCNA:p-T14,T161-CDK1R-HSA-170156 (Reactome)
CCNA:p-T14,Y15,T161-CDK1ArrowR-HSA-170156 (Reactome)
CCNA:p-T14,Y15,T161-CDK1R-HSA-170158 (Reactome)
CCNA:p-T14-CDK1ArrowR-HSA-170088 (Reactome)
CCNA:p-T14-CDK1ArrowR-HSA-170116 (Reactome)
CCNA:p-T14-CDK1R-HSA-170087 (Reactome)
CCNA:p-T14-CDK1R-HSA-170088 (Reactome)
CCNA:p-T160-CDK2:E2F1/E2F3ArrowR-HSA-187937 (Reactome)
CCNA:p-T160-CDK2:E2F1/E2F3R-HSA-187959 (Reactome)
CCNA:p-T160-CDK2:E2F1/E2F3mim-catalysisR-HSA-187959 (Reactome)
CCNA:p-T160-CDK2:p-E2F1/p-E2F3ArrowR-HSA-187959 (Reactome)
CCNA:p-T160-CDK2R-HSA-187937 (Reactome)
CCNA:p-T161-CDK1ArrowR-HSA-170158 (Reactome)
CCNAR-HSA-170084 (Reactome)
CCNB1 GeneR-HSA-4088298 (Reactome)
CCNB1 GeneR-HSA-4088307 (Reactome)
CCNB1,CCNB2:p-T14,Y15,T161-CDK1R-HSA-170161 (Reactome)
CCNB1,CCNB2:p-T161-CDK1ArrowR-HSA-170161 (Reactome)
CCNB1,CCNB2:p-T161-CDK1mim-catalysisR-HSA-4086410 (Reactome)
CCNB1:p-T14,T161-CDK1ArrowR-HSA-170076 (Reactome)
CCNB1:p-T14,T161-CDK1R-HSA-170070 (Reactome)
CCNB1:p-T14,Y15,T161-CDK1ArrowR-HSA-170070 (Reactome)
CCNB1:p-T14,Y15,T161-CDK1ArrowR-HSA-170072 (Reactome)
CCNB1:p-T14,Y15,T161-CDK1R-HSA-170072 (Reactome)
CCNB1:p-T14,Y15,T161-CDK1R-HSA-170153 (Reactome)
CCNB1:p-T14-CDK1R-HSA-170076 (Reactome)
CCNB1:p-T161-CDK1ArrowR-HSA-170153 (Reactome)
CCNB1:p-T161-CDK1R-HSA-170126 (Reactome)
CCNB1ArrowR-HSA-4088298 (Reactome)
CCNB2 GeneR-HSA-4088299 (Reactome)
CCNB2 GeneR-HSA-4088309 (Reactome)
CCNB2ArrowR-HSA-4088299 (Reactome)
CCNB:CDK1ArrowR-HSA-170057 (Reactome)
CCNB:CDK1R-HSA-170055 (Reactome)
CCNB:p-T14-CDK1ArrowR-HSA-170055 (Reactome)
CCNBR-HSA-170057 (Reactome)
CDC25A geneR-HSA-4088152 (Reactome)
CDC25A geneR-HSA-4088162 (Reactome)
CDC25AArrowR-HSA-4088152 (Reactome)
CDC25Amim-catalysisR-HSA-170158 (Reactome)
CDC25ArrowR-HSA-170159 (Reactome)
CDC25BArrowR-HSA-170120 (Reactome)
CDC25BR-HSA-170120 (Reactome)
CDC25Bmim-catalysisR-HSA-170161 (Reactome)
CDC25CR-HSA-156678 (Reactome)
CDC25R-HSA-170159 (Reactome)
CDC25mim-catalysisR-HSA-170153 (Reactome)
CDK11p58ArrowR-HSA-380311 (Reactome)
CDK11p58R-HSA-380455 (Reactome)
CDK1R-HSA-170057 (Reactome)
CDK1R-HSA-170084 (Reactome)
CDKN1AR-HSA-8852362 (Reactome)
CENPF GeneR-HSA-4088439 (Reactome)
CENPF GeneR-HSA-4088441 (Reactome)
CENPFArrowR-HSA-4088441 (Reactome)
CEP250ArrowR-HSA-380294 (Reactome)
CRS kinasemim-catalysisR-HSA-170126 (Reactome)
CUL1R-HSA-8854052 (Reactome)
Centrosome associated Plk1ArrowR-HSA-380311 (Reactome)
Centrosome:AURKA:AJUBAArrowR-HSA-2574845 (Reactome)
Centrosome:AURKA:AJUBAR-HSA-2574840 (Reactome)
Centrosome:AURKA:AJUBAmim-catalysisR-HSA-2574840 (Reactome)
Centrosome:AURKA:TPX2:HMMRArrowR-HSA-8853405 (Reactome)
Centrosome:AURKA:TPX2:HMMRR-HSA-8853419 (Reactome)
Centrosome:AURKA:TPX2:HMMRmim-catalysisR-HSA-8853419 (Reactome)
Centrosome:AURKAR-HSA-2574845 (Reactome)
Centrosome:AURKAR-HSA-8853405 (Reactome)
Centrosome:p-T288-AURKA:TPX2:HMMRArrowR-HSA-8853419 (Reactome)
Centrosome:p-T288-AURKA:p-S252-BORA:PLK1ArrowR-HSA-3000319 (Reactome)
Centrosome:p-T288-AURKA:p-S252-BORA:PLK1R-HSA-3000310 (Reactome)
Centrosome:p-T288-AURKA:p-S252-BORA:PLK1mim-catalysisR-HSA-3000310 (Reactome)
Centrosome:p-T288-AURKAArrowR-HSA-2574840 (Reactome)
Centrosome:p-T288-AURKAArrowR-HSA-3000310 (Reactome)
Centrosome:p-T288-AURKAR-HSA-3000319 (Reactome)
Centrosomes

containing

recruited CDK11p58
ArrowR-HSA-380455 (Reactome)
Cyclin A1:Cdk2

phosphorylated G2/M

transition protein
ArrowR-HSA-69754 (Reactome)
Cyclin A2:Cdk2

phosphorylated G2/M

transition protein
ArrowR-HSA-69756 (Reactome)
E2F1/E2F3R-HSA-187937 (Reactome)
EP300R-HSA-4088162 (Reactome)
FBXL7R-HSA-8854051 (Reactome)
FBXL7R-HSA-8854052 (Reactome)
FKBPLR-HSA-8852362 (Reactome)
FOXM1ArrowR-HSA-4088141 (Reactome)
FOXM1R-HSA-4088024 (Reactome)
G2/M transition proteinsR-HSA-69754 (Reactome)
G2/M transition proteinsR-HSA-69756 (Reactome)
GTSE1:CDKN1A:FKBPL:HSP90ArrowR-HSA-8852362 (Reactome)
GTSE1:MAPRE1:microtubule plus endArrowR-HSA-8852298 (Reactome)
GTSE1:MAPRE1:microtubule plus endR-HSA-8852306 (Reactome)
GTSE1:microtubuleArrowR-HSA-8852280 (Reactome)
GTSE1:p-T210-PLK1ArrowR-HSA-8852324 (Reactome)
GTSE1:p-T210-PLK1R-HSA-8852317 (Reactome)
GTSE1:p-T210-PLK1mim-catalysisR-HSA-8852317 (Reactome)
GTSE1R-HSA-8852280 (Reactome)
GTSE1R-HSA-8852298 (Reactome)
GTSE1R-HSA-8852324 (Reactome)
GTSE1R-HSA-8852362 (Reactome)
H2OR-HSA-170153 (Reactome)
H2OR-HSA-170158 (Reactome)
H2OR-HSA-170161 (Reactome)
H2OR-HSA-3002811 (Reactome)
H2OR-HSA-4088141 (Reactome)
H2OR-HSA-8856951 (Reactome)
HMMRR-HSA-8853405 (Reactome)
HSP90:HSP90R-HSA-8852362 (Reactome)
LCMT1mim-catalysisR-HSA-8856945 (Reactome)
MAPRE1:microtubule plus endArrowR-HSA-8852306 (Reactome)
MAPRE1:microtubule plus endR-HSA-8852298 (Reactome)
MYBL2R-HSA-4088306 (Reactome)
MYBL2R-HSA-4088307 (Reactome)
MYBL2R-HSA-4088309 (Reactome)
Mature centrosomes

enriched in gamma-TURC

complexes
ArrowR-HSA-380283 (Reactome)
MeL-PP2AArrowR-HSA-8856945 (Reactome)
MeL-PP2AR-HSA-8856951 (Reactome)
MicrotubuleR-HSA-8852280 (Reactome)
Mitotic kinasemim-catalysisR-HSA-8852306 (Reactome)
MuvB complexR-HSA-4088306 (Reactome)
MuvB complexR-HSA-4088307 (Reactome)
MuvB complexR-HSA-4088309 (Reactome)
Nlp-depleted centrosomeArrowR-HSA-380303 (Reactome)
OPTN:RAB8A:GTPR-HSA-2562526 (Reactome)
PHLDA1R-HSA-8853429 (Reactome)
PKMYT1R-HSA-162657 (Reactome)
PKMYT1mim-catalysisR-HSA-170055 (Reactome)
PKMYT1mim-catalysisR-HSA-170116 (Reactome)
PLK1 GeneR-HSA-4088305 (Reactome)
PLK1 GeneR-HSA-4088306 (Reactome)
PLK1ArrowR-HSA-3002811 (Reactome)
PLK1ArrowR-HSA-4088305 (Reactome)
PLK1R-HSA-3000319 (Reactome)
PLK1R-HSA-380311 (Reactome)
PP2A-PPP2R2Amim-catalysisR-HSA-4088141 (Reactome)
PP2AArrowR-HSA-8856951 (Reactome)
PP2AR-HSA-8856945 (Reactome)
PPME1mim-catalysisR-HSA-8856951 (Reactome)
Phospho-Cyclin

B1

(CRS):phospho-Cdc2(Thr 161)
ArrowR-HSA-170126 (Reactome)
Phosphorylated Myosin Phosphatasemim-catalysisR-HSA-3002811 (Reactome)
PiArrowR-HSA-170153 (Reactome)
PiArrowR-HSA-170158 (Reactome)
PiArrowR-HSA-170161 (Reactome)
PiArrowR-HSA-3002811 (Reactome)
PiArrowR-HSA-4088141 (Reactome)
PolyUb-K109-FBXL7ArrowR-HSA-8854051 (Reactome)
PolyUb-K109-FBXL7R-HSA-8854071 (Reactome)
PolyUb-TP53 TetramerR-HSA-8852337 (Reactome)
R-HSA-156678 (Reactome) PLK1 phosphorylates CDC25C on serine residue S198. In addition to catalytically activating CDC25C, PLK1-mediated phosphorylation also results in the nuclear accumulation of CDC25C (Toyoshima-Morimoto et al. 2002). It has been shown that Xenopus polo homolog, Plx1, directly phosphorylates and activates Cdc25C, which in turn dephosphorylates and activates Cdc2. This step is critical for the onset of mitosis. Since Plx1-dependent Cdc25C phosphorylation occurs in the absence of Cdc2 activity, it is likely that Plx1 is a triggering kinase, which leads to the activation of Cdc2 and therefore the normal onset of mitosis (Kumagai and Dunphy 1996).
R-HSA-156699 (Reactome) *Plk1 is shown to phosphorylate Wee1A, an event that is likely critical for recognition and ubiquitination of Wee1A by SCF and therefore for the subsequent degradation of Wee1A . **Plk1 phosphorylates Wee1A at S53, creating the second phosphodegron, PD53. ** Evidence also exists in budding yeast that the budding yeast polo homolog Cdc5 directly phosphorylates and down-regulate the budding yeast Wee1 ortholog Swe1. Thus, polo kinase-dependent phosphorylation and degradation of Wee1A (or Swe1) is likely conserved throughout evolution and is critical for normal mitotic entry.
R-HSA-162657 (Reactome) At mitotic entry Plk1 phosphorylates and inhibits Myt1 activity. Cyclin B1-bound Cdc2, which is the target of Myt1, functions in a feedback loop and phosphorylates and further inhibits Myt1.
R-HSA-170044 (Reactome) During interphase, cyclin B1:Cdc2 shuttles continuously in and out of the nucleus. Cyclin B1:Cdc2 is transported into the nucleus by an unusual mechanism that requires importin b but not importin a or Ran. Dissociation of the cyclin-B1:Cdc2:importin complex in the nucleus requires ATP and involves other yet unidentified nuclear factors (Takizawa et al.,1991).
R-HSA-170055 (Reactome) Myt1, which localizes preferentially to the endoplasmic reticulum and Golgi complex, phosphorylates Cdc2 on threonine 14 ( Liu et al., 1997).
R-HSA-170057 (Reactome) Cyclin dependent kinases are themselves catalytically inactive due to the fact that their active site is blocked by a portion of the Cdk molecule itself. Binding to their corresponding cyclin partner results in conformational change that partially exposes the active site. The two B-type cyclins localize to different regions within the cell and and are thought to have specific roles as CDK1-activating subunits (see Bellanger et al., 2007). Cyclin B1 is primarily cytoplasmic during interphase and translocates into the nucleus at the onset of mitosis (Jackman et al., 1995; Hagting et al., 1999). Cyclin B2 colocalizes with the Golgi apparatus and contributes to its fragmentation during mitosis (Jackman et al., 1995; Draviam et al., 2001).
R-HSA-170070 (Reactome) WEE1, a nuclear kinase, phosphorylates cyclin B1:Cdc2 (CCNB1:CDK1) on tyrosine 15 (Y15), inactivating the complex (Parker and Piwnica-Worms 1992, McGowan and Russell 1993). The complex of cyclin B2 and Cdc2 (CCNB2:CDK1) is also phosphorylated on Y15 (Galaktionov and Beach 1991).
R-HSA-170072 (Reactome) During interphase, cyclin B1 shuttles continuously in and out of the nucleus. The cyclin B cytoplasmic retention sequence (CRS), which is responsible for its interphase cytoplasmic localization, functions as a nuclear export sequence (Yang et al., 1998).
R-HSA-170076 (Reactome) Full activity of most CDKs is dependent on CAK mediated phosphorylation at a conserved residue (Thr161 in Cdc2). This modification is thought to improve substrate binding. Cyclin B:Cdc2 complexes have considerably low activity in the absence of CAK mediated phosphorylation (Desai et al 1995).
R-HSA-170084 (Reactome) Cyclin A is synthesized and associates with Cdc2 in G1. Cyclin dependent kinases are themselves catalytically inactive due to the fact that their active sites are blocked by a portion of the CDK molecule itself. Binding to their corresponding cyclin partner results in a conformational change that partially exposes the active site.
R-HSA-170087 (Reactome) Full activity of most CDKs is dependent on CAK mediated phosphorylation at a conserved residue (Thr 161 in Cdc2). This modification is thought to improve substrate binding. High affinity binding of Cyclin A within the Cyclin A:Cdc2 complex requires this phosphorylation (Desai et al 1995).
R-HSA-170088 (Reactome) Cyclin A:Cdc2 complexes translocate to the nucleus in G1 and may associate with condensing chromosomes in prophase (Pines and Hunter 1991).
R-HSA-170116 (Reactome) Myt1, which localizes preferentially to the endoplasmic reticulum and Golgi complex, phosphorylates Cdc2 on threonine 14 ( Liu et al., 1997).
R-HSA-170120 (Reactome) Cdc25B shuttles between the nucleus and the cytoplasm. Translocation out of the nucleus involves a nuclear export sequence in the N-terminus of Cdc25B (Lindqvist et al., 2004).
R-HSA-170126 (Reactome) At the onset of mitosis, cyclin B is phosphorylated in the CRS sequence which creates a nuclear import signal in the amino terminus. The kinase(s) responsible for this phosphorylation are not yet known (Hagting et al., 1999).
R-HSA-170131 (Reactome) The rapid translocation of cyclin B1:Cdc2 from the cytoplasm to the nucleus at the onset of mitosis is a result of an increase in the rate of import and, likely, a decreased rate of export. The increased rate of nuclear import is dependent upon phosphorylation of the CRS which creates a nuclear import signal in the amino terminus of cyclin B1 (Hagting et al, 1999).
R-HSA-170149 (Reactome) During interphase, CDC25C, phosphorylated on serine residue 216, is associated with 14-3-3 proteins, preventing nuclear import. At the onset of mitosis, dephosphorylation of S216 of Cdc25C and dissociation of 14-3-3, with phosphorylation of CDC25C on S198 by activated PLK1 promotes nuclear import (Takizawa and Morgan 2000, Toyoshima-Morimoto et al. 2002, Bonnet et al. 2008). Activating CDC25C phosphorylation and nuclear translocation may further be enhanced by activated CCNB:CDK1 complexes (Bonnet et al. 2008).
R-HSA-170153 (Reactome) Following its translocation to the nucleus, Cdc25 dephosphorylates and activates nuclear cyclin B1:Cdc2 complexes (Strausfeld et al., 1991).
R-HSA-170156 (Reactome) The human Wee1 kinase phosphorylates Cdc2 on tyrosine 15 inactivating the cyclin:CDK complex (Watanabe et al., 1995).
R-HSA-170158 (Reactome) Activation of the cyclin A:Cdc2 complexes at mitosis requires the removal of the inhibitory phosphate groups on Cdc2 (CDK1). This dephosphorylation is achieved by the activity of the CDC25A phosphatase (Timofeev et al. 2009). CDC25A, CDC25B, and CDC25C are kept inactive during interphase and are activated at the G2/M transition (see Wolfe and Gould 2004).
R-HSA-170159 (Reactome) The localization of the Cdc25A, B and C proteins is dynamic involving the shuttling of these proteins between the nucleus and the cytoplasm. Sequences in these proteins mediate both nuclear export and import (Kallstrom et al., 2005; Lindqvist et al., 2004; Graves et al, 2001; Takizawa and Morgan, 2000).
R-HSA-170161 (Reactome) Activation of the mitotic cyclinB:Cdc2 (CCNB:CDK1) complexes at mitosis requires the removal of the inhibitory phosphate groups on Cdc2 (CDK1). This dephosphorylation is achieved by the activity of the CDC25 family of phosphatases, which act on both CCNB1 and CCNB2-bound CDK1 (Galaktionov and Beach 1991, Goda et al. 2003, Timofeev et al. 2010). The CDC25 members, CDC25A, CDC25B, and CDC25C are kept inactive during interphase and are activated at the G2/M transition. CCNB:CDK1 complexes appear to participate in the full activation of CDC25 in a process that involves an amplification loop (see Wolfe and Gould, 2004). The initial activation of the CCNB:CDK1 (cyclin B1:Cdc2 and cyclin-B2:Cdc2) complexes occurs in the cytoplasm in prophase (Jackman et al., 2003). CDC25B, which is present at highest concentrations in the cytoplasm at this time, is thought to trigger the activation of CCNB1:CDK1 (Lindqvist et al. 2004; Honda et al., 1993). Active CCNB1:CDK1 then phosphorylates CDC25C (contributing to its PLK1-mediated activation) and stabilizes CDC25A (Strausfeld et al., 1994; Hoffman et al.,1993; Mailand et al, 2002). This creates positive feedback loops that allows CDC25A and CDC25C to dephosphorylate and further activate CDK1. As active CDC25C is nuclear, it presumably predominantly contributes to activation of nuclear CDK1 (Strausfeld et al. 1994, Toyoshima-Morimoto et al. 2002, Bonnet, Coopman et al. 2008, Bonnet Mayonove et al. 2008).
R-HSA-187937 (Reactome) In G2, the cyclin A:Cdk2 complex associates with E2F1 and E2F3.
R-HSA-187959 (Reactome) In G2 Cdk2, in association with cyclin A, phosphorylates E2F1 and E2F3 resulting in the inactivation and possibly degradation of these two transcription factors (Dynlacht et al., 1994; Krek et al., 1994).
R-HSA-2562526 (Reactome) Activated PLK1 phosphorylates OPTN (optineurin) on serine residue S177. Phosphorylation at S177 disrupts OPTN binding to Golgi-membrane localized RAB8A (Kachaner et al. 2012).
R-HSA-2562594 (Reactome) Phosphorylation of OPTN (optineurin) on serine S177 by PLK1 promotes translocation of OPTN to the nucleus (Kachaner et al. 2012).
R-HSA-2574840 (Reactome) AURKA (Aurora A kinase) activation through autophosphorylation of threonine T288 is facilitated by AJUBA binding. AJUBA is also phosphorylated by AURKA on an unidentified serine or threonine residue (Hirota et al. 2003).
R-HSA-2574845 (Reactome) AJUBA, a LIM domain-containing protein, binds centrosome-associated AURKA (Aurora A kinase) through interaction of LIM-2 and LIM-3 domains of AJUBA with the N-terminus of AURKA (Hirota et al. 2003).
R-HSA-3000310 (Reactome) AURKA (Aurora A kinase) phosphorylates PLK1 on threonine residue T210 that lies in the conserved aurora kinase consensus site (Seki et al. 2008). PLK1 needs to be phosphorylated on T210 to become catalytically active (Jang et al. 2002). BORA, but not other AURKA co-activators, facilitate PLK1 phosphorylation by AURKA (Macurek et al. 2008, Seki et al. 2008).
R-HSA-3000319 (Reactome) BORA is able to interact with both AURKA (Aurora A kinase) and PLK1. Binding of BORA to PLK1 increases the accessibility of PLK1 threonine residue T210 and also brings PLK1 in proximity to AURKA, enabling AURKA to phosphorylate T210 of PLK1 and thereby activate PLK1 (Seki et al. 2008). While BORA is required for mitotic activation of AURKA in Drosophila (Hutterer et al. 2006), it does not significantly activate AURKA in human cells (Seki et al. 2008). AURKA is able to phosphorylate BORA in vitro, but the functional significance of this modification has not been determined (Hutterer et al. 2006).
R-HSA-3000327 (Reactome) PLK1 phosphorylates BORA on serine residue S497 and threonine residue T501 that both lie in the DSGYNT degron recognized by beta-TrCP F-box proteins (Seki et al. 2008).
R-HSA-3000335 (Reactome) SCF-beta-TrCP ubiquitin ligases promote ubiquitination and degradation of BORA phosphorylated by PLK1, and this is required for timely mitotic progression (Seki et al. 2008).
R-HSA-3000339 (Reactome) The substrate recognition subunits beta-TrCP (BTRC) and beta-TrCP2 (FBXW11) of SCF-beta-TrPC1 and SCF-beta-TrPC2 ubiquitin ligases, respectively, bind the phosphorylated DSGYNT motif of BORA (Seki et al. 2008).
R-HSA-3002798 (Reactome) PLK1 is induced in S phase and can be find in both cytosol and nucleus in S and G2 phases of the cell cycle. PLK1 possesses a bipartite nuclear localization signal (NLS) that enables it to enter the nucleus (Taniguchi et al. 2002).
R-HSA-3002811 (Reactome) The myosin phosphatase complex can dephosphorylate PLK1 threonine residue T210 and inactivate PLK1 (Yamashiro et al. 2008). Myosin phosphatase is activated through phosphorylation of its PPP1R12A (MYPT1) subunit. Several kinases, including CDK1 (Yamashiro et al. 2008) and LATS1 (Chiyoda et al. 2012) have been implicated in myosin phosphatase activation, but the position and temporal order of key PPP1R12A phosphorylations need to be investigated further. Phosphorylated OPTN (optineurin) is able to bind PPP1R12A (MYPT1) and positively regulates PLK1 dephosphorylation by myosin phosphatase, posibly by facilitating PPP1R12A phosphorylation and myosin phosphatase activation (Kachaner et al. 2012).
R-HSA-380272 (Reactome) Phosphorylation of NlP by Plk1 regulates the interaction of Nlp with both centrosomes and ?-TuRCs (Casenghi et al., 2003).
R-HSA-380283 (Reactome) Microtubule nucleation at the centrosome is mediated by the gamma tubulin ring complex (gamma TuRC) (reviewed in Raynaud-Messina and Merdes, 2006; Wiese and Zheng, 2006). In humans, this large complex contains the tubulin superfamily member gamma-tubulin, five gamma complex proteins (GCP2-GPC6) and NEDD1/GCP-WD. A current model of the arrangement of subunits within the gamma-TuRC proposes that 6-7 TuSC subcomplexes are held together by the other Grip proteins (at an unknown stoichiometry), which together form the cap subunits. In many animal cells, the recruitment of gamma-tubulin complexes to the centrosome rapidly increases (3–5 fold ) before mitosis to support the formation of new spindle microtubules (Khodjakov and Rieder 1999). NEDD1/GCP-WD plays an essential role in recruitment of these complexes to the centrosomes (Haren et al., 2006; Luders et al., 2006) and to the mitotic spindle (Luders et al., 2006). GCP-WD/NEDD1 associates directly with the gamma-TuRC. The carboxy-terminal half binds to the gamma-TuRC whereas the amino-terminal half, corresponding to the WD-repeat domain, is responsible for its attachment to the centrosome (Haren et al., 2006). Additional centrosomal proteins have also been implicated in the docking of gamma-TuRC to the centrosomes. CG-NAP/AKAP450 and kendrin are necessary for the initiation of microtubule nucleation and interact with GCP2/GCP3 and GCP2, respectively (Takahashi et al., 2002). Pericentrin plays an important role in microtubule organization in mitotic cells and anchors gamma- TuRC through domains that bind GCP2 and GCP3 (Zimmerman et al. 2004). Ninein localizes to the centriole via its C-terminus and interacts with gamma-tubulin-containing complexes via its N-terminus.

Nucleoside diphosphate kinase (NME7) is a poorly characterised member of the NME family and has been observed to exhibit no NADPK activity (Yoon et al. 2005, Liu et al. 2014). NME7 has recently been found to be a component of the γ-tubulin ring complex (γTuRC) where it regulates the microtubule-nucleating activity (the event that initiates de novo formation of microtubules) of the γTuRC. NME7 contains two putative kinase domains, A and B; domain A is involved in autophosphorylation whereas domain B is inactive. NME7 interacts with the γTuRC through both domains, with Arg-322 in domain B being critical for binding. In association with the γTuRC, NME7 localizes to centrosomes throughout the cell cycle and to mitotic spindles during mitosis (Liu et al. 2014).
R-HSA-380294 (Reactome) The centrosomal protein C-Nap1 is thought to play an important role in centrosome cohesion during interphase (Fry et al.,1998). At the onset of mitosis, when centrosomes separate to form the bipolar spindle, C-Nap1 dissociates (Mayor et al., 2000). Dissociation of C-Nap1 from mitotic centrosomes appears to be regulated by phosphorylation (Mayor et al. 2002).
R-HSA-380303 (Reactome) Mitotic activation of Plk1 is required for efficient displacement of Nlp from the centrosome (Casenghi et al., 2003).
R-HSA-380311 (Reactome) Plk1 is associated with the centrosomes early in mitosis (Golsteyn et al. 1995). Plk1 activity is necessary for the maturation of centrosomes at the G2/M transition and the establishment of a bipolar spindle (Lane and Nigg 1996). Specific inhibitors against Plk1 or silencing of Plk1 produce a monopolar mitotic apparatus (Sumara et al, 2004, van Vugt et al, 2004, McInnes et al, 2006, Peters et al, 2006, Lénárt et al, 2007).
R-HSA-380455 (Reactome) CDK11p58 is a kinase that is active during mitosis when it associates with centrosomes, and has a crucial role in centrosome maturation and bipolar spindle formation (Petretti et al., 2006). CDK11p58 facilitates microtubule nucleation and is required for the recruitment of Aurora and Plk1 to the centrosome (Petretti et al., 2006).
R-HSA-4086410 (Reactome) CDK1 phosphorylates both human and Drosophila BORA protein (Hutterer et al. 2006) on an evolutionarily conserved serine residue - S252 in human BORA (Chan et al. 2008), providing a docking site for PLK1.
R-HSA-4088024 (Reactome) In the G2 phase of the cell cycle, cyclin A (CCNA) and B (CCNB)-dependent kinases CDK1 and CDK2 phosphorylate FOXM1 transcription factor, increasing its transcriptional activity. Threonine residue T611 (corresponds to T596 in FOXM1B isoform) was shown to be phosphorylated by both CCNA:CDK1/2 and CCNB:CDK1 complexes and its functional relevance is best establshed (Major et al. 2004, Laoukili et al. 2008, Fu et al. 2008). CCNA:CDK1/2 may also phosphorylate FOXM1 on T600 (Laoukili et al. 2008), while CCNB:CDK1 may phosphorylate it on S693 (S678 in FOXM1B isoform) (Fu et al. 2008). The phosphorylation of FOXM1 threonine residue T611 relieves the N-terminal domain-mediated autoinhibition of FOXM1 transcriptional activity (Laoukili et al. 2008), likely enabling interaction with transcriptional co-activators (Major et al. 2004), and creates a docking site for the Polo-box domain (PBD) of PLK1 (Fu et al. 2008).
R-HSA-4088130 (Reactome) PLK1 polo-box domain (PBD) binds a consensus sequence S-pS/pT-P/X in the transactivation domain (TAD) of FOXM1 after the threonine T611 (T596 in FOXM1B isoform) in this sequence is phosphorylated by cyclin-dependent kinase(s). PLK1 may also bind to another consensus site in the TAD of FOXM1, which involves CDK-phosphorylated serine S693 (S678 in FOXM1B isoform) (Fu et al. 2008).
R-HSA-4088134 (Reactome) PLK1 phosphorylates FOXM1 on serine residues S730 and S739 (S715 and S724 in FOXM1B isoform) in the C-terminal transactivation domain (TAD). PLK1-mediated phosphorylation of FOXM1 upregulates FOXM1 transcriptional activity and is crucial for FOXM1 function at G2/M transition (Fu et al. 2008).
R-HSA-4088141 (Reactome) FOXM1 can bind the regulatory subunit B55-alpha (PPP2R2A) of serine/threonine-protein phosphatase 2A (PP2A). PP2A dephosphorylates FOXM1, preventing its premature activation (Alvarez-Fernandez et al. 2011).
R-HSA-4088152 (Reactome) Binding of phosphorylated FOXM1 to CDC25A promoter stimulates CDC25A transcription (Sullivan et al. 2012).
R-HSA-4088162 (Reactome) Phosphorylated FOXM1 transcription factor binds the promoter of CDC25A gene and also recruits EP300 (p300) transcriptional coactivator to the promoter (Sullivan et al. 2012). While FOXM1 DNA binding may not depend on phosphorylation, the phosphorylation of the threonine residue T611 (T596 in FOXM1B isoform) is necessary for EP300 recruitment (Major et al. 2004).
R-HSA-4088298 (Reactome) FOXM1 bound to the MuvB complex (consisting of LIN9, LIN37, LIN52, LIN54 and RBBP4) and MYBL2 (B-MYB) stimulates CCNB1 (cyclin B1) transcription (Laoukili et al. 2005, Sadasivam et al. 2012).
R-HSA-4088299 (Reactome) FOXM1, bound to the MuvB complex (consisting of LIN9, LIN37, LIN52, LIN54 and RBBP4) and MYBL2 (B-MYB), stimulates CCNB2 (cyclin B2) transcription (Chen et al. 2013).
R-HSA-4088305 (Reactome) FOXM1 bound to the MuvB complex (consisting of LIN9, LIN37, LIN52, LIN54 and RBBP4) and MYBL2 (B-MYB) stimulates PLK1 transcription. This creates a positive feedback loop, where PLK1 phosphorylates and activates FOXM1 (Fu et al. 2008), while FOXM1 transcriptional activity results in increased PLK1 levels. MuvB and FOXM1 may persist on the PLK1 promoter throughout G2, while MYBL2 may gradually dissociate from the PLK1 promoter due to proteasome-mediated degradation initiated when MYBL2 is phosphorylated by CCNA (cyclin A)-associated CDKs (Sadasivam et al. 2012).
R-HSA-4088306 (Reactome) MuvB complex, consisting of LIN9, LIN37, LIN52, LIN54 and RBBP4, together with MYBL2 (B-MYB), recruits FOXM1 to CHR (cell cycle genes homology regions) motifs in the promoter of PLK1 gene (Sadasivam et al. 2012, Chen et al. 2013).
R-HSA-4088307 (Reactome) The MuvB complex (consisting of LIN9, LIN37, LIN52, LIN54 and RBBP4), together with MYBL2 (B-MYB), recruits FOXM1 to CHR motifs in the promoter of the CCNB1 (cyclin B1) gene (Sadasivam et al. 2012, Chen et al. 2013).
R-HSA-4088309 (Reactome) MuvB complex (consisting of LIN9, LIN37, LIN52, LIN54 and RBBP4), together with MYBL2 (B-MYB) recruits FOMX1 to the CCNB2 (cyclin B2) promoter (Chen et al. 2013).
R-HSA-4088439 (Reactome) FOXM1, possibly in cooperation with other transcription factors, binds the promoter of the CENPF gene (Laoukili et al. 2005).
R-HSA-4088441 (Reactome) FOXM1 stimulates the transcription of the kinetochore protein CENPF. FOXM1-depleted cells have reduced CENPF levels, leading to the misalignment of mitotic chromosomes (Laoukili et al. 2005).
R-HSA-69754 (Reactome) At the beginning of this reaction, 1 molecule of 'ATP', and 1 molecule of 'G2/M transition protein' are present. At the end of this reaction, 1 molecule of 'ADP', and 1 molecule of 'phospho-G2/M transition protein' are present.

This reaction takes place in the 'nucleoplasm' and is mediated by the 'cyclin-dependent protein kinase activity' of 'Cyclin A1:Cdc2' (Liu et al. 2000).

R-HSA-69756 (Reactome) At the beginning of this reaction, 1 molecule of 'ATP', and 1 molecule of 'G2/M transition protein' are present. At the end of this reaction, 1 molecule of 'ADP', and 1 molecule of 'phospho-G2/M transition protein' are present.

This reaction takes place in the 'nucleoplasm' and is mediated by the 'cyclin-dependent protein kinase activity' of 'Cyclin A2:Cdc2'.

R-HSA-8852280 (Reactome) In interphase cells, GTSE1 localizes to the microtubule lattice, probably due to direct binding to tubulin (Scolz et al. 2012).
R-HSA-8852298 (Reactome) During interphase, GTSE1 localizes to the growing plus-end tip of microtubules by binding to the microtubule plus end protein MAPRE1 (EB1). This interaction involves two SKIP-like EB1-interaction motifs of GTSE1 and the C-terminal EB-homology (EBH) domain of MAPRE1. The interaction between GTSE1 and MAPRE1 is evolutionarily conserved. The interaction between GTSE1 and MAPRE1 at growing microtubule plus ends promotes cell migration, likely through microtubule-induced disassembly of focal adhesions. GTSE1 expression levels in G1 phase correlate with invasiveness of breast cancer cell lines (Scolz et al. 2012).
R-HSA-8852306 (Reactome) Starting in mitotic prometaphase, GTSE1 becomes phosphorylated at threonine residues T513 and T526 (and possibly other sites), located adjacent to the two SKIP-like motifs involved in binding to MAPRE1 (EB1). Mitotic phosphorylation of GTSE1 inhibits its association with microtubule plus ends. CDK1 activity inhibits the association of recombinant human GTSE1 with microtubule plus ends in Xenopus extracts, but it is not certain whether CDK1 or another mitotic kinase phosphorylates GTSE1 (Scolz et al. 2012).
R-HSA-8852317 (Reactome) Activated PLK1 phosphorylates GTSE1 on serine residue S435, located in immediate vicinity of the GTSE1 nuclear localization signal (NLS) R431RR433 (Arg431Arg432Arg433). PLK1-mediated phosphorylation promotes GTSE1 nuclear translocation, possibly by exposing the NLS of GTSE1 to the nuclear import machinery. PLK1 can also phosphorylate human GTSE1 on serine residue S233. S233 is not evolutionarily conserved and is therefore not shown (Liu et al. 2010).
R-HSA-8852324 (Reactome) GTSE1 binds PLK1. The two proteins co-localize on centrosomes from G2 phase to prophase, but not after metaphase (Liu et al. 2010).
R-HSA-8852331 (Reactome) PLK1-mediated phosphorylation of GTSE1 is needed for nuclear accumulation of GTSE1, probably because it exposes the nuclear localization signal (NLS) of GTSE1 to the nuclear import machinery. Nuclear localization of GTSE1 is not needed for normal G2 phase progression, but is needed for the G2 checkpoint recovery (cell cycle re-entry after G2 checkpoint arrest) (Liu et al. 2010).
R-HSA-8852337 (Reactome) Since MDM2-mediated ubiquitination of TP53 promotes translocation of TP53 to the cytosol, and since GTSE1-facilitated translocation of TP53 to the cytosol depends on the functional MDM2 (with no reported interaction between GTSE1 and MDM2) (Monte et al. 2004), it is plausible that GTSE1 binds to TP53 polyubiquitinated by MDM2. The interaction between TP53 and GTSE1 involves the C-terminal regulatory domain of TP53 and the C-terminus of GTSE1 (Monte et al. 2003).
R-HSA-8852351 (Reactome) Binding of GTSE1 to TP53 (p53) in the nucleus promotes translocation of TP53 to the cytosol. This process is dependent on the nuclear export signal (NES) of GTSE1 (Monte et al. 2004).
R-HSA-8852354 (Reactome) GTSE1 promotes down-regulation of TP53 in a proteasome-dependent way. Nuclear export of TP53 facilitated by GTSE1 and MDM2likely makes ubiquitinated TP53 available to the proteasome machinery. GTSE1-mediated decrease of TP53 levels is needed for the G2 checkpoint recovery (cell cycle re-entry after DNA damage induced G2 arrest) and rescues cells from DNA damage induced apoptosis during S/G2 phase (Monte et al. 2003, Monte et al. 2004).
R-HSA-8852362 (Reactome) Stabilization of the newly synthesized protein product of the CDKN1A (p21) gene, a CDK inhibitor and a TP53 (p53) transcriptional target, requires binding of CDKN1A to FKBPL (WISp39). FKBPL simultaneously interacts with CDKN1A and a chaperone protein HSP90, forming a ternary complex (Jascur et al. 2005). GTSE1 was identified as another component of the complex of CDKN1A, FKBPL and HSP90. GTSE1 directly interacts with CDKN1A and FKBPL and contributes to CDKN1A stabilization (Bublik et al. 2010). Increased CDKN1A levels delay G2/M onset and rescue cells from G2 checkpoint-induced apoptosis, thus causing resistance to taxol induced cytotoxicity (Yu et al. 1998, Bublik et al. 2010).
R-HSA-8853405 (Reactome) TPX2 binds to aurora kinase A (AURKA) at centrosomes. The first 43 amino acids at the N-terminus of TPX2 are needed for binding to AURKA (Bayliss et al. 2003). HMMR (RHAMM) binds to TPX2 (Groen et al. 2004, Maxwell et al. 2005) and is involved in the proper localization of TPX2 to centrosomes and TPX2-mediated AURKA activation (Chen et al. 2014, Scrofani et al. 2015).

TPX2 binding to Aurora A protects premature AURKA degradation by APC/C-mediated proteolysis during early mitosis. TPX2 differentially regulates AURKA stability, activity and localization. While amino acids 1-43 in TPX2 facilitate complex formation between AURKA and TPX2 and promote kinase activation, they are insufficient for AURKA targeting to the mitotic spindle (Giubettini et al. 2011).

R-HSA-8853419 (Reactome) TPX2 promotes aurora kinase A (AURKA) activation via autophosphorylation of AURKA on threonine residue T288. Continuous association of TPX2 with AURKA facilitates active state conformation of AURKA and may prevent inactivation of AURKA by protein phosphatases (Bayliss et al. 2003).

Molecular dynamic simulations suggest the existence of two TPX2-dependent switches for Aurora A activation. 1) TPX2 binding to Aurora A forces lysine residue K143 of AURKA into an “open� state, which pulls ADP out of the ATP binding site in AURKA to promote kinase activation. 2) Arginine residue R180 of AURKA undergoes a “closed� movement upon TPX2 binding, thus capturing phosphorylated threonine T288 of AURKA into a buried position and locking AURKA in its active conformation. The existence of two TPX2-dependent switches in AURKA activation was further verified by the analysis of two AURKA mutants (K143A and R180A) (Xu et al. 2011).AURKA activation is enabled through phosphorylation and TPX2 binding; these two activating switches act synergistically and withough a predefined order (Dodson and Bayliss 2012).

R-HSA-8853429 (Reactome) Aurora kinase A binds PHLDA1 (TDAG51) and the two proteins co-localize in the cytosol (Johnson et al. 2011). Although phosphorylation of AURKA at threonine residue T288 within the catalytic loop of AURKA is needed for AURKA kinase activity (Walter et al. 2000), AURKA phosphorylation has not been specifically examined in the context of AURKA interaction with PHLDA1 and AURKA is therefore shown as unphosphorylated.
R-HSA-8853444 (Reactome) Aurora kinase A (AURKA) phosphorylates PHLDA1 on serine residue S95. This residue is conserved in mouse and matches S98 in the recombinant mouse protein used for identification of the AURKA target site in PHLDA1. Although phosphorylation of AURKA on threonine residue T288 within the catalytic loop is needed for AURKA kinase activity (Walter et al. 2000), AURKA phosphorylation has not been specifically examined in the context of PHLDA1 phosphorylation and AURKA is therefore shown as unphosphorylated. AURKA-mediated phosphorylation promotes PHLDA1 ubiquitination by an unknown ubiquitin ligase, which triggers degradation of PHLDA1 and may contribute to the oncogenic role of AURKA in breast cancer. Unphosphorylated PHLDA1 contributes to AURKA ubiquitination and degradation but the identity of the ubiquitin ligase and cell cycle timing have not been determined (Johnson et al. 2011).

PHLDA1 is implicated as both a tumor suppressor and an oncogene. As a putative tumor suppressor, PHLDA1 may act by promoting cell death (Park et al. 1996, Neef et al. 2002, Hossain et al. 2003, Hayashida et al. 2006, Oberst et al. 2008) or inhibiting protein synthesis (Hinz et al. 2001). Higher levels of PHLDA1 in ERBB2 (HER2) positive breast tumors correlate with increased sensitivity to ERBB2 inhibitor, lapatinib (Li et al. 2014).

In estrogen receptor positive tumors, higher levels of PHLDA1 correlate with increased risk of cancer recurrence and distant metastases after hormone therapy, which may depend on the concomitant up-regulation of the NF-kappa B (NFKB) complex activity (Kastrati et al. 2015).

PHLDA1 has also been reported as a mediator of anti-apoptotic effect of IGF1 (Toyoshima et al. 2004). These studies suggest that PHLDA1 may have an oncogenic role in some settings.

Regulation of PHLDA1 expression has not been fully elucidated. PHLDA1 transcription may be directly stimulated by the activated estrogen receptor (Marchiori et al. 2008, Kastrati et al. 2015), possibly in cooperation with the NFKB complex (Kastrati et al. 2015). Indirectly, downregulation of microRNAs miR-181a and miR-181b in an estrogen and NFKB-dependent manner, increases stability of the PHLDA1 mRNA (Kastrati et al. 2015). Activation of ERK1 (MAPK3) or ERK2 (MAPK1) in response to ERBB2 or EGFR activation may also be involved in PHLDA1 up-regulation, possibly through a route that also involves JAK2 and STAT3 (Oberst et al. 2008, Li et al. 2014, Lyu et al. 2016). PHLDA1 may also be up-regulated in response to cellular stress such as heat shock (Hayashida et al. 2006), endoplasmic reticulum stress (Hossain et al. 2003) and oxidative stress (Park et al. 2013).

R-HSA-8853496 (Reactome) FBXL7, a component of the SCF E3 ubiquitin ligase complex, associates with aurora kinase A (AURKA) during mitosis (Coon et al. 2012).
R-HSA-8854041 (Reactome) The SCF-FBXL7 E3 ubiquitin ligase complex, composed of SKP1, CUL1, RBX1 and FBXL7, ubiquitinates aurora kinase A (AURKA), targeting it for degradation (Coon et al. 2012).
R-HSA-8854044 (Reactome) Upon ubiquitination by the SCF-FBXL7 E3 ubiquitin ligase complex, aurora kinase A (AURKA) is degraded by the proteasome (Coon et al. 2012).
R-HSA-8854051 (Reactome) FBXL18, a substrate recognition subunit of the SCF E3 ubiquitin ligase complex can bind to the FQ motif of FBXL7. The E3 ubiquitin ligase complex SCF-FBXL18 (SKP1:CUL1:RBX1:FBXL18) polyubiquitinates FBXL7 on lysine residue K109, targeting it for proteasome-mediated degradation (Liu et al. 2015).
R-HSA-8854052 (Reactome) FBXL7 associates with SKP1, CUL1 and RBX1 to form the SCF E3 ubiquitin ligase complex (Coon et al. 2011).
R-HSA-8854071 (Reactome) FBXL7, polyubiquitinated by the FBXL18-containing SCF complex, is degraded by the proteasome (Liu et al. 2015).
R-HSA-8856945 (Reactome) Reversible methylation of the PP2A C subunit is a highly conserved and essential regulatory mechanism (Lee et al. 1996). Methylation of the carboxy-termius of PP2A C enhances the affinity of the PP2A core enzyme for some regulatory subunits (Xing et al. 2008). Changes in PP2A methylation appear to regulate formation of PP2A complexes and alter the specificity of PP2A phosphatase activity (Mumby 2001). Blockade of PP2A methylation in yeast causes a set of phenotypes that are consistent with decreased formation of PP2A holoenzymes (Wu et al. 2000). Reversible methylation of PP2A is catalyzed by two highly conserved enzymes, a 38 kDa leucine carboxyl methyltransferase (LCMT1) (De Baere et al. 1999, Lee & Stock 1993) and a 42 kDa methylesterase (PPME1) (Lee et al. 1996, Ogris et al. 1999). PP2A carboxy-methylation by LCMT1 requires an active PP2A conformation and is significantly facilitated by the PP2A scaffold (or A) subunit (Stanevich et al. 2011, Stanevich et al. 2014). LCMT1 also methylates the PP2A-like phosphatases PP4 and PP6 (Hwang et al. 2016). PPME1 catalyzes removal of the methyl group, thus reversing the activity of LCMT1 (Lee et al. 1996). Overexpression of yeast PPME caused phenotypes similar to those associated with loss of the methyltransferase gene (Wu et al. 2000).

Methylation and demethylation are spatially separated within mammalian cells, as the majority of LCMT1 is cytoplasmic and PPME1 predominantly localizes in the nucleus (Longin et al. 2008). In mammalian cells, LCMT1 knockdown results in apoptotic cell death (Longin et al. 2007). In mice, LCMT1 or PPME1 knockout are lethal (Lee & Pallas 2007, Ortega-Gutiérrez et al. 2008). Methylation levels of PP2A change during the cell cycle, suggesting a critical role of methylation in cell-cycle regulation (Turowski et al. 1995, Lee & Pallas 2007). Regulation of PP2A methylation by LCMT1 and PPME1 plays a critical role in differentiation of neuroblastoma cells (Sontag et al. 2010). Decreased PP2A methylation in Alzheimer’s and Parkinson’s disease patients contributes to PP2A inactivation and increased phosphorylation of tau and alpha-synuclein (Sontag & Sontag 2014, Park et al. 2016). PPME1 may also inhibit PP2A by sequestration (Longin et al. 2004) and/or by evicting catalytic metal ions from the PP2A active site (Xing et al. 2008). As such, increased PPME1 expression suppresses PP2A tumor suppressive function and promotes oncogenic MAPK/ERK and AKT pathway activities in various cancer types (Kaur & Westermarck 2016). PPME1 may also protect PP2A from ubiquitin/proteasome degradation (Yabe et al. 2015).
R-HSA-8856951 (Reactome) The reversible methylation of the PP2A C subunit is a highly conserved and essential regulatory mechanism (Lee et al. 1996). Methylation of the carboxy-termius of PP2A C enhances the affinity of the PP2A core enzyme for some regulatory subunits (Xing et al. 2008). Changes in PP2A methylation appear to regulate formation of PP2A complexes and alter the specificity of PP2A phosphatase activity (Mumby 2001). Blockade of PP2A methylation in yeast causes a set of phenotypes that are consistent with decreased formation of PP2A holoenzymes (Wu et al. 2000). Reversible methylation of PP2A is catalyzed by two highly conserved enzymes, a 38 kDa leucine carboxyl methyltransferase (LCMT1) (De Baere et al. 1999, Lee & Stock 1993) and a 42 kDa methylesterase (PPME1) (Lee et al. 1996, Ogris et al. 1999). PP2A carboxy-methylation by LCMT1 requires an active PP2A conformation and is significantly facilitated by the PP2A scaffold (or A) subunit (Stanevich et al. 2011, Stanevich et al. 2014). LCMT1 also methylates the PP2A-like phosphatases PP4 and PP6 (Hwang et al. 2016). PPME1 catalyzes removal of the methyl group, thus reversing the activity of LCMT1 (Lee et al. 1996). Overexpression of yeast PPME caused phenotypes similar to those associated with loss of the methyltransferase gene (Wu et al. 2000).

Methylation and demethylation are spatially separated within mammalian cells, as the majority of LCMT1 is cytoplasmic and PPME1 predominantly localizes in the nucleus (Longin et al. 2008). In mammalian cells, LCMT1 knockdown results in apoptotic cell death (Longin et al. 2007). In mice, LCMT1 or PPME1 knockout are lethal (Lee & Pallas 2007, Ortega-Gutiérrez et al. 2008). Methylation levels of PP2A change during the cell cycle, suggesting a critical role of methylation in cell-cycle regulation (Turowski et al. 1995, Lee & Pallas 2007). Regulation of PP2A methylation by LCMT1 and PPME1 plays a critical role in differentiation of neuroblastoma cells (Sontag et al. 2010). Decreased PP2A methylation in Alzheimer’s and Parkinson’s disease patients contributes to PP2A inactivation and increased phosphorylation of tau and alpha-synuclein (Sontag & Sontag 2014, Park et al. 2016). PPME1 may also inhibit PP2A by sequestration (Longin et al. 2004) and/or by evicting catalytic metal ions from the PP2A active site (Xing et al. 2008). As such, increased PPME1 expression suppresses PP2A tumor suppressive function and promotes oncogenic MAPK/ERK and AKT pathway activities in various cancer types (Kaur & Westermarck 2016). PPME1 may also protect PP2A from ubiquitin/proteasome degradation (Yabe et al. 2015).
RAB8A:GTPArrowR-HSA-2562526 (Reactome)
RBX1R-HSA-8854052 (Reactome)
SCF-FBXL7:AURKAArrowR-HSA-8853496 (Reactome)
SCF-FBXL7:AURKAR-HSA-8854041 (Reactome)
SCF-FBXL7:AURKAmim-catalysisR-HSA-8854041 (Reactome)
SCF-FBXL7:PolyUb-AURKAArrowR-HSA-8854041 (Reactome)
SCF-FBXL7:PolyUb-AURKAR-HSA-8854044 (Reactome)
SKP1:CUL1:RBX1:FBXL18mim-catalysisR-HSA-8854051 (Reactome)
SKP1:CUL1:RBX1:FBXL7ArrowR-HSA-8854044 (Reactome)
SKP1:CUL1:RBX1:FBXL7ArrowR-HSA-8854052 (Reactome)
SKP1:CUL1:RBX1:FBXL7R-HSA-8853496 (Reactome)
SKP1R-HSA-8854052 (Reactome)
TPX2R-HSA-8853405 (Reactome)
Ub-p-S252,S497,T501-BORAArrowR-HSA-3000335 (Reactome)
UbArrowR-HSA-8852354 (Reactome)
UbArrowR-HSA-8854044 (Reactome)
UbArrowR-HSA-8854071 (Reactome)
UbR-HSA-3000335 (Reactome)
UbR-HSA-8854041 (Reactome)
UbR-HSA-8854051 (Reactome)
WEE1R-HSA-156699 (Reactome)
WEE1mim-catalysisR-HSA-170070 (Reactome)
WEE1mim-catalysisR-HSA-170156 (Reactome)
XPO1ArrowR-HSA-170072 (Reactome)
cNAP-1 depleted centrosomeArrowR-HSA-380294 (Reactome)
centrosome

containing

phosphorylated Nlp
ArrowR-HSA-380272 (Reactome)
centrosome

containing

phosphorylated Nlp
R-HSA-380303 (Reactome)
centrosomeR-HSA-380272 (Reactome)
centrosomeR-HSA-380283 (Reactome)
centrosomeR-HSA-380294 (Reactome)
centrosomeR-HSA-380311 (Reactome)
centrosomeR-HSA-380455 (Reactome)
cytoplasmic Cyclin B1:Cdc2 complexesR-HSA-170044 (Reactome)
gamma-tubulin complexR-HSA-380283 (Reactome)
methanolArrowR-HSA-8856951 (Reactome)
nuclear Cyclin B1:Cdc2 complexesArrowR-HSA-170044 (Reactome)
p-CDK1/2:CCNA/p-T161-CDK1:CCNB1mim-catalysisR-HSA-4088024 (Reactome)
p-NINLArrowR-HSA-380303 (Reactome)
p-PKMYT1ArrowR-HSA-162657 (Reactome)
p-S-AJUBAArrowR-HSA-2574840 (Reactome)
p-S177-OPTNArrowR-HSA-2562526 (Reactome)
p-S177-OPTNArrowR-HSA-2562594 (Reactome)
p-S177-OPTNArrowR-HSA-3002811 (Reactome)
p-S177-OPTNR-HSA-2562594 (Reactome)
p-S198-CDC25CArrowR-HSA-156678 (Reactome)
p-S198-CDC25CArrowR-HSA-170149 (Reactome)
p-S198-CDC25CR-HSA-170149 (Reactome)
p-S252,S497,T501-BORA:SCF-beta-TrCp1/2ArrowR-HSA-3000339 (Reactome)
p-S252,S497,T501-BORA:SCF-beta-TrCp1/2R-HSA-3000335 (Reactome)
p-S252,S497,T501-BORA:SCF-beta-TrCp1/2mim-catalysisR-HSA-3000335 (Reactome)
p-S252,S497,T501-BORAArrowR-HSA-3000327 (Reactome)
p-S252,S497,T501-BORAR-HSA-3000339 (Reactome)
p-S252-BORA:p-T210-PLK1ArrowR-HSA-3000310 (Reactome)
p-S252-BORA:p-T210-PLK1R-HSA-3000327 (Reactome)
p-S252-BORA:p-T210-PLK1mim-catalysisR-HSA-3000327 (Reactome)
p-S252-BORAArrowR-HSA-4086410 (Reactome)
p-S252-BORAR-HSA-3000319 (Reactome)
p-S435-GTSE1:PolyUb-TP53 TetramerArrowR-HSA-8852337 (Reactome)
p-S435-GTSE1:PolyUb-TP53 TetramerArrowR-HSA-8852351 (Reactome)
p-S435-GTSE1:PolyUb-TP53 TetramerR-HSA-8852351 (Reactome)
p-S435-GTSE1:PolyUb-TP53 TetramerR-HSA-8852354 (Reactome)
p-S435-GTSE1ArrowR-HSA-8852317 (Reactome)
p-S435-GTSE1ArrowR-HSA-8852331 (Reactome)
p-S435-GTSE1ArrowR-HSA-8852354 (Reactome)
p-S435-GTSE1R-HSA-8852331 (Reactome)
p-S435-GTSE1R-HSA-8852337 (Reactome)
p-S53-WEE1ArrowR-HSA-156699 (Reactome)
p-S95-PHLDA1ArrowR-HSA-8853444 (Reactome)
p-T210-PLK1ArrowR-HSA-3000327 (Reactome)
p-T210-PLK1ArrowR-HSA-3002798 (Reactome)
p-T210-PLK1ArrowR-HSA-4088134 (Reactome)
p-T210-PLK1ArrowR-HSA-8852317 (Reactome)
p-T210-PLK1R-HSA-3002798 (Reactome)
p-T210-PLK1R-HSA-3002811 (Reactome)
p-T210-PLK1R-HSA-4088130 (Reactome)
p-T210-PLK1R-HSA-8852324 (Reactome)
p-T210-PLK1mim-catalysisR-HSA-156678 (Reactome)
p-T210-PLK1mim-catalysisR-HSA-156699 (Reactome)
p-T210-PLK1mim-catalysisR-HSA-162657 (Reactome)
p-T210-PLK1mim-catalysisR-HSA-2562526 (Reactome)
p-T210-PLK1mim-catalysisR-HSA-380272 (Reactome)
p-T513,T526-GTSE1ArrowR-HSA-8852306 (Reactome)
p-T611,S730,S739-FOXM1:CENPF GeneArrowR-HSA-4088439 (Reactome)
p-T611,S730,S739-FOXM1:CENPF GeneArrowR-HSA-4088441 (Reactome)
p-T611,S730,S739-FOXM1:EP300:CDC25A GeneArrowR-HSA-4088152 (Reactome)
p-T611,S730,S739-FOXM1:EP300:CDC25A GeneArrowR-HSA-4088162 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB1 GeneArrowR-HSA-4088298 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB1 GeneArrowR-HSA-4088307 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB2 GeneArrowR-HSA-4088299 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB2 GeneArrowR-HSA-4088309 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:PLK1 GeneArrowR-HSA-4088305 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:PLK1 GeneArrowR-HSA-4088306 (Reactome)
p-T611,S730,S739-FOXM1ArrowR-HSA-4088134 (Reactome)
p-T611,S730,S739-FOXM1R-HSA-4088162 (Reactome)
p-T611,S730,S739-FOXM1R-HSA-4088306 (Reactome)
p-T611,S730,S739-FOXM1R-HSA-4088307 (Reactome)
p-T611,S730,S739-FOXM1R-HSA-4088309 (Reactome)
p-T611,S730,S739-FOXM1R-HSA-4088439 (Reactome)
p-T611-FOXM1:p-T210-PLK1ArrowR-HSA-4088130 (Reactome)
p-T611-FOXM1:p-T210-PLK1R-HSA-4088134 (Reactome)
p-T611-FOXM1:p-T210-PLK1mim-catalysisR-HSA-4088134 (Reactome)
p-T611-FOXM1ArrowR-HSA-4088024 (Reactome)
p-T611-FOXM1R-HSA-4088130 (Reactome)
p-T611-FOXM1R-HSA-4088141 (Reactome)
phospho-Cyclin B1(CRS):phospho-Cdc2 (Thr 161)ArrowR-HSA-170131 (Reactome)
phospho-G2/M transition proteinArrowR-HSA-69756 (Reactome)
phospho-cyclin B1(CRS):phosph-Cdc2(Thr 161)R-HSA-170131 (Reactome)
Personal tools