FOXO-mediated transcription of cell death genes (Homo sapiens)
From WikiPathways
Description
FOXO transcription factors promote expression of several pro-apoptotic genes, such as FASLG (Brunet et al. 1999, Ciechomska et al. 2003, Chen et al. 2013, Li et al. 2015), PINK1 (Mei et al. 2009, Sengupta et al. 2011), BCL2L11 (BIM) (Gilley et al. 2003, Urbich et al. 2005, Chuang et al. 2007, Hughes et al. 2011, Chen et al. 2013, Wang et al. 2016), BCL6 (Tang et al. 2002, Fernandez de Mattos et al. 2004, Shore et al. 2006) and BBC3 (PUMA) (Dudgeon et al. 2010, Hughes et al. 2011, Liu et al. 2015, Wu et al. 2016, Liu et al. 2017, Fitzwalter et al. 2018). FOXO-mediated induction of cell death genes is important during development, for example during nervous system development, where FOXO promotes neuronal death upon NGF withdrawal (Gilley et al. 2003), and also contributes to the tumor-suppressive role of FOXO factors (Arimoto Ishida et al. 2004). FOXO1 transcriptional activity is implicated in the cell death of enteric nervous system (ENS) precursors. RET signaling, which activates PI3K/AKT signaling, leading to inhibition of FOXO mediated transcription, ensures survival of ENS precursors (Srinivasan et al. 2005).
Transcription of the STK11 (LKB1) gene, encoding Serine/threonine-protein kinase STK11 (also known as Liver kinase B1), which regulates diverse cellular processes, including apoptosis, is directly stimulated by FOXO3 and FOXO4 (Lutzner et al. 2012). View original pathway at Reactome.
Transcription of the STK11 (LKB1) gene, encoding Serine/threonine-protein kinase STK11 (also known as Liver kinase B1), which regulates diverse cellular processes, including apoptosis, is directly stimulated by FOXO3 and FOXO4 (Lutzner et al. 2012). View original pathway at Reactome.
Try the New WikiPathways
View approved pathways at the new wikipathways.org.Quality Tags
Ontology Terms
Bibliography
History
External references
DataNodes
Annotated Interactions
FOXO-mediated upregulation of BCL2L11 gene transcription is positively regulated by DDIT3 (CHOP) through an unknown mechanism that may involve binding of DDIT3 to FOXO3 (Ghosh et al. 2012).
FOXO-mediated upregulation of BBC3 gene transcription is positively regulated by DDIT3 (CHOP) through an unknown mechanism. DDIT3 is able to bind FOXO3, but the physiological role and context of this protein complex is not known (Ghosh et al. 2012).