FOXO-mediated transcription of cell cycle genes (Homo sapiens)

From WikiPathways

Revision as of 16:30, 25 January 2021 by ReactomeTeam (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search
1-7, 9-2320201920818, 20201612, 4, 14, 222, 4, 14, 228nucleoplasmcytosolFOXO3 FOXO4 SMAD4 CDKN1A geneFOXO4 FOXO1 GADD45A geneFOXO3 FOXO1,FOXO3,FOXO4p-S465,S467-SMAD2 FOXO1,(FOXO3):KLF4geneBTG1 gene Signaling byTGF-beta ReceptorComplexCCNG2p-S465,S467-SMAD2 FOXO4 FOXO3,(FOXO1,FOXO4):p-2S-SMAD2/3:SMAD4SMAD4 FOXO3:BTG1 geneFOXO3,(FOXO1,FOXO4):p-2S-SMAD2/3:SMAD4:CDKN1A geneFOXO1 SMAD4 FOXO1 FOXO1,FOXO3,FOXO4:RBL2 geneCDKN1A mRNA p-S465,S467-SMAD2 FOXO3 FOXO4 CCNG2 gene FOXO1 FOXO1FOXO4 FOXO4 MSTN FOXO4 FOXO1,FOXO3,FOXO4:CDKN1A geneCAV1 gene FOXO3 FOXO3 FOXO4 CDKN1A mRNAFOXO1,FOXO3:KLF4geneFOXO1 p-S423,S425-SMAD3 p-S465,S467-SMAD2 KLF4 genep-2S-SMAD2/3:SMAD4FOXO3 BTG1 geneFOXO1 RBL2 gene FOXO3 FOXO4 FOXO3 CCNG2 geneFOXO4 FOXG1RBL2 geneFOXO3 FOXO3 FOXO1 KLF4 gene FOXO1 FOXO3,FOXO4,(FOXO1)FOXO1 CDKN1Bp-S423,S425-SMAD3 FOXO1,FOXO3,FOXO4:p-2S-SMAD2/3:SMAD4FOXO1 FOXG1:FOXO3,(FOXO1,FOXO4):p-2S-SMAD2/3:SMAD4PCBP4:CDKN1A mRNABTG1FOXO3,FOXO4,(FOXO1):GADD45A genePCBP4 MSTN geneFOXO3 FOXO3 GADD45A gene FOXO1:p-2S-SMAD2/3:SMAD4:MSTN geneFOXO3 MSTN gene FOXO1,FOXO3CAV1 geneGADD45AFOXG1 FOXO1 CDKN1A gene FOXO1 CDKN1AFOXO1 FOXO1,FOXO3,(FOXO4):CCNG2 genep-S465,S467-SMAD2 PCBP4CDKN1A gene p-S465,S467-SMAD2 FOXO1 CAV1FOXO1,FOXO3,(FOXO4)RBL2FOXO3 FOXO1 MSTN homodimerFOXO4 p-S423,S425-SMAD3 CDKN1B geneFOXO1,FOXO3:CAV1geneFOXO1 p-S423,S425-SMAD3 SMAD4 FOXO3KLF4 gene SMAD4 p-S423,S425-SMAD3 KLF4SMAD4 FOXO3 p-S423,S425-SMAD3 FOXO3 82420


Description

FOXO transcription factors induce expression of several genes that negatively regulate proliferation of different cell types, such as erythroid progenitors (Bakker et al. 2004, Wang et al. 2015) and neuroepithelial progenitor cells in the telencephalon (Seoane et al. 2004).
Transcription of cyclin-dependent kinase (CDK) inhibitors CDKN1A (p21Cip1) is directly stimulated by FOXO1, FOXO3 and FOXO4 (Seoane et al. 2004, Tinkum et al. 2013). FOXO transcription factors can cooperate with the SMAD2/3:SMAD4 complex to induce CDKN1A transcription in response to TGF-beta signaling (Seoane et al. 2004).
FOXO transcription factors FOXO1, FOXO3 and FOXO4 stimulate transcription of the CDKN1B (p27Kip1) gene, but direct binding of FOXOs to the CDKN1B gene locus has not been demonstrated (Dijkers et al. 2000, Medema et al. 2000, Lees et al. 2008).
FOXO3 and FOXO4, and possibly FOXO1, directly stimulate transcription of the GADD45A gene (Tran et al. 2002, Furukawa Hibi et al. 2002, Hughes et al. 2011, Sengupta et al. 2011, Ju et al. 2014).
Transcription of the retinoblastoma family protein RBL2 (p130), involved in the maintenance of quiescent (G0) state, is directly stimulated by FOXO1, FOXO3 and FOXO4 (Kops et al. 2002, Chen et al. 2006).
Transcription of the anti-proliferative protein CCNG2 is directly stimulated by FOXO1 and FOXO3, and possibly FOXO4 (Martinez Gac et al. 2004, Chen et al. 2006). Transcription of the anti-proliferative protein BTG1 is directly stimulated by FOXO3 (Bakker et al. 2004, Bakker et al. 2007, Wang et al. 2015).
Transcription of CAV1, encoding caveolin-1, involved in negative regulation of growth factor receptor signaling and establishment of quiescent cell phenotype, is directly stimulated by FOXO1 and FOXO3 (van den Heuvel et al. 2005, Roy et al. 2008, Nho et al. 2013, Sisci et al. 2013).
FOXO1 and FOXO3 promote transcription of the KLF4 gene, encoding a transcription factor Krueppel-like factor 4, which inhibits proliferation of mouse B cells (Yusuf et al. 2008).
FOXO1, together with the p-2S-SMAD2/3:SMAD4 complex, stimulates transcription of the MSTN gene, encoding myostatin, a TGF-beta family member that stimulates differentiation of myoblasts (Allen and Unterman 2007). View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 9617828
Reactome-version 
Reactome version: 74
Reactome Author 
Reactome Author: Orlic-Milacic, Marija

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Roy UK, Henkhaus RS, Ignatenko NA, Mora J, Fultz KE, Gerner EW.; ''Wild-type APC regulates caveolin-1 expression in human colon adenocarcinoma cell lines via FOXO1a and C-myc.''; PubMed Europe PMC Scholia
  2. Allen DL, Unterman TG.; ''Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors.''; PubMed Europe PMC Scholia
  3. Tran H, Brunet A, Grenier JM, Datta SR, Fornace AJ, DiStefano PS, Chiang LW, Greenberg ME.; ''DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein.''; PubMed Europe PMC Scholia
  4. Furukawa-Hibi Y, Yoshida-Araki K, Ohta T, Ikeda K, Motoyama N.; ''FOXO forkhead transcription factors induce G(2)-M checkpoint in response to oxidative stress.''; PubMed Europe PMC Scholia
  5. Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NS, Lam EW, Burgering BM, Raaijmakers JA, Lammers JW, Koenderman L, Coffer PJ.; ''Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1).''; PubMed Europe PMC Scholia
  6. Yusuf I, Kharas MG, Chen J, Peralta RQ, Maruniak A, Sareen P, Yang VW, Kaestner KH, Fruman DA.; ''KLF4 is a FOXO target gene that suppresses B cell proliferation.''; PubMed Europe PMC Scholia
  7. Bakker WJ, van Dijk TB, Parren-van Amelsvoort M, Kolbus A, Yamamoto K, Steinlein P, Verhaak RG, Mak TW, Beug H, Löwenberg B, von Lindern M.; ''Differential regulation of Foxo3a target genes in erythropoiesis.''; PubMed Europe PMC Scholia
  8. Tinkum KL, White LS, Marpegan L, Herzog E, Piwnica-Worms D, Piwnica-Worms H.; ''Forkhead box O1 (FOXO1) protein, but not p53, contributes to robust induction of p21 expression in fasted mice.''; PubMed Europe PMC Scholia
  9. Wang H, Li Y, Wang S, Zhang Q, Zheng J, Yang Y, Qi H, Qu H, Zhang Z, Liu F, Fang X.; ''Knockdown of transcription factor forkhead box O3 (FOXO3) suppresses erythroid differentiation in human cells and zebrafish.''; PubMed Europe PMC Scholia
  10. Kops GJ, Medema RH, Glassford J, Essers MA, Dijkers PF, Coffer PJ, Lam EW, Burgering BM.; ''Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors.''; PubMed Europe PMC Scholia
  11. Scoumanne A, Cho SJ, Zhang J, Chen X.; ''The cyclin-dependent kinase inhibitor p21 is regulated by RNA-binding protein PCBP4 via mRNA stability.''; PubMed Europe PMC Scholia
  12. Kang JS, Liu C, Derynck R.; ''New regulatory mechanisms of TGF-beta receptor function.''; PubMed Europe PMC Scholia
  13. van den Heuvel AP, Schulze A, Burgering BM.; ''Direct control of caveolin-1 expression by FOXO transcription factors.''; PubMed Europe PMC Scholia
  14. Martínez-Gac L, Marqués M, García Z, Campanero MR, Carrera AC.; ''Control of cyclin G2 mRNA expression by forkhead transcription factors: novel mechanism for cell cycle control by phosphoinositide 3-kinase and forkhead.''; PubMed Europe PMC Scholia
  15. Nho RS, Peterson M, Hergert P, Henke CA.; ''FoxO3a (Forkhead Box O3a) deficiency protects Idiopathic Pulmonary Fibrosis (IPF) fibroblasts from type I polymerized collagen matrix-induced apoptosis via caveolin-1 (cav-1) and Fas.''; PubMed Europe PMC Scholia
  16. Chen J, Yusuf I, Andersen HM, Fruman DA.; ''FOXO transcription factors cooperate with delta EF1 to activate growth suppressive genes in B lymphocytes.''; PubMed Europe PMC Scholia
  17. Medema RH, Kops GJ, Bos JL, Burgering BM.; ''AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1.''; PubMed Europe PMC Scholia
  18. Ju Y, Xu T, Zhang H, Yu A.; ''FOXO1-dependent DNA damage repair is regulated by JNK in lung cancer cells.''; PubMed Europe PMC Scholia
  19. Lees SJ, Childs TE, Booth FW.; ''Age-dependent FOXO regulation of p27Kip1 expression via a conserved binding motif in rat muscle precursor cells.''; PubMed Europe PMC Scholia
  20. Sisci D, Maris P, Cesario MG, Anselmo W, Coroniti R, Trombino GE, Romeo F, Ferraro A, Lanzino M, Aquila S, Maggiolini M, Mauro L, Morelli C, Andò S.; ''The estrogen receptor α is the key regulator of the bifunctional role of FoxO3a transcription factor in breast cancer motility and invasiveness.''; PubMed Europe PMC Scholia
  21. Sengupta A, Molkentin JD, Paik JH, DePinho RA, Yutzey KE.; ''FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress.''; PubMed Europe PMC Scholia
  22. Bakker WJ, Blázquez-Domingo M, Kolbus A, Besooyen J, Steinlein P, Beug H, Coffer PJ, Löwenberg B, von Lindern M, van Dijk TB.; ''FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1.''; PubMed Europe PMC Scholia
  23. Hughes KJ, Meares GP, Hansen PA, Corbett JA.; ''FoxO1 and SIRT1 regulate beta-cell responses to nitric oxide.''; PubMed Europe PMC Scholia
  24. Seoane J, Le HV, Shen L, Anderson SA, Massagué J.; ''Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114810view16:30, 25 January 2021ReactomeTeamReactome version 75
113254view11:32, 2 November 2020ReactomeTeamReactome version 74
112806view18:12, 9 October 2020DeSlOntology Term : 'pathway pertinent to DNA replication and repair, cell cycle, maintenance of genomic integrity, RNA and protein biosynthesis' added !
112805view18:11, 9 October 2020DeSlOntology Term : 'forkhead class O signaling pathway' added !
112755view16:15, 9 October 2020ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
BTG1 gene ProteinENSG00000133639 (Ensembl)
BTG1 geneGeneProductENSG00000133639 (Ensembl)
BTG1ProteinP62324 (Uniprot-TrEMBL)
CAV1 gene ProteinENSG00000105974 (Ensembl)
CAV1 geneGeneProductENSG00000105974 (Ensembl)
CAV1ProteinQ03135 (Uniprot-TrEMBL)
CCNG2 gene ProteinENSG00000138764 (Ensembl)
CCNG2 geneGeneProductENSG00000138764 (Ensembl)
CCNG2ProteinQ16589 (Uniprot-TrEMBL)
CDKN1A gene ProteinENSG00000124762 (Ensembl)
CDKN1A geneGeneProductENSG00000124762 (Ensembl)
CDKN1A mRNA ProteinENST00000244741 (Ensembl)
CDKN1A mRNARnaENST00000244741 (Ensembl)
CDKN1AProteinP38936 (Uniprot-TrEMBL)
CDKN1B geneGeneProductENSG00000111276 (Ensembl)
CDKN1BProteinP46527 (Uniprot-TrEMBL)
FOXG1 ProteinP55316 (Uniprot-TrEMBL)
FOXG1:FOXO3,(FOXO1,FOXO4):p-2S-SMAD2/3:SMAD4ComplexR-HSA-9618020 (Reactome)
FOXG1ProteinP55316 (Uniprot-TrEMBL)
FOXO1 ProteinQ12778 (Uniprot-TrEMBL)
FOXO1,(FOXO3):KLF4 geneComplexR-HSA-9625447 (Reactome)
FOXO1,FOXO3,(FOXO4):CCNG2 geneComplexR-HSA-9620826 (Reactome)
FOXO1,FOXO3,(FOXO4)ComplexR-HSA-9620827 (Reactome)
FOXO1,FOXO3,FOXO4:CDKN1A geneComplexR-HSA-9617982 (Reactome)
FOXO1,FOXO3,FOXO4:RBL2 geneComplexR-HSA-9620791 (Reactome)
FOXO1,FOXO3,FOXO4:p-2S-SMAD2/3:SMAD4ComplexR-HSA-9617984 (Reactome)
FOXO1,FOXO3,FOXO4ComplexR-HSA-9617987 (Reactome)
FOXO1,FOXO3:CAV1 geneComplexR-HSA-9624975 (Reactome)
FOXO1,FOXO3:KLF4 geneComplexR-HSA-9625436 (Reactome)
FOXO1,FOXO3ComplexR-HSA-9614686 (Reactome)
FOXO1:p-2S-SMAD2/3:SMAD4:MSTN geneComplexR-HSA-9625499 (Reactome)
FOXO1ProteinQ12778 (Uniprot-TrEMBL)
FOXO3 ProteinO43524 (Uniprot-TrEMBL)
FOXO3,(FOXO1,FOXO4):p-2S-SMAD2/3:SMAD4:CDKN1A geneComplexR-HSA-9618005 (Reactome)
FOXO3,(FOXO1,FOXO4):p-2S-SMAD2/3:SMAD4ComplexR-HSA-9618006 (Reactome)
FOXO3,FOXO4,(FOXO1):GADD45A geneComplexR-HSA-9617859 (Reactome)
FOXO3,FOXO4,(FOXO1)ComplexR-HSA-9617860 (Reactome)
FOXO3:BTG1 geneComplexR-HSA-9620884 (Reactome)
FOXO3ProteinO43524 (Uniprot-TrEMBL)
FOXO4 ProteinP98177 (Uniprot-TrEMBL)
GADD45A gene ProteinENSG00000116717 (Ensembl)
GADD45A geneGeneProductENSG00000116717 (Ensembl)
GADD45AProteinP24522 (Uniprot-TrEMBL)
KLF4 gene ProteinENSG00000136826 (Ensembl)
KLF4 geneGeneProductENSG00000136826 (Ensembl)
KLF4ProteinO43474 (Uniprot-TrEMBL)
MSTN ProteinO14793 (Uniprot-TrEMBL)
MSTN gene ProteinENSG00000138379 (Ensembl)
MSTN geneGeneProductENSG00000138379 (Ensembl)
MSTN homodimerComplexR-HSA-9625530 (Reactome)
PCBP4 ProteinP57723 (Uniprot-TrEMBL)
PCBP4:CDKN1A mRNAComplexR-HSA-6803405 (Reactome)
PCBP4ProteinP57723 (Uniprot-TrEMBL)
RBL2 gene ProteinENSG00000103479 (Ensembl)
RBL2 geneGeneProductENSG00000103479 (Ensembl)
RBL2ProteinQ08999 (Uniprot-TrEMBL)
SMAD4 ProteinQ13485 (Uniprot-TrEMBL)
Signaling by

TGF-beta Receptor

Complex
PathwayR-HSA-170834 (Reactome) The TGF-beta/BMP pathway incorporates several signaling pathways that share most, but not all, components of a central signal transduction engine. The general signaling scheme is rather simple: upon binding of a ligand, an activated plasma membrane receptor complex is formed, which passes on the signal towards the nucleus through a phosphorylated receptor SMAD (R-SMAD). In the nucleus, the activated R-SMAD promotes transcription in complex with a closely related helper molecule termed Co-SMAD (SMAD4). However, this simple linear pathway expands into a network when various regulatory components and mechanisms are taken into account. The signaling pathway includes a great variety of different TGF-beta/BMP superfamily ligands and receptors, several types of the R-SMADs, and functionally critical negative feedback loops. The R-SMAD:Co-SMAD complex can interact with a great number of transcriptional co-activators/co-repressors to regulate positively or negatively effector genes, so that the interpretation of a signal depends on the cell-type and cross talk with other signaling pathways such as Notch, MAPK and Wnt. The pathway plays a number of different biological roles in the control of embryonic and adult cell proliferation and differentiation, and it is implicated in a great number of human diseases.
TGF beta (TGFB1) is secreted as a homodimer, and as such it binds to TGF beta receptor II (TGFBR2), inducing its dimerization. Binding of TGF beta enables TGFBR2 to form a stable hetero-tetrameric complex with TGF beta receptor I homodimer (TGFBR1). TGFBR2 acts as a serine/threonine kinase and phosphorylates serine and threonine residues within the short GS domain (glycine-serine rich domain) of TGFBR1.
The phosphorylated heterotetrameric TGF beta receptor complex (TGFBR) internalizes into clathrin coated endocytic vesicles where it associates with the endosomal membrane protein SARA. SARA facilitates the recruitment of cytosolic SMAD2 and SMAD3, which act as R-SMADs for TGF beta receptor complex. TGFBR1 phosphorylates recruited SMAD2 and SMAD3, inducing a conformational change that promotes formation of R-SMAD trimers and dissociation of R-SMADs from the TGF beta receptor complex.
In the cytosol, phosphorylated SMAD2 and SMAD3 associate with SMAD4 (known as Co-SMAD), forming a heterotrimer which is more stable than the R-SMAD homotrimers. R-SMAD:Co-SMAD heterotrimer translocates to the nucleus where it directly binds DNA and, in cooperation with other transcription factors, regulates expression of genes involved in cell differentiation, in a context-dependent manner.
The intracellular level of SMAD2 and SMAD3 is regulated by SMURF ubiquitin ligases, which target R-SMADs for degradation. In addition, nuclear R-SMAD:Co-SMAD heterotrimer stimulates transcription of inhibitory SMADs (I-SMADs), forming a negative feedback loop. I-SMADs bind the phosphorylated TGF beta receptor complexes on caveolin coated vesicles, derived from the lipid rafts, and recruit SMURF ubiquitin ligases to TGF beta receptors, leading to ubiquitination and degradation of TGFBR1. Nuclear R-SMAD:Co-SMAD heterotrimers are targets of nuclear ubiquitin ligases which ubiquitinate SMAD2/3 and SMAD4, causing heterotrimer dissociation, translocation of ubiquitinated SMADs to the cytosol and their proteasome-mediated degradation. For a recent review of TGF-beta receptor signaling, please refer to Kang et al. 2009.
p-2S-SMAD2/3:SMAD4ComplexR-HSA-173511 (Reactome)
p-S423,S425-SMAD3 ProteinP84022 (Uniprot-TrEMBL)
p-S465,S467-SMAD2 ProteinQ15796 (Uniprot-TrEMBL)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
BTG1 geneR-HSA-9620891 (Reactome)
BTG1 geneR-HSA-9620915 (Reactome)
BTG1ArrowR-HSA-9620915 (Reactome)
CAV1 geneR-HSA-9624976 (Reactome)
CAV1 geneR-HSA-9624985 (Reactome)
CAV1ArrowR-HSA-9624985 (Reactome)
CCNG2 geneR-HSA-9620828 (Reactome)
CCNG2 geneR-HSA-9620837 (Reactome)
CCNG2ArrowR-HSA-9620837 (Reactome)
CDKN1A geneR-HSA-9617838 (Reactome)
CDKN1A geneR-HSA-9617840 (Reactome)
CDKN1A geneR-HSA-9618004 (Reactome)
CDKN1A mRNAArrowR-HSA-9617838 (Reactome)
CDKN1A mRNAR-HSA-6803403 (Reactome)
CDKN1A mRNAR-HSA-6803411 (Reactome)
CDKN1AArrowR-HSA-6803411 (Reactome)
CDKN1B geneR-HSA-9617848 (Reactome)
CDKN1BArrowR-HSA-9617848 (Reactome)
FOXG1:FOXO3,(FOXO1,FOXO4):p-2S-SMAD2/3:SMAD4ArrowR-HSA-9618021 (Reactome)
FOXG1R-HSA-9618021 (Reactome)
FOXG1TBarR-HSA-9618004 (Reactome)
FOXO1,(FOXO3):KLF4 geneArrowR-HSA-9625409 (Reactome)
FOXO1,FOXO3,(FOXO4):CCNG2 geneArrowR-HSA-9620828 (Reactome)
FOXO1,FOXO3,(FOXO4):CCNG2 geneArrowR-HSA-9620837 (Reactome)
FOXO1,FOXO3,(FOXO4)R-HSA-9620828 (Reactome)
FOXO1,FOXO3,FOXO4:CDKN1A geneArrowR-HSA-9617838 (Reactome)
FOXO1,FOXO3,FOXO4:CDKN1A geneArrowR-HSA-9617840 (Reactome)
FOXO1,FOXO3,FOXO4:RBL2 geneArrowR-HSA-9620788 (Reactome)
FOXO1,FOXO3,FOXO4:RBL2 geneArrowR-HSA-9620813 (Reactome)
FOXO1,FOXO3,FOXO4:p-2S-SMAD2/3:SMAD4ArrowR-HSA-9617996 (Reactome)
FOXO1,FOXO3,FOXO4ArrowR-HSA-9617848 (Reactome)
FOXO1,FOXO3,FOXO4R-HSA-9617840 (Reactome)
FOXO1,FOXO3,FOXO4R-HSA-9617996 (Reactome)
FOXO1,FOXO3,FOXO4R-HSA-9620788 (Reactome)
FOXO1,FOXO3:CAV1 geneArrowR-HSA-9624976 (Reactome)
FOXO1,FOXO3:CAV1 geneArrowR-HSA-9624985 (Reactome)
FOXO1,FOXO3:KLF4 geneArrowR-HSA-9625406 (Reactome)
FOXO1,FOXO3R-HSA-9624976 (Reactome)
FOXO1,FOXO3R-HSA-9625406 (Reactome)
FOXO1:p-2S-SMAD2/3:SMAD4:MSTN geneArrowR-HSA-9625510 (Reactome)
FOXO1:p-2S-SMAD2/3:SMAD4:MSTN geneArrowR-HSA-9625520 (Reactome)
FOXO1R-HSA-9625510 (Reactome)
FOXO3,(FOXO1,FOXO4):p-2S-SMAD2/3:SMAD4:CDKN1A geneArrowR-HSA-9617838 (Reactome)
FOXO3,(FOXO1,FOXO4):p-2S-SMAD2/3:SMAD4:CDKN1A geneArrowR-HSA-9618004 (Reactome)
FOXO3,(FOXO1,FOXO4):p-2S-SMAD2/3:SMAD4R-HSA-9618004 (Reactome)
FOXO3,(FOXO1,FOXO4):p-2S-SMAD2/3:SMAD4R-HSA-9618021 (Reactome)
FOXO3,FOXO4,(FOXO1):GADD45A geneArrowR-HSA-9617852 (Reactome)
FOXO3,FOXO4,(FOXO1):GADD45A geneArrowR-HSA-9617853 (Reactome)
FOXO3,FOXO4,(FOXO1)R-HSA-9617852 (Reactome)
FOXO3:BTG1 geneArrowR-HSA-9620891 (Reactome)
FOXO3:BTG1 geneArrowR-HSA-9620915 (Reactome)
FOXO3R-HSA-9620891 (Reactome)
GADD45A geneR-HSA-9617852 (Reactome)
GADD45A geneR-HSA-9617853 (Reactome)
GADD45AArrowR-HSA-9617853 (Reactome)
KLF4 geneR-HSA-9625406 (Reactome)
KLF4 geneR-HSA-9625409 (Reactome)
KLF4ArrowR-HSA-9625409 (Reactome)
MSTN geneR-HSA-9625510 (Reactome)
MSTN geneR-HSA-9625520 (Reactome)
MSTN homodimerArrowR-HSA-9625520 (Reactome)
PCBP4:CDKN1A mRNAArrowR-HSA-6803403 (Reactome)
PCBP4:CDKN1A mRNATBarR-HSA-6803411 (Reactome)
PCBP4R-HSA-6803403 (Reactome)
R-HSA-6803403 (Reactome) PCBP4 binds the 3'-UTR of the CDKN1A (p21) mRNA and reduces its stability (Scoumanne et al. 2011).
R-HSA-6803411 (Reactome) PCBP4 binding to the 3'-UTR of the CDKN1A (p21) mRNA reduces half-life of the CDKN1A mRNA and the amount of CDKN1A protein. Upon DNA damage, TP53-mediated induction of CDKN1A is rapid, while the induction of PCBP4 is more gradual. It is hypothesized that, under prolonged stress, PCBP4-mediated down-regulation of CDKN1A may switch from G1 cell cycle arrest to G2 arrest, which may precede apoptosis (Scoumanne et al. 2011).
R-HSA-9617838 (Reactome) FOXO1, FOXO3 and FOXO4 stimulate transcription from the CDKN1A gene promoter. In response to TGF-beta signaling, FOXO transcription factors may cooperate with the active SMAD2/3:SMAD4 complexes to upregulate CDKN1A transcription (Seoane et al. 2004). FOXO1-mediated induction of CDKN1A gene transcription is implicated in CDKN1A upregulation in liver cells during fasting (Tinkum et al. 2013). Acetylation of FOXO4 by EP300 (p300) or CREBBP (CBP) in response to oxidative stress does not affect FOXO4-mediated induction of CDKN1A gene transcription (Dansen et al. 2009).
R-HSA-9617840 (Reactome) FOXO1, FOXO3 and FOXO4 can all bind to forkhead box elements in the promoter region of the CDKN1A gene, encoding CDK inhibitor p21Cip1 (Seoane et al. 2004, Tinkum et al. 2013).
R-HSA-9617848 (Reactome) Promoter of the CDKN1B gene, encoding CDK inhibitor p27Kip1, contains forkhead box elements that are required for induction of CDKN1B gene transcription by FOXO transcription factors FOXO1, FOXO3 (Dijkers et al. 2000, Lees et al. 2008) and FOXO4 (Medema et al. 2000). Direct binding of FOXO transcription factors to the CDKN1B gene promoter has not been demonstrated. Acetylation of FOXO4 by EP300 (p300) or CREBBP (CBP) in response to oxidative stress interferes with FOXO4-mediated induction of CDKN1B gene transcription (Dansen et al. 2009).
R-HSA-9617852 (Reactome) GADD45A gene is the direct transcriptional target of FOXO transcription factors. Direct binding to the GADD45A gene promoter was demonstrated for FOXO3 (Tran et al. 2002, Furkawa-Hibi et al. 2002) and FOXO4 (Furukawa-Hibi et al. 2002). FOXO1 positively regulates GADD45A gene transcription (Hughes et al. 2011, Sengupta et al. 2011, Ju et al. 2014) and probably can also bind to the GADD45A promoter, but this has not been experimentally demonstrated. FOXO transcription factors may bind to the GADD45A gene promoter cooperatively with the SMAD2/3:SMAD4 complex (Gomis et al. 2006).
R-HSA-9617853 (Reactome) GADD45A gene transcription is stimulated by FOXO1, FOXO3 and FOXO4 (Tran et al. 2002, Furukawa-Hibi et al. 2002, Hughes et al. 2011, Sengupta et al. 2011, Ju et al. 2014). Direct transcriptional regulation was demonstrated for FOXO3 (Tran et al. 2002, Furukawa-Hibi et al. 2002) and FOXO4 (Furukawa-Hibi et al. 2002). Acetylation of FOXO4 by EP300 (p300) or CREBBP (CBP) in response to oxidative stress interferes with FOXO4-mediated induction of GADD45A gene transcription (Dansen et al. 2009). Under oxidative stress, deacetylation of FOXO3 by SIRT1 deacetylase promotes FOXO3-mediated induction of GADD45A gene transcription (Brunet et al. 2004).
R-HSA-9617996 (Reactome) In response to TGF-beta signaling, forkhead box transcription factors FOXO1, FOXO3 and FOXO4 bind to phosphorylated SMAD2/3:SMAD4 trimers by direct interaction between FOXO proteins and SMAD3 or SMAD4. FOXO proteins do not interact with all splicing isoforms of SMAD2 (Seoane et al. 2004).
R-HSA-9618004 (Reactome) The complex of phosphorylated SMAD2/3 and SMAD4, bound to FOXO3, binds to the promoter of the CDKN1A gene. The p-2S-SMAD2/3:SMAD4 complex bound to FOXO1 or FOXO4 can probably also bind to the CDKN1A gene promoter. FOXG1 binding to the FOXO:SMAD complex inhibits FOXO:SMAD-mediated upregulation of CDKN1A transcription. FOXG1 plays an important role in sustained proliferation of telencephalic neuroepithelial progenitor cells (Seoane et al. 2004).
R-HSA-9618021 (Reactome) FOXG1 can bind to complexes of FOXO transcription factors and activated SMAD2/3:SMAD4 via direct interaction with FOXO3, and probably also FOXO1 or FOXO4 (Seoane et al. 2004).
R-HSA-9620788 (Reactome) FOXO family transcription factors, FOXO1, FOXO3 and FOXO4, bind FOXO elements in the first intron and/or the promoter region of the RBL2 (p130) gene. Direct binding was demonstrated between human FOXO4 and human p130 gene locus (Kops et al. 2002) and human FOXO1 and FOXO3 and mouse p130 gene locus (Chen et al. 2006).
R-HSA-9620813 (Reactome) Transcription of the RBL2 gene is directly stimulated by FOXO family transcription factors FOXO1, FOXO3 and FOXO4 (Kops et al. 2002, Chen et al. 2006). Direct transcriptional stimulation by human FOXO4 was demonstrated for human RBL2 gene (Kops et al. 2002), and by human FOXO1 and FOXO3 for mouse Rbl2 gene (Chen et al. 2006). The retinoblastoma family member RBL2 is needed for the establishment and maintenance of quiescent, G0, state.
R-HSA-9620828 (Reactome) Forkhead box family transcription factors, FOXO1, FOXO3, and probably FOXO4, bind forkhead box elements in the promoter region of the CCNG2 gene, encoding Cyclin-G2 (Martinez-Gac et al. 2004, Chen et al. 2006).
R-HSA-9620837 (Reactome) FOXO1, FOXO3 and probably FOXO4 directly stimulate transcription of the CCNG2 gene, encoding a cell cycle inhibitor Cyclin-G2 (Martinez-Gac et al. 2004, Chen et al. 2006). FOXO4 stimulates CCNG2 transcription, but direct binding of FOXO4 to the CCNG2 gene promoter has not been demonstrated (Martinez-Gac et al. 2004).
R-HSA-9620891 (Reactome) FOXO3 binds to evolutionarily conserved forkhead box elements in the promoter region of the BTG1 gene, encoding antiproliferative Protein BTG1 (Bakker et al. 2007).
R-HSA-9620915 (Reactome) Transcription of the BTG1 gene, encoding antiproliferative Protein BTG1 is directly stimulated by FOXO3 (Bakker et al. 2004, Bakker et al. 2007, Wang et al. 2015). BTG1 inhibits the outgrowth of erythroid colonies and promotes maturation of mouse (Bakker et al. 2004) and human (Wang et al. 2015) erythroid cells.
R-HSA-9624976 (Reactome) FOXO3 binds the promoter of the CAV1 gene, encoding Caveolin-1 (van den Heuvel et al. 2005, Nho et al. 2013, Sisci et al. 2013). FOXO1 also binds the CAV1 gene promoter (Roy et al. 2008).
R-HSA-9624985 (Reactome) Transcription of the CAV1 gene, encoding caveolin-1, is directly stimulated by FOXO3. Caveolin-1 is the main constituent of plasma membrane caveolae, involved in negative regulation of growth factor receptor signaling, which may contribute to the establishment of a senescent or quiescent cell phenotype. CAV1 expression decreases in the S phase, but FOXO-mediated regulation of CAV1 expression is cell cycle independent (van den Heuvel et al. 2005, Nho et al. 2013, Sisci et al. 2013). Transcription of the CAV1 gene is also directly stimulated by FOXO1 (Roy et al. 2008).
R-HSA-9625406 (Reactome) Based on studies in mice, FOXO1 and FOXO3 bind the KLF4 gene promoter (Yusuf et al. 2008).
R-HSA-9625409 (Reactome) Based on studies in mice, FOXO1 and possibly FOXO3 directly stimulate transcription of the KLF4 gene, encoding a transcription factor Krueppel-like factor 4. KLF4 inhibits proliferation of mouse B cells (Yusuf et al. 2008). KLF4 has been reported to transcriptionally repress FOXO1 gene (Tang et al. 2016). In hypothalamic orexigenic neurons, KLF4 positively regulates expression of AGRP (agouti-related protein), an established FOXO target (Imbernon et al. 2014).
R-HSA-9625510 (Reactome) Based on studies in mice, FOXO1 and the p-2S-SMAD2/3:SMAD4 complex bind the promoter of the MSTN gene, encoding myostatin (Allen and Unterman 2007). FOXO3 and glucocorticoid receptor (NR3C1, also known as GR) were reported to bind MSTN promoter in porcine cells (Jia et al. 2016).
R-HSA-9625520 (Reactome) Based on studies in mice, FOXO1 and the p-2S-SMAD2/3:SMAD4 complex directly stimulate transcription of the MSTN gene, encoding myostatin. Myostatin is a TGF-beta family member that restricts muscle growth by stimulating differentiation of myoblasts (Allen and Unterman 2007).
RBL2 geneR-HSA-9620788 (Reactome)
RBL2 geneR-HSA-9620813 (Reactome)
RBL2ArrowR-HSA-9620813 (Reactome)
p-2S-SMAD2/3:SMAD4R-HSA-9617996 (Reactome)
p-2S-SMAD2/3:SMAD4R-HSA-9625510 (Reactome)
Personal tools