Clathrin-mediated endocytosis (Homo sapiens)

From WikiPathways

Revision as of 13:12, 2 November 2020 by DeSl (Talk | contribs)
Jump to: navigation, search
1, 5, 6, 26, 27, 30...10, 17, 39, 71, 76...9, 29, 46, 53, 55...9, 55, 155, 15618, 1572, 27, 100, 132, 157...12, 21, 27, 35, 38...4, 11, 19, 21, 27...3, 57, 69, 103, 114...4, 19, 20, 24, 33...100, 102, 125, 128, 13724, 74, 83, 96, 1223, 22, 69, 103, 1597, 45, 56, 66, 70...13, 15, 27, 32, 42...17, 34, 68, 76, 84...3, 23, 52, 62, 63, 69...1, 5, 6, 44, 51...81, 91, 100, 115, 14512, 16, 21, 25, 38...100, 102, 125, 128, 137clathrin-coated endocytic vesiclecytosolSYT8 EPN1 PI4PLRP2 ITSN2 EGF PI(4,5)P2:p-T156AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1f-actin SGIP1 GTP LDLRAP1 AP2A1 PL STON1 ACTR3 UBC(457-532) VAMP3 SYT9 GGC-RAB5B EREG(60-108) SH3GL1 LDLR HIP1R APOB(28-4563) CTTN AVP(20-28) UBC(229-304) EPS15 NECAP1 clathrin triskelionUBC(381-456) AREG(101-187) PI(4,5)P2 EPN1 HGS SYNJ2 AP2B1 PI(4,5)P2:p-T156AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargocholesterol esters HGS ARPC1A TGFA(24-98) ARPC3 DNM3 CHOL SH3KBP1 cholesterol esters NAd AP2S1 AP2S1 EPN2 GRB2-1 ITSN2 STON2 OCRL SH3KBP1 ITSN2 SGIP1 GGC-RAB5:GDP:GAPVD1FNBP1L CLTA RPS27A(1-76) EPN2 SYT1 PI(4,5)P2:AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1TACR1 AMPH PI(4,5)P2 CLTA HBEGF(63-148) VAMP2 cholesterol esters AP2M1 APOB(28-4563) UBC(457-532) p-AVPR2 SH3GL1 CHOL UBC(1-76) TACR1 SH3GL1 SNX18 CHOL SYT8 CLTC AP2A2(1-939) AREG(101-187) STON2 AP2M1 PACSIN1 LDLR p-Y850 EPS15 CLTCL1 FNBP1L CLTCL1 CLTA TGFA(24-98) CHRM2 BTC(32-111) ARPC5 DNM2 VAMP8 SNX9 NECAP2 ARPC1A AP2A2(1-939) ITSN1 ADR CLTB SYT9 p-Y371-CBL HIP1 STON1 UBC(305-380) DAB2 UBC(305-380) ADP PL DNM3 ITSN2 PI(4)P:p-T156AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJs:auxilinUBC(305-380) UBC(381-456) EPN1 p-Y371-CBL EPS15p-Y850 EPS15 PACSIN3 AP2S1 BIN1 SGIP1 p-AVPR2 ACTR2 N4GlycoAsn-PalmS WNT5A(36-380) SYT11 HIP1 ARRB2 PACSIN1 ARRB1 UBC(533-608) SGIP1 PACSIN1 CHOL AP2B1 AP2A1 VAMP3 CLTC UBC(305-380) UBC(229-304) clathrin triskelionp-Y850 EPS15 N4GlycoAsn-PalmS WNT5A(36-380) DNM1 CLTB VAMP7 SH3GL1 SGIP1 UBC(229-304) AGTR1 SYNJ2 CLTB HIP1R AVP(20-28) STON2 pS-ADRB2 DNM3 SGIP1 p-DVL2 p-T156 AP2M1 AP2A2(1-939) PL TAGs EGF ITSN2 UBA52(1-76) STON2 RPS27A(1-76) UBC(77-152) DNM:GTPTAGs ARFGAP1:ARF6:GTPSH3GL1 TRIP10 SH3GL1 SNX9 AP2S1 ACTR2 DNM1 ARPC5 SYNJ2 REPS1 NAd p-T156 AP2M1 PI(4,5)P2:p-T156AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GTPAP2B1 SYT11 EPN1 UBC(381-456) UBB(77-152) AP2B1 p-6Y-EGFR SNX18 LDLR GAK SYT8 p-AVPR2 HIP1R p-Y371-CBL SH3GL1 SH3KBP1 HIP1R VAMP3 N-WASP AP2A2(1-939) SNX9 BIN1 f-actin p-AVPR2 AP-2 dileucine-containing cargo PI4PPL ARPC4 ARRB1 CLTC SGIP1 AP2B1 TACR1 ARPC2 SYNJ2 EPN1 N4GlycoAsn-PalmS WNT5A(36-380) UBC(305-380) DAB2 PI(4)P:p-T156AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJs:auxilin:HSPA8:ATPARRB2 TAGs f-actin ACTR2 NECAP1 p-6Y-EGFR AGTR1 AP2B1 STON2 LDLR AP2M1 CLTB AGFG1 TRIP10 PACSIN2 AP2B1 REPS2 AP2A1 CHOL AP2M1 TGFA(24-98) ATPCHRM2 STON1 BTC(32-111) AP2A2(1-939) CLTB CHOL LDLRAP1 ARPC2 VAMP8 AP2A1 p-T156 AP2M1 CLTB TAGs PL AVP(20-28) SYT2 CLTB SNX9 VAMP3 TGFA(24-98) UBC(457-532) UBA52(1-76) SH3GL1 CTTN SYT9 UBC(609-684) UBC(381-456) VAMP8 SNX18 VAMP7 ADR EPGN(23-154) UBC(457-532) CLTA ACTR3 STAM2 FNBP1 DNAJC6 AP2S1 GGC-RAB5A UBA52(1-76) PI(4)P:p-T156AP-2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJs:auxilinITSN2 EGF DAB2 EPGN(23-154) ADPUBC(153-228) STAM UBB(1-76) p-AVPR2 APOB(28-4563) AGFG1 N4GlycoAsn-PalmS WNT5A(36-380) ARPC4 FCHO2 UBC(457-532) ARRB1 SH3GL1 PACSIN2 PACSIN3 APOB(28-4563) UBC(153-228) DNM2 p-Y371-CBL STAM CLTA NECAP1 AP2S1 BTC(32-111) ARRB1 CLTCL1 OCRL EPS15L1 SNX18 EPGN(23-154) AP2B1 REPS2 VAMP7 ITSN2 SYT9 SH3GL1 PICALM STAM ARRB1 ITSN1 PICALM CHOL CLTCL1 STAM2 AP2M1 HIP1R dimerSTAM UBB(77-152) PiCTTN PICALM BIN1 EPN2 PACSIN1 AMPH VAMP2 SYT11 AP-2 YXXPhi cargo UBC(153-228) VAMP8 AAK1ACTR3 SH3GL2 ADR REPS2 HSPA8 DAB2 CLTC VAMP3 ARPC2 CLTB SH3GL3 p-Y371-CBL AP-2 YXXPhi cargo GDP SYT8 UBA52(1-76) SYT9 p-6Y-EGFR pS-ADRB2 PI(4,5)P2:p-T156AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteinsCTTN p-6Y-EGFR UBC(609-684) UBB(153-228) CLTC AP-2 YXXPhi cargo AAK1 SH3GL3 CHRM2 HGS ARPC4 HGS AP-2 YXXPhi cargo SH3GL1 AMPH STON1 UBA52(1-76) FNBP1 EREG(60-108) AAK1 SYT1 FZD4 SYT1 UBC(77-152) CLTC p-Y850 EPS15 CLTB ATP HIP1 ARRB2 UBC(305-380) GGC-RAB5A AP2S1 UBB(1-76) UBB(77-152) N-WASP SGIP1 EPN1 PI(4,5)P2 CLTC PL ARPC3 UBC(153-228) AP2M1 SYT11 EPN1 STAM2 BTC(32-111) PI(4,5)P2:p-T156AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimerscholesterol esters p-T156 AP2M1 LRP2 ATP TGFA(24-98) VAMP3 TACR1 EPGN(23-154) p-Y371-CBL N-WASP EGF UBC(609-684) AAK1 BTC(32-111) FNBP1 FZD4 DNM1 AP2S1 PI4PEREG(60-108) SH3KBP1 CLTA AGTR1 FCHO1 AP2M1 AP2A2(1-939) AGFG1 BIN1 DAB2 cholesterol esters CLTC FNBP1 dimerAVPR2 FNBP1L HGS FCHO2 PL TRIP10 dimerTRIP10 CLTA SYNJ1 ACTR3 NECAP1 NECAP2 CLTCL1 HIP1 UBC(1-76) HGS SYT8 AGTR1 ARPC1A ARPC3 VAMP7 FZD4 UBC(77-152) CLASP proteins:cargoITSN1 EPS15L1 f-actin SNAP91 f-actinUBA52(1-76) STAM2 N4GlycoAsn-PalmS WNT5A(36-380) p-DVL2 UBC(381-456) CLTC ARRB1 SH3KBP1 AP2S1 UBC(305-380) AP-2 dileucine-containing cargo SYNJ1 GDP AP2M1 LDLRAP1 PL FCHO1,2 dimerPACSIN2 VAMP8 SNAP91 ITSN1 AP2A1 AVP(20-28) PICALM CHOL CLTCL1 AP2A1 EPN1 SYT8 ARRB1 CLTA SYT11 UBC(457-532) ARRB2 PL AGFG1 p-AVPR2 UBC(229-304) UBC(77-152) FZD4 AP2S1 UBC(381-456) PI(4,5)P2 TRIP10 UBC(229-304) UBC(609-684) SH3GL3 TACR1 UBB(77-152) SYT8 ARPC4 SH3GL3 EPN1 p-Y371-CBL VAMP2 EPS15L1 NECAP2 SYT1 f-actin EPGN(23-154) EGF FNBP1L DNM2 p-6Y-EGFR SNAP91 LRP2 HIP1 AP2S1 SH3GL2 ARPC5 VAMP7 UBB(153-228) UBC(153-228) VAMP3 EPN1 APOB(28-4563) UBB(153-228) UBC(381-456) UBA52(1-76) AP2A2(1-939) NAd LDLRAP1 p-T156 AP2M1 BIN1 APOB(28-4563) REPS2 SYT9 ITSN1 SNX9 STAM AP2A1 AP2B1 GGC-RAB5C LDLRAP1 CLTC REPS1 EPGN(23-154) CHOL N-WASP PACSIN3 AP2B1 VAMP7 SYT11 UBC(1-76) SNX18 UBC(533-608) STON2 AP2S1 SH3GL1 GGC-RAB5B SYNJs,OCRLCHRM2 CHRM2 SYT8 UBB(77-152) UBC(533-608) GAK ATPAP2M1 AP2S1 AGTR1 AP2S1 EPS15 UBB(153-228) CLTA ARPC5 VAMP3 PL ARPC3 FCHO1 AREG(101-187) AP2M1 p-Y371-CBL AP2A1 SH3KBP1 GAK FCHO2 AP2A2(1-939) ARPC4 AVP(20-28) DNM2 cholesterol esters ARPC2 HBEGF(63-148) PICALM NECAP1 VAMP3 p-6Y-EGFR AP-2 dileucine-containing cargo CLTC ARF6 SH3GL2 EGF VAMP3 UBC(1-76) ARPC4 SH3GL3 EPS15L1 ACTR2 PICALM UBC(229-304) HGS UBC(609-684) HIP1R PACSIN2 AREG(101-187) ACTR2 ARRB2 EPS15 AP2S1 HBEGF(63-148) STAM2 UBC(305-380) PIP5K1CAP2A2(1-939) AP2A2(1-939) UBC(609-684) p-Y850 EPS15 STON2 AAK1 p-6Y-EGFR SH3KBP1 p-DVL2 ARPC3 AP2A1 p-Y371-CBL SNAP91 ITSN2 UBC(77-152) AGTR1 HSPA8 CLTA STAM2 ARPC4 AP2B1 PACSIN3 AGTR1 EPN1 AP-2 dileucine-containing cargo LDLR CLTCL1 EPN2 CLTC EREG(60-108) AVP(20-28) SNAP91 AP2A2(1-939) AMPH DNM3 APOB(28-4563) NAd ACTR3 ADR SYT1 CLTC REPS2 UBC(77-152) ARPC2 APOB(28-4563) AP-2 YXXPhi cargo GTP UBC(609-684) ITSN1 p-6Y-EGFR p-Y371-CBL NAd AP2A2(1-939) SYT2 SYT1 CLTC PACSIN1 UBB(1-76) EPS15L1 SYNJ2 VAMP2 STON2 EPGN(23-154) EPS15 EPN1 GGC-RAB5A CLTCL1 ARPC1A ARRB2 f-actin UBB(1-76) p-DVL2 SNX18 UBC(381-456) p-6Y-EGFR TAGs DNM2 AAK1 LDLR SYT11 AVP(20-28) p-Y371-CBL EPS15 TACR1 p-Y850 EPS15 OCRL EPS15 AVP(20-28) ITSN1 EPS15 p-T156 AP2M1 SYT9 ACTR3 AP-2 dileucine-containing cargo HBEGF(63-148) HBEGF(63-148) p-6Y-EGFR N4GlycoAsn-PalmS WNT5A(36-380) AP2S1 VAMP8 STON1 AP2A2(1-939) AAK1 PACSIN2 AVPR2 EPN1 REPS1 ARPC3 AREG(101-187) UBC(457-532) H2OREPS1 CLTC EPGN(23-154) HBEGF(63-148) AREG(101-187) ATP AGFG1 TRIP10 UBA52(1-76) EGF ARPC4 AVP(20-28) ARRB1 SH3GL1 RPS27A(1-76) SGIP1 AGTR1 CHOL ACTR2 ADR AP2B1 AP2A1 AMPH SH3KBP1 SYT9 f-actin VAMP3 pS-ADRB2 AP2S1 FZD4 AP2A1 EPN2 VAMP2 SH3GL1 AREG(101-187) EPS15L1 AP2B1 SYT9 SYT2 UBB(1-76) AMPH HGS AP2B1 p-AVPR2 AP2M1 LDLRAP1 SH3GL2 AGFG1 UBC(457-532) CLTC HIP1R HBEGF(63-148) CHOL FCHO1 PACSIN2 N-WASP LDLR ITSN1 FNBP1 p-Y371-CBL GAPVD1 REPS1 ARP2/3 complexPICALM SH3GL3 UBC(1-76) REPS2 UBC(457-532) STON1 AGTR1 EPS15 VAMP2 SYNJ1 SH3GL2 REPS2 PACSIN3 AP2B1 UBC(609-684) CLTB pS-ADRB2 DNM2 UBC(229-304) VAMP3 REPS2 ADR ARRB1 AP2M1 UBB(1-76) CLASP proteins:cargoGRB2-1 SYNJ1 CLTC VAMP3 AVP(20-28) SYNJ1 APOB(28-4563) ATP TAGs HIP1 NAd clathrin:HSPA8:ADPCLTC ARPC2 UBA52(1-76) AREG(101-187) SNX9 SYT2 DNM2 FNBP1L p-T156 AP2M1 HIP1R EREG(60-108) FNBP1L CLTCL1 EREG(60-108) SYT8 PI(4,5)P2LDLR GDP CLTC RPS27A(1-76) cholesterol esters HIP1R TACR1 AP-2 YXXPhi cargo SH3GL3 FZD4 ITSN1 SYT11 AGFG1 SYT11 AGFG1 GDP NAd TGFA(24-98) FNBP1L SNX9 EPN1 PI(4,5)P2:AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1GAK DAB2 HSPA8 STON1 CLTCL1 TRIP10 CLTA DNM1 UBA52(1-76) EPGN(23-154) HBEGF(63-148) PICALM NAd UBC(533-608) CHRM2 SGIP1 pS-ADRB2 PACSIN3 SH3KBP1 SH3GL2 p-Y850 EPS15 EGF DAB2 LRP2 UBB(1-76) p-T156 AP2M1 DNAJC6 VAMP7 cholesterol esters p-DVL2 VAMP2 CLTCL1 RPS27A(1-76) CLTA UBC(1-76) ARPC5 SYT8 STAM TGFA(24-98) PICALM N-WASP CLTC AP2A2(1-939) SH3GL3 GTP UBC(533-608) LRP2 NECAP1 GRB2-1 ARPC3 AP2A1 VAMP7 H2OTAGs N4GlycoAsn-PalmS WNT5A(36-380) PI(4,5)P2 UBC(533-608) TRIP10 CTTN REPS1 ITSN2 SH3GLsp-DVL2 TGFA(24-98) AGTR1 AREG(101-187) PI(4,5)P2 ARPC5 SYNJ1 RPS27A(1-76) CLTCL1 PICALM CHRM2 SNX18 UBC(305-380) TGFA(24-98) Cargo recognitionforclathrin-mediatedendocytosisUBC(533-608) CLTA CTTN LDLRAP1 GGC-RAB5C CLTA UBB(77-152) SH3GL1 AVP(20-28) SNAP91 PACSIN1 DNM3 AP2S1 AP2M1 UBC(457-532) BIN1 cholesterol esters TRIP10 VAMP2 REPS2 PACSIN2 ARPC4 p-DVL2 UBC(77-152) AP2M1 AP-2 YXXPhi cargo SYT1 PI4P GRB2-1 SNX9,18FCHO1 AP2B1 UBB(1-76) ARPC1A HIP1 dimerACTR3 SGIP1UBC(1-76) UBC(533-608) DNM3 PACSIN3 SNAP91 cholesterol esters VAMP7 cholesterol esters AP2M1 VAMP2 HBEGF(63-148) UBC(153-228) ADR EREG(60-108) HBEGF(63-148) APOB(28-4563) DNM2 UBB(153-228) SNAP91 FNBP1 PL SYT1 SH3GL2 UBC(153-228) EPN2 EPN1 AP2M1 UBA52(1-76) ARRB1 UBC(457-532) SGIP1 AP-2 YXXPhi cargo UBC(305-380) AP-2 dileucine-containing cargo SH3GL3 PACSIN1 VAMP8 BTC(32-111) VAMP8 TGFA(24-98) ARRB2 ITSN2 PI(3,4)P2UBC(305-380) PI(4)P:p-T156AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJsBTC(32-111) PICALM SH3GL2 ITSN1 GTP HIP1 AAK1EPS15 SNX18 UBC(305-380) UBB(1-76) LDLR UBC(77-152) AP2A2(1-939) ADR VAMP8 UBC(305-380) SGIP1 AAK1 GRB2-1 CLTC ARRB1 SYT8 ATP SYT2 SH3GL2 AP2M1 SH3KBP1 p-Y850 EPS15 EGF PICALM AP-2 dileucine-containing cargo DNM1 NAd BTC(32-111) EPS15 GRB2-1 HGS REPS1PI(4,5)P2:p-T156AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:PIK3C2AUBC(229-304) PI4P AP2A1 NAd SGIP1 SYT1 AP-2 YXXPhi cargo CHOL SNX9 AP2M1 CLTB UBC(153-228) NECAP1 AMPH CTTN FZD4 DNM1 STON2 ADR SYT2 ARPC4 SYT2 pS-ADRB2 UBB(77-152) ITSN1 cholesterol esters SH3GL3 DNAJC6 EPS15 AP2M1 ARPC4 FNBP1L EREG(60-108) NAd PI(4,5)P2 STAM2 EPN2 AP2A1 PICALM ITSN2 UBC(229-304) CLTA SH3KBP1 pS-ADRB2 GRB2-1 UBC(153-228) PACSIN2 SNAP91 AP2A2(1-939) LRP2 PL GGC-RAB5:GTP:GAPVD1STAM FNBP1L AGFG1 SNX9 SH3GL3 AMPH AGFG1 p-6Y-EGFR p-Y850 EPS15 DNAJC6 PI4P VAMP8 ACTR2 FCHO1 DNAJC6 AP2B1 EPS15L1 LRP2 GAPVD1 UBB(1-76) AGTR1 LRP2 STAM LDLR EREG(60-108) AGFG1 cholesterol esters ITSN1 FNBP1 GRB2-1 CLTC AP2A2(1-939) PI4P GDP AP2A1 AGFG1 BIN1 EPGN(23-154) AVPR2 NECAP1 NECAP2 PACSIN1 SNAP91 CLTC ITSN1 AP2B1 RPS27A(1-76) p-Y850 EPS15 UBC(381-456) ITSN1 LDLR EPN1 AP-2 dileucine-containing cargo UBC(153-228) GGC-RAB5C UBC(153-228) SH3GL2 cholesterol esters UBC(1-76) p-Y371-CBL REPS2 TACR1 VAMP7 RPS27A(1-76) DNM3 p-AVPR2 p-6Y-EGFR PI4P LRP2 SH3GL2 LDLR UBC(457-532) STAM2 CLTCL1 AP2M1 EPN1 ADR AP-2 YXXPhi cargo AP2S1 EPN2 UBC(153-228) DNM1 ITSN1 STAM2 LDLRAP1 CLTB VAMP7 DAB2 PACSIN3 ARPC1A OCRL SYT9 FNBP1L STAM2 GAPVD1 AP2A2(1-939) RPS27A(1-76) EGF AP-2 dileucine-containing cargo SYT9 VAMP8 ADPN4GlycoAsn-PalmS WNT5A(36-380) FZD4 CHRM2 AVPR2 CLTA N-WASP DNM1 DNM1 AMPH TACR1 TAGs ITSN2 NECAP1 ATP LRP2 p-Y371-CBL EPN1 SH3GL2 DAB2 STAM AVPR2 GDP PI(4)P:p-T156AP-2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJs:auxilinGGC-RAB5:GTP:GAPVD1N-WASP STON2 CLTCL1 AP2A2(1-939) PACSIN2 STAM CTTN CLTA REPS1 LRP2 HIP1R APOB(28-4563) VAMP8 DAB2 EPN1 REPS1 AP2A2(1-939) CHOL GRB2-1 ARRB2 REPS1 EPN2 EPS15 NECAP2 AP2M1 UBC(77-152) CLTCL1 EPN1 TAGs SH3GL3 ADR NECAP1 SH3KBP1 STON1 AP-2 dileucine-containing cargo SNX9 AP2A1 LDLRAP1 BTC(32-111) FCHO2 UBB(153-228) EPS15 VAMP2 EPS15L1 PACSIN dimersACTR2 ARPC2 ATP PI(4,5)P2:p-T156AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GTP:SYNJsUBC(153-228) BTC(32-111) p-DVL2 AP2M1 AAK1 UBC(77-152) ARPC1A STON1 AP2B1 EPN2 ARFGAP1 AP2S1 ARRB1 CLTC ITSN2 GRB2-1 AP-2 YXXPhi cargo UBB(1-76) PIK3C2AAAK1 PACSIN2 STON2 AVPR2 GRB2-1 PI(4)P:p-T156AP-2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJs:auxilinLDLRAP1 TGFA(24-98) STAM NAd PiBIN1 UBC(1-76) ARPC1A FCHO2 STAM PACSIN3 SH3GL3 CTTN N4GlycoAsn-PalmS WNT5A(36-380) EGF EPGN(23-154) DNM2 AP2B1 p-Y371-CBL NECAP2 TACR1 SYT8 SYT2 UBC(381-456) TAGs TAGs RPS27A(1-76) STAM SGIP1 TAGs AP2A2(1-939) AMPH UBB(153-228) STON1 TRIP10 p-T156 AP2M1 N-WASP AVPR2 AP2A2(1-939) VAMP2 AP2S1 AP-2 dileucine-containing cargo STON2 VAMP8 SYNJ1 UBC(381-456) AP2A1 AP-2 dileucine-containing cargo ATP CLTC ITSN2 ARRB2 VAMP3 REPS1 AAK1 NECAP2 p-Y850 EPS15 UBC(305-380) UBC(1-76) ARPC5 AP2A1 STON1 AP2S1 UBC(77-152) TACR1 TGFA(24-98) REPS2 EPN2 SYT11 NECAP1 SYT9 STAM FZD4 AVP(20-28) SNAP91 CLTA VAMP7 EPS15L1 SYT2 OCRL ADR SYT11 GTP GDP OCRL REPS1 EPN1 CLTA UBB(153-228) EREG(60-108) p-T156 AP2M1 ACTR3 GDP UBB(77-152) HIP1 AP2M1 LDLR EPS15 UBC(229-304) REPS2 p-T156 AP2M1 ARPC3 ADPSNAP91 FZD4 SNAP91 AP2A2(1-939) UBC(305-380) EREG(60-108) EPN2 p-6Y-EGFR UBC(77-152) SNAP91 AP2A2(1-939) EPN2 ARPC5 PACSIN2 ARPC2 APOB(28-4563) PI(4,5)P2 PACSIN1 CHRM2 UBB(153-228) EPN1 N4GlycoAsn-PalmS WNT5A(36-380) HIP1R UBC(77-152) ARRB2 p-Y850 EPS15 AVP(20-28) SYNJ1 AP2S1 SYT1 BIN1 TGFA(24-98) TACR1 PI4P DNM3 ATPSTAM2 REPS2 SH3GL3 pS-ADRB2 GTP CTTN CLTC FNBP1L dimerREPS1 CLTB UBC(609-684) PACSIN1 STAM2 p-Y371-CBL DNM3 UBB(153-228) NECAP2 CLTA UBC(609-684) EREG(60-108) AP2B1 pS-ADRB2 GRB2-1 UBC(609-684) RPS27A(1-76) STAM UBC(77-152) pS-ADRB2 UBC(77-152) HGS HBEGF(63-148) AMPH SYT2 AP2M1 AP2S1 CLTB UBC(1-76) VAMP8 GTP UBC(533-608) NECAP2 ARRB2 CLTA REPS2 ARPC3 UBB(153-228) TGFA(24-98) HSPA8:ATPNECAP2 AP-2 dileucine-containing cargo p-6Y-EGFR PACSIN2 REPS1 UBC(1-76) UBC(1-76) CLTA STON1 AVP(20-28) CHRM2 DAB2 AGTR1 ATP FNBP1 p-Y371-CBL AGFG1 UBC(609-684) UBB(77-152) NAd HIP1 f-actin DNM3 APOB(28-4563) ARPC2 ARPC2 AREG(101-187) LRP2 FNBP1 UBC(153-228) AP2M1 PI(4,5)P2 p-T156 AP2M1 SYNJ2 CHOL BTC(32-111) AP-2 dileucine-containing cargo REPS1 EGF UBC(609-684) EREG(60-108) EPN2 SH3GL3 CLTB LDLRAP1 ARPC2 FZD4 UBB(153-228) p-Y850 EPS15 ARRB1 VAMP7 SNX18 UBA52(1-76) UBC(457-532) LRP2 AP2A1 LDLRAP1 SNX18 DNM3 REPS1 UBB(153-228) ITSN1 N4GlycoAsn-PalmS WNT5A(36-380) TACR1 FNBP1L VAMP3 HBEGF(63-148) ARRB1 EGF UBC(381-456) AAK1 GAK HIP1R SYT2 UBC(229-304) GAK,DNAJC6SYNJ2 CLTC p-DVL2 EGF UBB(77-152) AP-2 YXXPhi cargo GRB2-1 EPGN(23-154) UBB(77-152) TACR1 PL ADR pS-ADRB2 TGFA(24-98) CLTA SYT1 AP2S1 TRIP10 UBC(1-76) CLTA EPS15L1 STAM2 UBC(229-304) EPS15 EPGN(23-154) AP2M1 FCHO1 AP2A1 ITSN2 AP2B1 SH3KBP1 CLTA VAMP8 NECAP2 ATP UBC(609-684) VAMP7 SNX9 CHRM2 ARPC5 SH3KBP1 GAPVD1 ATP SYT11 AP2A2(1-939) AAK1 SYT11 AGFG1 UBC(229-304) ITSNsCLTA SH3GL2 DAB2 AP2M1 UBC(533-608) AP2B1 ITSN2 PACSIN3 EPGN(23-154) SNAP91 SH3GL2 AP2A1 CTTN LDLRAP1 SGIP1 AMPH DNM2 AP2A1 FNBP1 UBB(153-228) STON2 DNM1 HGS SNX18 AREG(101-187) ARPC5 STON1 GRB2-1 UBC(609-684) ARPC1A EPS15 APOB(28-4563) PI(4)P:p-T156AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GTP:SYNJsGGC-RAB5C ACTR2 AP2A1 N-WASP SYT8 HBEGF(63-148) HGS FNBP1 AP2A1 CHRM2 UBB(77-152) SYNJ2 ARPC5 ACTR2 ARPC1A ARPC3 SYT1 UBB(77-152) FNBP1 PI(4,5)P2:AP-2:clathrinUBC(229-304) NECAP2 TAGs UBC(153-228) RPS27A(1-76) DAB2 ARRB2 UBB(1-76) AP2B1 SYT2 AP-2 YXXPhi cargo PL VAMP2 PIK3C2A PI4P VAMP7 DNAJC6 STAM2 AREG(101-187) N4GlycoAsn-PalmS WNT5A(36-380) AP2A1 BTC(32-111) PL p-DVL2 UBB(1-76) NECAP1 p-DVL2 SYT2 VAMP2 HIP1 NECAP2 AMPH:BIN1LRP2 NAd AGFG1 OCRL UBA52(1-76) CLTC CLTB AVP(20-28) HGS UBC(533-608) APOB(28-4563) NECAP1 EPS15 SH3GL1 EPN1 EREG(60-108) TACR1 AP-2 YXXPhi cargo ARRB2 p-6Y-EGFR BIN1 CLTB STON2 HBEGF(63-148) UBC(533-608) SNX9 p-DVL2 AP2A1 HGS NECAP2 AP-2 ComplexVAMP2 UBB(153-228) TAGs DNM:GDPTRIP10 LDLR CLTA PACSIN3 CLTC pS-ADRB2 BIN1 AP-2 YXXPhi cargo NECAP1 p-DVL2 TRIP10 CLTCL1 NECAP2 AGTR1 UBC(381-456) AP2S1 PACSIN1 AP2A2(1-939) ARRB2 HIP1 AAK1 SH3KBP1 SYT1 HBEGF(63-148) STON1 UBC(457-532) EPN2 AP2A2(1-939) TAGs CHRM2 FZD4 p-Y850 EPS15 EPS15L1 EPS15L1 f-actin PiAP2A1 FNBP1 OCRL p-DVL2 BTC(32-111) SYT8 RPS27A(1-76) AP2B1 NAd LDLRAP1 AP2B1 EPS15 NECAPsFZD4 FZD4 AP2B1 SYT2 AP2B1 STAM2 AP2S1 EPS15L1 WASL,CTTNSNX18 ATP DNM2 ACTR3 REPS1 RPS27A(1-76) UBC(533-608) AREG(101-187) N-WASP AREG(101-187) ARRB2 UBB(77-152) CHRM2 UBC(457-532) SYT11 p-Y371-CBL ACTR2 NECAP1 p-Y371-CBL UBC(381-456) FNBP1L p-Y371-CBL LDLR SH3GL2 AP2S1 N4GlycoAsn-PalmS WNT5A(36-380) f-actin AP2A1 ADR SH3GL2 BIN1 HGS SYT9 SYT11 PI(4,5)P2 p-T156 AP2M1 p-Y850 EPS15 pS-ADRB2 p-Y371-CBL DAB2 GGC-RAB5B UBC(1-76) UBB(1-76) AP-2 ComplexEREG(60-108) UBA52(1-76) STON2 AP2A2(1-939) AP2A2(1-939) PACSIN3 SYNJ1 UBA52(1-76) SYT2 p-DVL2 SYT8 AREG(101-187) SGIP1 UBB(77-152) ADR AP2A1 pS-ADRB2 H2OVAMP2 UBC(533-608) FCHO2 CLTCL1 NECAP1 EPS15L1 GGC-RAB5B SYNJ2 UBB(1-76) AP2S1 ACTR3 OCRL LRP2 BTC(32-111) GRB2-1 N4GlycoAsn-PalmS WNT5A(36-380) NECAP2 AP-2 dileucine-containing cargo ARPC1A AGTR1 UBC(381-456) PACSIN1 ARPC3 GAK SYT1 GGC-RAB5A p-Y371-CBL REPS2 CLTA AP2M1 UBC(533-608) CHRM2 SH3GL3 UBC(229-304) PICALM EGF AGTR1 CHOL ACTR3 p-Y371-CBL BTC(32-111) ARRB1 RPS27A(1-76) SYT9 SYT1 EPGN(23-154) FZD4 DNM1 SYT9 cholesterol esters EPS15L1 ITSN2 AP2B1 CLTA STON1 AAK1 ITSN1 pS-ADRB2 N4GlycoAsn-PalmS WNT5A(36-380) DAB2 LDLRAP1 PICALM 28, 31, 47, 49, 64...28, 31, 47, 49, 64...8, 14, 36, 48, 7712, 2128, 31, 49, 64, 72...28, 31, 49, 64, 72...8, 14, 36, 48, 778, 14, 36, 48, 778, 14, 36, 48, 778, 14, 36, 48, 7728, 31, 49, 64, 72...8, 14, 36, 48, 7728, 31, 47, 49, 64...28, 31, 47, 49, 64...8, 14, 36, 48, 778, 14, 36, 48, 778, 14, 36, 48, 778, 14, 36, 48, 7728, 31, 49, 64, 72...28, 31, 47, 49, 64...28, 31, 49, 64, 72...28, 31, 47, 49, 64...28, 31, 47, 49, 64...8, 14, 36, 48, 778, 14, 36, 48, 7728, 31, 49, 64, 72...21, 51, 59, 80, 110...8, 14, 36, 48, 778, 14, 36, 48, 778, 14, 36, 48, 7728, 31, 49, 64, 72...28, 31, 47, 49, 64...


Description

Clathrin-mediated endocytosis (CME) is one of a number of process that control the uptake of material from the plasma membrane, and leads to the formation of clathrin-coated vesicles (Pearse et al, 1975; reviewed in Robinson, 2015; McMahon and Boucrot, 2011; Kirchhausen et al, 2014). CME contributes to signal transduction by regulating the cell surface expression and signaling of receptor tyrosine kinases (RTKs) and G-protein coupled receptors (GPCRs). Most RTKs exhibit a robust increase in internalization rate after binding specific ligands; however, some RTKs may also exhibit significant ligand-independent internalization (reviewed in Goh and Sorkin, 2013). CME controls RTK and GPCR signaling by organizing signaling both within the plasma membrane and on endosomes (reviewed in Eichel et al, 2016; Garay et al, 2015; Vieira et al, 1996; Sorkin and von Zastrow, 2014; Di Fiori and von Zastrow, 2014; Barbieri et al, 2016). CME also contributes to the uptake of material such as metabolites, hormones and other proteins from the extracellular space, and regulates membrane composition by recycling membrane components and/or targeting them for degradation.


Clathrin-mediated endocytosis involves initiation of clathrin-coated pit (CCP) formation, cargo selection, coat assembly and stabilization, membrane scission and vesicle uncoating. Although for simplicity in this pathway, the steps leading to a mature CCP are represented in a linear and temporally distinct fashion, the formation of a clathrin-coated vesicle is a highly heterogeneous process and clear temporal boundaries between these processes may not exist (see for instance Taylor et al, 2011; Antonescu et al, 2011; reviewed in Kirchhausen et al, 2014). Cargo selection in particular is a critical aspect of the formation of a mature and stable CCP, and many of the proteins involved in the initiation and maturation of a CCP contribute to cargo selection and are themselves stabilized upon incorporation of cargo into the nascent vesicle (reviewed in Kirchhausen et al, 2014; McMahon and Boucrot, 2011).



Although the clathrin triskelion was identified early as a major component of the coated vesicles, clathrin does not bind directly to membranes or to the endocytosed cargo. Vesicle formation instead relies on many proteins and adaptors that can bind the plasma membrane and interact with cargo molecules. Cargo selection depends on the recognition of endocytic signals in cytoplasmic tails of the cargo proteins by adaptors that interact with components of the vesicle's inner coat. The classic adaptor for clathrin-coated vesicles is the tetrameric AP-2 complex, which along with clathrin was identified early as a major component of the coat. Some cargo indeed bind directly to AP-2, but subsequent work has revealed a large family of proteins collectively known as CLASPs (clathrin- associated sorting proteins) that mediate the recruitment of diverse cargo into the emerging clathrin-coated vesicles (reviewed in Traub and Bonifacino, 2013). Many of these CLASP proteins themselves interact with AP-2 and clathrin, coordinating cargo recruitment with coat formation (Schmid et al, 2006; Edeling et al, 2006; reviewed in Traub and Bonifacino, 2013; Kirchhausen et al, 2014).


Initiation of CCP formation is also influenced by lipid composition, regulated by clathrin-associated phosphatases and kinases (reviewed in Picas et al, 2016). The plasma membrane is enriched in PI(4,5)P2. Many of the proteins involved in initiating clathrin-coated pit formation bind to PI(4,5)P2 and induce membrane curvature through their BAR domains (reviewed in McMahon and Boucrot, 2011; Daumke et al, 2014). Epsin also contributes to early membrane curvature through its Epsin N-terminal homology (ENTH) domain, which promotes membrane curvature by inserting into the lipid bilayer (Ford et al, 2002).

Following initiation, some CCPs progress to formation of vesicles, while others undergo disassembly at the cell surface without producing vesicles (Ehrlich et al, 2004; Loerke et al, 2009; Loerke et al, 2011; Aguet et al, 2013; Taylor et al, 2011). The assembly and stabilization of nascent CCPs is regulated by several proteins and lipids (Mettlen et al, 2009; Antonescu et al, 2011).


Maturation of the emerging clathrin-coated vesicle is accompanied by further changes in the lipid composition of the membrane and increased membrane curvature, promoted by the recruitment of N-BAR domain containing proteins (reviewed in Daumke et al, 2014; Ferguson and De Camilli, 2012; Picas et al, 2016). Some N-BAR domain containing proteins also contribute to the recruitment of the large GTPase dynamin, which is responsible for scission of the mature vesicle from the plasma membrane (Koh et al, 2007; Lundmark and Carlsson, 2003; Soulet et al, 2005; David et al, 1996; Owen et al, 1998; Shupliakov et al, 1997; Taylor et al, 2011; Ferguson et al, 2009; Aguet et al, 2013; Posor et al, 2013; Chappie et al, 2010; Shnyrova et al, 2013; reviewed in Mettlen et al, 2009; Daumke et al, 2014). After vesicle scission, the clathrin coat is dissociated from the new vesicle by the ATPase HSPA8 (also known as HSC70) and its DNAJ cofactor auxilin, priming the vesicle for fusion with a subsequent endocytic compartment and releasing clathrin for reuse (reviewed in McMahon and Boucrot, 2011; Sousa and Laufer, 2015). View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 8856828
Reactome-version 
Reactome version: 74
Reactome Author 
Reactome Author: Rothfels, Karen

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Shupliakov O, Löw P, Grabs D, Gad H, Chen H, David C, Takei K, De Camilli P, Brodin L.; ''Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions.''; PubMed Europe PMC Scholia
  2. Brett TJ, Traub LM, Fremont DH.; ''Accessory protein recruitment motifs in clathrin-mediated endocytosis.''; PubMed Europe PMC Scholia
  3. Saffarian S, Cocucci E, Kirchhausen T.; ''Distinct dynamics of endocytic clathrin-coated pits and coated plaques.''; PubMed Europe PMC Scholia
  4. Rawet M, Levi-Tal S, Szafer-Glusman E, Parnis A, Cassel D.; ''ArfGAP1 interacts with coat proteins through tryptophan-based motifs.''; PubMed Europe PMC Scholia
  5. Collawn JF, Stangel M, Kuhn LA, Esekogwu V, Jing SQ, Trowbridge IS, Tainer JA.; ''Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis.''; PubMed Europe PMC Scholia
  6. Gallop JL, McMahon HT.; ''BAR domains and membrane curvature: bringing your curves to the BAR.''; PubMed Europe PMC Scholia
  7. Yarar D, Waterman-Storer CM, Schmid SL.; ''SNX9 couples actin assembly to phosphoinositide signals and is required for membrane remodeling during endocytosis.''; PubMed Europe PMC Scholia
  8. Chang-Ileto B, Frere SG, Chan RB, Voronov SV, Roux A, Di Paolo G.; ''Synaptojanin 1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission.''; PubMed Europe PMC Scholia
  9. Lundmark R, Carlsson SR.; ''Sorting nexin 9 participates in clathrin-mediated endocytosis through interactions with the core components.''; PubMed Europe PMC Scholia
  10. Sousa R, Lafer EM.; ''The role of molecular chaperones in clathrin mediated vesicular trafficking.''; PubMed Europe PMC Scholia
  11. Chappie JS, Acharya S, Leonard M, Schmid SL, Dyda F.; ''G domain dimerization controls dynamin's assembly-stimulated GTPase activity.''; PubMed Europe PMC Scholia
  12. Fotin A, Cheng Y, Grigorieff N, Walz T, Harrison SC, Kirchhausen T.; ''Structure of an auxilin-bound clathrin coat and its implications for the mechanism of uncoating.''; PubMed Europe PMC Scholia
  13. Beck KA, Keen JH.; ''Interaction of phosphoinositide cycle intermediates with the plasma membrane-associated clathrin assembly protein AP-2.''; PubMed Europe PMC Scholia
  14. Milosevic I, Giovedi S, Lou X, Raimondi A, Collesi C, Shen H, Paradise S, O'Toole E, Ferguson S, Cremona O, De Camilli P.; ''Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission.''; PubMed Europe PMC Scholia
  15. Itoh T, Erdmann KS, Roux A, Habermann B, Werner H, De Camilli P.; ''Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins.''; PubMed Europe PMC Scholia
  16. Mani M, Lee SY, Lucast L, Cremona O, Di Paolo G, De Camilli P, Ryan TA.; ''The dual phosphatase activity of synaptojanin1 is required for both efficient synaptic vesicle endocytosis and reavailability at nerve terminals.''; PubMed Europe PMC Scholia
  17. McLauchlan H, Newell J, Morrice N, Osborne A, West M, Smythe E.; ''A novel role for Rab5-GDI in ligand sequestration into clathrin-coated pits.''; PubMed Europe PMC Scholia
  18. Stimpson HE, Toret CP, Cheng AT, Pauly BS, Drubin DG.; ''Early-arriving Syp1p and Ede1p function in endocytic site placement and formation in budding yeast.''; PubMed Europe PMC Scholia
  19. Liu AP, Aguet F, Danuser G, Schmid SL.; ''Local clustering of transferrin receptors promotes clathrin-coated pit initiation.''; PubMed Europe PMC Scholia
  20. Edeling MA, Mishra SK, Keyel PA, Steinhauser AL, Collins BM, Roth R, Heuser JE, Owen DJ, Traub LM.; ''Molecular switches involving the AP-2 beta2 appendage regulate endocytic cargo selection and clathrin coat assembly.''; PubMed Europe PMC Scholia
  21. Modregger J, Ritter B, Witter B, Paulsson M, Plomann M.; ''All three PACSIN isoforms bind to endocytic proteins and inhibit endocytosis.''; PubMed Europe PMC Scholia
  22. David C, McPherson PS, Mundigl O, de Camilli P.; ''A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals.''; PubMed Europe PMC Scholia
  23. Jackson AP, Flett A, Smythe C, Hufton L, Wettey FR, Smythe E.; ''Clathrin promotes incorporation of cargo into coated pits by activation of the AP2 adaptor micro2 kinase.''; PubMed Europe PMC Scholia
  24. Conner SD, Schröter T, Schmid SL.; ''AAK1-mediated micro2 phosphorylation is stimulated by assembled clathrin.''; PubMed Europe PMC Scholia
  25. Shin N, Lee S, Ahn N, Kim SA, Ahn SG, YongPark Z, Chang S.; ''Sorting nexin 9 interacts with dynamin 1 and N-WASP and coordinates synaptic vesicle endocytosis.''; PubMed Europe PMC Scholia
  26. Johannessen LE, Pedersen NM, Pedersen KW, Madshus IH, Stang E.; ''Activation of the epidermal growth factor (EGF) receptor induces formation of EGF receptor- and Grb2-containing clathrin-coated pits.''; PubMed Europe PMC Scholia
  27. Letourneur F, Klausner RD.; ''A novel di-leucine motif and a tyrosine-based motif independently mediate lysosomal targeting and endocytosis of CD3 chains.''; PubMed Europe PMC Scholia
  28. Schmidt U, Briese S, Leicht K, Schürmann A, Joost HG, Al-Hasani H.; ''Endocytosis of the glucose transporter GLUT8 is mediated by interaction of a dileucine motif with the beta2-adaptin subunit of the AP-2 adaptor complex.''; PubMed Europe PMC Scholia
  29. Owen DJ, Wigge P, Vallis Y, Moore JD, Evans PR, McMahon HT.; ''Crystal structure of the amphiphysin-2 SH3 domain and its role in the prevention of dynamin ring formation.''; PubMed Europe PMC Scholia
  30. Levecque C, Velayos-Baeza A, Holloway ZG, Monaco AP.; ''The dyslexia-associated protein KIAA0319 interacts with adaptor protein 2 and follows the classical clathrin-mediated endocytosis pathway.''; PubMed Europe PMC Scholia
  31. Huang F, Khvorova A, Marshall W, Sorkin A.; ''Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference.''; PubMed Europe PMC Scholia
  32. Henne WM, Boucrot E, Meinecke M, Evergren E, Vallis Y, Mittal R, McMahon HT.; ''FCHo proteins are nucleators of clathrin-mediated endocytosis.''; PubMed Europe PMC Scholia
  33. Barouch W, Prasad K, Greene L, Eisenberg E.; ''Auxilin-induced interaction of the molecular chaperone Hsc70 with clathrin baskets.''; PubMed Europe PMC Scholia
  34. Faller EM, Ghazawi FM, Cavar M, MacPherson PA.; ''IL-7 induces clathrin-mediated endocytosis of CD127 and subsequent degradation by the proteasome in primary human CD8 T cells.''; PubMed Europe PMC Scholia
  35. Ford MG, Jenni S, Nunnari J.; ''The crystal structure of dynamin.''; PubMed Europe PMC Scholia
  36. Boulant S, Kural C, Zeeh JC, Ubelmann F, Kirchhausen T.; ''Actin dynamics counteract membrane tension during clathrin-mediated endocytosis.''; PubMed Europe PMC Scholia
  37. Bai M, Gad H, Turacchio G, Cocucci E, Yang JS, Li J, Beznoussenko GV, Nie Z, Luo R, Fu L, Collawn JF, Kirchhausen T, Luini A, Hsu VW.; ''ARFGAP1 promotes AP-2-dependent endocytosis.''; PubMed Europe PMC Scholia
  38. Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M.; ''Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments.''; PubMed Europe PMC Scholia
  39. Metzler M, Legendre-Guillemin V, Gan L, Chopra V, Kwok A, McPherson PS, Hayden MR.; ''HIP1 functions in clathrin-mediated endocytosis through binding to clathrin and adaptor protein 2.''; PubMed Europe PMC Scholia
  40. Ritter B, Denisov AY, Philie J, Allaire PD, Legendre-Guillemin V, Zylbergold P, Gehring K, McPherson PS.; ''The NECAP PHear domain increases clathrin accessory protein binding potential.''; PubMed Europe PMC Scholia
  41. Picas L, Gaits-Iacovoni F, Goud B.; ''The emerging role of phosphoinositide clustering in intracellular trafficking and signal transduction.''; PubMed Europe PMC Scholia
  42. Ritter B, Murphy S, Dokainish H, Girard M, Gudheti MV, Kozlov G, Halin M, Philie J, Jorgensen EM, Gehring K, McPherson PS.; ''NECAP 1 regulates AP-2 interactions to control vesicle size, number, and cargo during clathrin-mediated endocytosis.''; PubMed Europe PMC Scholia
  43. Wandinger-Ness A, Zerial M.; ''Rab proteins and the compartmentalization of the endosomal system.''; PubMed Europe PMC Scholia
  44. Lemmon SK.; ''Clathrin uncoating: Auxilin comes to life.''; PubMed Europe PMC Scholia
  45. Faelber K, Posor Y, Gao S, Held M, Roske Y, Schulze D, Haucke V, Noé F, Daumke O.; ''Crystal structure of nucleotide-free dynamin.''; PubMed Europe PMC Scholia
  46. Eichel K, Jullié D, von Zastrow M.; ''β-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation.''; PubMed Europe PMC Scholia
  47. Greener T, Zhao X, Nojima H, Eisenberg E, Greene LE.; ''Role of cyclin G-associated kinase in uncoating clathrin-coated vesicles from non-neuronal cells.''; PubMed Europe PMC Scholia
  48. Shin N, Ahn N, Chang-Ileto B, Park J, Takei K, Ahn SG, Kim SA, Di Paolo G, Chang S.; ''SNX9 regulates tubular invagination of the plasma membrane through interaction with actin cytoskeleton and dynamin 2.''; PubMed Europe PMC Scholia
  49. Guan R, Dai H, Harrison SC, Kirchhausen T.; ''Structure of the PTEN-like region of auxilin, a detector of clathrin-coated vesicle budding.''; PubMed Europe PMC Scholia
  50. Robinson MS.; ''Forty Years of Clathrin-coated Vesicles.''; PubMed Europe PMC Scholia
  51. Böcking T, Aguet F, Harrison SC, Kirchhausen T.; ''Single-molecule analysis of a molecular disassemblase reveals the mechanism of Hsc70-driven clathrin uncoating.''; PubMed Europe PMC Scholia
  52. Verstreken P, Koh TW, Schulze KL, Zhai RG, Hiesinger PR, Zhou Y, Mehta SQ, Cao Y, Roos J, Bellen HJ.; ''Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating.''; PubMed Europe PMC Scholia
  53. Kelly BT, McCoy AJ, Späte K, Miller SE, Evans PR, Höning S, Owen DJ.; ''A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex.''; PubMed Europe PMC Scholia
  54. Hunker CM, Galvis A, Kruk I, Giambini H, Veisaga ML, Barbieri MA.; ''Rab5-activating protein 6, a novel endosomal protein with a role in endocytosis.''; PubMed Europe PMC Scholia
  55. Dergai O, Novokhatska O, Dergai M, Skrypkina I, Tsyba L, Moreau J, Rynditch A.; ''Intersectin 1 forms complexes with SGIP1 and Reps1 in clathrin-coated pits.''; PubMed Europe PMC Scholia
  56. Schuske KR, Richmond JE, Matthies DS, Davis WS, Runz S, Rube DA, van der Bliek AM, Jorgensen EM.; ''Endophilin is required for synaptic vesicle endocytosis by localizing synaptojanin.''; PubMed Europe PMC Scholia
  57. Hollopeter G, Lange JJ, Zhang Y, Vu TN, Gu M, Ailion M, Lambie EJ, Slaughter BD, Unruh JR, Florens L, Jorgensen EM.; ''The membrane-associated proteins FCHo and SGIP are allosteric activators of the AP2 clathrin adaptor complex.''; PubMed Europe PMC Scholia
  58. Scheele U, Kalthoff C, Ungewickell E.; ''Multiple interactions of auxilin 1 with clathrin and the AP-2 adaptor complex.''; PubMed Europe PMC Scholia
  59. Ricotta D, Conner SD, Schmid SL, von Figura K, Honing S.; ''Phosphorylation of the AP2 mu subunit by AAK1 mediates high affinity binding to membrane protein sorting signals.''; PubMed Europe PMC Scholia
  60. Höning S, Ricotta D, Krauss M, Späte K, Spolaore B, Motley A, Robinson M, Robinson C, Haucke V, Owen DJ.; ''Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2.''; PubMed Europe PMC Scholia
  61. Rapoport I, Boll W, Yu A, Böcking T, Kirchhausen T.; ''A motif in the clathrin heavy chain required for the Hsc70/auxilin uncoating reaction.''; PubMed Europe PMC Scholia
  62. Boucrot E, Saffarian S, Zhang R, Kirchhausen T.; ''Roles of AP-2 in clathrin-mediated endocytosis.''; PubMed Europe PMC Scholia
  63. Nández R, Balkin DM, Messa M, Liang L, Paradise S, Czapla H, Hein MY, Duncan JS, Mann M, De Camilli P.; ''A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe syndrome cells.''; PubMed Europe PMC Scholia
  64. Rothnie A, Clarke AR, Kuzmic P, Cameron A, Smith CJ.; ''A sequential mechanism for clathrin cage disassembly by 70-kDa heat-shock cognate protein (Hsc70) and auxilin.''; PubMed Europe PMC Scholia
  65. Nunez D, Antonescu C, Mettlen M, Liu A, Schmid SL, Loerke D, Danuser G.; ''Hotspots organize clathrin-mediated endocytosis by efficient recruitment and retention of nucleating resources.''; PubMed Europe PMC Scholia
  66. Palacios F, Schweitzer JK, Boshans RL, D'Souza-Schorey C.; ''ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly.''; PubMed Europe PMC Scholia
  67. Ritter B, Philie J, Girard M, Tung EC, Blondeau F, McPherson PS.; ''Identification of a family of endocytic proteins that define a new alpha-adaptin ear-binding motif.''; PubMed Europe PMC Scholia
  68. Schlossman DM, Schmid SL, Braell WA, Rothman JE.; ''An enzyme that removes clathrin coats: purification of an uncoating ATPase.''; PubMed Europe PMC Scholia
  69. Thieman JR, Mishra SK, Ling K, Doray B, Anderson RA, Traub LM.; ''Clathrin regulates the association of PIPKIgamma661 with the AP-2 adaptor beta2 appendage.''; PubMed Europe PMC Scholia
  70. Stenmark H.; ''Rab GTPases as coordinators of vesicle traffic.''; PubMed Europe PMC Scholia
  71. Soohoo AL, Puthenveedu MA.; ''Divergent modes for cargo-mediated control of clathrin-coated pit dynamics.''; PubMed Europe PMC Scholia
  72. Jadot M, Canfield WM, Gregory W, Kornfeld S.; ''Characterization of the signal for rapid internalization of the bovine mannose 6-phosphate/insulin-like growth factor-II receptor.''; PubMed Europe PMC Scholia
  73. Henne WM, Kent HM, Ford MG, Hegde BG, Daumke O, Butler PJ, Mittal R, Langen R, Evans PR, McMahon HT.; ''Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature.''; PubMed Europe PMC Scholia
  74. Mao Y, Balkin DM, Zoncu R, Erdmann KS, Tomasini L, Hu F, Jin MM, Hodsdon ME, De Camilli P.; ''A PH domain within OCRL bridges clathrin-mediated membrane trafficking to phosphoinositide metabolism.''; PubMed Europe PMC Scholia
  75. Gaidarov I, Zhao Y, Keen JH.; ''Individual phosphoinositide 3-kinase C2alpha domain activities independently regulate clathrin function.''; PubMed Europe PMC Scholia
  76. Wilbur JD, Chen CY, Manalo V, Hwang PK, Fletterick RJ, Brodsky FM.; ''Actin binding by Hip1 (huntingtin-interacting protein 1) and Hip1R (Hip1-related protein) is regulated by clathrin light chain.''; PubMed Europe PMC Scholia
  77. Billcliff PG, Lowe M.; ''Inositol lipid phosphatases in membrane trafficking and human disease.''; PubMed Europe PMC Scholia
  78. Sato M, Sato K, Fonarev P, Huang CJ, Liou W, Grant BD.; ''Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit.''; PubMed Europe PMC Scholia
  79. Schmid EM, Ford MG, Burtey A, Praefcke GJ, Peak-Chew SY, Mills IG, Benmerah A, McMahon HT.; ''Role of the AP2 beta-appendage hub in recruiting partners for clathrin-coated vesicle assembly.''; PubMed Europe PMC Scholia
  80. Keyel PA, Mishra SK, Roth R, Heuser JE, Watkins SC, Traub LM.; ''A single common portal for clathrin-mediated endocytosis of distinct cargo governed by cargo-selective adaptors.''; PubMed Europe PMC Scholia
  81. Garay C, Judge G, Lucarelli S, Bautista S, Pandey R, Singh T, Antonescu CN.; ''Epidermal growth factor-stimulated Akt phosphorylation requires clathrin or ErbB2 but not receptor endocytosis.''; PubMed Europe PMC Scholia
  82. Lundmark R, Carlsson SR.; ''SNX9 - a prelude to vesicle release.''; PubMed Europe PMC Scholia
  83. Taylor MJ, Perrais D, Merrifield CJ.; ''A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis.''; PubMed Europe PMC Scholia
  84. Motley A, Bright NA, Seaman MN, Robinson MS.; ''Clathrin-mediated endocytosis in AP-2-depleted cells.''; PubMed Europe PMC Scholia
  85. Mettlen M, Stoeber M, Loerke D, Antonescu CN, Danuser G, Schmid SL.; ''Endocytic accessory proteins are functionally distinguished by their differential effects on the maturation of clathrin-coated pits.''; PubMed Europe PMC Scholia
  86. Cocucci E, Aguet F, Boulant S, Kirchhausen T.; ''The first five seconds in the life of a clathrin-coated pit.''; PubMed Europe PMC Scholia
  87. Gaidarov I, Smith ME, Domin J, Keen JH.; ''The class II phosphoinositide 3-kinase C2alpha is activated by clathrin and regulates clathrin-mediated membrane trafficking.''; PubMed Europe PMC Scholia
  88. Ford MG, Mills IG, Peter BJ, Vallis Y, Praefcke GJ, Evans PR, McMahon HT.; ''Curvature of clathrin-coated pits driven by epsin.''; PubMed Europe PMC Scholia
  89. Ehrlich M, Boll W, Van Oijen A, Hariharan R, Chandran K, Nibert ML, Kirchhausen T.; ''Endocytosis by random initiation and stabilization of clathrin-coated pits.''; PubMed Europe PMC Scholia
  90. Loerke D, Mettlen M, Schmid SL, Danuser G.; ''Measuring the hierarchy of molecular events during clathrin-mediated endocytosis.''; PubMed Europe PMC Scholia
  91. Xing Y, Böcking T, Wolf M, Grigorieff N, Kirchhausen T, Harrison SC.; ''Structure of clathrin coat with bound Hsc70 and auxilin: mechanism of Hsc70-facilitated disassembly.''; PubMed Europe PMC Scholia
  92. Waelter S, Scherzinger E, Hasenbank R, Nordhoff E, Lurz R, Goehler H, Gauss C, Sathasivam K, Bates GP, Lehrach H, Wanker EE.; ''The huntingtin interacting protein HIP1 is a clathrin and alpha-adaptin-binding protein involved in receptor-mediated endocytosis.''; PubMed Europe PMC Scholia
  93. Krauss M, Kinuta M, Wenk MR, De Camilli P, Takei K, Haucke V.; ''ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Igamma.''; PubMed Europe PMC Scholia
  94. Cremona O, Di Paolo G, Wenk MR, Lüthi A, Kim WT, Takei K, Daniell L, Nemoto Y, Shears SB, Flavell RA, McCormick DA, De Camilli P.; ''Essential role of phosphoinositide metabolism in synaptic vesicle recycling.''; PubMed Europe PMC Scholia
  95. Moravec R, Conger KK, D'Souza R, Allison AB, Casanova JE.; ''BRAG2/GEP100/IQSec1 interacts with clathrin and regulates α5β1 integrin endocytosis through activation of ADP ribosylation factor 5 (Arf5).''; PubMed Europe PMC Scholia
  96. Di Paolo G, De Camilli P.; ''Phosphoinositides in cell regulation and membrane dynamics.''; PubMed Europe PMC Scholia
  97. Umasankar PK, Sanker S, Thieman JR, Chakraborty S, Wendland B, Tsang M, Tsang M, Traub LM.; ''Distinct and separable activities of the endocytic clathrin-coat components Fcho1/2 and AP-2 in developmental patterning.''; PubMed Europe PMC Scholia
  98. Haffner C, Takei K, Chen H, Ringstad N, Hudson A, Butler MH, Salcini AE, Di Fiore PP, De Camilli P.; ''Synaptojanin 1: localization on coated endocytic intermediates in nerve terminals and interaction of its 170 kDa isoform with Eps15.''; PubMed Europe PMC Scholia
  99. Semerdjieva S, Shortt B, Maxwell E, Singh S, Fonarev P, Hansen J, Schiavo G, Grant BD, Smythe E.; ''Coordinated regulation of AP2 uncoating from clathrin-coated vesicles by rab5 and hRME-6.''; PubMed Europe PMC Scholia
  100. Soulet F, Yarar D, Leonard M, Schmid SL.; ''SNX9 regulates dynamin assembly and is required for efficient clathrin-mediated endocytosis.''; PubMed Europe PMC Scholia
  101. Reider A, Barker SL, Mishra SK, Im YJ, Maldonado-Báez L, Hurley JH, Traub LM, Wendland B.; ''Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation.''; PubMed Europe PMC Scholia
  102. Wasiak S, Legendre-Guillemin V, Puertollano R, Blondeau F, Girard M, de Heuvel E, Boismenu D, Bell AW, Bonifacino JS, McPherson PS.; ''Enthoprotin: a novel clathrin-associated protein identified through subcellular proteomics.''; PubMed Europe PMC Scholia
  103. Yoshida Y, Kinuta M, Abe T, Liang S, Araki K, Cremona O, Di Paolo G, Moriyama Y, Yasuda T, De Camilli P, Takei K.; ''The stimulatory action of amphiphysin on dynamin function is dependent on lipid bilayer curvature.''; PubMed Europe PMC Scholia
  104. Fotin A, Cheng Y, Sliz P, Grigorieff N, Harrison SC, Kirchhausen T, Walz T.; ''Molecular model for a complete clathrin lattice from electron cryomicroscopy.''; PubMed Europe PMC Scholia
  105. Legendre-Guillemin V, Metzler M, Charbonneau M, Gan L, Chopra V, Philie J, Hayden MR, McPherson PS.; ''HIP1 and HIP12 display differential binding to F-actin, AP2, and clathrin. Identification of a novel interaction with clathrin light chain.''; PubMed Europe PMC Scholia
  106. Aguet F, Antonescu CN, Mettlen M, Schmid SL, Danuser G.; ''Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint.''; PubMed Europe PMC Scholia
  107. Goh LK, Sorkin A.; ''Endocytosis of receptor tyrosine kinases.''; PubMed Europe PMC Scholia
  108. Posor Y, Eichhorn-Gruenig M, Puchkov D, Schöneberg J, Ullrich A, Lampe A, Müller R, Zarbakhsh S, Gulluni F, Hirsch E, Krauss M, Schultz C, Schmoranzer J, Noé F, Haucke V.; ''Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate.''; PubMed Europe PMC Scholia
  109. Mishra SK, Agostinelli NR, Brett TJ, Mizukami I, Ross TS, Traub LM.; ''Clathrin- and AP-2-binding sites in HIP1 uncover a general assembly role for endocytic accessory proteins.''; PubMed Europe PMC Scholia
  110. Doray B, Lee I, Knisely J, Bu G, Kornfeld S.; ''The gamma/sigma1 and alpha/sigma2 hemicomplexes of clathrin adaptors AP-1 and AP-2 harbor the dileucine recognition site.''; PubMed Europe PMC Scholia
  111. Sorkin A, von Zastrow M.; ''Endocytosis and signalling: intertwining molecular networks.''; PubMed Europe PMC Scholia
  112. Shin HW, Hayashi M, Christoforidis S, Lacas-Gervais S, Hoepfner S, Wenk MR, Modregger J, Uttenweiler-Joseph S, Wilm M, Nystuen A, Frankel WN, Solimena M, De Camilli P, Zerial M.; ''An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway.''; PubMed Europe PMC Scholia
  113. Henderson DM, Conner SD.; ''A novel AAK1 splice variant functions at multiple steps of the endocytic pathway.''; PubMed Europe PMC Scholia
  114. Mettlen M, Loerke D, Yarar D, Danuser G, Schmid SL.; ''Cargo- and adaptor-specific mechanisms regulate clathrin-mediated endocytosis.''; PubMed Europe PMC Scholia
  115. Massol RH, Boll W, Griffin AM, Kirchhausen T.; ''A burst of auxilin recruitment determines the onset of clathrin-coated vesicle uncoating.''; PubMed Europe PMC Scholia
  116. Daumke O, Roux A, Haucke V.; ''BAR domain scaffolds in dynamin-mediated membrane fission.''; PubMed Europe PMC Scholia
  117. Paleotti O, Macia E, Luton F, Klein S, Partisani M, Chardin P, Kirchhausen T, Franco M.; ''The small G-protein Arf6GTP recruits the AP-2 adaptor complex to membranes.''; PubMed Europe PMC Scholia
  118. Barbieri E, Di Fiore PP, Sigismund S.; ''Endocytic control of signaling at the plasma membrane.''; PubMed Europe PMC Scholia
  119. Loerke D, Mettlen M, Yarar D, Jaqaman K, Jaqaman H, Danuser G, Schmid SL.; ''Cargo and dynamin regulate clathrin-coated pit maturation.''; PubMed Europe PMC Scholia
  120. McMahon HT, Boucrot E.; ''Molecular mechanism and physiological functions of clathrin-mediated endocytosis.''; PubMed Europe PMC Scholia
  121. Gaidarov I, Santini F, Warren RA, Keen JH.; ''Spatial control of coated-pit dynamics in living cells.''; PubMed Europe PMC Scholia
  122. Perera RM, Zoncu R, Lucast L, De Camilli P, Toomre D.; ''Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages.''; PubMed Europe PMC Scholia
  123. Meinecke M, Boucrot E, Camdere G, Hon WC, Mittal R, McMahon HT.; ''Cooperative recruitment of dynamin and BIN/amphiphysin/Rvs (BAR) domain-containing proteins leads to GTP-dependent membrane scission.''; PubMed Europe PMC Scholia
  124. Chappie JS, Mears JA, Fang S, Leonard M, Schmid SL, Milligan RA, Hinshaw JE, Dyda F.; ''A pseudoatomic model of the dynamin polymer identifies a hydrolysis-dependent powerstroke.''; PubMed Europe PMC Scholia
  125. Di Fiore PP, von Zastrow M.; ''Endocytosis, signaling, and beyond.''; PubMed Europe PMC Scholia
  126. Koh TW, Korolchuk VI, Wairkar YP, Jiao W, Evergren E, Pan H, Zhou Y, Venken KJ, Shupliakov O, Robinson IM, O'Kane CJ, Bellen HJ.; ''Eps15 and Dap160 control synaptic vesicle membrane retrieval and synapse development.''; PubMed Europe PMC Scholia
  127. Christoforidis S, Miaczynska M, Ashman K, Wilm M, Zhao L, Yip SC, Waterfield MD, Backer JM, Zerial M.; ''Phosphatidylinositol-3-OH kinases are Rab5 effectors.''; PubMed Europe PMC Scholia
  128. Kirchhausen T, Owen D, Harrison SC.; ''Molecular structure, function, and dynamics of clathrin-mediated membrane traffic.''; PubMed Europe PMC Scholia
  129. Neumann S, Schmid SL.; ''Dual role of BAR domain-containing proteins in regulating vesicle release catalyzed by the GTPase, dynamin-2.''; PubMed Europe PMC Scholia
  130. Taylor MJ, Lampe M, Merrifield CJ.; ''A feedback loop between dynamin and actin recruitment during clathrin-mediated endocytosis.''; PubMed Europe PMC Scholia
  131. Ferguson SM, Raimondi A, Paradise S, Shen H, Mesaki K, Ferguson A, Destaing O, Ko G, Takasaki J, Cremona O, O' Toole E, De Camilli P.; ''Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits.''; PubMed Europe PMC Scholia
  132. Sweitzer SM, Hinshaw JE.; ''Dynamin undergoes a GTP-dependent conformational change causing vesiculation.''; PubMed Europe PMC Scholia
  133. Takei K, Slepnev VI, Haucke V, De Camilli P.; ''Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis.''; PubMed Europe PMC Scholia
  134. Ferguson SM, De Camilli P.; ''Dynamin, a membrane-remodelling GTPase.''; PubMed Europe PMC Scholia
  135. Bairstow SF, Ling K, Su X, Firestone AJ, Carbonara C, Anderson RA.; ''Type Igamma661 phosphatidylinositol phosphate kinase directly interacts with AP2 and regulates endocytosis.''; PubMed Europe PMC Scholia
  136. Vieira AV, Lamaze C, Schmid SL.; ''Control of EGF receptor signaling by clathrin-mediated endocytosis.''; PubMed Europe PMC Scholia
  137. Traub LM, Bonifacino JS.; ''Cargo recognition in clathrin-mediated endocytosis.''; PubMed Europe PMC Scholia
  138. Dittman J, Ryan TA.; ''Molecular circuitry of endocytosis at nerve terminals.''; PubMed Europe PMC Scholia
  139. Ungewickell E, Ungewickell H, Holstein SE, Lindner R, Prasad K, Barouch W, Martin B, Greene LE, Eisenberg E.; ''Role of auxilin in uncoating clathrin-coated vesicles.''; PubMed Europe PMC Scholia
  140. Mettlen M, Pucadyil T, Ramachandran R, Schmid SL.; ''Dissecting dynamin's role in clathrin-mediated endocytosis.''; PubMed Europe PMC Scholia
  141. Marie B, Sweeney ST, Poskanzer KE, Roos J, Kelly RB, Davis GW.; ''Dap160/intersectin scaffolds the periactive zone to achieve high-fidelity endocytosis and normal synaptic growth.''; PubMed Europe PMC Scholia
  142. Puthenveedu MA, von Zastrow M.; ''Cargo regulates clathrin-coated pit dynamics.''; PubMed Europe PMC Scholia
  143. Antonescu CN, Aguet F, Danuser G, Schmid SL.; ''Phosphatidylinositol-(4,5)-bisphosphate regulates clathrin-coated pit initiation, stabilization, and size.''; PubMed Europe PMC Scholia
  144. Storch S, Braulke T.; ''Multiple C-terminal motifs of the 46-kDa mannose 6-phosphate receptor tail contribute to efficient binding of medium chains of AP-2 and AP-3.''; PubMed Europe PMC Scholia
  145. Traub LM.; ''Tickets to ride: selecting cargo for clathrin-regulated internalization.''; PubMed Europe PMC Scholia
  146. Ogata S, Fukuda M.; ''Lysosomal targeting of Limp II membrane glycoprotein requires a novel Leu-Ile motif at a particular position in its cytoplasmic tail.''; PubMed Europe PMC Scholia
  147. Erdmann KS, Mao Y, McCrea HJ, Zoncu R, Lee S, Paradise S, Modregger J, Biemesderfer D, Toomre D, De Camilli P.; ''A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway.''; PubMed Europe PMC Scholia
  148. Conner SD, Schmid SL.; ''Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis.''; PubMed Europe PMC Scholia
  149. Domin J, Gaidarov I, Smith ME, Keen JH, Waterfield MD.; ''The class II phosphoinositide 3-kinase PI3K-C2alpha is concentrated in the trans-Golgi network and present in clathrin-coated vesicles.''; PubMed Europe PMC Scholia
  150. Kim MH, Hersh LB.; ''The vesicular acetylcholine transporter interacts with clathrin-associated adaptor complexes AP-1 and AP-2.''; PubMed Europe PMC Scholia
  151. Kamioka Y, Fukuhara S, Sawa H, Nagashima K, Masuda M, Matsuda M, Mochizuki N.; ''A novel dynamin-associating molecule, formin-binding protein 17, induces tubular membrane invaginations and participates in endocytosis.''; PubMed Europe PMC Scholia
  152. Pearse BM.; ''Coated vesicles from pig brain: purification and biochemical characterization.''; PubMed Europe PMC Scholia
  153. Owen DJ, Evans PR.; ''A structural explanation for the recognition of tyrosine-based endocytotic signals.''; PubMed Europe PMC Scholia
  154. Hinshaw JE, Schmid SL.; ''Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding.''; PubMed Europe PMC Scholia
  155. Olusanya O, Andrews PD, Swedlow JR, Smythe E.; ''Phosphorylation of threonine 156 of the mu2 subunit of the AP2 complex is essential for endocytosis in vitro and in vivo.''; PubMed Europe PMC Scholia
  156. Gu M, Liu Q, Watanabe S, Sun L, Hollopeter G, Grant BD, Jorgensen EM.; ''AP2 hemicomplexes contribute independently to synaptic vesicle endocytosis.''; PubMed Europe PMC Scholia
  157. Krauss M, Kukhtina V, Pechstein A, Haucke V.; ''Stimulation of phosphatidylinositol kinase type I-mediated phosphatidylinositol (4,5)-bisphosphate synthesis by AP-2mu-cargo complexes.''; PubMed Europe PMC Scholia
  158. Shimada A, Niwa H, Tsujita K, Suetsugu S, Nitta K, Hanawa-Suetsugu K, Akasaka R, Nishino Y, Toyama M, Chen L, Liu ZJ, Wang BC, Yamamoto M, Terada T, Miyazawa A, Tanaka A, Sugano S, Shirouzu M, Nagayama K, Takenawa T, Yokoyama S.; ''Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis.''; PubMed Europe PMC Scholia
  159. Cestra G, Castagnoli L, Dente L, Minenkova O, Petrelli A, Migone N, Hoffmüller U, Schneider-Mergener J, Cesareni G.; ''The SH3 domains of endophilin and amphiphysin bind to the proline-rich region of synaptojanin 1 at distinct sites that display an unconventional binding specificity.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
115077view17:02, 25 January 2021ReactomeTeamReactome version 75
113559view13:13, 2 November 2020DeSlOntology Term : 'regulatory pathway' added !
113558view13:12, 2 November 2020DeSlOntology Term : 'clathrin-mediated endocytosis pathway' added !
113519view11:59, 2 November 2020ReactomeTeamReactome version 74
112718view16:12, 9 October 2020ReactomeTeamReactome version 73
101634view11:49, 1 November 2018ReactomeTeamreactome version 66
101170view21:36, 31 October 2018ReactomeTeamreactome version 65
100696view20:09, 31 October 2018ReactomeTeamreactome version 64
100246view16:54, 31 October 2018ReactomeTeamreactome version 63
99798view15:19, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99348view12:48, 31 October 2018ReactomeTeamreactome version 62
93371view11:21, 9 August 2017ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
AAK1 ProteinQ2M2I8 (Uniprot-TrEMBL)
AAK1ProteinQ2M2I8 (Uniprot-TrEMBL)
ACTR2 ProteinP61160 (Uniprot-TrEMBL)
ACTR3 ProteinP61158 (Uniprot-TrEMBL)
ADP MetaboliteCHEBI:456216 (ChEBI)
ADPMetaboliteCHEBI:456216 (ChEBI)
ADR MetaboliteCHEBI:28918 (ChEBI)
AGFG1 ProteinP52594 (Uniprot-TrEMBL)
AGTR1 ProteinP30556 (Uniprot-TrEMBL)
AMPH ProteinP49418 (Uniprot-TrEMBL)
AMPH:BIN1ComplexR-HSA-8868606 (Reactome)
AP-2 ComplexComplexR-HSA-167712 (Reactome)
AP-2 YXXPhi cargo R-HSA-8866232 (Reactome)
AP-2 YXXPhi cargo R-HSA-8869159 (Reactome)
AP-2 dileucine-containing cargo R-HSA-8866234 (Reactome)
AP-2 dileucine-containing cargo R-HSA-8869156 (Reactome)
AP2A1 ProteinO95782 (Uniprot-TrEMBL)
AP2A2(1-939) ProteinO94973 (Uniprot-TrEMBL)
AP2B1 ProteinP63010 (Uniprot-TrEMBL)
AP2M1 ProteinQ96CW1 (Uniprot-TrEMBL)
AP2S1 ProteinP53680 (Uniprot-TrEMBL)
APOB(28-4563) ProteinP04114 (Uniprot-TrEMBL)
AREG(101-187) ProteinP15514 (Uniprot-TrEMBL)
ARF6 ProteinP62330 (Uniprot-TrEMBL)
ARFGAP1 ProteinQ8N6T3 (Uniprot-TrEMBL)
ARFGAP1:ARF6:GTPComplexR-HSA-8871133 (Reactome)
ARP2/3 complexComplexR-HSA-8868713 (Reactome)
ARPC1A ProteinQ92747 (Uniprot-TrEMBL)
ARPC2 ProteinO15144 (Uniprot-TrEMBL)
ARPC3 ProteinO15145 (Uniprot-TrEMBL)
ARPC4 ProteinP59998 (Uniprot-TrEMBL)
ARPC5 ProteinO15511 (Uniprot-TrEMBL)
ARRB1 ProteinP49407 (Uniprot-TrEMBL)
ARRB2 ProteinP32121 (Uniprot-TrEMBL)
ATP MetaboliteCHEBI:30616 (ChEBI)
ATPMetaboliteCHEBI:30616 (ChEBI)
AVP(20-28) ProteinP01185 (Uniprot-TrEMBL)
AVPR2 ProteinP30518 (Uniprot-TrEMBL)
BIN1 ProteinO00499 (Uniprot-TrEMBL)
BTC(32-111) ProteinP35070 (Uniprot-TrEMBL)
CHOL MetaboliteCHEBI:16113 (ChEBI)
CHRM2 ProteinP08172 (Uniprot-TrEMBL)
CLASP proteins:cargoComplexR-HSA-8867603 (Reactome)
CLASP proteins:cargoComplexR-HSA-8868710 (Reactome)
CLTA ProteinP09496 (Uniprot-TrEMBL)
CLTB ProteinP09497 (Uniprot-TrEMBL)
CLTC ProteinQ00610 (Uniprot-TrEMBL)
CLTCL1 ProteinP53675 (Uniprot-TrEMBL)
CTTN ProteinQ14247 (Uniprot-TrEMBL)
Cargo recognition

for clathrin-mediated

endocytosis
PathwayR-HSA-8856825 (Reactome) Recruitment of plasma membrane-localized cargo into clathrin-coated endocytic vesicles is mediated by interaction with a variety of clathrin-interacting proteins collectively called CLASPs (clathrin-associated sorting proteins). CLASP proteins, which may be monomeric or tetrameric, are recruited to the plasma membrane through interaction with phosphoinsitides and recognize linear or conformational sequences or post-translational modifications in the cytoplasmic tails of the cargo protein. Through bivalent interactions with clathrin and/or other CLASP proteins, they bridge the recruitment of the cargo to the emerging clathrin coated pit (reviewed in Traub and Bonifacino, 2013). The tetrameric AP-2 complex, first identified in early studies of clathrin-mediated endocytosis, was at one time thought to be the primary CLASP protein involved in cargo recognition at the plasma membrane, and indeed plays a key role in the endocytosis of cargo carrying dileucine- or tyrosine-based motifs.

A number of studies have been performed to test whether AP-2 is essential for all forms of clathrin-mediated endocytosis (Keyel et al, 2006; Motely et al, 2003; Huang et al, 2004; Boucrot et al, 2010; Henne et al, 2010; Johannessen et al, 2006; Gu et al, 2013; reviewed in Traub, 2009; McMahon and Boucrot, 2011). Although depletion of AP-2 differentially affects the endocytosis of different cargo, extensive depletion of AP-2 through RNAi reduces clathrin-coated pit formation by 80-90%, and the CCPs that do form still contain AP-2, highlighting the critcical role of this complex in CME (Johannessen et al, 2006; Boucrot et al, 2010; Henne et al, 2010).


In addition to AP-2, a wide range of other CLASPs including proteins of the beta-arrestin, stonin and epsin families, engage sorting motifs in other cargo and interact either with clathrin, AP-2 or each other to facilitate assembly of a clathin-coated pit (reviewed in Traub and Bonifacino, 2013).
DAB2 ProteinP98082 (Uniprot-TrEMBL)
DNAJC6 ProteinO75061 (Uniprot-TrEMBL)
DNM1 ProteinQ05193 (Uniprot-TrEMBL)
DNM2 ProteinP50570 (Uniprot-TrEMBL)
DNM3 ProteinQ9UQ16 (Uniprot-TrEMBL)
DNM:GDPComplexR-HSA-8868609 (Reactome)
DNM:GTPComplexR-HSA-8868235 (Reactome)
EGF ProteinP01133 (Uniprot-TrEMBL)
EPGN(23-154) ProteinQ6UW88 (Uniprot-TrEMBL)
EPN1 ProteinQ9Y6I3 (Uniprot-TrEMBL)
EPN2 ProteinO95208 (Uniprot-TrEMBL)
EPS15 ProteinP42566 (Uniprot-TrEMBL)
EPS15L1 ProteinQ9UBC2 (Uniprot-TrEMBL)
EPS15ProteinP42566 (Uniprot-TrEMBL)
EREG(60-108) ProteinO14944 (Uniprot-TrEMBL)
FCHO1 ProteinO14526 (Uniprot-TrEMBL)
FCHO1,2 dimerComplexR-HSA-8862270 (Reactome)
FCHO2 ProteinQ0JRZ9 (Uniprot-TrEMBL)
FNBP1 ProteinQ96RU3 (Uniprot-TrEMBL)
FNBP1 dimerComplexR-HSA-8868046 (Reactome)
FNBP1L ProteinQ5T0N5 (Uniprot-TrEMBL)
FNBP1L dimerComplexR-HSA-8868045 (Reactome)
FZD4 ProteinQ9ULV1 (Uniprot-TrEMBL)
GAK ProteinO14976 (Uniprot-TrEMBL)
GAK,DNAJC6ComplexR-HSA-8868618 (Reactome)
GAPVD1 ProteinQ14C86 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GGC-RAB5:GDP:GAPVD1ComplexR-HSA-8871139 (Reactome)
GGC-RAB5:GTP:GAPVD1ComplexR-HSA-8871142 (Reactome)
GGC-RAB5A ProteinP20339 (Uniprot-TrEMBL)
GGC-RAB5B ProteinP61020 (Uniprot-TrEMBL)
GGC-RAB5C ProteinP51148 (Uniprot-TrEMBL)
GRB2-1 ProteinP62993-1 (Uniprot-TrEMBL)
GTP MetaboliteCHEBI:15996 (ChEBI)
H2OMetaboliteCHEBI:15377 (ChEBI)
HBEGF(63-148) ProteinQ99075 (Uniprot-TrEMBL)
HGS ProteinO14964 (Uniprot-TrEMBL)
HIP1 ProteinO00291 (Uniprot-TrEMBL)
HIP1 dimerComplexR-HSA-8868219 (Reactome)
HIP1R ProteinO75146 (Uniprot-TrEMBL)
HIP1R dimerComplexR-HSA-8868221 (Reactome)
HSPA8 ProteinP11142 (Uniprot-TrEMBL)
HSPA8:ATPComplexR-HSA-5251937 (Reactome)
ITSN1 ProteinQ15811 (Uniprot-TrEMBL)
ITSN2 ProteinQ9NZM3 (Uniprot-TrEMBL)
ITSNsComplexR-HSA-8862274 (Reactome)
LDLR ProteinP01130 (Uniprot-TrEMBL)
LDLRAP1 ProteinQ5SW96 (Uniprot-TrEMBL)
LRP2 ProteinP98164 (Uniprot-TrEMBL)
N-WASP ProteinO00401 (Uniprot-TrEMBL)
N4GlycoAsn-PalmS WNT5A(36-380) ProteinP41221 (Uniprot-TrEMBL)
NAd MetaboliteCHEBI:18357 (ChEBI)
NECAP1 ProteinQ8NC96 (Uniprot-TrEMBL)
NECAP2 ProteinQ9NVZ3 (Uniprot-TrEMBL)
NECAPsComplexR-HSA-8863469 (Reactome)
OCRL ProteinQ01968 (Uniprot-TrEMBL)
PACSIN dimersComplexR-HSA-8868621 (Reactome)
PACSIN1 ProteinQ9BY11 (Uniprot-TrEMBL)
PACSIN2 ProteinQ9UNF0 (Uniprot-TrEMBL)
PACSIN3 ProteinQ9UKS6 (Uniprot-TrEMBL)
PI(3,4)P2MetaboliteCHEBI:16152 (ChEBI)
PI(4)P:p-T156 AP-2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJs:auxilinComplexR-HSA-8868620 (Reactome)
PI(4)P:p-T156 AP-2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJs:auxilinComplexR-HSA-8871149 (Reactome)
PI(4)P:p-T156 AP-2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJs:auxilinGGC-RAB5:GTP:GAPVD1ComplexR-HSA-8871150 (Reactome)
PI(4)P:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJs:auxilin:HSPA8:ATPComplexR-HSA-8868627 (Reactome)
PI(4)P:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJs:auxilinComplexR-HSA-8868626 (Reactome)
PI(4)P:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJsComplexR-HSA-8868624 (Reactome)
PI(4)P:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GTP:SYNJsComplexR-HSA-8868629 (Reactome)
PI(4,5)P2 MetaboliteCHEBI:18348 (ChEBI)
PI(4,5)P2:AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1ComplexR-HSA-8868048 (Reactome)
PI(4,5)P2:AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1ComplexR-HSA-8862276 (Reactome)
PI(4,5)P2:AP-2:clathrinComplexR-HSA-8871153 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:PIK3C2AComplexR-HSA-8868051 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargoComplexR-HSA-8867753 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1ComplexR-HSA-8856806 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GTP:SYNJsComplexR-HSA-8868634 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GTPComplexR-HSA-8868234 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimersComplexR-HSA-8868232 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteinsComplexR-HSA-8867751 (Reactome)
PI(4,5)P2MetaboliteCHEBI:18348 (ChEBI)
PI4P MetaboliteCHEBI:17526 (ChEBI)
PI4PMetaboliteCHEBI:17526 (ChEBI)
PICALM ProteinQ13492 (Uniprot-TrEMBL)
PIK3C2A ProteinO00443 (Uniprot-TrEMBL)
PIK3C2AProteinO00443 (Uniprot-TrEMBL)
PIP5K1CProteinO60331 (Uniprot-TrEMBL)
PL MetaboliteCHEBI:16247 (ChEBI)
PiMetaboliteCHEBI:43474 (ChEBI)
REPS1 ProteinQ96D71 (Uniprot-TrEMBL)
REPS1ProteinQ96D71 (Uniprot-TrEMBL)
REPS2 ProteinQ8NFH8 (Uniprot-TrEMBL)
RPS27A(1-76) ProteinP62979 (Uniprot-TrEMBL)
SGIP1 ProteinQ9BQI5 (Uniprot-TrEMBL)
SGIP1ProteinQ9BQI5 (Uniprot-TrEMBL)
SH3GL1 ProteinQ99961 (Uniprot-TrEMBL)
SH3GL2 ProteinQ99962 (Uniprot-TrEMBL)
SH3GL3 ProteinQ99963 (Uniprot-TrEMBL)
SH3GLsComplexR-HSA-8867746 (Reactome)
SH3KBP1 ProteinQ96B97 (Uniprot-TrEMBL)
SNAP91 ProteinO60641 (Uniprot-TrEMBL)
SNX18 ProteinQ96RF0 (Uniprot-TrEMBL)
SNX9 ProteinQ9Y5X1 (Uniprot-TrEMBL)
SNX9,18ComplexR-HSA-8868040 (Reactome)
STAM ProteinQ92783 (Uniprot-TrEMBL)
STAM2 ProteinO75886 (Uniprot-TrEMBL)
STON1 ProteinQ9Y6Q2 (Uniprot-TrEMBL)
STON2 ProteinQ8WXE9 (Uniprot-TrEMBL)
SYNJ1 ProteinO43426 (Uniprot-TrEMBL)
SYNJ2 ProteinO15056 (Uniprot-TrEMBL)
SYNJs,OCRLComplexR-HSA-1806173 (Reactome)
SYT1 ProteinP21579 (Uniprot-TrEMBL)
SYT11 ProteinQ9BT88 (Uniprot-TrEMBL)
SYT2 ProteinQ8N9I0 (Uniprot-TrEMBL)
SYT8 ProteinQ8NBV8 (Uniprot-TrEMBL)
SYT9 ProteinQ86SS6 (Uniprot-TrEMBL)
TACR1 ProteinP25103 (Uniprot-TrEMBL)
TAGs MetaboliteCHEBI:17855 (ChEBI)
TGFA(24-98) ProteinP01135 (Uniprot-TrEMBL)
TRIP10 ProteinQ15642 (Uniprot-TrEMBL)
TRIP10 dimerComplexR-HSA-8868042 (Reactome)
UBA52(1-76) ProteinP62987 (Uniprot-TrEMBL)
UBB(1-76) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(153-228) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(77-152) ProteinP0CG47 (Uniprot-TrEMBL)
UBC(1-76) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(153-228) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(229-304) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(305-380) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(381-456) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(457-532) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(533-608) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(609-684) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(77-152) ProteinP0CG48 (Uniprot-TrEMBL)
VAMP2 ProteinP63027 (Uniprot-TrEMBL)
VAMP3 ProteinQ15836 (Uniprot-TrEMBL)
VAMP7 ProteinP51809 (Uniprot-TrEMBL)
VAMP8 ProteinQ9BV40 (Uniprot-TrEMBL)
WASL,CTTNComplexR-HSA-8868228 (Reactome)
cholesterol esters MetaboliteCHEBI:17002 (ChEBI)
clathrin triskelionComplexR-HSA-8856809 (Reactome)
clathrin:HSPA8:ADPComplexR-HSA-8868617 (Reactome)
f-actin R-HSA-202986 (Reactome)
f-actinR-HSA-202986 (Reactome)
p-6Y-EGFR ProteinP00533 (Uniprot-TrEMBL)
p-AVPR2 ProteinP30518 (Uniprot-TrEMBL)
p-DVL2 ProteinO14641 (Uniprot-TrEMBL)
p-T156 AP2M1 ProteinQ96CW1 (Uniprot-TrEMBL)
p-Y371-CBL ProteinP22681 (Uniprot-TrEMBL)
p-Y850 EPS15 ProteinP42566 (Uniprot-TrEMBL)
pS-ADRB2 ProteinP07550 (Uniprot-TrEMBL)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
AAK1ArrowR-HSA-8871193 (Reactome)
AAK1R-HSA-8856808 (Reactome)
ADPArrowR-HSA-8856813 (Reactome)
ADPArrowR-HSA-8868066 (Reactome)
ADPArrowR-HSA-8868072 (Reactome)
AMPH:BIN1ArrowR-HSA-8869438 (Reactome)
AMPH:BIN1R-HSA-8867754 (Reactome)
AP-2 ComplexArrowR-HSA-8869438 (Reactome)
AP-2 ComplexR-HSA-8856808 (Reactome)
AP-2 ComplexR-HSA-8871196 (Reactome)
ARFGAP1:ARF6:GTPArrowR-HSA-8856808 (Reactome)
ARP2/3 complexArrowR-HSA-8869438 (Reactome)
ARP2/3 complexR-HSA-8868230 (Reactome)
ATPR-HSA-8856813 (Reactome)
ATPR-HSA-8868066 (Reactome)
ATPR-HSA-8868072 (Reactome)
CLASP proteins:cargoArrowR-HSA-8869438 (Reactome)
CLASP proteins:cargoR-HSA-8867756 (Reactome)
DNM:GDPArrowR-HSA-8869438 (Reactome)
DNM:GTPR-HSA-8868236 (Reactome)
EPS15ArrowR-HSA-8869438 (Reactome)
EPS15R-HSA-8862280 (Reactome)
FCHO1,2 dimerArrowR-HSA-8867754 (Reactome)
FCHO1,2 dimerR-HSA-8862280 (Reactome)
FNBP1 dimerArrowR-HSA-8869438 (Reactome)
FNBP1 dimerR-HSA-8867754 (Reactome)
FNBP1L dimerArrowR-HSA-8869438 (Reactome)
FNBP1L dimerR-HSA-8867754 (Reactome)
GAK,DNAJC6ArrowR-HSA-8869438 (Reactome)
GAK,DNAJC6R-HSA-8868659 (Reactome)
GGC-RAB5:GDP:GAPVD1R-HSA-8871194 (Reactome)
GGC-RAB5:GTP:GAPVD1ArrowR-HSA-8869438 (Reactome)
H2OR-HSA-8868648 (Reactome)
H2OR-HSA-8868658 (Reactome)
H2OR-HSA-8868661 (Reactome)
HIP1 dimerArrowR-HSA-8869438 (Reactome)
HIP1 dimerR-HSA-8868230 (Reactome)
HIP1R dimerArrowR-HSA-8869438 (Reactome)
HIP1R dimerR-HSA-8868230 (Reactome)
HSPA8:ATPR-HSA-8868660 (Reactome)
ITSNsArrowR-HSA-8869438 (Reactome)
ITSNsR-HSA-8862280 (Reactome)
NECAPsArrowR-HSA-8869438 (Reactome)
NECAPsR-HSA-8856808 (Reactome)
PACSIN dimersArrowR-HSA-8869438 (Reactome)
PACSIN dimersR-HSA-8867754 (Reactome)
PI(3,4)P2ArrowR-HSA-8867754 (Reactome)
PI(3,4)P2ArrowR-HSA-8868072 (Reactome)
PI(4)P:p-T156 AP-2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJs:auxilinArrowR-HSA-8868658 (Reactome)
PI(4)P:p-T156 AP-2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJs:auxilinArrowR-HSA-8871194 (Reactome)
PI(4)P:p-T156 AP-2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJs:auxilinR-HSA-8871193 (Reactome)
PI(4)P:p-T156 AP-2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJs:auxilinR-HSA-8871194 (Reactome)
PI(4)P:p-T156 AP-2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJs:auxilinGGC-RAB5:GTP:GAPVD1ArrowR-HSA-8871193 (Reactome)
PI(4)P:p-T156 AP-2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJs:auxilinGGC-RAB5:GTP:GAPVD1R-HSA-8869438 (Reactome)
PI(4)P:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJs:auxilin:HSPA8:ATPArrowR-HSA-8868660 (Reactome)
PI(4)P:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJs:auxilin:HSPA8:ATPR-HSA-8868658 (Reactome)
PI(4)P:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJs:auxilin:HSPA8:ATPmim-catalysisR-HSA-8868658 (Reactome)
PI(4)P:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJs:auxilinArrowR-HSA-8868659 (Reactome)
PI(4)P:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJs:auxilinR-HSA-8868660 (Reactome)
PI(4)P:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJsArrowR-HSA-8868661 (Reactome)
PI(4)P:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GDP:SYNJsR-HSA-8868659 (Reactome)
PI(4)P:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GTP:SYNJsArrowR-HSA-8868648 (Reactome)
PI(4)P:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GTP:SYNJsR-HSA-8868661 (Reactome)
PI(4)P:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GTP:SYNJsmim-catalysisR-HSA-8868661 (Reactome)
PI(4,5)P2:AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1ArrowR-HSA-8856808 (Reactome)
PI(4,5)P2:AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1R-HSA-8856813 (Reactome)
PI(4,5)P2:AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1mim-catalysisR-HSA-8856813 (Reactome)
PI(4,5)P2:AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1ArrowR-HSA-8862280 (Reactome)
PI(4,5)P2:AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1R-HSA-8856808 (Reactome)
PI(4,5)P2:AP-2:clathrinArrowR-HSA-8871196 (Reactome)
PI(4,5)P2:AP-2:clathrinR-HSA-8862280 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:PIK3C2AArrowR-HSA-8868071 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:PIK3C2AR-HSA-8867754 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:PIK3C2Amim-catalysisR-HSA-8868072 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargoArrowR-HSA-8867756 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargoR-HSA-8868071 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1ArrowR-HSA-8856813 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:FCHO1,2:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1R-HSA-8867756 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GTP:SYNJsArrowR-HSA-8868651 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GTP:SYNJsR-HSA-8868648 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GTP:SYNJsmim-catalysisR-HSA-8868648 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GTPArrowR-HSA-8868236 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GTPR-HSA-8868651 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimersArrowR-HSA-8868230 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimersR-HSA-8868236 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteinsArrowR-HSA-8867754 (Reactome)
PI(4,5)P2:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteinsR-HSA-8868230 (Reactome)
PI(4,5)P2ArrowR-HSA-8868066 (Reactome)
PI(4,5)P2R-HSA-8871196 (Reactome)
PI4PArrowR-HSA-8869438 (Reactome)
PI4PR-HSA-8868066 (Reactome)
PI4PR-HSA-8868072 (Reactome)
PIK3C2AArrowR-HSA-8867754 (Reactome)
PIK3C2AR-HSA-8868071 (Reactome)
PIP5K1Cmim-catalysisR-HSA-8868066 (Reactome)
PiArrowR-HSA-8868648 (Reactome)
PiArrowR-HSA-8868658 (Reactome)
PiArrowR-HSA-8868661 (Reactome)
R-HSA-8856808 (Reactome) Recruitment of early acting proteins such as the FCHo and ITSN proteins stabilizes the transient AP-2:clathrin complex at the plasma membrane and is rapidly followed by incorporation of many more molecules of AP-2 and clathrin. AP-2 binding to the plasma-membrane enriched PI(4,5)P2 is reinforced early in the formation of a CCP by the interaction of AP-2 with PIP5K1C, which synthesizes PI(4)P to PI(4,5)P2 (Krauss et al, 2006; Bairstow et al, 2006; Thieman et al, 2009).

AP-2 recruitment is also promoted by conformational changes upon lipid and protein binding. AP-2 is a heterotetramer consisting of two large subunits (alpha and beta1 adaptin), a medium mu2 subunit and a small sigma2 subunit, and exists in a closed conformation when not part of a clathrin-coated pit (Jackson et al, 2010).
Interactions between the AP-2 mu2 subunit and PIP2 within the lipid bilayer stabilize the 'open' conformation of AP-2, exposing binding sites for cargo proteins. The open conformation is also promoted by interaction of AP-2 with early CCP proteins such as SGIP and FCHo2 (Hollopeter et al, 2014). Recruitment of clathrin stimulates the activity of AAK1, an AP-2 kinase that phosphorylates the mu2 subunit of the adaptor complex at Thr156, further stabilizing the open conformation and promoting cargo recruitment (Olusanya et al, 2001; Ricotta et al, 2002; Conner et al, 2002; Conner et al, 2003).

NECAP1 and 2 may also aid in the assembly of an emergent clathrin-coated pit. NECAP proteins have a WxxF motif at the C-terminus that binds with high affinity to the alpha-ear sandwich domain of AP-2 and an N-terminal PH ear domain that interacts both with AP-2 and a wide range of endocytic accessory proteins containing FxDxF motifs (Ritter et al, 2003; Wasiak et al, 2002; Ritter et al, 2013). Clathrin and the NECAP PH ear domain appear to compete for an AP-2 binding site. Clathrin-mediated displacement of the NECAP PH ear domain from its lower affinity AP-2 site may allow release this domain, allowing it to transition to a role in recruiting endocytic accessory proteins and cargo (Ritter et al, 2007; Ritter et al, 2013; reviewed in McMahon and Boucrot, 2011).


Finally, studies have highlighted a role for ARF6 and its GTPase activating protein ARFGAP1 in CCP formation, although the details remain to be established.
ARFGAP1 and ARF6 appear to contribute to the recruitment of some cargo, but may also play a more generalized role in CCP formation (Moravec et al, 2012; Bai et al, 2011). ARFGAP1 binds directly to AP-2 and its GAP activity is required for CME. Consistent with this, silencing of ARFGAP1 impairs CME (Schmid et al, 2006; Rawet et al 2010; Bai et al 2011). ARFGAP1 has activity towards several ARFs, including ARF6 which is found is some CCPs and is known to regulate CME under some circumstances (Moravec et al, 2003; Palacios et al, 2002; Paleotti et al, 2005; Kraus et al, 2003). ARF6 is thought to contribute to the recruitment of AP-2 and clathrin to the plasma membrane, possibly in part by affecting the lipid composition (Paleotti et al, 2002; Krauss et al, 2003).


R-HSA-8856813 (Reactome) AAK1 is a serine-threonine kinase that phosphorylates T156 of the AP2 mu2 subunit (Olusanya et al, 2001; Conner et al, 2002; Conner et al, 2003). This phosphorylation is thought to stabilize the open conformation of the AP-2 complex, exposing the cargo-binding sites and promoting cargo capture (Ricotta et al, 2002). AAK1 kinase activity is stimulated by interaction with clathrin (Conner et al, 2003; Henderson et al, 2007).
R-HSA-8862280 (Reactome) Stabilization of the transient binding of AP-2 and clathrin at the plasma membrane is effected by the recruitment of a number of early acting proteins, including FCHo (F-BAR domain-containing Fer/Cip4 homology domain-only) proteins 1 and 2, intersectins (ITSNs), EPS15, EPS15L1, REPS1 and SGIP1 among others (Henne et al, 2010; Stimpson et al, 2009; Reider et al, 2009; Dergai et al, 2010; Antonescu et al, 2011; reviewed in McMahon and Boucrot, 2011).

FCHo proteins interact with the plasma membrane-enriched PI(4,5)P2 through the F-BAR domain, which recognizes curvature in the membrane (Henne et al, 2010; Henne et al, 2007; Shimada et al, 2007; Umasankar et al, 2012). Other F-BAR proteins, such as FNBP1 and FNBP1L may join the nascent clathrin-coated pit at a slightly later stage (Shimada et al, 2007). Recruitment of EPS15 and ITSN1 and 2 appears coincident with binding of FCHo2 and depends on direct interaction with the AP2 mu homology domain of FCHo2 (Henne et al, 2010).


SGIP1 (Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1) interacts with numerous endocytic proteins including AP-2, ITSN1, REPS1, EPS15, endophilin and amphiphsyin1 and is thought to play a role in clathrin-mediated endocytosis (Trevaskis et al, 2005; Dergai et al, 2010; Uezu et al, 2007). SGIP1 is related to the FCHo proteins and is co-immunoprecipitated in a tripartite complex containing ITSN1 and REPS1 (Dergai et al, 2010). The exact function of SGIP1 in clathrin-mediated endocytosis remains to be elucidated, however recent work suggests SGIP1 and FCHo proteins may contribute to allosteric changes in AP-2 that promote membrane binding and cargo recognition (Hollopeter et al, 2014).


The recruitment of this group of early CCP proteins is rapidly followed by the incorporation of many AP-2 and clathrin molecules, stimulated in part by the FCHo- and SGIP-dependent stabilization of the open, membrane binding conformation of AP-2 (Hollopeter et al, 2014). Alternately, a proportion of the nascent CCPs may undergo abortive initiation (Loerke et al, 2009; Aguet et al, 2013; Antonescu et al, 2011). This is prompted in part through the early recruitment of the 170 kDa isoform of synaptojanin 1 (SYNJ1-170, not shown in this reaction). SYNJ1 catalyzes the hydrolysis of PI(4,5)P2 to PI(4)P and destabilizes the interaction of many early CCP components with the plasma membrane (Perera et al, 2006).
R-HSA-8867754 (Reactome) BAR (BIN/amphiphysin/Rvs) domain proteins sense and contribute to membrane curvature. BAR domain proteins generally form long, coiled-coil homo- or hetero-dimers with a concave inner surface that interacts with membranes (reviewed in Gallop and McMahon, 2005; Daumke et al, 2014). F-BAR domain proteins such as FCHo 1 and 2 recognize shallow membrane curvature and are generally recruited early in the formation of clathrin-coated pit (Itoh et al, 2005; Kamioka et al, 2004; Henne et al, 2007; Shimada et al, 2007; Henne et al, 2010). FNBP proteins and N-BAR containing endocytic proteins such as SNX9 and 18, amphiphysin (AMPH) and endophilins recognize regions of membrane with greater curvature, interact with dynamin and likely play a later role in CCP formation with spatiotemporal coupling to vesicle scission (Kamioka et al, 2004; Itoh et al, 2005; Soulet et al, 2005; Shimada et al, 2007; Shin et al, 2008; Taylor et al, 2011; reveiwed in McMahon and Boucrot, 2011). These proteins are recruited to the complex through interactions with core components of the clathrin-coated pit, and in the case of SNX9, also through interaction with PI(3,4)P2, which is generated at late stages by clathrin-associated PIK3C2A (Lundmark and Carlson, 2003; Schmid et al, 2006; Dergai et al, 2010; Brett et al, 2002 : Posor et al, 2013; reviewed in Daumke et al, 2014). Early BAR domain containing proteins such as FCHo1 and 2 are not present in either late stage clathrin-coated pits or in free clathrin-coated vesicles. Although the precise timing of their dissociation is not known, in this pathway, they are shown leaving the clathrin-coated pit upon recruitment of the more highly curved N-BAR proteins (Taylor et al, 2011).
R-HSA-8867756 (Reactome) CLASP proteins are recruited to nascent clathrin-coated pits (CCPs) through interactions with AP-2 and clathrin. Although in this pathway cargo recruitment is depicted as occuring after the recruitment of bulk AP-2 and clathrin, a number of studies suggest that they are largely recruited concomitantly (Liu et al, 2010; reviewed in McMahon and Boucrot, 2011). Concurrent interactions with sorting signals in cargo cytoplasmic tails and with clathrin and/or AP-2 ensure that CLASPs and cargo are incorporated into the emerging CCP (Schmid et al, 2006; Edeling et al, 2006; reviewed in Traub, 2009; Traub and Bonifacino, 2013; Kirchausen et al, 2014). In addition, incorporation of CLASPs and cargo may play a role in regulating the timing and dynamics of endocytosis (Loerke et al, 2009; Mettlen et al, 2009; Soohoo et al, 2013; Mettlen et al, 2010; Puthenveedu et al, 2005).
R-HSA-8868066 (Reactome) Plasma membrane enrichment of PI(4,5)P2 is maintained in part through the action of PI 4 phosphatase 5 kinases (PIPKIs) such as PIP5K1C (Di Paolo and De Camilli, 2006). PIP5K1C interacts directly with AP-2 and the interaction activates the kinase, generating a positive feedback loop for the recruitment of AP-2 to the plasma membrane (Krauss et al, 2006; Bairstow et al, 2006; Thieman et al, 2009; reviewed in Daumke et al, 2014).
R-HSA-8868071 (Reactome) PIK3C2A is a member of the class II PI 3 kinases, and phosphorylates PI(4)P to PI(3,4)P2 at the plasma membrane. PIK3C2A interacts with clathrin through a clathrin-binding domain in its unique N-terminal tail and localizes to late-stage clathrin-coated pits (Domin et al, 2000; Gaidarov et al, 2001; Gaidarov et al, 2005). Binding to clathrin stimulates the kinase activity of PIK3C2A and promotes the production of PI(3,4)P2 at the plasma membrane (Gaidarov et al, 2001). PI(3,4)P2 formation by PIK3C2A contributes to maturation of clathrin-coated pits by promoting the recruitment of BAR-domain containing proteins such as SNX9, which stimulate membrane curvature required for vesicle formation and eventual fission (Posor et al, 2013; reveiwed in Daumke et al, 2014).
R-HSA-8868072 (Reactome) Clathrin-associated PIK3C2A catalyzes the conversion of PI(4)P to PI(3,4)P2, which contributes to the recruitment of BAR domain proteins such as SNX9 to the clathrin-coated pit (Domin et al, 2000; Gaidarov et al, 2001; Gaidarov et al, 2005; Posor et al, 2013; reviewed in Daumke et al, 2014).
R-HSA-8868230 (Reactome) Actin polymerization is not absolutely required for clathrin-mediated endocytosis, and disruption of actin does not interfere with the early stages of clathrin-coated pit formation. Actin is required to complete vesicle formation under conditions of high membrane tension, such as on the apical side of polarized epithelial cell, while actin is dispensable for this process in the absence of membrane tension (Boulant et al, 2011). In cases where actin is required, it appears to be recruited late to the emerging clathrin-coated pit, just prior to or coincident with the recruitment of dynamin and vesicle scission (Taylor et al, 2011; Taylor et al, 2012; reviewed in McMahon and Boucrot, 2011). Recruitment of actin depends on the ARP2/3 complex, and cortactin or the neural Wiscott-Aldrich syndrome proteins WASL. These proteins, in turn, are recruited through interactions with N-BAR domain containing proteins such as SNX9 (Yarar et al, 2007; Shin et al, 2007; Shin et al, 2008; Ferguson et al, 2009; reviewed in Lundmark and Carlsson, 2009; McMahon and Boucrot, 2011).
HIP1 and HIP1R are additional components of the late clathrin-coated pit that interact with clathrin and AP-2 and may contribute to actin nucleation (Waelter et al, 2001; Mishra et al, 2001;Metzler et al, 2001; Legendre-Guillemin et al, 2002; Wilbur et al, 2008; Taylor et al, 2011).
R-HSA-8868236 (Reactome) Dynamin is a large GTPase whose GTP hydrolysis activity is required for the scission of clathrin-coated vesicles from the plasma membrane (reviewed in Ferguson and De Camilli, 2012). Dynamin is recruited to the plasma membrane through protein-protein interactions with many components of the clathrin-coated pit including ITSNs, SNX9 and 18 and amphiphysin (Lundmark and Carlsson, 2003; Soulet et al, 2005; David et al, 1996; Owen et al, 1998; Shupliakov et al, 1997). Although dynamin is recruited at lower levels throughout formation of the clathrin-coated pit, the bulk of dynamin is recruited at late stages, after the incorporation of BAR domain-containing proteins and actin-polymerizing factors (Ferguson et al, 2009; Taylor et al, 2011; Taylor et al, 2012; Posor et al, 2013; Meineke et al, 2013; Aguet et al, 2013; reviewed in Daumke et al, 2014). Several BAR domain proteins have SH3 domains that bind the proline rich domain (PRD) of dynamin. These interactions regulate dynamin GTPsae activity and vesicle formation (Neuman and Schmid, 2013). To facilitate scission of a clathrin-coated pit from the plasma membrane, dynamin self assembles into helical oligomers, stimulating its GTPase activity and contributing to the membrane remodeling required to form the neck of the emerging vesicle (Sweitzer and Hinshaw 1998; Yoshida et al, 2004; Chappie et al, 2010; Faelber et al, 2011; Ford et al, 2011; reviewed in McMahon and Boucrot, 2011; Daumke et al, 2014).
R-HSA-8868648 (Reactome) Inositol-5-phosphatases like SYNJs and OCRL hydrolyze PI(4,5)P2 to PI(4)P. In the context of CME, this promotes the abortive turnover (disassembly) of some CCPs, contributes to the dynamin-mediated scission of the clathrin-coated vesicle neck, and promotes clathrin uncoating following scission (Guan et al, 2010; Cremona et al, 1999; Mani et al, 2007; Chang-Ileto et al, 2011; Antonescu et al, 2011; reviewed in McMahon and Boucrot, 2011; Daumke et al, 2014).
R-HSA-8868651 (Reactome) Synaptojanin (SYNJ) 1 and 2 are inositol-5-phosphatases that sequentially convert PI(4,5)P2 to PI(4)P and PI (Cremona et al 1999; reviewed in Billcliff and Lowe, 2014). Conversion of PI(4,5)P2 to PI(4)P and PI accompanies maturation of the clathrin-coated pit, and consistent with this, SYNJ proteins are recruited to the clathrin-coated pit through interactions with a number of endocytic proteins including ITSNs, EPS15, PACSIN proteins and endophilins, as well as with clathrin and AP-2 (Haffner et al, 1997; Cestra et al, 1999; Maire et al, 2004; Schuske et al, 2003; Verstreken et al, 2003; Modregger et al, 2000; Perera et al 2006; Milosevic et al, 2011; reviewed in Dittman and Ryan, 2009). SYJN1 exists in two isoforms, a longer 170 kDA isoform and a shorter 145 kDA isoform, with slightly different roles. The recruitment and activity of SYNJ1-145 appears to largely coincide with that of dynamin at later stages of vesicle formation, while the SYNJ1-170 isoform also plays earlier roles in stabilizing the growing clathrin-coated vesicle (Perera et al, 2006; Taylor et al, 2011; Antonescu et al, 2011). SYNJ-mediated hydrolysis of PI(4,5)P2 to PI(4)P is most efficient on highly curved, endophilin-coated tubules of the vesicle neck and contributes to dynamin-mediated membrane scission (Chang-Ileto et al, 2011; reviewed in Daumke et al, 2014; McMahon and Boucrot, 2011).

In addition to SYNJ1 and 2, other inositol-5-phosphatases are also recruited to the CCP at the time of scission. These include OCRL, which is recruited through interaction with clathrin as well as the RAB5 interactor APPL1 (Erdmann et al, 2007; Mao et al, 2009; Taylor et al, 2011; Nandez et al, 2014).
R-HSA-8868658 (Reactome) HSPA8 hydrolyzes ATP to promote dissociation of the clathrin coat from the vesicle (reviewed in Sousa and Lafer, 2015). Interaction of HSPA8 with the C-terminal tail of clathrin may sterically block re-stabilization of the clathrin coat, which is thought to undergo transient cycles of 'breathing', or loosening of the interactions between the triskelions (Barouch et al, 1997; Rapoport et al, 2008; Xing et al, 2010). Alternately, HSPA8 may destabilize the clathrin coat through intermolecular collisions with the coat (reveiwed in Sousa and Lafer, 2015). The HSPA8-clathrin interaction persists once clathrin has been removed from the vesicle. This is thought to preclude aberrant repolymerization of clathrin by sequestering free clathrin (Schlossman et al, 1984; reviewed in Sousa and Lafer, 2015).
R-HSA-8868659 (Reactome) After fission from the plasma membrane, auxilin proteins DNAJC6 and GAK are recruited to the vesicle through interaction with clathrin and phosphoinositides, in particular PI4P (Greener et al, 2000; Lee et al, 2006; Massol et al, 2006; Taylor et al, 2011; Scheele et al, 2001; Fotin et al, 2004a; Fotin et al, 2004b; Guan et al, 2010; reviewed in McMahon and Boucrot, 2011; Sousa and Lafer, 2015). Auxilin in turn recruits the ATPase HSPA8 (also known as HSC70) , which uses the energy from ATP hydrolysis to remove the clathrin-coat from the vesicle, priming it for fusion with a subsequent endosomal compartment (Schlossman et al, 1984; Ungewickell et al, 1995; Rappoport et al, 2008; Xing et al, 2010; Bocking et al, 2011; Rothnie et al, 2011; reviewed in McMahon and Boucrot, 2011; Sousa and Lafer, 2015).
R-HSA-8868660 (Reactome) HSPA8 (also known as HSC70) is recruited to the clathrin-coated vesicle through interaction with DNA J proteins GAK and DNAJC6 (Rapoport et al, 2008; Xing et al, 2010; reviewed in Sousa and Lafer, 2015). Recent studies examining the stoichiometry of uncoating predict between one and three HSPA8 molecules are required per clathrin triskelion for maximal uncoating in vitro (Bocking et al, 2011; Rothnie et al, 2011). After ATP hydrolysis, HSPA8 remains associated with the liberated clathrin, which prevents aberrant repolymerization and association of clathrin (Schlossman et al, 1984; reviewed in Sousa and Lafer, 2015).
R-HSA-8868661 (Reactome) Self-assembly of dynamin around the neck of the emerging clathrin-coated vesicle stimulates its GTPase activity. This in turn promotes a conformational change in dynamin organization that is required for membrane fission (Hinshaw and Schmid, 1995; Sweitzer and Hinshaw, 1998; Takei et al, 1999; Yoshida et al, 2004; Chappie et al, 2010; Chappie et al, 2011; Ford et al, 2011; Faelber et al, 2011; reviewed in Daumke et al, 2014).
R-HSA-8869438 (Reactome) After the removal of the clathrin coat, it is likely that many of the proteins that contributed to vesicle formation are lost, although the timing and mechanism of this step are poorly understood (reviewed in McMahon and Boucrot, 2011; Lemmon, 2001).
R-HSA-8871193 (Reactome) GAPVD1 binds the alpha adaptin ear domain of AP-2 mu2, activating its RAB5-directed GEF activity and displacing AAK1. AAK1 displacement results in a net dephosphorylation of the AP-2 mu2 subunit, destabilizing the interaction of AP-2 with the vesicle membrane (Sato et al, 2005; Smerdjieva et al, 2008). In addition, RAB5 contributes to PI(4,5)P2 turnover through recruitment of a PI3K or PI phosphatase, and this also destabilizes the interaction of AP-2 with the membrane (Smerdjieva et al, 2008; Christoforidis et al, 1999; Shin et al, 2005).
R-HSA-8871194 (Reactome) RAB5 is a small GTPase that is implicated in clathrin-mediated endocytosis (Chavrier et al, 1990; McLauchlan et al, 1998; Shin et al, 2002; Taylor et al, 2011; reviewed in Stenmark, 2009; Wandiger-Ness and Zerial, 2014). Recent studies have shown that RAB5 and its associated GEF GAPVD1 may contribute to AP-2 uncoating by displacing AAK1 and promoting the net dephosphorylation of the AP-2 mu2 subunit. This is predicted to destabilize interactions with the plasma membrane and promote uncoating (Sato et al, 2005; Hunker et al, 2006; Smerdjieva et al, 2008). RAB5 and GAPVD1 also increase PI(4,5)P2 turnover, likely through recruitment of a class I PI3K or a PI phosphatase (Christoforidis et al, 1999; Shin et al, 2005).
R-HSA-8871196 (Reactome) Assembly of an endocytic clathrin-coated pit (CCP) at the plasma membrane depends on the recruitment of the AP-2 adaptor protein complex and clathrin triskelions to the lipid bilayer (reviewed in McMahon and Boucrot, 2011; Robinson, 2015). Transient interactions between the plasma membrane-enriched lipid phosphatidlyinositol 4,5-bisphosphate (PI(4,5)P2) and AP-2 initiate coated pit formation (Beck et al, 1991; Honing et al, 2005; Loerke et al, 2009; Cocucci et al, 2012). A proportion of the transient complexes between AP-2, clathrin and the plasma membrane are rapidly stabilized by the recruitment of a number of proteins, including FCHo proteins, intersectins (ITSNs), EPS15 and SGIP1 among others (Henne et al, 2010; Stimpson et al, 2009; Reider et al, 2009; Cocucci et al, 2012; reviewed in McMahon and Boucrot, 2011). Many of these early players in CCP formation bind both to the plasma membrane and to the AP-2 complex and/or clathrin.

CCP formation is a highly heterogeneous and dynamic process and includes abortive initiation of nearly half of nascent CCPs (Loerke et al, 2009; Aguet et al, 2013). Heterogeneity is in part the result of the widely varied cargo proteins, which compete for a limited number of interaction hubs on AP-2 and clatrhin and influence the other protein components of the CCPs. Heterogeneity may also be partly stochastic, or be influenced by the presence of CCP 'hot spots' in the plasma membrane (Taylor et al, 2011; Antonescu et al, 2011; Gaidarov et al, 1999; Ehrlich et al, 2004; Saffarian et al, 2009; Nunez et al, 2011). It is important to note that although events in this pathway are depicted as occuring sequentially in a defined order, in reality the assembly of a clathrin-coated vesicle may be highly variable and the temporal boundaries are likely less clearly defined. Moreover, not every CCP will have all of the proteins indicated in this pathway.
REPS1ArrowR-HSA-8869438 (Reactome)
REPS1R-HSA-8862280 (Reactome)
SGIP1ArrowR-HSA-8869438 (Reactome)
SGIP1R-HSA-8862280 (Reactome)
SH3GLsArrowR-HSA-8869438 (Reactome)
SH3GLsR-HSA-8867754 (Reactome)
SNX9,18ArrowR-HSA-8869438 (Reactome)
SNX9,18R-HSA-8867754 (Reactome)
SYNJs,OCRLArrowR-HSA-8869438 (Reactome)
SYNJs,OCRLR-HSA-8868651 (Reactome)
TRIP10 dimerArrowR-HSA-8869438 (Reactome)
TRIP10 dimerR-HSA-8867754 (Reactome)
WASL,CTTNArrowR-HSA-8869438 (Reactome)
WASL,CTTNR-HSA-8868230 (Reactome)
clathrin triskelionR-HSA-8856808 (Reactome)
clathrin triskelionR-HSA-8871196 (Reactome)
clathrin:HSPA8:ADPArrowR-HSA-8868658 (Reactome)
f-actinArrowR-HSA-8869438 (Reactome)
f-actinR-HSA-8868230 (Reactome)
Personal tools