ESR-mediated signaling (Homo sapiens)

From WikiPathways

Revision as of 21:03, 31 October 2018 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
3, 118, 119, 15413, 36, 45, 99, 121...59, 61112, 115, 119, 184, 206...17, 75, 76, 78, 85...15, 22, 28, 65, 101...127, 128, 154, 205, 229...29, 71, 166246598312, 47, 129, 174, 198...154, 20529, 20010, 21, 57, 68, 72...50, 88, 154, 156, 159...79154, 159, 20566, 96, 133, 142, 145...23, 44, 50, 54, 72...1862462, 18, 53, 73, 74, 89...34, 92-94, 120...27, 123125, 154, 159, 231, 233107, 176, 199111, 117, 15014, 19, 24, 30, 77...116, 197, 218, 2465913, 35, 36, 45, 121...12, 47127, 2058312, 475948, 116, 234, 24610, 23, 50, 57, 72...15018618653, 19159, 62, 24559, 17215012, 47, 193, 2171, 29, 31, 38-40, 52...79831236, 23, 41, 50, 70...58, 71, 1152, 12, 18, 47, 53...50, 156, 1805979237, 24217, 75, 76, 78, 85...20, 34, 64, 67, 81...1868347, 129, 174, 198, 208...5923, 50, 180197, 246125, 231, 233124, 141, 159, 20514, 19, 24, 30, 77...77, 87, 108, 149, 152...10, 21, 68, 138, 221...83186nucleoplasmGolgi lumenlysosomal lumenmitochondrial outer membranecytosolendoplasmic reticulum lumenHIST1H2BK miR-26B RISC ATP POLR2F FKBP4 CCND1 gene Me3K-10-HIST1H3A HSP-90E1 RUNX1 H2BFS HIST1H2AC HIST1H2BO miR-26B RISC TFF1 gene P4 EST17b POLR2D MYC STAG1 HIST1H2AC H2AFX HIST1H2BK CCND1 gene ESTG P4 HIST1H2BL GREB1gene:nucleosome:ESR1:ESTGERBB4jmAcyt1s80 NCOA3 CDK9 H2AFB1 HIST2H2BE H2BFS ESTG p-S63,S73-JUN HIST1H2BL MYC geneGATA3 HIST1H2BB ESR1 ESTG HIST1H2BD H2BFS BCL2estriol ESTG KAT5 RUNX1 HIST1H2AJ HIST2H2AC p-T69,T71-ATF2 H2AFX ESR2 HIST1H2AC HIST1H2AD TBPCITED1 HIST1H2BD HIST1H2BH HIST1H2BM HIST1H2BJ H2AFX HIST1H2BM ESR1:ER:PGR:P4HIST2H3A ESTG BCL2 gene HIST1H4 MYCgene,BCL2gene:H3K9me2,HIST1H2ACnucleosome:ESR1:ESTG:KDM1AHIST1H2BH HIST1H2BD HIST1H2BM TFF3 gene HIST1H2BD miR-26A RISC MYBgene:hypophosphorylated RNA polymerase II:TFIIFESTG ESR1 HIST1H2BM ESTG POLR2L USF2H2AFZ FOXA1 EST17b MYBgene:hypophosphorylated RNA polymerase II:TFIIF:ESR1:ESTG:P-TEFbESR1 ESTG estriol CCND1gene:H3K4me2nucleosome:YY1:HDAC1HIST1H2BO CITED1:EP300:ESR1:estrogen:TGFA gene promoterESR1:estrogen:ERE:NCOA3:EP300ESTG KCTD6HIST1H2BN PGR geneHIST1H2BJ p-T69,T71-ATF2 H2AFZ HIST2H2AC PPP5C HIST1H3A ESR2 CHD1 mRNAESR1 dimer:estrogenHIST1H2AB EP300 HIST1H2BD Me2K5-H3F3A HIST1H4 EBAG9 geneTFF1,TFF3gene:FOXA1:GATA3HIST2H2AC POLR2G HIST1H2BN HIST1H2BA HIST1H2AD HIST1H2BO PGR HIST1H2BM CHD1 mRNA:mIR-26RISCPOLR2G HIST1H2AC HIST2H3A PRMT1H2AFZ HIST1H2BO HIST1H2AC TPR-containingco-chaperonesJUN HIST1H2BO TFF3 gene estriol YY1 HIST1H2BC MYCgene:HIST1H2ACnucleosome:ESR1:ESTG:EP300:NCOA3POLR2B HSP90AA1 HIST1H2AB CCND1gene:nucleosome:ESR1:ESTGNRIP1HIST1H2AD MYCgene,BCL2gene:HIST1H2ACnucleosome:ESR1:ESTGHIST1H2BH FOS HIST1H2BL NR5A2CXXC5 geneESR1 ATP MYC gene ESTG FKBP4 MYB gene CCND1 geneHIST1H4 FOXA1 EP300HIST1H2BA HIST1H2BL CCND1gene:H3K4me2nucleosome:FOXA1:GATA3:ESTG:ESR1 dimer:JUN:ATF2:POUF21:ESTG:ESR1 dimer:JUN:FOSHIST1H3A HIST1H2BK MYCgene,BLC2gene:H3K9me2,HIST1H2ACnucleosome:ESR1:ESTGH2BFS HIST1H2BC HSP90AA1 TFF1 gene NR5A2 HIST1H2BJ HIST3H2BB KANK1HIST1H2AJ HIST1H2AC HSP90AB1 27-hydroxycholesterol:ESR1,2ESTG:ESR1dimer:ATF2:JUNCohesin ComplexPOLR2F HIST1H4 POLR2C E1 HIST1H2BN ESR1 H2AFJ GTF2A2 HIST1H2BO HIST2H2AC estriol HIST1H2BM HIST1H2AB GATA3 TFF1 gene ESR1:ESTG:P-TEFbATP HIST3H2BB HIST2H2AA3 MYBMe2K5-HIST1H3A TBP:TFIIA:DDX5:ESR1:estrogen:TFF1 gene:FOXA1:GATA3HIST1H2BK HIST1H2BM H2AFJ GREB1 mRNA:miR-26RISCestriol HIST1H2BC KDM4B H2BFS POLR2H HIST1H2BJ H2BFS ESR1 HIST1H2BB TGFA precursorCREBBPE1 HIST1H2BN HIST1H2AB POLR2D H2AFV SMC3 HIST1H2BA 27-hydroxycholesterol HIST3H2BB miR-26B RISC HIST1H2BC H3F3A MYB geneHIST1H2BA HIST1H2BC HIST3H2BB SMC1A Me2K5-HIST2H3A GREB1 gene HIST1H2BB ATPCCNT1 ESR1:estrogen:AXIN1geneGREB1 gene HIST1H2BD KCTD6 gene E1 ESRs:chaperonecomplexESTG HIST1H2AJ MYC gene HIST1H2BJ ESR2 FOXA1 ESTG HIST1H2BB GREB1 MYC gene Me2K-10-HIST2H3A EST17b BCL2 gene CBFB H2AFV HIST2H2AA3 TFF3gene:FOXA1:GATA3FOXA1 POLR2C ESTG PTGES3 ESR2 H2AFJ USF2 HIST1H4 DDX5 HIST1H2BD POLR2E ESTGPGRBCL2 geneHIST1H2BL EP300 ESR1 AXIN1 gene miR-26B RISC ESR1:chaperonecomplexHIST3H2BB ESR2 H2AFV CCND1 gene HIST1H2BM ESTG HIST1H4 NRIP1 HIST1H2BK GPAM geneFKBP4ESR1 HIST1H2BJ MYB gene Me2K5-HIST2H3A MYBgene:hyperphosphorylated RNA polymerase II:TFIIF:ESR1:ESTG:P-TEFbPiMYC gene, BCL2 gene:H3K9me2 nucleosomeNCOA3 ESTG HIST1H2BO HIST1H2BA HIST1H2AJ CDK9 HIST1H2AD HIST1H2BH HIST1H2BB H2BFS EBAG9 gene:ESR1:ESTGTranscriptionalregulation by RUNX1HIST1H2BB ESR1 estriol HIST3H2BB HIST3H2BB HIST1H2AJ ESR1 HIST1H2BH H3F3A HIST1H2AJ HIST2H2BE E1 H2BFS H2AFZ AXIN1Me2K10-HIST1H3A HIST3H2BB HIST1H2AB HIST1H2AC KDM1A GPAM gene EBAG9CCND1 gene HIST1H2BL NCOA1 CXXC5 gene FKBP4 HIST1H2BD HIST1H2BK CBFB HIST1H2BA EP300 EP300 Me2K-10-HIST2H3A SP1 POLR2H ESR1 HIST3H2BB HIST1H2BC HIST1H2BL EP300 HIST1H2BN HIST1H2BL ESR1:estrogen:TFF1gene:DDX5:TBP:TFIIA:PRMT1:FOXA1:GATA3GATA3HIST1H2BA HSP90:ATP:PTGES3:FKBP52:PGR:P4CTSD dimerp-T202,Y204-MAPK3 H3F3A H2AFV HIST1H2BK PPP5C DDX5HIST1H2BA ESTG ESTGH2BFS CARM1ATPPOLR2E ESTG ESTG ESR1 TFF3KDM4B gene MYB gene HIST1H2BO HIST1H2BD HIST1H4 H2AFB1 EST17b ADPH2BFS Me3K-10-H3F3A Me2K10-HIST1H3A HIST1H2AC EST17b KDM4B geneFKBP5 RAD21 HIST2H3A CITED1 HIST1H2BJ H2AFZ HIST1H2BC KDM4B gene HIST1H2BA HIST1H2BA HIST1H2BB HIST1H2BB HIST2H2BE HIST1H2BJ HIST1H2BL HIST1H2BO HIST2H3A ESTG HIST1H2BB ESR1 HIST2H2AA3 Histone H2AHIST1H2BM HIST1H2BN ESR1 estriol NCOA1,NCOA3 CDK9 H2AFX CTSDgene:ESR1:ESTG:SP1:USF1:USF2:NCOA:EP300:MED1ESR1:estrogen:ERE:NCOA3:TFGA geneHDAC1HIST1H2BH HIST2H2BE POLR2H HIST1H2AB HIST1H2AC ESR1:ESTG:PGR:P4:FOXA1:GATA3:TLE3:NRIP:EP300HIST1H2BB Me3K-10-H3F3A HSP90:HSP90POLR2J CCND1 gene HIST1H2AC HIST1H2BM HIST2H2BE HIST1H2AD HIST1H2BM E1 HIST2H2AA3 CTSD(65-161) HSP90AA1 HIST1H3A HIST2H2AC HIST1H2BA CCND1Me2K-10-HIST2H3A KDM4B-regulatedgenes:H3K9me3nucleosomeFKBP5 E1 HIST1H2BJ H3F3A HIST1H2BO ESR1 POLR2B NCOA1ESTG:ESR1dimer:JUN:FOSE1 ESTG HIST1H2BD HIST2H2BE HIST1H3A SMC3 HIST1H2BK MED1 MYCgene,BCL2gene:HIST1H2ACnuclesome:ESR1:ESTG:EP300EBAG9 gene HIST1H2AJ MYB gene HIST2H2AA3 HIST2H2BE estriol HIST1H2AC HIST1H2BB POLR2L HIST1H2BB HIST1H2AB YY1HIST1H2BB BCL2 gene E1 PiESR1dimer:estrogen:TFGAgene:NCOA1ESR1 HDAC1 HIST2H2AA3 H2AFB1 ESR1:ESTGCXCL12 gene EST17b TFF1 geneH2AFJ BCL2 gene HIST1H2BB PPID HIST1H2BA GTF2F1 HIST1H2BJ HIST1H2BH HIST3H2BB HIST1H2BD DDX5 ESR1 PPP5C STAG2 DDX5 POLR2G EST17b HIST1H4 HIST1H2BN HIST3H2BB HIST1H4 HIST1H2BC H2AFB1 MYCgene:ESR1:ESTG:JUND:FOSB:Cohesin ComplexHIST1H3A Me2K10-HIST1H3A ESTG MYC HIST1H3A HIST1H2BM HIST2H2AC FOSB:JUNDGATA3 GREB1 geneHIST3H2BB HIST1H2AD HIST1H2BD KDM4B gene HIST1H2BC RUNX1:CBFB:ESR1:estrogen:KCTD6 genemiR-26A RISC MYC gene KDM4BPOLR2K HIST1H2AJ HIST1H2AC HIST1H2BJ STAG1 HIST1H2BA HIST1H2BL HIST1H4 HIST3H2BB HIST2H2BE histoneacetyltransferasesH2AFZ H2AFX estriol MYB gene ESTG HIST2H2AA3 H2AFZ POLR2E H2BFS ESR1 H3F3A HIST1H2BD HIST1H2BH ADPPOU2F1 estriol estriol HIST3H2BB HIST1H2AJ H2BFS HIST1H2BH HIST1H3A HSP90AA1 FOXA1 CHD1HIST1H2BB H2AFX ESR1 HIST1H2BL POLR2K HIST1H2AB ESTG HIST1H2BO CCNT1 Me2K-10-H3F3A RUNX1:CBFBHIST1H2BA p-S118-ESR1 dimerCCNT1 HIST2H2AC MYC HIST1H2AC H2AFX NCOA3 HIST1H2BK miR-26A RISC PGR HIST1H4 HIST2H3A HIST1H2AB POLR2L ESTG E1 KAT2B HIST1H2BM ESR1 CTSD gene DDX5 HIST1H2AJ HIST1H2BK FOSB HIST1H2BM GATA3 H2AFB1 ESTG H2BFS H3F3A CTSD(169-412) ESR1 HIST1H2BJ CREBBP HIST3H2BB EP300 HIST1H2AD HIST1H2BJ HIST1H2BD HIST1H2BL HIST3H2BB PTGES3KPNA2 mRNA CCND1gene:H3K4me2nucleosome:FOXA1:GATA3CTSD geneGATA3 HIST1H2BN PGR HIST2H2AC ERBB4jmAcyt2s80 GTF2F1 MED1HIST1H2BC H2AFB1 H2AFV ESTG miR-26A RISC HIST1H2BH HIST1H2BC ESR1 NCOA2 EP300 HIST1H2BJ ESR1 E1 HIST1H2BC ESR1 HIST1H2BH HIST1H2BH HIST1H2ACHIST1H2BO HIST1H2BB NCOA3 MYCFKBP4 ERBB4s80:ESR1:estrogen:CXCL12 geneH2AFJ HIST1H4 KPNA2 mRNA:mIR-26RISCRAD21 HIST1H2AB Me2K5-HIST1H3A POU2F1p-S63,S73-JUN HIST2H2BE CXCL12(22-93)GTF2A1(275-376) TFF3 geneESTG ESTG H2AFB1 PGR gene HSP90AB1 KCTD6 geneP4 GTF2F1 HIST1H2BK NCOAsHIST2H2BE CARM1:TBP:TFIIA:DDX5:ESR1:estrogen:TFF1 gene:FOXA1:GATA3CBFB EP300 H2BFS HIST1H2AD SMC1A TFF3gene:FOXA1:GATA3:ESR1:ESTG:EP300GTF2F2 ERBB4jmAcyt1s80 E1 HIST2H2BE H2AFJ ESR1 HIST1H2BO MYC HIST1H2AD EST17b ESR1 GTF2F2 GREB1 mRNA 27-hydroxycholesterolESTG HIST1H2AD HIST2H2AC H2BFS GPAM(1-828)HIST1H2AD USF1HIST1H2BN H2AFV NCOA1,NCOA3 GREB1 gene TFIIAESTG p-T185,Y187-MAPK1 CTSD gene ESR1 HIST1H4 HIST1H2BO H2AFB1 ESR1 BLC2gene:HIST1H2ACnuclesome:ESR1:ESTG:EP300EST17b ESR1 estriol HIST2H2BE H2AFB1 EST17b SP1AXIN1 gene HSP90AB1 HIST2H2BE HIST1H2BK HIST1H2BN p-S2,S5-POLR2A HIST1H2BD HIST1H2BN HIST1H2BJ ESR1,2:ESTGKDM1AHIST1H2BH KAT2B HIST1H2BL HIST1H2BD FOSB HIST1H4 FKBP4 TFF1HSP90AB1 HIST1H2BL HIST1H2BL HIST1H2BK ERBB4jmAcyt1s80 HIST1H2AC HIST2H2BE HIST2H2BE HSP90AB1 DDX5 CBFB ERBB4jmAcyt2s80 ERBB4jmAcyt2s80 ESTG KPNA2 mRNAHIST1H2BA KDM4B-regulatedgenes:nucleosome:ESR1:ESTGRUNX1:CBFB:ESR1:estrogen:GPAM geneHIST1H2BN HSP90AA1 ESR1 H2AFX TLE3RUNX1:CBFB:ESR1:estrogenNCOA3Me2K-10-H3F3A POLR2B HIST1H2AC ESR1:estrogen:TFF1gene:FOXA1:GATA3:DDX5:TBP:TFIIA:CARM1,PRMT1ESR1,2:ESTG homo andheterodimersESR1dimer:estrogen:TGFAgene promoterNCOA1 HIST2H3A HIST1H2AC ESTG ESR1 POLR2J CITED1CHD1 mRNA HSP90AB1 HIST1H2BK HIST3H2BB ESR1 JUND ESTG H2AFJ HIST2H2AA3 HIST1H2BM Me3K-10-HIST2H3A HIST1H2BN H2AFV POLR2J H2AFV ESR1 HIST1H2AB H2AFV BCL2 gene HIST2H2AA3 p-S118-ESR1 H2AFJ H2AFJ KPNA2HIST2H3A HIST1H2AJ GREB1 gene HIST1H2BH Me2K-10-H3F3A H2BFS POLR2I PPID RUNX1:CBFB:ESR1:estrogen:AXIN1 geneESR1 ESR1:estrogen:TFF1gene:FOXA1:GATA3:DDX5:TBP:TFIIA:CARM1,PRMT1:HATsHIST2H2BE H3F3A H3F3A H2AFB1 HIST1H2BB CBFB JUND TFF3 gene FOXA1 H2AFB1 HIST1H2AB ESTG HIST1H2BN POLR2C TFF1gene:FOXA1:GATA3HIST1H2BC HIST1H2BA ESTG:ESRs:chaperonecomplexFOS HIST1H2BJ H3F3A RUNX1 HIST1H3A STAG2 ESR1 HIST1H2BD HIST1H2BK HIST1H2BJ DDX5 Me3K-10-HIST2H3A estriol EST17b MYB gene HIST1H2BN GREB1 gene CTSD gene:ESR1:ESTGHIST1H3A ATP HIST1H2BC FKBP5 ESR1 MYC gene HIST1H2AD PTGES3 Me3K-10-HIST1H3A TLE3 HSP90AA1 ESR1 H2AFV HIST1H2AJ CHD1 geneHIST2H2AC ESR2 KDM4B gene HIST1H2BH GREB1gene:nucleosome:ESR1:ESTG:ZNF217:NCOA3:NR5A2FOXA1 ESR1 HIST1H2BH HIST1H4 NCOA2 ESTG PPID Me2K5-HIST2H3A ERBB4s80:ESR1:estrogenHIST2H2BE HIST1H2BK HIST1H2BO p-S5-POLR2A H2BFS GREB1HIST1H2BN ERBB4jmAcyt1s80 p-S5-POLR2A HIST1H2BO H2AFZ HIST2H3A ESTG HIST1H2BN POLR2K HIST1H4 GTF2A1(1-274) GREB1 mRNAESR1 ESTG p-T,Y MAPK dimersESR1 E1 HIST1H2BL ADPFOXA1Me2K5-H3F3A BCL2 gene POLR2I TGFA GeneERBB4s80HIST1H2BC H2AFZ H2AFJ ESTG ERBB4jmAcyt2s80 USF1 ZNF217EST17b RUNX1 HIST1H2BK ESR1:estrogen:TFGAgene:NCOA1:EP300MYC Me2K5-HIST1H3A TFF1, TFF3 geneHIST1H2BA ESTG Signaling by ERBB4HIST1H2AC HIST1H2BC MYC gene EST17b GATA3 miR-26 RISCHIST2H2AC H2AFJ ESR1:estrogen:TFF1gene:FOXA1:GATA3ESR1,2H2AFX PPID H2AFX CXXC5 gene:ESR1:ESTGMe2K5-H3F3A TFF3 gene PPP5C H2AFJ H2AFV ESTG HIST2H2AA3 E1 HIST1H2BC POLR2D EST17b PTGES3 H2AFX KDM4B-regulatedgenes:H3K9me3nucleosome:ESR1:ESTG:KDM4BHIST2H2AA3 CXXC5CXCL12 geneHIST1H2BM ESR1 HIST1H2BM KDM4Bgene:nucleoplasm:ESR1:ESTGGATA3 H2AFB1 estriol EP300 FKBP5 ERBB4s80:ESR1:estrogen:PGR geneH2AFX KAT5 CCND1 gene ESR1 H2AFZ GREB1:ESR1:ESTG:EP300:CREBBPHIST2H2AA3 HIST1H2BO MYCgene:nucleoplasm:ESR1:ESTGHIST2H3A HIST1H2AC ESR1 H2AFZ PTGES3 KPNA2 geneHIST1H4 POLR2I ESR1:estrogen:TFF1gene:FOXA1:GATA3:DDX5ESR1 HIST1H2BL JUN RUNX1 AXIN1 geneHIST2H2AC ZNF217 POLR2F HIST1H2BH GTF2F2 H2AFV H2AFZ CCND1 gene EP300 8384795, 7, 8, 11, 16...24683236832052462051018669205205246123794, 9, 26, 37, 42...


Description

Estrogens are a class of hormones that play a role in physiological processes such as development, reproduction, metabolism of liver, fat and bone, and neuronal and cardiovascular function (reviewed in Arnal et al, 2017; Haldosen et al, 2014). Estrogens bind estrogen receptors, members of the nuclear receptor superfamily. Ligand-bound estrogen receptors act as nuclear transcription factors to regulate expression of genes that control cellular proliferation and differentiation, among other processes (reviewed in Hah et al, 2014). View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 8939211
Reactome-version 
Reactome version: 66
Reactome Author 
Reactome Author: Rothfels, Karen

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Deroo BJ, Korach KS.; ''Estrogen receptors and human disease.''; PubMed Europe PMC Scholia
  2. Castro-Rivera E, Samudio I, Safe S.; ''Estrogen regulation of cyclin D1 gene expression in ZR-75 breast cancer cells involves multiple enhancer elements.''; PubMed Europe PMC Scholia
  3. Umetani M, Domoto H, Gormley AK, Yuhanna IS, Cummins CL, Javitt NB, Korach KS, Shaul PW, Mangelsdorf DJ.; ''27-Hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen.''; PubMed Europe PMC Scholia
  4. Yi P, Wang Z, Feng Q, Pintilie GD, Foulds CE, Lanz RB, Ludtke SJ, Schmid MF, Chiu W, O'Malley BW.; ''Structure of a biologically active estrogen receptor-coactivator complex on DNA.''; PubMed Europe PMC Scholia
  5. Yang J, Jubb AM, Pike L, Buffa FM, Turley H, Baban D, Leek R, Gatter KC, Ragoussis J, Harris AL.; ''The histone demethylase JMJD2B is regulated by estrogen receptor alpha and hypoxia, and is a key mediator of estrogen induced growth.''; PubMed Europe PMC Scholia
  6. Lu Y, Sun XD, Hou FQ, Bi LL, Yin DM, Liu F, Chen YJ, Bean JC, Jiao HF, Liu X, Li BM, Xiong WC, Gao TM, Mei L.; ''Maintenance of GABAergic activity by neuregulin 1-ErbB4 in amygdala for fear memory.''; PubMed Europe PMC Scholia
  7. Wang C, Mayer JA, Mazumdar A, Fertuck K, Kim H, Brown M, Brown PH.; ''Estrogen induces c-myc gene expression via an upstream enhancer activated by the estrogen receptor and the AP-1 transcription factor.''; PubMed Europe PMC Scholia
  8. Tan S, Ding K, Li R, Zhang W, Li G, Kong X, Qian P, Lobie PE, Zhu T.; ''Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2.''; PubMed Europe PMC Scholia
  9. Drabsch Y, Hugo H, Zhang R, Dowhan DH, Miao YR, Gewirtz AM, Barry SC, Ramsay RG, Gonda TJ.; ''Mechanism of and requirement for estrogen-regulated MYB expression in estrogen-receptor-positive breast cancer cells.''; PubMed Europe PMC Scholia
  10. Coffey K, Rogerson L, Ryan-Munden C, Alkharaif D, Stockley J, Heer R, Sahadevan K, O'Neill D, Jones D, Darby S, Staller P, Mantilla A, Gaughan L, Robson CN.; ''The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover.''; PubMed Europe PMC Scholia
  11. Chimge NO, Little GH, Baniwal SK, Adisetiyo H, Xie Y, Zhang T, O'Laughlin A, Liu ZY, Ulrich P, Martin A, Mhawech-Fauceglia P, Ellis MJ, Tripathy D, Groshen S, Liang C, Li Z, Schones DE, Frenkel B.; ''RUNX1 prevents oestrogen-mediated AXIN1 suppression and β-catenin activation in ER-positive breast cancer.''; PubMed Europe PMC Scholia
  12. Hou XJ, Ni KM, Yang JM, Li XM.; ''Neuregulin 1/ErbB4 enhances synchronized oscillations of prefrontal cortex neurons via inhibitory synapses.''; PubMed Europe PMC Scholia
  13. Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D, Carroll JS.; ''FOXA1 is a key determinant of estrogen receptor function and endocrine response.''; PubMed Europe PMC Scholia
  14. Kauraniemi P, Hedenfalk I, Persson K, Duggan DJ, Tanner M, Johannsson O, Olsson H, Trent JM, Isola J, Borg A.; ''MYB oncogene amplification in hereditary BRCA1 breast cancer.''; PubMed Europe PMC Scholia
  15. Hammes SR, Levin ER.; ''Extranuclear steroid receptors: nature and actions.''; PubMed Europe PMC Scholia
  16. Le Romancer M, Treilleux I, Leconte N, Robin-Lespinasse Y, Sentis S, Bouchekioua-Bouzaghou K, Goddard S, Gobert-Gosse S, Corbo L.; ''Regulation of estrogen rapid signaling through arginine methylation by PRMT1.''; PubMed Europe PMC Scholia
  17. Grenert JP, Sullivan WP, Fadden P, Haystead TA, Clark J, Mimnaugh E, Krutzsch H, Ochel HJ, Schulte TW, Sausville E, Neckers LM, Toft DO.; ''The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation.''; PubMed Europe PMC Scholia
  18. Katzenellenbogen BS, Choi I, Delage-Mourroux R, Ediger TR, Martini PG, Montano M, Sun J, Weis K, Katzenellenbogen JA.; ''Molecular mechanisms of estrogen action: selective ligands and receptor pharmacology.''; PubMed Europe PMC Scholia
  19. Zhao X, Chen A, Yan X, Zhang Y, He F, Hayashi Y, Dong Y, Rao Y, Li B, Conway RM, Maiques-Diaz A, Elf SE, Huang N, Zuber J, Xiao Z, Tse W, Tenen DG, Wang Q, Chen W, Mulloy JC, Nimer SD, Huang G.; ''Downregulation of RUNX1/CBFβ by MLL fusion proteins enhances hematopoietic stem cell self-renewal.''; PubMed Europe PMC Scholia
  20. Li Z, Mei Y, Liu X, Zhou M.; ''Neuregulin-1 only induces trans-phosphorylation between ErbB receptor heterodimer partners.''; PubMed Europe PMC Scholia
  21. Pratt WB, Toft DO.; ''Steroid receptor interactions with heat shock protein and immunophilin chaperones.''; PubMed Europe PMC Scholia
  22. Wong WF, Kohu K, Chiba T, Sato T, Satake M.; ''Interplay of transcription factors in T-cell differentiation and function: the role of Runx.''; PubMed Europe PMC Scholia
  23. Klein EA, Assoian RK.; ''Transcriptional regulation of the cyclin D1 gene at a glance.''; PubMed Europe PMC Scholia
  24. Li G, Ye X, Peng X, Deng Y, Yuan W, Li Y, Mo X, Wang X, Wan Y, Liu X, Chen T, Jiang Z, Fan X, Wu X, Wang Y.; ''CXXC5 regulates differentiation of C2C12 myoblasts into myocytes.''; PubMed Europe PMC Scholia
  25. Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, Su H, Sun W, Chang H, Xu G, Gaudet F, Li E, Chen T.; ''The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation.''; PubMed Europe PMC Scholia
  26. Boonyaratanakornkit V.; ''Scaffolding proteins mediating membrane-initiated extra-nuclear actions of estrogen receptor.''; PubMed Europe PMC Scholia
  27. Hiebert SW.; ''Regions of the retinoblastoma gene product required for its interaction with the E2F transcription factor are necessary for E2 promoter repression and pRb-mediated growth suppression.''; PubMed Europe PMC Scholia
  28. Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, Eeckhoute J, Shao W, Hestermann EV, Geistlinger TR, Fox EA, Silver PA, Brown M.; ''Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1.''; PubMed Europe PMC Scholia
  29. Carraway KL, Weber JL, Unger MJ, Ledesma J, Yu N, Gassmann M, Lai C.; ''Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases.''; PubMed Europe PMC Scholia
  30. Smith DF, Stensgard BA, Welch WJ, Toft DO.; ''Assembly of progesterone receptor with heat shock proteins and receptor activation are ATP mediated events.''; PubMed Europe PMC Scholia
  31. Sims RJ, Millhouse S, Chen CF, Lewis BA, Erdjument-Bromage H, Tempst P, Manley JL, Reinberg D.; ''Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing.''; PubMed Europe PMC Scholia
  32. Zaidi N, Maurer A, Nieke S, Kalbacher H.; ''Cathepsin D: a cellular roadmap.''; PubMed Europe PMC Scholia
  33. Smith DF.; ''Dynamics of heat shock protein 90-progesterone receptor binding and the disactivation loop model for steroid receptor complexes.''; PubMed Europe PMC Scholia
  34. Le Romancer M, Poulard C, Cohen P, Sentis S, Renoir JM, Corbo L.; ''Cracking the estrogen receptor's posttranslational code in breast tumors.''; PubMed Europe PMC Scholia
  35. Kittler R, Zhou J, Hua S, Ma L, Liu Y, Pendleton E, Cheng C, Gerstein M, White KP.; ''A comprehensive nuclear receptor network for breast cancer cells.''; PubMed Europe PMC Scholia
  36. Yaşar P, Ayaz G, Muyan M.; ''Estradiol-Estrogen Receptor α Mediates the Expression of the CXXC5 Gene through the Estrogen Response Element-Dependent Signaling Pathway.''; PubMed Europe PMC Scholia
  37. Sardi SP, Murtie J, Koirala S, Patten BA, Corfas G.; ''Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain.''; PubMed Europe PMC Scholia
  38. Fiorito E, Katika MR, Hurtado A.; ''Cooperating transcription factors mediate the function of estrogen receptor.''; PubMed Europe PMC Scholia
  39. Sabbah M, Courilleau D, Mester J, Redeuilh G.; ''Estrogen induction of the cyclin D1 promoter: involvement of a cAMP response-like element.''; PubMed Europe PMC Scholia
  40. Tahirov TH, Inoue-Bungo T, Morii H, Fujikawa A, Sasaki M, Kimura K, Shiina M, Sato K, Kumasaka T, Yamamoto M, Ishii S, Ogata K.; ''Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta.''; PubMed Europe PMC Scholia
  41. Mitra P, Pereira LA, Drabsch Y, Ramsay RG, Gonda TJ.; ''Estrogen receptor-α recruits P-TEFb to overcome transcriptional pausing in intron 1 of the MYB gene.''; PubMed Europe PMC Scholia
  42. Swinstead EE, Miranda TB, Paakinaho V, Baek S, Goldstein I, Hawkins M, Karpova TS, Ball D, Mazza D, Lavis LD, Grimm JB, Morisaki T, Grøntved L, Presman DM, Hager GL.; ''Steroid Receptors Reprogram FoxA1 Occupancy through Dynamic Chromatin Transitions.''; PubMed Europe PMC Scholia
  43. Ma ZQ, Santagati S, Patrone C, Pollio G, Vegeto E, Maggi A.; ''Insulin-like growth factors activate estrogen receptor to control the growth and differentiation of the human neuroblastoma cell line SK-ER3.''; PubMed Europe PMC Scholia
  44. Komuro A, Nagai M, Navin NE, Sudol M.; ''WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus.''; PubMed Europe PMC Scholia
  45. Reid G, Gallais R, Métivier R.; ''Marking time: the dynamic role of chromatin and covalent modification in transcription.''; PubMed Europe PMC Scholia
  46. Bunone G, Briand PA, Miksicek RJ, Picard D.; ''Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation.''; PubMed Europe PMC Scholia
  47. Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT, Nuckolls F, Giangrande P, Wright FA, Field SJ, Greenberg ME, Orkin S, Nevins JR, Robinson ML, Leone G.; ''The E2F1-3 transcription factors are essential for cellular proliferation.''; PubMed Europe PMC Scholia
  48. Busch M, Dünker N.; ''Trefoil factor family peptides--friends or foes?''; PubMed Europe PMC Scholia
  49. Boller S, Grosschedl R.; ''The regulatory network of B-cell differentiation: a focused view of early B-cell factor 1 function.''; PubMed Europe PMC Scholia
  50. Cobrinik D.; ''Pocket proteins and cell cycle control.''; PubMed Europe PMC Scholia
  51. Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pegram MD, Ramos L, Gorman CM, Parker MG, Sliwkowski MX, Slamon DJ.; ''HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells.''; PubMed Europe PMC Scholia
  52. Sweeney C, Lai C, Riese DJ, Diamonti AJ, Cantley LC, Carraway KL.; ''Ligand discrimination in signaling through an ErbB4 receptor homodimer.''; PubMed Europe PMC Scholia
  53. Chimge NO, Frenkel B.; ''The RUNX family in breast cancer: relationships with estrogen signaling.''; PubMed Europe PMC Scholia
  54. Serrano M, Hannon GJ, Beach D.; ''A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4.''; PubMed Europe PMC Scholia
  55. Hammes SR, Levin ER.; ''Minireview: Recent advances in extranuclear steroid receptor actions.''; PubMed Europe PMC Scholia
  56. Aronica SM, Katzenellenbogen BS.; ''Stimulation of estrogen receptor-mediated transcription and alteration in the phosphorylation state of the rat uterine estrogen receptor by estrogen, cyclic adenosine monophosphate, and insulin-like growth factor-I.''; PubMed Europe PMC Scholia
  57. Segnitz B, Gehring U.; ''Subunit structure of the nonactivated human estrogen receptor.''; PubMed Europe PMC Scholia
  58. Kim MY, Kim HY, Hong J, Kim D, Lee H, Cheong E, Lee Y, Roth J, Kim DG, Min do S, Choi KY.; ''CXXC5 plays a role as a transcription activator for myelin genes on oligodendrocyte differentiation.''; PubMed Europe PMC Scholia
  59. Xing W, Archer TK.; ''Upstream stimulatory factors mediate estrogen receptor activation of the cathepsin D promoter.''; PubMed Europe PMC Scholia
  60. Pedram A, Razandi M, Deschenes RJ, Levin ER.; ''DHHC-7 and -21 are palmitoylacyltransferases for sex steroid receptors.''; PubMed Europe PMC Scholia
  61. Kobayashi A, Senzaki K, Ozaki S, Yoshikawa M, Shiga T.; ''Runx1 promotes neuronal differentiation in dorsal root ganglion.''; PubMed Europe PMC Scholia
  62. Perillo B, Ombra MN, Bertoni A, Cuozzo C, Sacchetti S, Sasso A, Chiariotti L, Malorni A, Abbondanza C, Avvedimento EV.; ''DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression.''; PubMed Europe PMC Scholia
  63. Rae JM, Johnson MD, Scheys JO, Cordero KE, Larios JM, Lippman ME.; ''GREB 1 is a critical regulator of hormone dependent breast cancer growth.''; PubMed Europe PMC Scholia
  64. Liu Z, Merkurjev D, Yang F, Li W, Oh S, Friedman MJ, Song X, Zhang F, Ma Q, Ohgi KA, Krones A, Rosenfeld MG.; ''Enhancer activation requires trans-recruitment of a mega transcription factor complex.''; PubMed Europe PMC Scholia
  65. Chen CL, Broom DC, Liu Y, de Nooij JC, Li Z, Cen C, Samad OA, Jessell TM, Woolf CJ, Ma Q.; ''Runx1 determines nociceptive sensory neuron phenotype and is required for thermal and neuropathic pain.''; PubMed Europe PMC Scholia
  66. Hannon GJ, Beach D.; ''p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest.''; PubMed Europe PMC Scholia
  67. Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU.; ''In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis.''; PubMed Europe PMC Scholia
  68. Wang X, Liao P, Fan X, Wan Y, Wang Y, Li Y, Jiang Z, Ye X, Mo X, Ocorr K, Deng Y, Wu X, Yuan W.; ''CXXC5 Associates with Smads to Mediate TNF-α Induced Apoptosis.''; PubMed Europe PMC Scholia
  69. Biswas DK, Singh S, Shi Q, Pardee AB, Iglehart JD.; ''Crossroads of estrogen receptor and NF-kappaB signaling.''; PubMed Europe PMC Scholia
  70. Deschênes J, Bourdeau V, White JH, Mader S.; ''Regulation of GREB1 transcription by estrogen receptor alpha through a multipartite enhancer spread over 20 kb of upstream flanking sequences.''; PubMed Europe PMC Scholia
  71. Ikeda K, Horie-Inoue K, Inoue S.; ''Identification of estrogen-responsive genes based on the DNA binding properties of estrogen receptors using high-throughput sequencing technology.''; PubMed Europe PMC Scholia
  72. Ahrens S, Jaramillo S, Yu K, Ghosh S, Hwang GR, Paik R, Lai C, He M, Huang ZJ, Li B.; ''ErbB4 regulation of a thalamic reticular nucleus circuit for sensory selection.''; PubMed Europe PMC Scholia
  73. Bai Z, Gust R.; ''Breast cancer, estrogen receptor and ligands.''; PubMed Europe PMC Scholia
  74. Nguyen NT, Vendrell JA, Poulard C, Győrffy B, Goddard-Léon S, Bièche I, Corbo L, Le Romancer M, Bachelot T, Treilleux I, Cohen PA.; ''A functional interplay between ZNF217 and estrogen receptor alpha exists in luminal breast cancers.''; PubMed Europe PMC Scholia
  75. Ruff M, Gangloff M, Wurtz JM, Moras D.; ''Estrogen receptor transcription and transactivation: Structure-function relationship in DNA- and ligand-binding domains of estrogen receptors.''; PubMed Europe PMC Scholia
  76. Kuntz MA, Shapiro DJ.; ''Dimerizing the estrogen receptor DNA binding domain enhances binding to estrogen response elements.''; PubMed Europe PMC Scholia
  77. Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, Li W, Carroll JS, Liu XS, Brown M.; ''FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription.''; PubMed Europe PMC Scholia
  78. Christiansen A, Dyrskjøt L.; ''The functional role of the novel biomarker karyopherin α 2 (KPNA2) in cancer.''; PubMed Europe PMC Scholia
  79. Khalkhali-Ellis Z, Hendrix MJ.; ''Two Faces of Cathepsin D: Physiological Guardian Angel and Pathological Demon.''; PubMed Europe PMC Scholia
  80. Feng SM, Muraoka-Cook RS, Hunter D, Sandahl MA, Caskey LS, Miyazawa K, Atfi A, Earp HS.; ''The E3 ubiquitin ligase WWP1 selectively targets HER4 and its proteolytically derived signaling isoforms for degradation.''; PubMed Europe PMC Scholia
  81. Goldfarb AN.; ''Megakaryocytic programming by a transcriptional regulatory loop: A circle connecting RUNX1, GATA-1, and P-TEFb.''; PubMed Europe PMC Scholia
  82. Muraoka-Cook RS, Sandahl M, Hunter D, Miraglia L, Earp HS.; ''Prolactin and ErbB4/HER4 signaling interact via Janus kinase 2 to induce mammary epithelial cell gene expression differentiation.''; PubMed Europe PMC Scholia
  83. Friedman AD.; ''Cell cycle and developmental control of hematopoiesis by Runx1.''; PubMed Europe PMC Scholia
  84. Ignar-Trowbridge DM, Teng CT, Ross KA, Parker MG, Korach KS, McLachlan JA.; ''Peptide growth factors elicit estrogen receptor-dependent transcriptional activation of an estrogen-responsive element.''; PubMed Europe PMC Scholia
  85. Lin J, Zhang L, Huang H, Huang Y, Huang L, Wang J, Huang S, He L, Zhou Y, Jia W, Yun J, Luo R, Zheng M.; ''MiR-26b/KPNA2 axis inhibits epithelial ovarian carcinoma proliferation and metastasis through downregulating OCT4.''; PubMed Europe PMC Scholia
  86. Chen AI, de Nooij JC, Jessell TM.; ''Graded activity of transcription factor Runx3 specifies the laminar termination pattern of sensory axons in the developing spinal cord.''; PubMed Europe PMC Scholia
  87. Wilson BJ, Giguère V.; ''Meta-analysis of human cancer microarrays reveals GATA3 is integral to the estrogen receptor alpha pathway.''; PubMed Europe PMC Scholia
  88. Parry D, Bates S, Mann DJ, Peters G.; ''Lack of cyclin D-Cdk complexes in Rb-negative cells correlates with high levels of p16INK4/MTS1 tumour suppressor gene product.''; PubMed Europe PMC Scholia
  89. Magnani L, Lupien M.; ''Chromatin and epigenetic determinants of estrogen receptor alpha (ESR1) signaling.''; PubMed Europe PMC Scholia
  90. Frasor J, Danes JM, Komm B, Chang KC, Lyttle CR, Katzenellenbogen BS.; ''Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype.''; PubMed Europe PMC Scholia
  91. Lam K, Zhang DE.; ''RUNX1 and RUNX1-ETO: roles in hematopoiesis and leukemogenesis.''; PubMed Europe PMC Scholia
  92. Geng F, Zhang J, Wu JL, Zou WJ, Liang ZP, Bi LL, Liu JH, Kong Y, Huang CQ, Li XW, Yang JM, Gao TM.; ''Neuregulin 1-ErbB4 signaling in the bed nucleus of the stria terminalis regulates anxiety-like behavior.''; PubMed Europe PMC Scholia
  93. Bouhouche-Chatelier L, Chadli A, Catelli MG.; ''The N-terminal adenosine triphosphate binding domain of Hsp90 is necessary and sufficient for interaction with estrogen receptor.''; PubMed Europe PMC Scholia
  94. Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, Fontaine C, Gourdy P, Chambon P, Katzenellenbogen B, Katzenellenbogen J.; ''Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications.''; PubMed Europe PMC Scholia
  95. Joab I, Radanyi C, Renoir M, Buchou T, Catelli MG, Binart N, Mester J, Baulieu EE.; ''Common non-hormone binding component in non-transformed chick oviduct receptors of four steroid hormones.''; PubMed Europe PMC Scholia
  96. Lange S, Perera S, Teh P, Chen J.; ''Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1.5) protein turnover.''; PubMed Europe PMC Scholia
  97. Wali VB, Haskins JW, Gilmore-Hebert M, Platt JT, Liu Z, Stern DF.; ''Convergent and divergent cellular responses by ErbB4 isoforms in mammary epithelial cells.''; PubMed Europe PMC Scholia
  98. DeNardo DG, Kim HT, Hilsenbeck S, Cuba V, Tsimelzon A, Brown PH.; ''Global gene expression analysis of estrogen receptor transcription factor cross talk in breast cancer: identification of estrogen-induced/activator protein-1-dependent genes.''; PubMed Europe PMC Scholia
  99. Wang F, Porter W, Xing W, Archer TK, Safe S.; ''Identification of a functional imperfect estrogen-responsive element in the 5'-promoter region of the human cathepsin D gene.''; PubMed Europe PMC Scholia
  100. Woo RS, Lee JH, Kim HS, Baek CH, Song DY, Suh YH, Baik TK.; ''Neuregulin-1 protects against neurotoxicities induced by Swedish amyloid precursor protein via the ErbB4 receptor.''; PubMed Europe PMC Scholia
  101. Lange CA, Gioeli D, Hammes SR, Marker PC.; ''Integration of rapid signaling events with steroid hormone receptor action in breast and prostate cancer.''; PubMed Europe PMC Scholia
  102. Ichikawa M, Asai T, Chiba S, Kurokawa M, Ogawa S.; ''Runx1/AML-1 ranks as a master regulator of adult hematopoiesis.''; PubMed Europe PMC Scholia
  103. Hah N, Kraus WL.; ''Hormone-regulated transcriptomes: lessons learned from estrogen signaling pathways in breast cancer cells.''; PubMed Europe PMC Scholia
  104. Farach-Carson MC, Davis PJ.; ''Steroid hormone interactions with target cells: cross talk between membrane and nuclear pathways.''; PubMed Europe PMC Scholia
  105. Gustafsson JA.; ''Estrogen receptor beta--a new dimension in estrogen mechanism of action.''; PubMed Europe PMC Scholia
  106. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, Ching KA, Antosiewicz-Bourget JE, Liu H, Zhang X, Green RD, Lobanenkov VV, Stewart R, Thomson JA, Crawford GE, Kellis M, Ren B.; ''Histone modifications at human enhancers reflect global cell-type-specific gene expression.''; PubMed Europe PMC Scholia
  107. Riese DJ, Komurasaki T, Plowman GD, Stern DF.; ''Activation of ErbB4 by the bifunctional epidermal growth factor family hormone epiregulin is regulated by ErbB2.''; PubMed Europe PMC Scholia
  108. Pedram A, Razandi M, Sainson RC, Kim JK, Hughes CC, Levin ER.; ''A conserved mechanism for steroid receptor translocation to the plasma membrane.''; PubMed Europe PMC Scholia
  109. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R.; ''Histone H3K27ac separates active from poised enhancers and predicts developmental state.''; PubMed Europe PMC Scholia
  110. Smith CL, Conneely OM, O'Malley BW.; ''Modulation of the ligand-independent activation of the human estrogen receptor by hormone and antihormone.''; PubMed Europe PMC Scholia
  111. Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, Carver NJ, Pillai RV, Sullivan PM, Sondhi V, Umetani M, Geradts J, McDonnell DP.; ''27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology.''; PubMed Europe PMC Scholia
  112. Depoortere F, Van Keymeulen A, Lukas J, Costagliola S, Bartkova J, Dumont JE, Bartek J, Roger PP, Dremier S.; ''A requirement for cyclin D3-cyclin-dependent kinase (cdk)-4 assembly in the cyclic adenosine monophosphate-dependent proliferation of thyrocytes.''; PubMed Europe PMC Scholia
  113. Ghosh MG, Thompson DA, Weigel RJ.; ''PDZK1 and GREB1 are estrogen-regulated genes expressed in hormone-responsive breast cancer.''; PubMed Europe PMC Scholia
  114. Knoblauch R, Garabedian MJ.; ''Role for Hsp90-associated cochaperone p23 in estrogen receptor signal transduction.''; PubMed Europe PMC Scholia
  115. Bäckström S, Wolf-Watz M, Grundström C, Härd T, Grundström T, Sauer UH.; ''The RUNX1 Runt domain at 1.25A resolution: a structural switch and specifically bound chloride ions modulate DNA binding.''; PubMed Europe PMC Scholia
  116. Cai X, Gao L, Teng L, Ge J, Oo ZM, Kumar AR, Gilliland DG, Mason PJ, Tan K, Speck NA.; ''Runx1 Deficiency Decreases Ribosome Biogenesis and Confers Stress Resistance to Hematopoietic Stem and Progenitor Cells.''; PubMed Europe PMC Scholia
  117. Kramer I, Sigrist M, de Nooij JC, Taniuchi I, Jessell TM, Arber S.; ''A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification.''; PubMed Europe PMC Scholia
  118. Farooq A.; ''Structural and Functional Diversity of Estrogen Receptor Ligands.''; PubMed Europe PMC Scholia
  119. Dubik D, Dembinski TC, Shiu RP.; ''Stimulation of c-myc oncogene expression associated with estrogen-induced proliferation of human breast cancer cells.''; PubMed Europe PMC Scholia
  120. Cavaillès V, Augereau P, Rochefort H.; ''Cathepsin D gene is controlled by a mixed promoter, and estrogens stimulate only TATA-dependent transcription in breast cancer cells.''; PubMed Europe PMC Scholia
  121. Watson RJ.; ''A transcriptional arrest mechanism involved in controlling constitutive levels of mouse c-myb mRNA.''; PubMed Europe PMC Scholia
  122. Ni CY, Murphy MP, Golde TE, Carpenter G.; ''gamma -Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase.''; PubMed Europe PMC Scholia
  123. Sun J, Nawaz Z, Slingerland JM.; ''Long-range activation of GREB1 by estrogen receptor via three distal consensus estrogen-responsive elements in breast cancer cells.''; PubMed Europe PMC Scholia
  124. Harrington WR, Sheng S, Barnett DH, Petz LN, Katzenellenbogen JA, Katzenellenbogen BS.; ''Activities of estrogen receptor alpha- and beta-selective ligands at diverse estrogen responsive gene sites mediating transactivation or transrepression.''; PubMed Europe PMC Scholia
  125. Andersson T, Södersten E, Duckworth JK, Cascante A, Fritz N, Sacchetti P, Cervenka I, Bryja V, Hermanson O.; ''CXXC5 is a novel BMP4-regulated modulator of Wnt signaling in neural stem cells.''; PubMed Europe PMC Scholia
  126. Haldosén LA, Zhao C, Dahlman-Wright K.; ''Estrogen receptor beta in breast cancer.''; PubMed Europe PMC Scholia
  127. Wu D, Ozaki T, Yoshihara Y, Kubo N, Nakagawara A.; ''Runt-related transcription factor 1 (RUNX1) stimulates tumor suppressor p53 protein in response to DNA damage through complex formation and acetylation.''; PubMed Europe PMC Scholia
  128. Zhu Y, Sullivan LL, Nair SS, Williams CC, Pandey AK, Marrero L, Vadlamudi RK, Jones FE.; ''Coregulation of estrogen receptor by ERBB4/HER4 establishes a growth-promoting autocrine signal in breast tumor cells.''; PubMed Europe PMC Scholia
  129. Gonda TJ, Leo P, Ramsay RG.; ''Estrogen and MYB in breast cancer: potential for new therapies.''; PubMed Europe PMC Scholia
  130. Penington DJ, Bryant I, Riese DJ.; ''Constitutively active ErbB4 and ErbB2 mutants exhibit distinct biological activities.''; PubMed Europe PMC Scholia
  131. Dubik D, Shiu RP.; ''Transcriptional regulation of c-myc oncogene expression by estrogen in hormone-responsive human breast cancer cells.''; PubMed Europe PMC Scholia
  132. Kangaspeska S, Stride B, Métivier R, Polycarpou-Schwarz M, Ibberson D, Carmouche RP, Benes V, Gannon F, Reid G.; ''Transient cyclical methylation of promoter DNA.''; PubMed Europe PMC Scholia
  133. Cosman F, Lindsay R.; ''Selective estrogen receptor modulators: clinical spectrum.''; PubMed Europe PMC Scholia
  134. Schwartz N, Verma A, Bivens CB, Schwartz Z, Boyan BD.; ''Rapid steroid hormone actions via membrane receptors.''; PubMed Europe PMC Scholia
  135. Nott SL, Huang Y, Li X, Fluharty BR, Qiu X, Welshons WV, Yeh S, Muyan M.; ''Genomic responses from the estrogen-responsive element-dependent signaling pathway mediated by estrogen receptor alpha are required to elicit cellular alterations.''; PubMed Europe PMC Scholia
  136. Cheng M, Sexl V, Sherr CJ, Roussel MF.; ''Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1).''; PubMed Europe PMC Scholia
  137. Elenius K, Paul S, Allison G, Sun J, Klagsbrun M.; ''Activation of HER4 by heparin-binding EGF-like growth factor stimulates chemotaxis but not proliferation.''; PubMed Europe PMC Scholia
  138. Foulds CE, Feng Q, Ding C, Bailey S, Hunsaker TL, Malovannaya A, Hamilton RA, Gates LA, Zhang Z, Li C, Chan D, Bajaj A, Callaway CG, Edwards DP, Lonard DM, Tsai SY, Tsai MJ, Qin J, O'Malley BW.; ''Proteomic analysis of coregulators bound to ERα on DNA and nucleosomes reveals coregulator dynamics.''; PubMed Europe PMC Scholia
  139. Safe S.; ''Transcriptional activation of genes by 17 beta-estradiol through estrogen receptor-Sp1 interactions.''; PubMed Europe PMC Scholia
  140. Augereau P, Miralles F, Cavaillès V, Gaudelet C, Parker M, Rochefort H.; ''Characterization of the proximal estrogen-responsive element of human cathepsin D gene.''; PubMed Europe PMC Scholia
  141. Marino M, Ascenzi P.; ''Steroid hormone rapid signaling: the pivotal role of S-palmitoylation.''; PubMed Europe PMC Scholia
  142. Dubik D, Shiu RP.; ''Mechanism of estrogen activation of c-myc oncogene expression.''; PubMed Europe PMC Scholia
  143. Zhang H.; ''Life without kinase: cyclin E promotes DNA replication licensing and beyond.''; PubMed Europe PMC Scholia
  144. Riese DJ, van Raaij TM, Plowman GD, Andrews GC, Stern DF.; ''The cellular response to neuregulins is governed by complex interactions of the erbB receptor family.''; PubMed Europe PMC Scholia
  145. Sewack GF, Hansen U.; ''Nucleosome positioning and transcription-associated chromatin alterations on the human estrogen-responsive pS2 promoter.''; PubMed Europe PMC Scholia
  146. Cheng J, Zhang C, Shapiro DJ.; ''A functional serine 118 phosphorylation site in estrogen receptor-alpha is required for down-regulation of gene expression by 17beta-estradiol and 4-hydroxytamoxifen.''; PubMed Europe PMC Scholia
  147. Pinkas-Kramarski R, Soussan L, Waterman H, Levkowitz G, Alroy I, Klapper L, Lavi S, Seger R, Ratzkin BJ, Sela M, Yarden Y.; ''Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions.''; PubMed Europe PMC Scholia
  148. Paatero I, Jokilammi A, Heikkinen PT, Iljin K, Kallioniemi OP, Jones FE, Jaakkola PM, Elenius K.; ''Interaction with ErbB4 promotes hypoxia-inducible factor-1α signaling.''; PubMed Europe PMC Scholia
  149. Chittenden T, Livingston DM, Kaelin WG.; ''The T/E1A-binding domain of the retinoblastoma product can interact selectively with a sequence-specific DNA-binding protein.''; PubMed Europe PMC Scholia
  150. Garriga J, Graña X.; ''Cellular control of gene expression by T-type cyclin/CDK9 complexes.''; PubMed Europe PMC Scholia
  151. Mitchell RM, Janssen MJ, Karavanova I, Vullhorst D, Furth K, Makusky A, Markey SP, Buonanno A.; ''ErbB4 reduces synaptic GABAA currents independent of its receptor tyrosine kinase activity.''; PubMed Europe PMC Scholia
  152. Pfaffl MW, Lange IG, Daxenberger A, Meyer HH.; ''Tissue-specific expression pattern of estrogen receptors (ER): quantification of ER alpha and ER beta mRNA with real-time RT-PCR.''; PubMed Europe PMC Scholia
  153. Vidal A, Koff A.; ''Cell-cycle inhibitors: three families united by a common cause.''; PubMed Europe PMC Scholia
  154. Zhang L, Lukasik SM, Speck NA, Bushweller JH.; ''Structural and functional characterization of Runx1, CBF beta, and CBF beta-SMMHC.''; PubMed Europe PMC Scholia
  155. Kong SL, Li G, Loh SL, Sung WK, Liu ET.; ''Cellular reprogramming by the conjoint action of ERα, FOXA1, and GATA3 to a ligand-inducible growth state.''; PubMed Europe PMC Scholia
  156. Lee SH, Kim MY, Kim HY, Lee YM, Kim H, Nam KA, Roh MR, Min do S, Chung KY, Choi KY.; ''The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing.''; PubMed Europe PMC Scholia
  157. Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M.; ''Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription.''; PubMed Europe PMC Scholia
  158. Chen D, Washbrook E, Sarwar N, Bates GJ, Pace PE, Thirunuvakkarasu V, Taylor J, Epstein RJ, Fuller-Pace FV, Egly JM, Coombes RC, Ali S.; ''Phosphorylation of human estrogen receptor alpha at serine 118 by two distinct signal transduction pathways revealed by phosphorylation-specific antisera.''; PubMed Europe PMC Scholia
  159. Kaushansky A, Gordus A, Budnik BA, Lane WS, Rush J, MacBeath G.; ''System-wide investigation of ErbB4 reveals 19 sites of Tyr phosphorylation that are unusually selective in their recruitment properties.''; PubMed Europe PMC Scholia
  160. Guan KL, Jenkins CW, Li Y, Nichols MA, Wu X, O'Keefe CL, Matera AG, Xiong Y.; ''Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function.''; PubMed Europe PMC Scholia
  161. Kim MS, Yoon SK, Bollig F, Kitagaki J, Hur W, Whye NJ, Wu YP, Rivera MN, Park JY, Kim HS, Malik K, Bell DW, Englert C, Perantoni AO, Lee SB.; ''A novel Wilms tumor 1 (WT1) target gene negatively regulates the WNT signaling pathway.''; PubMed Europe PMC Scholia
  162. Schmidt D, Schwalie PC, Ross-Innes CS, Hurtado A, Brown GD, Carroll JS, Flicek P, Odom DT.; ''A CTCF-independent role for cohesin in tissue-specific transcription.''; PubMed Europe PMC Scholia
  163. Krishnan V, Wang X, Safe S.; ''Estrogen receptor-Sp1 complexes mediate estrogen-induced cathepsin D gene expression in MCF-7 human breast cancer cells.''; PubMed Europe PMC Scholia
  164. Wang F, Samudio I, Safe S.; ''Transcriptional activation of cathepsin D gene expression by 17beta-estradiol: mechanism of aryl hydrocarbon receptor-mediated inhibition.''; PubMed Europe PMC Scholia
  165. Marfella CG, Imbalzano AN.; ''The Chd family of chromatin remodelers.''; PubMed Europe PMC Scholia
  166. Handa RJ, Ogawa S, Wang JM, Herbison AE.; ''Roles for oestrogen receptor β in adult brain function.''; PubMed Europe PMC Scholia
  167. Eeckhoute J, Carroll JS, Geistlinger TR, Torres-Arzayus MI, Brown M.; ''A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer.''; PubMed Europe PMC Scholia
  168. Losada A.; ''Cohesin in cancer: chromosome segregation and beyond.''; PubMed Europe PMC Scholia
  169. Bretschneider N, Kangaspeska S, Seifert M, Reid G, Gannon F, Denger S.; ''E2-mediated cathepsin D (CTSD) activation involves looping of distal enhancer elements.''; PubMed Europe PMC Scholia
  170. Albanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A, Pestell RG.; ''Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions.''; PubMed Europe PMC Scholia
  171. Mohammed H, D'Santos C, Serandour AA, Ali HR, Brown GD, Atkins A, Rueda OM, Holmes KA, Theodorou V, Robinson JL, Zwart W, Saadi A, Ross-Innes CS, Chin SF, Menon S, Stingl J, Palmieri C, Caldas C, Carroll JS.; ''Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor.''; PubMed Europe PMC Scholia
  172. Zeng F, Xu J, Harris RC.; ''Nedd4 mediates ErbB4 JM-a/CYT-1 ICD ubiquitination and degradation in MDCK II cells.''; PubMed Europe PMC Scholia
  173. Hodgkinson KM, Vanderhyden BC.; ''Consideration of GREB1 as a potential therapeutic target for hormone-responsive or endocrine-resistant cancers.''; PubMed Europe PMC Scholia
  174. Tzahar E, Levkowitz G, Karunagaran D, Yi L, Peles E, Lavi S, Chang D, Liu N, Yayon A, Wen D.; ''ErbB-3 and ErbB-4 function as the respective low and high affinity receptors of all Neu differentiation factor/heregulin isoforms.''; PubMed Europe PMC Scholia
  175. Fliss AE, Benzeno S, Rao J, Caplan AJ.; ''Control of estrogen receptor ligand binding by Hsp90.''; PubMed Europe PMC Scholia
  176. Haskins JW, Zhang S, Means RE, Kelleher JK, Cline GW, Canfrán-Duque A, Suárez Y, Stern DF.; ''Neuregulin-activated ERBB4 induces the SREBP-2 cholesterol biosynthetic pathway and increases low-density lipoprotein uptake.''; PubMed Europe PMC Scholia
  177. Keita M, Bachvarova M, Morin C, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Trinh XB, Bachvarov D.; ''The RUNX1 transcription factor is expressed in serous epithelial ovarian carcinoma and contributes to cell proliferation, migration and invasion.''; PubMed Europe PMC Scholia
  178. McEwan MV, Eccles MR, Horsfield JA.; ''Cohesin is required for activation of MYC by estradiol.''; PubMed Europe PMC Scholia
  179. Wang F, Hoivik D, Pollenz R, Safe S.; ''Functional and physical interactions between the estrogen receptor Sp1 and nuclear aryl hydrocarbon receptor complexes.''; PubMed Europe PMC Scholia
  180. Oxelmark E, Roth JM, Brooks PC, Braunstein SE, Schneider RJ, Garabedian MJ.; ''The cochaperone p23 differentially regulates estrogen receptor target genes and promotes tumor cell adhesion and invasion.''; PubMed Europe PMC Scholia
  181. Laganière J, Deblois G, Lefebvre C, Bataille AR, Robert F, Giguère V.; ''From the Cover: Location analysis of estrogen receptor alpha target promoters reveals that FOXA1 defines a domain of the estrogen response.''; PubMed Europe PMC Scholia
  182. Stender JD, Kim K, Charn TH, Komm B, Chang KC, Kraus WL, Benner C, Glass CK, Katzenellenbogen BS.; ''Genome-wide analysis of estrogen receptor alpha DNA binding and tethering mechanisms identifies Runx1 as a novel tethering factor in receptor-mediated transcriptional activation.''; PubMed Europe PMC Scholia
  183. Omerovic J, Santangelo L, Puggioni EM, Marrocco J, Dall'Armi C, Palumbo C, Belleudi F, Di Marcotullio L, Frati L, Torrisi MR, Cesareni G, Gulino A, Alimandi M.; ''The E3 ligase Aip4/Itch ubiquitinates and targets ErbB-4 for degradation.''; PubMed Europe PMC Scholia
  184. Hall JM, Couse JF, Korach KS.; ''The multifaceted mechanisms of estradiol and estrogen receptor signaling.''; PubMed Europe PMC Scholia
  185. Sampayo RG, Toscani AM, Rubashkin MG, Thi K, Masullo LA, Violi IL, Lakins JN, Cáceres A, Hines WC, Coluccio Leskow F, Stefani FD, Chialvo DR, Bissell MJ, Weaver VM, Simian M.; ''Fibronectin rescues estrogen receptor α from lysosomal degradation in breast cancer cells.''; PubMed Europe PMC Scholia
  186. Acconcia F, Ascenzi P, Bocedi A, Spisni E, Tomasi V, Trentalance A, Visca P, Marino M.; ''Palmitoylation-dependent estrogen receptor alpha membrane localization: regulation by 17beta-estradiol.''; PubMed Europe PMC Scholia
  187. Wang X, Blagden C, Fan J, Nowak SJ, Taniuchi I, Littman DR, Burden SJ.; ''Runx1 prevents wasting, myofibrillar disorganization, and autophagy of skeletal muscle.''; PubMed Europe PMC Scholia
  188. Berry M, Nunez AM, Chambon P.; ''Estrogen-responsive element of the human pS2 gene is an imperfectly palindromic sequence.''; PubMed Europe PMC Scholia
  189. Gilmore-Hebert M, Ramabhadran R, Stern DF.; ''Interactions of ErbB4 and Kap1 connect the growth factor and DNA damage response pathways.''; PubMed Europe PMC Scholia
  190. Cicatiello L, Addeo R, Sasso A, Altucci L, Petrizzi VB, Borgo R, Cancemi M, Caporali S, Caristi S, Scafoglio C, Teti D, Bresciani F, Perillo B, Weisz A.; ''Estrogens and progesterone promote persistent CCND1 gene activation during G1 by inducing transcriptional derepression via c-Jun/c-Fos/estrogen receptor (progesterone receptor) complex assembly to a distal regulatory element and recruitment of cyclin D1 to its own gene promoter.''; PubMed Europe PMC Scholia
  191. Hayes NV, Blackburn E, Smart LV, Boyle MM, Russell GA, Frost TM, Morgan BJ, Baines AJ, Gullick WJ.; ''Identification and characterization of novel spliced variants of neuregulin 4 in prostate cancer.''; PubMed Europe PMC Scholia
  192. Jones FE, Welte T, Fu XY, Stern DF.; ''ErbB4 signaling in the mammary gland is required for lobuloalveolar development and Stat5 activation during lactation.''; PubMed Europe PMC Scholia
  193. Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, Wang Q, Bekiranov S, Sementchenko V, Fox EA, Silver PA, Gingeras TR, Liu XS, Brown M.; ''Genome-wide analysis of estrogen receptor binding sites.''; PubMed Europe PMC Scholia
  194. Stedman W, Kang H, Lin S, Kissil JL, Bartolomei MS, Lieberman PM.; ''Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators.''; PubMed Europe PMC Scholia
  195. Guérin M, Sheng ZM, Andrieu N, Riou G.; ''Strong association between c-myb and oestrogen-receptor expression in human breast cancer.''; PubMed Europe PMC Scholia
  196. Kawazu M, Saso K, Tong KI, McQuire T, Goto K, Son DO, Wakeham A, Miyagishi M, Mak TW, Okada H.; ''Histone demethylase JMJD2B functions as a co-factor of estrogen receptor in breast cancer proliferation and mammary gland development.''; PubMed Europe PMC Scholia
  197. Kim HY, Yoon JY, Yun JH, Cho KW, Lee SH, Rhee YM, Jung HS, Lim HJ, Lee H, Choi J, Heo JN, Lee W, No KT, Min D, Choi KY.; ''CXXC5 is a negative-feedback regulator of the Wnt/β-catenin pathway involved in osteoblast differentiation.''; PubMed Europe PMC Scholia
  198. Sadasivam S, DeCaprio JA.; ''The DREAM complex: master coordinator of cell cycle-dependent gene expression.''; PubMed Europe PMC Scholia
  199. Naresh A, Long W, Vidal GA, Wimley WC, Marrero L, Sartor CI, Tovey S, Cooke TG, Bartlett JM, Jones FE.; ''The ERBB4/HER4 intracellular domain 4ICD is a BH3-only protein promoting apoptosis of breast cancer cells.''; PubMed Europe PMC Scholia
  200. Métivier R, Penot G, Hübner MR, Reid G, Brand H, Kos M, Gannon F.; ''Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter.''; PubMed Europe PMC Scholia
  201. Newton CJ, Buric R, Trapp T, Brockmeier S, Pagotto U, Stalla GK.; ''The unliganded estrogen receptor (ER) transduces growth factor signals.''; PubMed Europe PMC Scholia
  202. Shen Q, Uray IP, Li Y, Krisko TI, Strecker TE, Kim HT, Brown PH.; ''The AP-1 transcription factor regulates breast cancer cell growth via cyclins and E2F factors.''; PubMed Europe PMC Scholia
  203. Lin CY, Ström A, Vega VB, Kong SL, Yeo AL, Thomsen JS, Chan WC, Doray B, Bangarusamy DK, Ramasamy A, Vergara LA, Tang S, Chong A, Bajic VB, Miller LD, Gustafsson JA, Liu ET.; ''Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells.''; PubMed Europe PMC Scholia
  204. Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR.; ''The E2F transcription factor is a cellular target for the RB protein.''; PubMed Europe PMC Scholia
  205. Clarke CL, Graham JD.; ''Non-overlapping progesterone receptor cistromes contribute to cell-specific transcriptional outcomes.''; PubMed Europe PMC Scholia
  206. Rio C, Buxbaum JD, Peschon JJ, Corfas G.; ''Tumor necrosis factor-alpha-converting enzyme is required for cleavage of erbB4/HER4.''; PubMed Europe PMC Scholia
  207. Anbalagan M, Rowan BG.; ''Estrogen receptor alpha phosphorylation and its functional impact in human breast cancer.''; PubMed Europe PMC Scholia
  208. Prall OW, Rogan EM, Musgrove EA, Watts CK, Sutherland RL.; ''c-Myc or cyclin D1 mimics estrogen effects on cyclin E-Cdk2 activation and cell cycle reentry.''; PubMed Europe PMC Scholia
  209. Liaudet-Coopman E, Beaujouin M, Derocq D, Garcia M, Glondu-Lassis M, Laurent-Matha V, Prébois C, Rochefort H, Vignon F.; ''Cathepsin D: newly discovered functions of a long-standing aspartic protease in cancer and apoptosis.''; PubMed Europe PMC Scholia
  210. Mangan JK, Speck NA.; ''RUNX1 mutations in clonal myeloid disorders: from conventional cytogenetics to next generation sequencing, a story 40 years in the making.''; PubMed Europe PMC Scholia
  211. Wissmann M, Yin N, Müller JM, Greschik H, Fodor BD, Jenuwein T, Vogler C, Schneider R, Günther T, Buettner R, Metzger E, Schüle R.; ''Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression.''; PubMed Europe PMC Scholia
  212. Li G, Ruan X, Auerbach RK, Sandhu KS, Zheng M, Wang P, Poh HM, Goh Y, Lim J, Zhang J, Sim HS, Peh SQ, Mulawadi FH, Ong CT, Orlov YL, Hong S, Zhang Z, Landt S, Raha D, Euskirchen G, Wei CL, Ge W, Wang H, Davis C, Fisher-Aylor KI, Mortazavi A, Gerstein M, Gingeras T, Wold B, Sun Y, Fullwood MJ, Cheung E, Liu E, Sung WK, Snyder M, Ruan Y.; ''Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation.''; PubMed Europe PMC Scholia
  213. Ichikawa M, Yoshimi A, Nakagawa M, Nishimoto N, Watanabe-Okochi N, Kurokawa M.; ''A role for RUNX1 in hematopoiesis and myeloid leukemia.''; PubMed Europe PMC Scholia
  214. Del Pino I, García-Frigola C, Dehorter N, Brotons-Mas JR, Alvarez-Salvado E, Martínez de Lagrán M, Ciceri G, Gabaldón MV, Moratal D, Dierssen M, Canals S, Marín O, Rico B.; ''Erbb4 deletion from fast-spiking interneurons causes schizophrenia-like phenotypes.''; PubMed Europe PMC Scholia
  215. Lees JA, Saito M, Vidal M, Valentine M, Look T, Harlow E, Dyson N, Helin K.; ''The retinoblastoma protein binds to a family of E2F transcription factors.''; PubMed Europe PMC Scholia
  216. Butt AJ, McNeil CM, Musgrove EA, Sutherland RL.; ''Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E.''; PubMed Europe PMC Scholia
  217. Ferreira R, Magnaghi-Jaulin L, Robin P, Harel-Bellan A, Trouche D.; ''The three members of the pocket proteins family share the ability to repress E2F activity through recruitment of a histone deacetylase.''; PubMed Europe PMC Scholia
  218. White R, Fawell SE, Parker MG.; ''Analysis of oestrogen receptor dimerisation using chimeric proteins.''; PubMed Europe PMC Scholia
  219. Kumar V, Chambon P.; ''The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer.''; PubMed Europe PMC Scholia
  220. Lösel R, Wehling M.; ''Nongenomic actions of steroid hormones.''; PubMed Europe PMC Scholia
  221. Aumais JP, Lee HS, Lin R, White JH.; ''Selective interaction of hsp90 with an estrogen receptor ligand-binding domain containing a point mutation.''; PubMed Europe PMC Scholia
  222. Shann YJ, Cheng C, Chiao CH, Chen DT, Li PH, Hsu MT.; ''Genome-wide mapping and characterization of hypomethylated sites in human tissues and breast cancer cell lines.''; PubMed Europe PMC Scholia
  223. Rhodes JM, McEwan M, Horsfield JA.; ''Gene regulation by cohesin in cancer: is the ring an unexpected party to proliferation?''; PubMed Europe PMC Scholia
  224. Shigesada K, van de Sluis B, Liu PP.; ''Mechanism of leukemogenesis by the inv(16) chimeric gene CBFB/PEBP2B-MHY11.''; PubMed Europe PMC Scholia
  225. Pearce ST, Jordan VC.; ''The biological role of estrogen receptors alpha and beta in cancer.''; PubMed Europe PMC Scholia
  226. Theodorou V, Stark R, Menon S, Carroll JS.; ''GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility.''; PubMed Europe PMC Scholia
  227. Williams CC, Allison JG, Vidal GA, Burow ME, Beckman BS, Marrero L, Jones FE.; ''The ERBB4/HER4 receptor tyrosine kinase regulates gene expression by functioning as a STAT5A nuclear chaperone.''; PubMed Europe PMC Scholia
  228. Muraoka-Cook RS, Caskey LS, Sandahl MA, Hunter DM, Husted C, Strunk KE, Sartor CI, Rearick WA, McCall W, Sgagias MK, Cowan KH, Earp HS.; ''Heregulin-dependent delay in mitotic progression requires HER4 and BRCA1.''; PubMed Europe PMC Scholia
  229. Amin DN, Perkins AS, Stern DF.; ''Gene expression profiling of ErbB receptor and ligand-dependent transcription.''; PubMed Europe PMC Scholia
  230. Gaughan L, Stockley J, Coffey K, O'Neill D, Jones DL, Wade M, Wright J, Moore M, Tse S, Rogerson L, Robson CN.; ''KDM4B is a master regulator of the estrogen receptor signalling cascade.''; PubMed Europe PMC Scholia
  231. Kanno T, Kanno Y, Chen LF, Ogawa E, Kim WY, Ito Y.; ''Intrinsic transcriptional activation-inhibition domains of the polyomavirus enhancer binding protein 2/core binding factor alpha subunit revealed in the presence of the beta subunit.''; PubMed Europe PMC Scholia
  232. Antony J, Dasgupta T, Rhodes JM, McEwan MV, Print CG, O'Sullivan JM, Horsfield JA.; ''Cohesin modulates transcription of estrogen-responsive genes.''; PubMed Europe PMC Scholia
  233. Klinge CM.; ''Estrogen receptor interaction with estrogen response elements.''; PubMed Europe PMC Scholia
  234. Morris DP, Michelotti GA, Schwinn DA.; ''Evidence that phosphorylation of the RNA polymerase II carboxyl-terminal repeats is similar in yeast and humans.''; PubMed Europe PMC Scholia
  235. Su CH, Tzeng TY, Cheng C, Hsu MT.; ''An H2A histone isotype regulates estrogen receptor target genes by mediating enhancer-promoter-3'-UTR interactions in breast cancer cells.''; PubMed Europe PMC Scholia
  236. Zheng S, Wyrick JJ, Reese JC.; ''Novel trans-tail regulation of H2B ubiquitylation and H3K4 methylation by the N terminus of histone H2A.''; PubMed Europe PMC Scholia
  237. Ballaré C, Uhrig M, Bechtold T, Sancho E, Di Domenico M, Migliaccio A, Auricchio F, Beato M.; ''Two domains of the progesterone receptor interact with the estrogen receptor and are required for progesterone activation of the c-Src/Erk pathway in mammalian cells.''; PubMed Europe PMC Scholia
  238. Aqeilan RI, Donati V, Palamarchuk A, Trapasso F, Kaou M, Pekarsky Y, Sudol M, Croce CM.; ''WW domain-containing proteins, WWOX and YAP, compete for interaction with ErbB-4 and modulate its transcriptional function.''; PubMed Europe PMC Scholia
  239. Zaret KS, Carroll JS.; ''Pioneer transcription factors: establishing competence for gene expression.''; PubMed Europe PMC Scholia
  240. Bourdeau V, Deschênes J, Métivier R, Nagai Y, Nguyen D, Bretschneider N, Gannon F, White JH, Mader S.; ''Genome-wide identification of high-affinity estrogen response elements in human and mouse.''; PubMed Europe PMC Scholia
  241. Sun Y, Ikrar T, Davis MF, Gong N, Zheng X, Luo ZD, Lai C, Mei L, Holmes TC, Gandhi SP, Xu X.; ''Neuregulin-1/ErbB4 Signaling Regulates Visual Cortical Plasticity.''; PubMed Europe PMC Scholia
  242. Panaretou B, Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, Pearl LH.; ''ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo.''; PubMed Europe PMC Scholia
  243. Zhang D, Sliwkowski MX, Mark M, Frantz G, Akita R, Sun Y, Hillan K, Crowley C, Brush J, Godowski PJ.; ''Neuregulin-3 (NRG3): a novel neural tissue-enriched protein that binds and activates ErbB4.''; PubMed Europe PMC Scholia
  244. Guo ZY, Hao XH, Tan FF, Pei X, Shang LM, Jiang XL, Yang F.; ''The elements of human cyclin D1 promoter and regulation involved.''; PubMed Europe PMC Scholia
  245. Guan YF, Wu CY, Fang YY, Zeng YN, Luo ZY, Li SJ, Li XW, Zhu XH, Mei L, Gao TM.; ''Neuregulin 1 protects against ischemic brain injury via ErbB4 receptors by increasing GABAergic transmission.''; PubMed Europe PMC Scholia
  246. Kainulainen V, Sundvall M, Määttä JA, Santiestevan E, Klagsbrun M, Elenius K.; ''A natural ErbB4 isoform that does not activate phosphoinositide 3-kinase mediates proliferation but not survival or chemotaxis.''; PubMed Europe PMC Scholia
  247. Bagchi S, Weinmann R, Raychaudhuri P.; ''The retinoblastoma protein copurifies with E2F-I, an E1A-regulated inhibitor of the transcription factor E2F.''; PubMed Europe PMC Scholia
  248. Mohammed H, Russell IA, Stark R, Rueda OM, Hickey TE, Tarulli GA, Serandour AA, Birrell SN, Bruna A, Saadi A, Menon S, Hadfield J, Pugh M, Raj GV, Brown GD, D'Santos C, Robinson JL, Silva G, Launchbury R, Perou CM, Stingl J, Caldas C, Tilley WD, Carroll JS.; ''Progesterone receptor modulates ERα action in breast cancer.''; PubMed Europe PMC Scholia
  249. Schwabe JW, Chapman L, Finch JT, Rhodes D.; ''The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate between their response elements.''; PubMed Europe PMC Scholia
  250. Hazan R, Margolis B, Dombalagian M, Ullrich A, Zilberstein A, Schlessinger J.; ''Identification of autophosphorylation sites of HER2/neu.''; PubMed Europe PMC Scholia
  251. Guan KL, Jenkins CW, Li Y, O'Keefe CL, Noh S, Wu X, Zariwala M, Matera AG, Xiong Y.; ''Isolation and characterization of p19INK4d, a p16-related inhibitor specific to CDK6 and CDK4.''; PubMed Europe PMC Scholia
  252. Bender TP, Thompson CB, Kuehl WM.; ''Differential expression of c-myb mRNA in murine B lymphomas by a block to transcription elongation.''; PubMed Europe PMC Scholia
  253. Schulze WX, Deng L, Mann M.; ''Phosphotyrosine interactome of the ErbB-receptor kinase family.''; PubMed Europe PMC Scholia
  254. Omerovic J, Puggioni EM, Napoletano S, Visco V, Fraioli R, Frati L, Gulino A, Alimandi M.; ''Ligand-regulated association of ErbB-4 to the transcriptional co-activator YAP65 controls transcription at the nuclear level.''; PubMed Europe PMC Scholia
  255. Augello MA, Hickey TE, Knudsen KE.; ''FOXA1: master of steroid receptor function in cancer.''; PubMed Europe PMC Scholia
  256. Acconcia F, Ascenzi P, Fabozzi G, Visca P, Marino M.; ''S-palmitoylation modulates human estrogen receptor-alpha functions.''; PubMed Europe PMC Scholia
  257. La Rosa P, Pesiri V, Leclercq G, Marino M, Acconcia F.; ''Palmitoylation regulates 17β-estradiol-induced estrogen receptor-α degradation and transcriptional activity.''; PubMed Europe PMC Scholia
  258. Aras S, Pak O, Sommer N, Finley R, Hüttemann M, Weissmann N, Grossman LI.; ''Oxygen-dependent expression of cytochrome c oxidase subunit 4-2 gene expression is mediated by transcription factors RBPJ, CXXC5 and CHCHD2.''; PubMed Europe PMC Scholia
  259. Nguyen VT, Barozzi I, Faronato M, Lombardo Y, Steel JH, Patel N, Darbre P, Castellano L, Győrffy B, Woodley L, Meira A, Patten DK, Vircillo V, Periyasamy M, Ali S, Frige G, Minucci S, Coombes RC, Magnani L.; ''Differential epigenetic reprogramming in response to specific endocrine therapies promotes cholesterol biosynthesis and cellular invasion.''; PubMed Europe PMC Scholia
  260. Cheng QC, Tikhomirov O, Zhou W, Carpenter G.; ''Ectodomain cleavage of ErbB-4: characterization of the cleavage site and m80 fragment.''; PubMed Europe PMC Scholia
  261. Powell E, Wang Y, Shapiro DJ, Xu W.; ''Differential requirements of Hsp90 and DNA for the formation of estrogen receptor homodimers and heterodimers.''; PubMed Europe PMC Scholia
  262. Arasada RR, Carpenter G.; ''Secretase-dependent tyrosine phosphorylation of Mdm2 by the ErbB-4 intracellular domain fragment.''; PubMed Europe PMC Scholia
  263. Smith DF, Toft DO.; ''Minireview: the intersection of steroid receptors with molecular chaperones: observations and questions.''; PubMed Europe PMC Scholia
  264. Lin Z, Reierstad S, Huang CC, Bulun SE.; ''Novel estrogen receptor-alpha binding sites and estradiol target genes identified by chromatin immunoprecipitation cloning in breast cancer.''; PubMed Europe PMC Scholia
  265. Connell-Crowley L, Harper JW, Goodrich DW.; ''Cyclin D1/Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation.''; PubMed Europe PMC Scholia
  266. Liu MH, Cheung E.; ''Estrogen receptor-mediated long-range chromatin interactions and transcription in breast cancer.''; PubMed Europe PMC Scholia
  267. Cohen BD, Green JM, Foy L, Fell HP.; ''HER4-mediated biological and biochemical properties in NIH 3T3 cells. Evidence for HER1-HER4 heterodimers.''; PubMed Europe PMC Scholia
  268. Marino M, Ascenzi P, Acconcia F.; ''S-palmitoylation modulates estrogen receptor alpha localization and functions.''; PubMed Europe PMC Scholia
  269. Lukasik SM, Zhang L, Corpora T, Tomanicek S, Li Y, Kundu M, Hartman K, Liu PP, Laue TM, Biltonen RL, Speck NA, Bushweller JH.; ''Altered affinity of CBF beta-SMMHC for Runx1 explains its role in leukemogenesis.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114816view16:31, 25 January 2021ReactomeTeamReactome version 75
113261view11:33, 2 November 2020ReactomeTeamReactome version 74
112476view15:43, 9 October 2020ReactomeTeamReactome version 73
101703view14:42, 1 November 2018DeSlOntology Term : 'estrogen signaling pathway' added !
101663view13:02, 1 November 2018DeSlRemoved wrong complex formation manually
101387view11:27, 1 November 2018ReactomeTeamreactome version 66
100925view21:03, 31 October 2018ReactomeTeamreactome version 65
100720view20:11, 31 October 2018ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
27-hydroxycholesterol MetaboliteCHEBI:76591 (ChEBI)
27-hydroxycholesterol:ESR1,2ComplexR-HSA-9038025 (Reactome)
27-hydroxycholesterolMetaboliteCHEBI:76591 (ChEBI)
ADPMetaboliteCHEBI:16761 (ChEBI)
ATP MetaboliteCHEBI:15422 (ChEBI)
ATPMetaboliteCHEBI:15422 (ChEBI)
AXIN1 gene ProteinENSG00000103126 (Ensembl)
AXIN1 geneGeneProductENSG00000103126 (Ensembl)
AXIN1ProteinO15169 (Uniprot-TrEMBL)
BCL2 gene ProteinENSG00000171791 (Ensembl)
BCL2 geneGeneProductENSG00000171791 (Ensembl)
BCL2ProteinP10415 (Uniprot-TrEMBL)
BLC2

gene:HIST1H2AC

nuclesome:ESR1:ESTG:EP300
ComplexR-HSA-9011932 (Reactome)
CARM1:TBP:TFIIA:DDX5:ESR1:estrogen:TFF1 gene:FOXA1:GATA3ComplexR-HSA-9009534 (Reactome)
CARM1ProteinQ86X55 (Uniprot-TrEMBL)
CBFB ProteinQ13951 (Uniprot-TrEMBL)
CCND1

gene:H3K4me2

nucleosome:FOXA1:GATA3:ESTG:ESR1 dimer:JUN:ATF2:POUF21:ESTG:ESR1 dimer:JUN:FOS
ComplexR-HSA-9009369 (Reactome)
CCND1

gene:H3K4me2

nucleosome:FOXA1:GATA3
ComplexR-HSA-9009057 (Reactome)
CCND1

gene:H3K4me2

nucleosome:YY1:HDAC1
ComplexR-HSA-9009060 (Reactome)
CCND1 gene:nucleosome:ESR1:ESTGComplexR-HSA-9011929 (Reactome)
CCND1 gene ProteinENSG00000110092 (Ensembl)
CCND1 geneGeneProductENSG00000110092 (Ensembl)
CCND1ProteinP24385 (Uniprot-TrEMBL)
CCNT1 ProteinO60563 (Uniprot-TrEMBL)
CDK9 ProteinP50750 (Uniprot-TrEMBL)
CHD1 geneGeneProductENSG00000153922 (Ensembl)
CHD1 mRNA ProteinENST00000284049.7 (Ensembl)
CHD1 mRNA:mIR-26 RISCComplexR-HSA-9012183 (Reactome)
CHD1 mRNARnaENST00000284049.7 (Ensembl)
CHD1ProteinO14646 (Uniprot-TrEMBL)
CITED1 ProteinQ99966 (Uniprot-TrEMBL)
CITED1:EP300:ESR1:estrogen:TGFA gene promoterComplexR-HSA-9008249 (Reactome)
CITED1ProteinQ99966 (Uniprot-TrEMBL)
CREBBP ProteinQ92793 (Uniprot-TrEMBL)
CREBBPProteinQ92793 (Uniprot-TrEMBL)
CTSD gene:ESR1:ESTG:SP1:USF1:USF2:NCOA:EP300:MED1ComplexR-HSA-9023842 (Reactome)
CTSD dimerComplexR-HSA-9023844 (Reactome)
CTSD gene ProteinENSG00000117984 (Ensembl)
CTSD gene:ESR1:ESTGComplexR-HSA-9023841 (Reactome)
CTSD geneGeneProductENSG00000117984 (Ensembl)
CTSD(169-412) ProteinP07339 (Uniprot-TrEMBL)
CTSD(65-161) ProteinP07339 (Uniprot-TrEMBL)
CXCL12 gene ProteinENSG00000107562 (Ensembl)
CXCL12 geneGeneProductENSG00000107562 (Ensembl)
CXCL12(22-93)ProteinP48061 (Uniprot-TrEMBL)
CXXC5 gene ProteinENSG00000171604 (Ensembl)
CXXC5 gene:ESR1:ESTGComplexR-HSA-9018328 (Reactome)
CXXC5 geneGeneProductENSG00000171604 (Ensembl)
CXXC5ProteinQ7LFL8 (Uniprot-TrEMBL)
Cohesin ComplexComplexR-HSA-1641505 (Reactome)
DDX5 ProteinP17844 (Uniprot-TrEMBL)
DDX5ProteinP17844 (Uniprot-TrEMBL)
E1 MetaboliteCHEBI:17263 (ChEBI)
EBAG9 gene ProteinENSG00000147654 (Ensembl)
EBAG9 gene:ESR1:ESTGComplexR-HSA-9018506 (Reactome)
EBAG9 geneGeneProductENSG00000147654 (Ensembl)
EBAG9ProteinO00559 (Uniprot-TrEMBL)
EP300 ProteinQ09472 (Uniprot-TrEMBL)
EP300ProteinQ09472 (Uniprot-TrEMBL)
ERBB4jmAcyt1s80 ProteinQ15303-1 (Uniprot-TrEMBL)
ERBB4jmAcyt2s80 ProteinQ15303-3 (Uniprot-TrEMBL)
ERBB4s80:ESR1:estrogen:CXCL12 geneComplexR-HSA-8954210 (Reactome)
ERBB4s80:ESR1:estrogen:PGR geneComplexR-HSA-8954204 (Reactome)
ERBB4s80:ESR1:estrogenComplexR-HSA-1254397 (Reactome)
ERBB4s80ComplexR-HSA-1252016 (Reactome)
ESR1

dimer:estrogen:TFGA

gene:NCOA1
ComplexR-HSA-9023832 (Reactome)
ESR1

dimer:estrogen:TGFA

gene promoter
ComplexR-HSA-9008287 (Reactome)
ESR1 ProteinP03372 (Uniprot-TrEMBL)
ESR1 dimer:estrogenComplexR-HSA-9008284 (Reactome)
ESR1,2:ESTG homo and heterodimersComplexR-HSA-8939181 (Reactome)
ESR1,2:ESTGComplexR-HSA-8939177 (Reactome)
ESR1,2ComplexR-HSA-8939172 (Reactome)
ESR1:ER:PGR:P4ComplexR-HSA-9038156 (Reactome)
ESR1:ESTG:P-TEFbComplexR-HSA-9012291 (Reactome)
ESR1:ESTG:PGR:P4:FOXA1:GATA3:TLE3:NRIP:EP300ComplexR-HSA-9038159 (Reactome)
ESR1:ESTGComplexR-HSA-1254381 (Reactome)
ESR1:chaperone complexComplexR-HSA-9032749 (Reactome)
ESR1:estrogen:AXIN1 geneComplexR-HSA-8932051 (Reactome)
ESR1:estrogen:ERE:NCOA3:EP300ComplexR-HSA-9008268 (Reactome)
ESR1:estrogen:ERE:NCOA3:TFGA geneComplexR-HSA-9008244 (Reactome)
ESR1:estrogen:TFF1 gene:DDX5:TBP:TFIIA:PRMT1:FOXA1:GATA3ComplexR-HSA-9023863 (Reactome)
ESR1:estrogen:TFF1 gene:FOXA1:GATA3:DDX5:TBP:TFIIA:CARM1,PRMT1ComplexR-HSA-9023865 (Reactome)
ESR1:estrogen:TFF1 gene:FOXA1:GATA3:DDX5ComplexR-HSA-9009528 (Reactome)
ESR1:estrogen:TFF1 gene:FOXA1:GATA3ComplexR-HSA-9009531 (Reactome)
ESR1:estrogen:TFF1gene:FOXA1:GATA3:DDX5:TBP:TFIIA:CARM1,PRMT1:HATsComplexR-HSA-9023866 (Reactome)
ESR1:estrogen:TFGA gene:NCOA1:EP300ComplexR-HSA-9023880 (Reactome)
ESR2 ProteinQ92731 (Uniprot-TrEMBL)
ESRs:chaperone complexComplexR-HSA-8939185 (Reactome)
EST17b MetaboliteCHEBI:16469 (ChEBI)
ESTG MetaboliteCHEBI:50114 (ChEBI)
ESTG:ESR1 dimer:ATF2:JUNComplexR-HSA-9009370 (Reactome)
ESTG:ESR1 dimer:JUN:FOSComplexR-HSA-9009373 (Reactome)
ESTG:ESRs:chaperone complexComplexR-HSA-8939191 (Reactome)
ESTGMetaboliteCHEBI:50114 (ChEBI)
FKBP4 ProteinQ02790 (Uniprot-TrEMBL)
FKBP4ProteinQ02790 (Uniprot-TrEMBL)
FKBP5 ProteinQ13451 (Uniprot-TrEMBL)
FOS ProteinP01100 (Uniprot-TrEMBL)
FOSB ProteinP53539 (Uniprot-TrEMBL)
FOSB:JUNDComplexR-HSA-9011886 (Reactome)
FOXA1 ProteinP55317 (Uniprot-TrEMBL)
FOXA1ProteinP55317 (Uniprot-TrEMBL)
GATA3 ProteinP23771 (Uniprot-TrEMBL)
GATA3ProteinP23771 (Uniprot-TrEMBL)
GPAM gene ProteinENSG00000119927 (Ensembl)
GPAM geneGeneProductENSG00000119927 (Ensembl)
GPAM(1-828)ProteinQ9HCL2 (Uniprot-TrEMBL)
GREB1 gene:nucleosome:ESR1:ESTG:ZNF217:NCOA3:NR5A2ComplexR-HSA-9011926 (Reactome)
GREB1 gene:nucleosome:ESR1:ESTGComplexR-HSA-9011925 (Reactome)
GREB1 ProteinQ4ZG55 (Uniprot-TrEMBL)
GREB1 gene ProteinENSG00000196208 (Ensembl)
GREB1 geneGeneProductENSG00000196208 (Ensembl)
GREB1 mRNA ProteinENST00000381486.6 (Ensembl)
GREB1 mRNA:miR-26 RISCComplexR-HSA-9011921 (Reactome)
GREB1 mRNARnaENST00000381486.6 (Ensembl)
GREB1:ESR1:ESTG:EP300:CREBBPComplexR-HSA-9038050 (Reactome)
GREB1ProteinQ4ZG55 (Uniprot-TrEMBL)
GTF2A1(1-274) ProteinP52655 (Uniprot-TrEMBL)
GTF2A1(275-376) ProteinP52655 (Uniprot-TrEMBL)
GTF2A2 ProteinP52657 (Uniprot-TrEMBL)
GTF2F1 ProteinP35269 (Uniprot-TrEMBL)
GTF2F2 ProteinP13984 (Uniprot-TrEMBL)
H2AFB1 ProteinP0C5Y9 (Uniprot-TrEMBL)
H2AFJ ProteinQ9BTM1 (Uniprot-TrEMBL)
H2AFV ProteinQ71UI9 (Uniprot-TrEMBL)
H2AFX ProteinP16104 (Uniprot-TrEMBL)
H2AFZ ProteinP0C0S5 (Uniprot-TrEMBL)
H2BFS ProteinP57053 (Uniprot-TrEMBL)
H3F3A ProteinP84243 (Uniprot-TrEMBL)
HDAC1 ProteinQ13547 (Uniprot-TrEMBL)
HDAC1ProteinQ13547 (Uniprot-TrEMBL)
HIST1H2AB ProteinP04908 (Uniprot-TrEMBL)
HIST1H2AC ProteinQ93077 (Uniprot-TrEMBL)
HIST1H2ACProteinQ93077 (Uniprot-TrEMBL)
HIST1H2AD ProteinP20671 (Uniprot-TrEMBL)
HIST1H2AJ ProteinQ99878 (Uniprot-TrEMBL)
HIST1H2BA ProteinQ96A08 (Uniprot-TrEMBL)
HIST1H2BB ProteinP33778 (Uniprot-TrEMBL)
HIST1H2BC ProteinP62807 (Uniprot-TrEMBL)
HIST1H2BD ProteinP58876 (Uniprot-TrEMBL)
HIST1H2BH ProteinQ93079 (Uniprot-TrEMBL)
HIST1H2BJ ProteinP06899 (Uniprot-TrEMBL)
HIST1H2BK ProteinO60814 (Uniprot-TrEMBL)
HIST1H2BL ProteinQ99880 (Uniprot-TrEMBL)
HIST1H2BM ProteinQ99879 (Uniprot-TrEMBL)
HIST1H2BN ProteinQ99877 (Uniprot-TrEMBL)
HIST1H2BO ProteinP23527 (Uniprot-TrEMBL)
HIST1H3A ProteinP68431 (Uniprot-TrEMBL)
HIST1H4 ProteinP62805 (Uniprot-TrEMBL)
HIST2H2AA3 ProteinQ6FI13 (Uniprot-TrEMBL)
HIST2H2AC ProteinQ16777 (Uniprot-TrEMBL)
HIST2H2BE ProteinQ16778 (Uniprot-TrEMBL)
HIST2H3A ProteinQ71DI3 (Uniprot-TrEMBL)
HIST3H2BB ProteinQ8N257 (Uniprot-TrEMBL)
HSP-90ComplexR-HSA-5082416 (Reactome)
HSP90:ATP:PTGES3:FKBP52:PGR:P4ComplexR-HSA-9038123 (Reactome)
HSP90:HSP90ComplexR-HSA-5082395 (Reactome)
HSP90AA1 ProteinP07900 (Uniprot-TrEMBL)
HSP90AB1 ProteinP08238 (Uniprot-TrEMBL)
Histone H2AComplexR-HSA-181899 (Reactome)
JUN ProteinP05412 (Uniprot-TrEMBL)
JUND ProteinP17535 (Uniprot-TrEMBL)
KANK1ProteinQ14678 (Uniprot-TrEMBL)
KAT2B ProteinQ92831 (Uniprot-TrEMBL)
KAT5 ProteinQ92993 (Uniprot-TrEMBL)
KCTD6 gene ProteinENSG00000168301 (Ensembl)
KCTD6 geneGeneProductENSG00000168301 (Ensembl)
KCTD6ProteinQ8NC69 (Uniprot-TrEMBL)
KDM1A ProteinO60341 (Uniprot-TrEMBL)
KDM1AProteinO60341 (Uniprot-TrEMBL)
KDM4B gene:nucleoplasm:ESR1:ESTGComplexR-HSA-9011919 (Reactome)
KDM4B ProteinO94953 (Uniprot-TrEMBL)
KDM4B gene ProteinENSG00000127663 (Ensembl)
KDM4B geneGeneProductENSG00000127663 (Ensembl)
KDM4B-regulated

genes:H3K9me3

nucleosome:ESR1:ESTG:KDM4B
ComplexR-HSA-9011913 (Reactome)
KDM4B-regulated

genes:H3K9me3

nucleosome
ComplexR-HSA-9011915 (Reactome)
KDM4B-regulated genes:nucleosome:ESR1:ESTGComplexR-HSA-9011911 (Reactome)
KDM4BProteinO94953 (Uniprot-TrEMBL)
KPNA2 geneGeneProductENSG00000182481 (Ensembl)
KPNA2 mRNA ProteinENST00000330459.7 (Ensembl)
KPNA2 mRNA:mIR-26 RISCComplexR-HSA-9012172 (Reactome)
KPNA2 mRNARnaENST00000330459.7 (Ensembl)
KPNA2ProteinP52292 (Uniprot-TrEMBL)
MED1 ProteinQ15648 (Uniprot-TrEMBL) MED1 is a component of each of the various Mediator complexes, that function as transcription co-activators. The MED1-containing compolexes include the DRIP, ARC, TRIP and CRSP compllexes.
MED1ProteinQ15648 (Uniprot-TrEMBL) MED1 is a component of each of the various Mediator complexes, that function as transcription co-activators. The MED1-containing compolexes include the DRIP, ARC, TRIP and CRSP compllexes.
MYB gene:hyperphosphorylated RNA polymerase II:TFIIF:ESR1:ESTG:P-TEFbComplexR-HSA-9012290 (Reactome)
MYB gene:hypophosphorylated RNA polymerase II:TFIIF:ESR1:ESTG:P-TEFbComplexR-HSA-9012311 (Reactome)
MYB gene:hypophosphorylated RNA polymerase II:TFIIFComplexR-HSA-9012307 (Reactome)
MYB gene ProteinENSG00000118513 (Ensembl)
MYB geneGeneProductENSG00000118513 (Ensembl)
MYBProteinP10242 (Uniprot-TrEMBL)
MYC

gene, BCL2 gene: H3K9me2, HIST1H2AC

nucleosome:ESR1:ESTG:KDM1A
ComplexR-HSA-9011901 (Reactome)
MYC

gene, BCL2 gene:HIST1H2AC

nucleosome:ESR1:ESTG
ComplexR-HSA-9011896 (Reactome)
MYC

gene, BCL2 gene:HIST1H2AC

nuclesome:ESR1:ESTG:EP300
ComplexR-HSA-9011897 (Reactome)
MYC

gene, BLC2 gene:H3K9me2, HIST1H2AC

nucleosome:ESR1:ESTG
ComplexR-HSA-9011891 (Reactome)
MYC gene:ESR1:ESTG:JUND:FOSB:Cohesin ComplexComplexR-HSA-9011887 (Reactome)
MYC

gene:HIST1H2AC

nucleosome:ESR1:ESTG:EP300:NCOA3
ComplexR-HSA-9011883 (Reactome)
MYC gene:nucleoplasm:ESR1:ESTGComplexR-HSA-9011878 (Reactome)
MYC ProteinP01106 (Uniprot-TrEMBL)
MYC gene ProteinENSG00000136997 (Ensembl)
MYC gene, BCL2 gene: H3K9me2 nucleosomeComplexR-HSA-9011905 (Reactome)
MYC geneGeneProductENSG00000136997 (Ensembl)
MYCProteinP01106 (Uniprot-TrEMBL)
Me2K-10-H3F3A ProteinP84243 (Uniprot-TrEMBL)
Me2K-10-HIST2H3A ProteinQ71DI3 (Uniprot-TrEMBL)
Me2K10-HIST1H3A ProteinP68431 (Uniprot-TrEMBL)
Me2K5-H3F3A ProteinP84243 (Uniprot-TrEMBL)
Me2K5-HIST1H3A ProteinP68431 (Uniprot-TrEMBL)
Me2K5-HIST2H3A ProteinQ71DI3 (Uniprot-TrEMBL)
Me3K-10-H3F3A ProteinP84243 (Uniprot-TrEMBL)
Me3K-10-HIST1H3A ProteinP68431 (Uniprot-TrEMBL)
Me3K-10-HIST2H3A ProteinQ71DI3 (Uniprot-TrEMBL)
NCOA1 ProteinQ15788 (Uniprot-TrEMBL)
NCOA1,NCOA3 R-HSA-9023864 (Reactome)
NCOA1ProteinQ15788 (Uniprot-TrEMBL)
NCOA2 ProteinQ15596 (Uniprot-TrEMBL)
NCOA3 ProteinQ9Y6Q9 (Uniprot-TrEMBL)
NCOA3ProteinQ9Y6Q9 (Uniprot-TrEMBL)
NCOAsComplexR-HSA-9023843 (Reactome)
NR5A2 ProteinO00482 (Uniprot-TrEMBL)
NR5A2ProteinO00482 (Uniprot-TrEMBL)
NRIP1 ProteinP48552 (Uniprot-TrEMBL)
NRIP1ProteinP48552 (Uniprot-TrEMBL)
P4 MetaboliteCHEBI:17026 (ChEBI)
PGR ProteinP06401 (Uniprot-TrEMBL)
PGR gene ProteinENSG00000082175 (Ensembl)
PGR geneGeneProductENSG00000082175 (Ensembl)
PGRProteinP06401 (Uniprot-TrEMBL)
POLR2B ProteinP30876 (Uniprot-TrEMBL)
POLR2C ProteinP19387 (Uniprot-TrEMBL)
POLR2D ProteinO15514 (Uniprot-TrEMBL)
POLR2E ProteinP19388 (Uniprot-TrEMBL)
POLR2F ProteinP61218 (Uniprot-TrEMBL)
POLR2G ProteinP62487 (Uniprot-TrEMBL)
POLR2H ProteinP52434 (Uniprot-TrEMBL)
POLR2I ProteinP36954 (Uniprot-TrEMBL)
POLR2J ProteinP52435 (Uniprot-TrEMBL)
POLR2K ProteinP53803 (Uniprot-TrEMBL)
POLR2L ProteinP62875 (Uniprot-TrEMBL)
POU2F1 ProteinP14859 (Uniprot-TrEMBL)
POU2F1ProteinP14859 (Uniprot-TrEMBL)
PPID ProteinQ08752 (Uniprot-TrEMBL)
PPP5C ProteinP53041 (Uniprot-TrEMBL)
PRMT1ProteinQ99873 (Uniprot-TrEMBL)
PTGES3 ProteinQ15185 (Uniprot-TrEMBL)
PTGES3ProteinQ15185 (Uniprot-TrEMBL)
PiMetaboliteCHEBI:18367 (ChEBI)
RAD21 ProteinO60216 (Uniprot-TrEMBL)
RUNX1 ProteinQ01196 (Uniprot-TrEMBL)
RUNX1:CBFB:ESR1:estrogen:AXIN1 geneComplexR-HSA-8932085 (Reactome)
RUNX1:CBFB:ESR1:estrogen:GPAM geneComplexR-HSA-8932004 (Reactome)
RUNX1:CBFB:ESR1:estrogen:KCTD6 geneComplexR-HSA-8932035 (Reactome)
RUNX1:CBFB:ESR1:estrogenComplexR-HSA-8931986 (Reactome)
RUNX1:CBFBComplexR-HSA-8865330 (Reactome)
SMC1A ProteinQ14683 (Uniprot-TrEMBL)
SMC3 ProteinQ9UQE7 (Uniprot-TrEMBL)
SP1 ProteinP08047 (Uniprot-TrEMBL)
SP1ProteinP08047 (Uniprot-TrEMBL)
STAG1 ProteinQ8WVM7 (Uniprot-TrEMBL)
STAG2 ProteinQ8N3U4 (Uniprot-TrEMBL)
Signaling by ERBB4PathwayR-HSA-1236394 (Reactome) ERBB4, also known as HER4, belongs to the ERBB family of receptors, which also includes ERBB1 (EGFR i.e. HER1), ERBB2 (HER2 i.e. NEU) and ERBB3 (HER3). Similar to EGFR, ERBB4 has an extracellular ligand binding domain, a single transmembrane domain and a cytoplasmic domain which contains an active tyrosine kinase and a C-tail with multiple phosphorylation sites. At least three and possibly four splicing isoforms of ERBB4 exist that differ in their C-tail and/or the extracellular juxtamembrane regions: ERBB4 JM-A CYT1, ERBB4 JM-A CYT2 and ERBB4 JM-B CYT1 (the existence of ERBB4 JM-B CYT2 has not been confirmed).

ERBB4 becomes activated by binding one of its seven ligands, three of which, HB-EGF, epiregulin EPR and betacellulin BTC, are EGF-like (Elenius et al. 1997, Riese et al. 1998), while four, NRG1, NRG2, NRG3 and NRG4, belong to the neuregulin family (Tzahar et al. 1994, Carraway et al. 1997, Zhang et al. 1997, Hayes et al. 2007). Upon ligand binding, ERBB4 forms homodimers (Sweeney et al. 2000) or it heterodimerizes with ERBB2 (Li et al. 2007). Dimers of ERBB4 undergo trans-autophosphorylation on tyrosine residues in the C-tail (Cohen et al. 1996, Kaushansky et al. 2008, Hazan et al. 1990, Li et al. 2007), triggering downstream signaling cascades. The pathway Signaling by ERBB4 only shows signaling by ERBB4 homodimers. Signaling by heterodimers of ERBB4 and ERBB2 is shown in the pathway Signaling by ERBB2. Ligand-stimulated ERBB4 is also able to form heterodimers with ligand-stimulated EGFR (Cohen et al. 1996) and ligand-stimulated ERBB3 (Riese et al. 1995). Dimers of ERBB4 with EGFR and dimers of ERBB4 with ERBB3 were demonstrated in mouse cell lines in which human ERBB4 and EGFR or ERBB3 were exogenously expressed. These heterodimers undergo trans-autophosphorylation, but their downstream signaling and physiological significance have not been studied.


All splicing isoforms of ERBB4 possess two tyrosine residues in the C-tail that serve as docking sites for SHC1 (Kaushansky et al. 2008, Pinkas-Kramarski et al. 1996, Cohen et al. 1996). Once bound to ERBB4, SHC1 becomes phosphorylated on tyrosine residues by the tyrosine kinase activity of ERBB4, which enables it to recruit the complex of GRB2 and SOS1, resulting in the guanyl-nucleotide exchange on RAS and activation of RAF and MAP kinase cascade (Kainulainen et al. 2000).

The CYT1 isoforms of ERBB4 also possess a C-tail tyrosine residue that, upon trans-autophosphorylation, serves as a docking site for the p85 alpha subunit of PI3K (Kaushansky et al. 2008, Cohen et al. 1996), leading to assembly of an active PI3K complex that converts PIP2 to PIP3 and activates AKT signaling (Kainulainen et al. 2000).

Besides signaling as a transmembrane receptor, ligand activated homodimers of ERBB4 JM-A isoforms (ERBB4 JM-A CYT1 and ERBB4 JM-A CYT2) undergo proteolytic cleavage by ADAM17 (TACE) in the juxtamembrane region, resulting in shedding of the extracellular domain and formation of an 80 kDa membrane bound ERBB4 fragment known as ERBB4 m80 (Rio et al. 2000, Cheng et al. 2003). ERBB4 m80 undergoes further proteolytic cleavage, mediated by the gamma-secretase complex, which releases the soluble 80 kDa ERBB4 intracellular domain, known as ERBB4 s80 or E4ICD, into the cytosol (Ni et al. 2001). ERBB4 s80 is able to translocate to the nucleus, promote nuclear translocation of various transcription factors, and act as a transcription co-factor. ERBB4 plays and important role in the development of the nervous system. In neuronal precursors, ERBB4 s80 binds the complex of TAB and NCOR1, helps to move the complex into the nucleus, and is a co-factor of TAB:NCOR1-mediated inhibition of expression of astrocyte differentiation genes GFAP and S100B (Sardi et al. 2006). Erbb4 deficiency in somatostatin-expressing neurons of the thalamic reticular nucleus alters behaviors dependent on sensory selection (Ahrens et al. 2015). NRG1-activated ERBB4 signaling enhances AMPA receptor responses through PKC-dependent AMPA receptor exocytosis. This results in an increased excitatory input to parvalbumin-expressing inhibitory neurons in the visual cortex and regulates visual cortical plasticity (Sun et al. 2016). NRG1-activated ERBB4 signaling is involved in GABAergic activity in amygdala which mediates fear conditioning (fear memory) (Lu et al. 2014). Conditional Erbb4 deletion from fast-spiking interneurons, chandelier and basket cells, of the cerebral cortex leads to synaptic defects associated with increased locomotor activity and abnormal emotional, social and cognitive function that can be linked to some of the schizophrenia features. The level of GAD1 (GAD67) protein is reduced in the cortex of conditional Erbb4 mutants. GAD1 is a GABA synthesizing enzyme. Cortical mRNA levels of GAD67 are consistently decreased in schizophrenia (Del Pino et al. 2014). Erbb4 is expressed in the GABAergic neurons of the bed nucleus stria terminalis, a part of the extended amygdala. Inhibition of NRG1-triggered ERBB4 signaling induces anxiety-like behavior, which depends on GABAergic neurotransmission. NRG1-ERBB4 signaling stimulates presynaptic GABA release, but the exact mechanism is not known (Geng et al. 2016). NRG1 protects cortical interneurons against ischemic brain injury through ERBB4-mediated increase in GABAergic transmission (Guan et al. 2015). NRG2-activated ERBB4 can reduce the duration of GABAergic transmission by binding to GABA receptors at the postsynaptic membrane via their GABRA1 subunit and promoting endocytosis of GABA receptors (Mitchell et al. 2013). NRG1 promotes synchronization of prefrontal cortex interneurons in an ERBB4 dependent manner (Hou et al. 2014). NRG1-ERBB4 signaling protects neurons from the cell death induced by a mutant form of the amyloid precursor protein (APP) (Woo et al. 2012).
In mammary cells, ERBB4 s80 recruits STAT5A transcription factor in the cytosol, shuttles it to the nucleus, and acts as the STAT5A co-factor in binding to and promoting transcription from the beta-casein (CSN2) promoter, and may be involved in the regulation of other lactation-related genes (Williams et al. 2004, Muraoka-Cook et al. 2008). ERBB4 s80 was also shown to bind activated estrogen receptor in the nucleus and act as its transcriptional co-factor in promoting transcription of some estrogen-regulated genes, such as progesterone receptor gene NR3C3 and CXCL12 i.e. SDF1 (Zhu et al. 2006). In human breast cancer cell lines, ERBB4 activation enhances anchorage-independent colony formation in soft agar but inhibits cell growth in a monolayer culture. Different ERBB4 ligands induce different gene expression changes in breast cancer cell lines. Some of the genes induced in response to ERBB4 signaling in breast cancer cell lines are RAB2, EPS15R and GATA4. It is not known if these gene are direct transcriptional targets of ERBB4 (Amin et al. 2004).
ERBB4 increases activity of the transcription factor SREBF2, resulting in increased expression of SREBF2-target genes involved in cholesterol biosynthesis. The mechanism is not known and may involve facilitation of SREBF2 cleavage through ERBB4-mediated PI3K signaling (Haskins et al. 2016).

The C-tail of ERBB4 possesses several WW-domain binding motifs (three in CYT1 isoform and two in CYT2 isoform), which enable interaction of ERBB4 with WW-domain containing proteins. ERBB4 s80, through WW-domain binding motifs, interacts with YAP1 transcription factor, a known proto-oncogene, and may be a co-regulator of YAP1-mediated transcription (Komuro et al. 2003, Omerovic et al. 2004). The tumor suppressor WWOX, another WW-domain containing protein, competes with YAP1 in binding to ERBB4 s80 and prevents translocation of ERBB4 s80 to the nucleus (Aqeilan et al. 2005). ERBB4 s80 is also able to translocate to the mitochondrial matrix, presumably when its nuclear translocation is inhibited. Once in the mitochondrion, the BH3 domain of ERBB4, characteristic of BCL2 family members, may enable it to act as a pro-apoptotic factor (Naresh et al. 2006). Activation of ERBB4 in breast cancer cell lines leads to JNK-dependent increase in BRCA1 mRNA level and mitotic cell cycle delay, but the exact mechanism has not been elucidated (Muraoka-Cook et al. 2006).

WW-domain binding motifs in the C-tail of ERBB4 play an important role in the downregulation of ERBB4 receptor signaling, enabling the interaction of intact ERBB4, ERBB4 m80 and ERBB4 s80 with NEDD4 family of E3 ubiquitin ligases WWP1 and ITCH. The interaction of WWP1 and ITCH with intact ERBB4 is independent of receptor activation and autophosphorylation. Binding of WWP1 and ITCH ubiquitin ligases leads to ubiquitination of ERBB4 and its cleavage products, and subsequent degradation through both proteasomal and lysosomal routes (Omerovic et al. 2007, Feng et al. 2009). In addition, the s80 cleavage product of ERBB4 JM-A CYT-1 isoform is the target of NEDD4 ubiquitin ligase. NEDD4 binds ERBB4 JM-A CYT-1 s80 (ERBB4jmAcyt1s80) through its PIK3R1 interaction site and mediates ERBB4jmAcyt1s80 ubiquitination, thereby decreasing the amount of ERBB4jmAcyt1s80 that reaches the nucleus (Zeng et al. 2009).
TBP:TFIIA:DDX5:ESR1:estrogen:TFF1 gene:FOXA1:GATA3ComplexR-HSA-9009538 (Reactome)
TBPProteinP20226 (Uniprot-TrEMBL)
TFF1 gene:FOXA1:GATA3ComplexR-HSA-9023820 (Reactome)
TFF1 gene ProteinENSG00000160182 (Ensembl)
TFF1 geneGeneProductENSG00000160182 (Ensembl)
TFF1, TFF3 geneComplexR-HSA-9018486 (Reactome)
TFF1,TFF3 gene:FOXA1:GATA3ComplexR-HSA-9023829 (Reactome)
TFF1ProteinP04155 (Uniprot-TrEMBL)
TFF3 gene:FOXA1:GATA3:ESR1:ESTG:EP300ComplexR-HSA-9018479 (Reactome)
TFF3 gene:FOXA1:GATA3ComplexR-HSA-9018480 (Reactome)
TFF3 gene ProteinENSG00000160180 (Ensembl)
TFF3 geneGeneProductENSG00000160180 (Ensembl)
TFF3ProteinQ07654 (Uniprot-TrEMBL)
TFIIAComplexR-HSA-109629 (Reactome)
TGFA GeneGeneProductENSG00000163235 (Ensembl)
TGFA precursorProteinP01135 (Uniprot-TrEMBL)
TLE3 ProteinQ04726 (Uniprot-TrEMBL)
TLE3ProteinQ04726 (Uniprot-TrEMBL)
TPR-containing co-chaperonesComplexR-HSA-8939175 (Reactome)
Transcriptional regulation by RUNX1PathwayR-HSA-8878171 (Reactome) The RUNX1 (AML1) transcription factor is a master regulator of hematopoiesis (Ichikawa et al. 2004) that is frequently translocated in acute myeloid leukemia (AML), resulting in formation of fusion proteins with altered transactivation profiles (Lam and Zhang 2012, Ichikawa et al. 2013). In addition to RUNX1, its heterodimerization partner CBFB is also frequently mutated in AML (Shigesada et al. 2004, Mangan and Speck 2011).
The core domain of CBFB binds to the Runt domain of RUNX1, resulting in formation of the RUNX1:CBFB heterodimer. CBFB does not interact with DNA directly. The Runt domain of RUNX1 mediated both DNA binding and heterodimerization with CBFB (Tahirov et al. 2001), while RUNX1 regions that flank the Runt domain are involved in transactivation (reviewed in Zhang et al. 2003) and negative regulation (autoinhibition). CBFB facilitates RUNX1 binding to DNA by stabilizing Runt domain regions that interact with the major and minor grooves of the DNA (Tahirov et al. 2001, Backstrom et al. 2002, Bartfeld et al. 2002). The transactivation domain of RUNX1 is located C-terminally to the Runt domain and is followed by the negative regulatory domain. Autoinhibiton of RUNX1 is relieved by interaction with CBFB (Kanno et al. 1998).
Transcriptional targets of the RUNX1:CBFB complex involve genes that regulate self-renewal of hematopoietic stem cells (HSCs) (Zhao et al. 2014), as well as commitment and differentiation of many hematopoietic progenitors, including myeloid (Friedman 2009) and megakaryocytic progenitors (Goldfarb 2009), regulatory T lymphocytes (Wong et al. 2011) and B lymphocytes (Boller and Grosschedl 2014).
RUNX1 binds to promoters of many genes involved in ribosomal biogenesis (Ribi) and is thought to stimulate their transcription. RUNX1 loss-of-function decreases ribosome biogenesis and translation in hematopoietic stem and progenitor cells (HSPCs). RUNX1 loss-of-function is therefore associated with a slow growth, but at the same time it results in reduced apoptosis and increases resistance of cells to genotoxic and endoplasmic reticulum stress, conferring an overall selective advantage to RUNX1 deficient HSPCs (Cai et al. 2015).
RUNX1 is implicated as a tumor suppressor in breast cancer. RUNX1 forms a complex with the activated estrogen receptor alpha (ESR1) and regulates expression of estrogen-responsive genes (Chimge and Frenkel 2013).
RUNX1 is overexpressed in epithelial ovarian carcinoma where it may contribute to cell proliferation, migration and invasion (Keita et al. 2013).
RUNX1 may cooperate with TP53 in transcriptional activation of TP53 target genes upon DNA damage (Wu et al. 2013).
RUNX1 is needed for the maintenance of skeletal musculature (Wang et al. 2005).
During mouse embryonic development, Runx1 is expressed in most nociceptive sensory neurons, which are involved in the perception of pain. In adult mice, Runx1 is expressed only in nociceptive sensory neurons that express the Ret receptor and is involved in regulation of expression of genes encoding ion channels (sodium-gated, ATP-gated and hydrogen ion-gated) and receptors (thermal receptors, opioid receptor MOR and the Mrgpr class of G protein coupled receptors). Mice lacking Runx1 show defective perception of thermal and neuropathic pain (Chen CL et al. 2006). Runx1 is thought to activate the neuronal differentiation of nociceptive dorsal root ganglion cells during embryonal development possibly through repression of Hes1 expression (Kobayashi et al. 2012). In chick and mouse embryos, Runx1 expression is restricted to the dorso-medial domain of the dorsal root ganglion, to TrkA-positive cutaneous sensory neurons. Runx3 expression in chick and mouse embryos is restricted to ventro-lateral domain of the dorsal root ganglion, to TrkC-positive proprioceptive neurons (Chen AI et al. 2006, Kramer et al. 2006). RUNX1 mediated regulation of neuronally expressed genes will be annotated when mechanistic details become available.
USF1 ProteinP22415 (Uniprot-TrEMBL)
USF1ProteinP22415 (Uniprot-TrEMBL)
USF2 ProteinQ15853 (Uniprot-TrEMBL)
USF2ProteinQ15853 (Uniprot-TrEMBL)
YY1 ProteinP25490 (Uniprot-TrEMBL)
YY1ProteinP25490 (Uniprot-TrEMBL)
ZNF217 ProteinO75362 (Uniprot-TrEMBL)
ZNF217ProteinO75362 (Uniprot-TrEMBL)
estetrol Metabolite
estriol MetaboliteCHEBI:27974 (ChEBI)
histone acetyltransferasesComplexR-HSA-9023862 (Reactome)
miR-26 RISCComplexR-HSA-9011867 (Reactome)
miR-26A RISC R-HSA-2318737 (Reactome)
miR-26B RISC R-HSA-9011856 (Reactome)
p-S118-ESR1 ProteinP03372 (Uniprot-TrEMBL)
p-S118-ESR1 dimerComplexR-HSA-9032748 (Reactome)
p-S2,S5-POLR2A ProteinP24928 (Uniprot-TrEMBL) The C-terminal domain (CTD) of POLR2A contains about 52 repeats of the consensus heptad YSPTSPS. Serines-2 and 5 of the heptads are phosphorylated in RNA polymerase II initiating transcription of protein coding genes. The exact repeats that are phosphorylated are not known.
p-S5-POLR2A ProteinP24928 (Uniprot-TrEMBL)
p-S63,S73-JUN ProteinP05412 (Uniprot-TrEMBL)
p-T,Y MAPK dimersComplexR-HSA-198701 (Reactome)
p-T185,Y187-MAPK1 ProteinP28482 (Uniprot-TrEMBL)
p-T202,Y204-MAPK3 ProteinP27361 (Uniprot-TrEMBL)
p-T69,T71-ATF2 ProteinP15336 (Uniprot-TrEMBL)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
27-hydroxycholesterol:ESR1,2ArrowR-HSA-9038029 (Reactome)
27-hydroxycholesterolR-HSA-9038029 (Reactome)
ADPArrowR-HSA-8939203 (Reactome)
ADPArrowR-HSA-9012319 (Reactome)
ADPArrowR-HSA-9032751 (Reactome)
ADPArrowR-HSA-9038161 (Reactome)
ATPR-HSA-9012319 (Reactome)
ATPR-HSA-9032751 (Reactome)
AXIN1 geneR-HSA-8932070 (Reactome)
AXIN1 geneR-HSA-8932076 (Reactome)
AXIN1 geneR-HSA-8932084 (Reactome)
AXIN1ArrowR-HSA-8932076 (Reactome)
BCL2 geneR-HSA-9011941 (Reactome)
BCL2ArrowR-HSA-9011941 (Reactome)
BLC2

gene:HIST1H2AC

nuclesome:ESR1:ESTG:EP300
ArrowR-HSA-9011941 (Reactome)
CARM1:TBP:TFIIA:DDX5:ESR1:estrogen:TFF1 gene:FOXA1:GATA3ArrowR-HSA-9009526 (Reactome)
CARM1R-HSA-9009526 (Reactome)
CCND1

gene:H3K4me2

nucleosome:FOXA1:GATA3:ESTG:ESR1 dimer:JUN:ATF2:POUF21:ESTG:ESR1 dimer:JUN:FOS
ArrowR-HSA-9009371 (Reactome)
CCND1

gene:H3K4me2

nucleosome:FOXA1:GATA3:ESTG:ESR1 dimer:JUN:ATF2:POUF21:ESTG:ESR1 dimer:JUN:FOS
ArrowR-HSA-9009378 (Reactome)
CCND1

gene:H3K4me2

nucleosome:FOXA1:GATA3
ArrowR-HSA-9009065 (Reactome)
CCND1

gene:H3K4me2

nucleosome:FOXA1:GATA3
R-HSA-9009371 (Reactome)
CCND1

gene:H3K4me2

nucleosome:YY1:HDAC1
R-HSA-9009065 (Reactome)
CCND1 gene:nucleosome:ESR1:ESTGArrowR-HSA-9009378 (Reactome)
CCND1 geneR-HSA-9009378 (Reactome)
CCND1ArrowR-HSA-9009378 (Reactome)
CHD1 geneR-HSA-9012205 (Reactome)
CHD1 mRNA:mIR-26 RISCArrowR-HSA-9012203 (Reactome)
CHD1 mRNA:mIR-26 RISCTBarR-HSA-9012186 (Reactome)
CHD1 mRNAArrowR-HSA-9012205 (Reactome)
CHD1 mRNAR-HSA-9012186 (Reactome)
CHD1 mRNAR-HSA-9012203 (Reactome)
CHD1ArrowR-HSA-9012186 (Reactome)
CITED1:EP300:ESR1:estrogen:TGFA gene promoterArrowR-HSA-9008271 (Reactome)
CITED1:EP300:ESR1:estrogen:TGFA gene promoterArrowR-HSA-9008315 (Reactome)
CITED1R-HSA-9008271 (Reactome)
CREBBPR-HSA-9038052 (Reactome)
CTSD gene:ESR1:ESTG:SP1:USF1:USF2:NCOA:EP300:MED1ArrowR-HSA-9023840 (Reactome)
CTSD gene:ESR1:ESTG:SP1:USF1:USF2:NCOA:EP300:MED1ArrowR-HSA-9023846 (Reactome)
CTSD dimerArrowR-HSA-9023846 (Reactome)
CTSD gene:ESR1:ESTGArrowR-HSA-9023845 (Reactome)
CTSD gene:ESR1:ESTGR-HSA-9023840 (Reactome)
CTSD geneR-HSA-9023845 (Reactome)
CTSD geneR-HSA-9023846 (Reactome)
CXCL12 geneR-HSA-8954199 (Reactome)
CXCL12 geneR-HSA-8954207 (Reactome)
CXCL12(22-93)ArrowR-HSA-8954199 (Reactome)
CXXC5 gene:ESR1:ESTGArrowR-HSA-9018325 (Reactome)
CXXC5 gene:ESR1:ESTGArrowR-HSA-9018334 (Reactome)
CXXC5 geneR-HSA-9018325 (Reactome)
CXXC5 geneR-HSA-9018334 (Reactome)
CXXC5ArrowR-HSA-9018334 (Reactome)
Cohesin ComplexR-HSA-9011997 (Reactome)
DDX5R-HSA-9009536 (Reactome)
EBAG9 gene:ESR1:ESTGArrowR-HSA-9018503 (Reactome)
EBAG9 gene:ESR1:ESTGArrowR-HSA-9018505 (Reactome)
EBAG9 geneR-HSA-9018503 (Reactome)
EBAG9 geneR-HSA-9018505 (Reactome)
EBAG9ArrowR-HSA-9018505 (Reactome)
EP300R-HSA-9008271 (Reactome)
EP300R-HSA-9008285 (Reactome)
EP300R-HSA-9009371 (Reactome)
EP300R-HSA-9011981 (Reactome)
EP300R-HSA-9018499 (Reactome)
EP300R-HSA-9023840 (Reactome)
EP300R-HSA-9023884 (Reactome)
EP300R-HSA-9038052 (Reactome)
ERBB4s80:ESR1:estrogen:CXCL12 geneArrowR-HSA-8954199 (Reactome)
ERBB4s80:ESR1:estrogen:CXCL12 geneArrowR-HSA-8954207 (Reactome)
ERBB4s80:ESR1:estrogen:PGR geneArrowR-HSA-1254392 (Reactome)
ERBB4s80:ESR1:estrogen:PGR geneArrowR-HSA-8954208 (Reactome)
ERBB4s80:ESR1:estrogenArrowR-HSA-1254386 (Reactome)
ERBB4s80:ESR1:estrogenR-HSA-8954207 (Reactome)
ERBB4s80:ESR1:estrogenR-HSA-8954208 (Reactome)
ERBB4s80R-HSA-1254386 (Reactome)
ESR1

dimer:estrogen:TFGA

gene:NCOA1
ArrowR-HSA-9008270 (Reactome)
ESR1

dimer:estrogen:TFGA

gene:NCOA1
R-HSA-9023884 (Reactome)
ESR1

dimer:estrogen:TGFA

gene promoter
ArrowR-HSA-9008267 (Reactome)
ESR1

dimer:estrogen:TGFA

gene promoter
R-HSA-9008258 (Reactome)
ESR1

dimer:estrogen:TGFA

gene promoter
R-HSA-9008270 (Reactome)
ESR1

dimer:estrogen:TGFA

gene promoter
R-HSA-9008271 (Reactome)
ESR1 dimer:estrogenR-HSA-9008267 (Reactome)
ESR1 dimer:estrogenR-HSA-9009541 (Reactome)
ESR1,2:ESTG homo and heterodimersArrowR-HSA-8939201 (Reactome)
ESR1,2:ESTGArrowR-HSA-8939203 (Reactome)
ESR1,2:ESTGR-HSA-8939201 (Reactome)
ESR1,2R-HSA-9038029 (Reactome)
ESR1:ER:PGR:P4ArrowR-HSA-9038161 (Reactome)
ESR1:ER:PGR:P4R-HSA-9038163 (Reactome)
ESR1:ESTG:P-TEFbR-HSA-9012315 (Reactome)
ESR1:ESTG:PGR:P4:FOXA1:GATA3:TLE3:NRIP:EP300ArrowR-HSA-9038163 (Reactome)
ESR1:ESTGR-HSA-1254386 (Reactome)
ESR1:ESTGR-HSA-8931981 (Reactome)
ESR1:ESTGR-HSA-8932070 (Reactome)
ESR1:ESTGR-HSA-9011952 (Reactome)
ESR1:ESTGR-HSA-9011983 (Reactome)
ESR1:ESTGR-HSA-9011997 (Reactome)
ESR1:ESTGR-HSA-9018325 (Reactome)
ESR1:ESTGR-HSA-9018499 (Reactome)
ESR1:ESTGR-HSA-9018503 (Reactome)
ESR1:ESTGR-HSA-9023845 (Reactome)
ESR1:ESTGR-HSA-9038052 (Reactome)
ESR1:ESTGR-HSA-9038161 (Reactome)
ESR1:chaperone complexR-HSA-9032751 (Reactome)
ESR1:estrogen:AXIN1 geneArrowR-HSA-8932070 (Reactome)
ESR1:estrogen:AXIN1 geneTBarR-HSA-8932076 (Reactome)
ESR1:estrogen:ERE:NCOA3:EP300ArrowR-HSA-9008285 (Reactome)
ESR1:estrogen:ERE:NCOA3:EP300ArrowR-HSA-9008315 (Reactome)
ESR1:estrogen:ERE:NCOA3:TFGA geneArrowR-HSA-9008258 (Reactome)
ESR1:estrogen:ERE:NCOA3:TFGA geneR-HSA-9008285 (Reactome)
ESR1:estrogen:TFF1 gene:DDX5:TBP:TFIIA:PRMT1:FOXA1:GATA3ArrowR-HSA-9023861 (Reactome)
ESR1:estrogen:TFF1 gene:FOXA1:GATA3:DDX5:TBP:TFIIA:CARM1,PRMT1R-HSA-9023860 (Reactome)
ESR1:estrogen:TFF1 gene:FOXA1:GATA3:DDX5ArrowR-HSA-9009536 (Reactome)
ESR1:estrogen:TFF1 gene:FOXA1:GATA3:DDX5R-HSA-9009533 (Reactome)
ESR1:estrogen:TFF1 gene:FOXA1:GATA3ArrowR-HSA-9009541 (Reactome)
ESR1:estrogen:TFF1 gene:FOXA1:GATA3R-HSA-9009536 (Reactome)
ESR1:estrogen:TFF1gene:FOXA1:GATA3:DDX5:TBP:TFIIA:CARM1,PRMT1:HATsArrowR-HSA-9023859 (Reactome)
ESR1:estrogen:TFF1gene:FOXA1:GATA3:DDX5:TBP:TFIIA:CARM1,PRMT1:HATsArrowR-HSA-9023860 (Reactome)
ESR1:estrogen:TFGA gene:NCOA1:EP300ArrowR-HSA-9008315 (Reactome)
ESR1:estrogen:TFGA gene:NCOA1:EP300ArrowR-HSA-9023884 (Reactome)
ESRs:chaperone complexR-HSA-8939204 (Reactome)
ESTG:ESR1 dimer:ATF2:JUNR-HSA-9009371 (Reactome)
ESTG:ESR1 dimer:JUN:FOSR-HSA-9009371 (Reactome)
ESTG:ESRs:chaperone complexArrowR-HSA-8939204 (Reactome)
ESTG:ESRs:chaperone complexR-HSA-8939203 (Reactome)
ESTG:ESRs:chaperone complexmim-catalysisR-HSA-8939203 (Reactome)
ESTGArrowR-HSA-8939205 (Reactome)
ESTGArrowR-HSA-9012205 (Reactome)
ESTGArrowR-HSA-9012209 (Reactome)
ESTGR-HSA-8939204 (Reactome)
ESTGR-HSA-8939205 (Reactome)
FKBP4ArrowR-HSA-9038161 (Reactome)
FOSB:JUNDR-HSA-9011997 (Reactome)
FOXA1R-HSA-9009065 (Reactome)
FOXA1R-HSA-9018494 (Reactome)
FOXA1R-HSA-9038163 (Reactome)
GATA3R-HSA-9009065 (Reactome)
GATA3R-HSA-9018494 (Reactome)
GATA3R-HSA-9038163 (Reactome)
GPAM geneR-HSA-8932020 (Reactome)
GPAM geneR-HSA-8932021 (Reactome)
GPAM(1-828)ArrowR-HSA-8932020 (Reactome)
GREB1 gene:nucleosome:ESR1:ESTG:ZNF217:NCOA3:NR5A2ArrowR-HSA-9011950 (Reactome)
GREB1 gene:nucleosome:ESR1:ESTG:ZNF217:NCOA3:NR5A2ArrowR-HSA-9012000 (Reactome)
GREB1 gene:nucleosome:ESR1:ESTGR-HSA-9012000 (Reactome)
GREB1 geneR-HSA-9011950 (Reactome)
GREB1 mRNA:miR-26 RISCArrowR-HSA-9011958 (Reactome)
GREB1 mRNA:miR-26 RISCTBarR-HSA-9011961 (Reactome)
GREB1 mRNAArrowR-HSA-9011950 (Reactome)
GREB1 mRNAR-HSA-9011958 (Reactome)
GREB1 mRNAR-HSA-9011961 (Reactome)
GREB1:ESR1:ESTG:EP300:CREBBPArrowR-HSA-9038052 (Reactome)
GREB1ArrowR-HSA-9011961 (Reactome)
GREB1R-HSA-9038052 (Reactome)
HDAC1ArrowR-HSA-9009065 (Reactome)
HIST1H2ACR-HSA-9011983 (Reactome)
HSP-90ArrowR-HSA-8939203 (Reactome)
HSP-90ArrowR-HSA-9032751 (Reactome)
HSP90:ATP:PTGES3:FKBP52:PGR:P4R-HSA-9038161 (Reactome)
HSP90:ATP:PTGES3:FKBP52:PGR:P4mim-catalysisR-HSA-9038161 (Reactome)
HSP90:HSP90ArrowR-HSA-9038161 (Reactome)
Histone H2AArrowR-HSA-9011983 (Reactome)
KANK1ArrowR-HSA-9018334 (Reactome)
KCTD6 geneR-HSA-8932033 (Reactome)
KCTD6 geneR-HSA-8932037 (Reactome)
KCTD6ArrowR-HSA-8932033 (Reactome)
KDM1AArrowR-HSA-9011985 (Reactome)
KDM1AR-HSA-9011984 (Reactome)
KDM4B gene:nucleoplasm:ESR1:ESTGArrowR-HSA-9011966 (Reactome)
KDM4B geneR-HSA-9011966 (Reactome)
KDM4B-regulated

genes:H3K9me3

nucleosome:ESR1:ESTG:KDM4B
ArrowR-HSA-9011952 (Reactome)
KDM4B-regulated

genes:H3K9me3

nucleosome:ESR1:ESTG:KDM4B
R-HSA-9011949 (Reactome)
KDM4B-regulated

genes:H3K9me3

nucleosome:ESR1:ESTG:KDM4B
mim-catalysisR-HSA-9011949 (Reactome)
KDM4B-regulated

genes:H3K9me3

nucleosome
R-HSA-9011952 (Reactome)
KDM4B-regulated genes:nucleosome:ESR1:ESTGArrowR-HSA-9011949 (Reactome)
KDM4BArrowR-HSA-9011949 (Reactome)
KDM4BArrowR-HSA-9011966 (Reactome)
KDM4BR-HSA-9011952 (Reactome)
KPNA2 geneR-HSA-9012209 (Reactome)
KPNA2 mRNA:mIR-26 RISCArrowR-HSA-9012208 (Reactome)
KPNA2 mRNA:mIR-26 RISCTBarR-HSA-9012196 (Reactome)
KPNA2 mRNAArrowR-HSA-9012209 (Reactome)
KPNA2 mRNAR-HSA-9012196 (Reactome)
KPNA2 mRNAR-HSA-9012208 (Reactome)
KPNA2ArrowR-HSA-9012196 (Reactome)
MED1R-HSA-9023840 (Reactome)
MYB gene:hyperphosphorylated RNA polymerase II:TFIIF:ESR1:ESTG:P-TEFbArrowR-HSA-9011971 (Reactome)
MYB gene:hyperphosphorylated RNA polymerase II:TFIIF:ESR1:ESTG:P-TEFbArrowR-HSA-9012319 (Reactome)
MYB gene:hypophosphorylated RNA polymerase II:TFIIF:ESR1:ESTG:P-TEFbArrowR-HSA-9012315 (Reactome)
MYB gene:hypophosphorylated RNA polymerase II:TFIIF:ESR1:ESTG:P-TEFbR-HSA-9012319 (Reactome)
MYB gene:hypophosphorylated RNA polymerase II:TFIIF:ESR1:ESTG:P-TEFbmim-catalysisR-HSA-9012319 (Reactome)
MYB gene:hypophosphorylated RNA polymerase II:TFIIFR-HSA-9012315 (Reactome)
MYB geneR-HSA-9011971 (Reactome)
MYBArrowR-HSA-9011971 (Reactome)
MYC

gene, BCL2 gene: H3K9me2, HIST1H2AC

nucleosome:ESR1:ESTG:KDM1A
ArrowR-HSA-9011984 (Reactome)
MYC

gene, BCL2 gene: H3K9me2, HIST1H2AC

nucleosome:ESR1:ESTG:KDM1A
R-HSA-9011985 (Reactome)
MYC

gene, BCL2 gene: H3K9me2, HIST1H2AC

nucleosome:ESR1:ESTG:KDM1A
mim-catalysisR-HSA-9011985 (Reactome)
MYC

gene, BCL2 gene:HIST1H2AC

nucleosome:ESR1:ESTG
ArrowR-HSA-9011985 (Reactome)
MYC

gene, BCL2 gene:HIST1H2AC

nucleosome:ESR1:ESTG
R-HSA-9011981 (Reactome)
MYC

gene, BCL2 gene:HIST1H2AC

nuclesome:ESR1:ESTG:EP300
ArrowR-HSA-9011981 (Reactome)
MYC

gene, BLC2 gene:H3K9me2, HIST1H2AC

nucleosome:ESR1:ESTG
ArrowR-HSA-9011983 (Reactome)
MYC

gene, BLC2 gene:H3K9me2, HIST1H2AC

nucleosome:ESR1:ESTG
R-HSA-9011984 (Reactome)
MYC gene:ESR1:ESTG:JUND:FOSB:Cohesin ComplexArrowR-HSA-9011975 (Reactome)
MYC gene:ESR1:ESTG:JUND:FOSB:Cohesin ComplexArrowR-HSA-9011997 (Reactome)
MYC

gene:HIST1H2AC

nucleosome:ESR1:ESTG:EP300:NCOA3
ArrowR-HSA-9011975 (Reactome)
MYC gene:nucleoplasm:ESR1:ESTGArrowR-HSA-9011975 (Reactome)
MYC gene, BCL2 gene: H3K9me2 nucleosomeR-HSA-9011983 (Reactome)
MYC geneR-HSA-9011975 (Reactome)
MYC geneR-HSA-9011997 (Reactome)
MYCArrowR-HSA-9011975 (Reactome)
NCOA1R-HSA-9008270 (Reactome)
NCOA3R-HSA-9008258 (Reactome)
NCOA3R-HSA-9012000 (Reactome)
NCOAsR-HSA-9023840 (Reactome)
NR5A2R-HSA-9012000 (Reactome)
NRIP1R-HSA-9038163 (Reactome)
PGR geneR-HSA-1254392 (Reactome)
PGR geneR-HSA-8954208 (Reactome)
PGRArrowR-HSA-1254392 (Reactome)
POU2F1R-HSA-9009371 (Reactome)
PRMT1R-HSA-9023861 (Reactome)
PTGES3ArrowR-HSA-8939203 (Reactome)
PTGES3ArrowR-HSA-9032751 (Reactome)
PTGES3ArrowR-HSA-9038161 (Reactome)
PiArrowR-HSA-8939203 (Reactome)
PiArrowR-HSA-9032751 (Reactome)
PiArrowR-HSA-9038161 (Reactome)
R-HSA-1254386 (Reactome) ERBB4s80 forms a complex with activated estrogen receptor ESR1 in the nucleus and acts as a transcriptional co-factor for ESR1 (Zhu et al. 2006).
R-HSA-1254392 (Reactome) The complex of ERBB4s80 and activated estrogen receptor ESR1 promotes transcription of the PGR gene, encoding progesterone receptor (Zhu et al. 2006).
R-HSA-8931981 (Reactome) The RUNX1:CBFB complex binds the estrogen receptor alpha (ESR1). The interaction between RUNX1 and ESR1 is significantly enhanced upon ESR1 activation by estrogens (Stender et al. 2010).
R-HSA-8932020 (Reactome) GPAM gene expression is cooperatively stimulated by RUNX1 and ESR1, which form a complex and bind the GPAM gene enhancer (Stender et al. 2010). GPAM encodes a glycerol-3-phosphate acyltransferase whose high expression correlates with better overall survival in breast cancer (Brockmoller et al. 2012).
R-HSA-8932021 (Reactome) RUNX1 and ESR1 cooperatively bind to the enhancer of the GPAM gene, which contains both estrogen response elements and RUNX1 binding sites (Stender et al. 2010).
R-HSA-8932033 (Reactome) RUNX1 and ESR1, which form a complex that binds to the KCTD6 gene enhancer, cooperatively stimulate the expression of the KCTD6 gene (Stender et al. 2010).
R-HSA-8932037 (Reactome) RUNX1 and ESR1 cooperatively bind the KCTD6 gene enhancer, which contains both estrogen response elements and RUNX1 response elements (Stender et al. 2010).
R-HSA-8932070 (Reactome) Estrogen receptor alpha (ESR1) binds to estrogen response elements in the second intron of the AXIN1 gene (Chimge et al. 2016).
R-HSA-8932076 (Reactome) Transciption of the AXIN1 gene, which encodes a component of the beta-catenin (CTNNB1) destruction complex, is inhibited by binding of the activated estrogen receptor alpha (ESR1) to estrogen response elements in the second intron of AXIN1 (Chimge et al. 2016).
The AXIN1 gene expression is stimulated by cooperative binding of RUNX1 and estrogen receptor alpha (ESR1) to adjacent RUNX1 binding sites and estrogen response elements in the second intron of AXIN1 (Chimge et al. 2016).
R-HSA-8932084 (Reactome) RUNX1 and ESR1, which are known to form a complex (Stender et al. 2010), cooperatively bind to adjacent Runx binding sites and estrogen response elements, respectively, in the second intron of the AXIN1 gene (Chimge et al. 2016).
R-HSA-8939201 (Reactome) Upon ligand binding, estrogen receptors form homo- or heterodimers mediated by dimerization domains in the DNA-binding and ligand-binding regions (White et al, 1991; Schwabe et al, 1993; Kuntz et al, 1997; Kumar and Chambon, 1998; Powell et al, 2010). Estrogen receptor dimers regulate transcription of estrogen-responsive genes either by direct binding to estrogen response elements (characterized by a palindromic consensus sequence AGGTCA separated by a 3bp spacer) or by interacting with other DNA binding transcriptional regulators (reviewed in Smith and Toft, 2008; Bai and Gust, 2009; Ikeda et al 2015; Liu and Cheung, 2014). Binding of estrogen receptors to the DNA promotes the assembly of higher order transcriptional complexes containing methyltransferases, histone acetyltransferases and other transcriptional activators, which promote transcription by establishing active chromatin marks and by recruiting general transcription factors and RNA polymerase II. ESR1- and estrogen-dependent recruitment of up to hundreds of coregulators has been demonstrated by varied co-immunoprecipitation and proteomic approaches (Kittler et al, 2013; Mohammed et al, 2013; Foulds et al, 2013; Mohammed et al, 2015; Liu et al, 2014; reviewed in Magnani and Lupien, 2014; Arnal, 2017).
R-HSA-8939203 (Reactome) Release of the estrogen receptor from the chaperone complex requires requires HSP90-dependent ATP hydrolysis, and occurs at the same rate in the presence and absence of ligand (Smith et al, 1992; Smith et al, 1993; Aumais et al, 1997; Grenert et al, 1997; Obermann et al, 1998; Panaretou et al, 1998; reviewed in Smith and Toft, 2008). In the absence of ligand, released ERs are recaptured by HSP40 through its interaction with the ligand binding domain (LBD), priming reassembly of the chaperone complex. Ligand binding may result in the loss of the HSP40-binding site, allowing the receptor to escape repetitive rounds of chaperone complex assembly, and freeing it for DNA-binding (reviewed in Smith and Toft, 2008).
R-HSA-8939204 (Reactome) In the nucleus, estrogens bind to estrogen receptors, members of the nuclear receptor superfamily. Human cells have 2 estrogen receptors, ER alpha and ER beta, encoded by two genes. Expression of the two genes varies by tissue: both are expressed in the central nervous system, the cardiovascular system, the urogenital tract and in the breast and bone; ER alpha expression predominates in the uterus, mammary gland, and liver, and the gastrointestinal tract expresses only ER beta (Pearce and Jordan, 2004; Gustafsson et al, 1999; Pfaffl et al, 2001; reviewed in Bai and Gust, 2009). The receptors show 47% identity overall and share a common organization consisting of 6 domains: an N-terminal A/B domain with ligand-independent activation function, a C domain containing the 2 DNA-binding zinc fingers, a hinge region (D) with a nuclear localization signal, an E domain that contains the ligand binding and dimerization domains as well as a ligand-dependent transactivation function, and a C-terminal F domain of poorly characterized function. The DNA-binding domain is the most highly conserved (97% identity) while the ligand-bindind domain is more variable (47% identity) (reviewed in Ruff et al, 2000; Bai and Gust, 2009). ER alpha and beta can homo- and heterodimerize, and recognize a common estrogen-response element due to their shared DNA-binding domains (reviewed in Bai and Gust, 2009). Functional studies suggest that ER alpha and beta have overlapping but distinct roles in estrogen-responsive transcription (Harrington et al, 2003; Katzenellenbogen and Katzenellenbogen, 2000; Pearce and Jordan, 2004; Pfaffl et al, 2001)
In the unliganded state, estrogen receptors are part of a multi-subunit complex containing HSP90, p23 (also known as PTGES3) and other chaperone-associated proteins (Joab et al, 1984; Segnitz et al, 1995; Knoblauch et al, 1999; Bouhouche-Chatelier et al, 2001; Fliss et al, 2000; Oxelmart et al, 2006; reviewed in Smith and Toft, 2008; Bai and Gust, 2009). This complex is part of a chaperone binding and release cycle shared by many nuclear receptors (described in more detail in the pathway "HSP90 chaperone cycle for steroid hormone receptors") that governs receptor folding and activity and may contribute to a high-affinity conformation of the ligand-binding domain (reviewed in Pratt and Toft, 1997; Smith and Toft, 2008). HSP90 release from the receptor complex requires ATP hydrolysis (Smith et al, 1993; Grenert et al, 1997; Panaretou et al, 1998; Obermann et al, 1998; Smith et al, 1992; reviewed in Smith and Toft, 2008).
R-HSA-8939205 (Reactome) Extracellular estrogens diffuse freely across the plasma membrane and into the nucleus. In the nucleus, estrogens interact with estrogen receptors and, in conjunction with other transcriptional regulators, promote changes in estrogen-responsive transcription (reviewed in Hall et al, 2001; Deroo and Korach, 2006; Hah and Kraus, 2014). The estrogen receptor binds endogenous estrogens such as 17 beta estradiol (E2, the most potent ligand), estrone (E1), estriol (E3) and estretol (E4), as well as other physiological ligands such as oxysterols derivatives like 27-hydroxycholesterol (reviewed in Arnal, 2017; Nguyen et al, 2015; Nelson et al, 2013). In addition to naturally occurring ligands, there are many other synthetic estrogen ligands in clinical use that bind the estrogen receptor and modulate biological response. These include agonists, which mimic the effect of naturally occurring estrogens, mixed agonist-antagonists (also known as selective estrogen receptor modulators, or SERMs, which show tissue-specific activities) and antagonists (reviewed in Cosman and Lindsay, 1999; Katzenellenbogen et al, 2000; Bai and Gust, 2009; Farooq, 2015).
R-HSA-8954199 (Reactome) The complex of ERBB4s80 and activated estrogen receptor ESR1 promotes transcription of the CXCL12 gene, encoding Stromal cell-derived factor 1 (SDF1) (Zhu et al. 2006).
R-HSA-8954207 (Reactome) The complex of ERBB4s80 and activated estrogen receptor ESR1 binds estrogen response elements (EREs) in the promoter of the CXCL12 gene, encoding Stromal cell-derived factor 1 (Zhu et al. 2006).
R-HSA-8954208 (Reactome) The complex of ERBB4s80 and activated estrogen receptor ESR1 binds estrogen response elements (EREs) in the promoter of the PGR (NR3C3) gene, encoding Progesterone receptor (Zhu et al. 2006).
R-HSA-9008258 (Reactome) X-ray crystallography studies illustrated that the ligand-bound ESR1 interacts with LXXLL motif-containing NCOA3 (SRC3) through the ligand-binding domain (LBD) at the C-terminus of ESR1, which also has a ligand-dependent transactivation function (known as AF-2) (Brzozowski et al. 1997). Cryoelectron microscopy (cryo-EM) determined the quaternary structure of an active complex of DNA-bound ESR1, steroid receptor coactivator 3 (SRC3 or NCOA3), and a secondary coactivator (p300/EP300). Structural models suggests the following assembly mechanism for the complex: each of the two ligand-bound ESR1 monomers independently recruits one NCOA3 protein via the transactivation domain of ESR1;the two NCOA3s in turn bind to different regions of one p300 protein through multiple contacts (Yi P et al. 2015).
R-HSA-9008267 (Reactome) Hormone-activated estrogen receptor (ER) binds with high affinity to specific DNA sequences, estrogen response elements (EREs), found in the regulatory regions of estrogen-responsive genes (Klinge CM 2001). The majority of known estrogen responsive genes contain imperfect EREs that differ from the consensus ERE sequence, 5′-GGTCAnnnTGACC-3′, by one or more base pairs. The individual ERE sequences were found to differentially induce changes in ER conformation that may influence the recruitment of specific coactivator proteins (Wood JR et al. 2001). The promoter of the TGFA gene has two imperfect EREs between -252 to -200 and an additional upstream sequence between -623 and -549. These elements confer estrogen-responsiveness to the promoter and are bound by ESR1 as assessed by electrophoretic mobility shift assay (Vyhidal et al, 2000).
R-HSA-9008270 (Reactome) NCOA1 is a nuclear receptor coactivator that is recruited to the TGFA promoter through direct interaction with ESR1 (Halachmi et al, 1994; Cavaillès et al, 1994; Harnstein et al, 2001). Although NCOA1 has intrinsic histone acetyltransferase activity, it plays a more predominant role in activating gene transcription through its ability to recruit EP300 to the promoter (Harnstein et al, 2001; reviewed in Arnal el al, 2017).
R-HSA-9008271 (Reactome) CITED1 and EP300 contribute to the estrogen-dependent expression of the TGFA gene. CITED1 (also known as CBP) interacts directly with ESR1 through the transcriptional activation AF2 domain and enhances its activity. The interaction between ESR1 and exogenous CITED1 also stabilizes the interaction with EP300 (Yahate et al, 2001).
R-HSA-9008285 (Reactome) Cryoelectron microscopy (cryo-EM) determined the quaternary structure of an active complex of DNA-bound ESR1, steroid receptor coactivator 3 (SRC3 or NCOA3), and a secondary coactivator (p300/EP300). A structural model suggests the following assembly mechanism for the complex: each of the two ligand-bound ESR1 monomers independently recruits one NCOA3 protein via the transactivation domain of ESR1;the two NCOA3s in turn bind to different regions of one p300 protein through multiple contacts (Yi P et al. 2015).
R-HSA-9008315 (Reactome) The TGFA gene encodes the precursor of the transforming growth factor alpha (TGF alpha). Binding of the CITED1 to the promoter of the TGFA gene in the estrogen:ESR1-dependent manner stimulates TGFA transcription in MCF-7 breast cancer cell line (Yahata T et al. 2001).
R-HSA-9009065 (Reactome) Estrogen induces cellular proliferation by upregulating expression of critical cell cycle regulators that govern progression through G1, such as Myc and Cyclin D1 (reviewed in Butt et al, 2005). In the absence of estrogen, Cyclin D1 expression is inhibited, at least in part, by the binding of a transcriptional repressor complex YY1:HDAC1 to the promoter (Cicatiello et al, 2004). Estrogen-stimulated induction of target gene expression appears in many cases to be primed by the binding of 'pioneer' transcription factors, such as FOXA and GATA family proteins (Carroll et al, 2005; Laganière et al, 2005; Eeckhoute et al, 2006; Hurtado et al, 2011; Kong et al, 2011; Theodorou et al, 2013; Swinstead et al, 2016; reviewed in Zaret and Carroll, 2011; Augello et al, 2011; Fiorito et al, 2013; Wilson and Giguere, 2008). FOXA factors have a winged helix structure that is thought to bind to closed chromatin structures in a manner analogous to linker histones, displacing linker histones and rendering the DNA more accessible to other transcription factors (reviewed in Zaret and Carroll, 2011). FOXA binding sites tend to be enriched at enhancer elements, characterized by H3K4 mono- and dimethylation, and expression of the histone demethylase KDM1A abrogates FOXA recruitment (Lupien et al, 2008). An enhancer element has been defined downstream of the CCND1 gene that mediates the binding of both the pioneer factor FOXA1 and estrogen-responsive ESR1 (Eeckhoute et al, 2006).
R-HSA-9009371 (Reactome) Although there is not a classical estrogen response element (ERE) in the proximal CCND1 promoter, estrogen-responsive transcription is mediated through recruitment of hormone-bound ESR1 by other DNA-binding proteins (reviewed in Guo et al, 2011; Klein and Assoian, 2008). A heterodimer of JUN:FOS binds to an estrogen-responsive G1 element (ERGE) between nucleotides -948 and -925 and is responsible for recruitment of ESR1 and estrogen to this site. OCT1 may facilitate this binding by displacing a YY1:HDAC1 repressive complex that occupies an adjacent site in unstimulated cells (Albanese et al, 1995; Cicatiello et al, 2004; Shen et al, 2007). Binding of ATF2:JUN heterodimers to a cyclic AMP response element (CRE) located 52 nucleotides upstream of the transcriptional start site may also contribute to estrogen-responsive signaling (Sabbah et al, 1999; Castro-Rivera at al, 2001). An ERE has been identified in an enhancer element downstream of the CCND1 gene (enh2). This enhancer binds to FOXA1, and also mediates recruitment of the histone acetyltransferase p300 to the CCND1 promoter (Eeckhoute et al, 2006).
Although FOXA1 and GATA3 were initially characterized as 'pioneer' transcription factors that bind to closed chromatin conformations and prime recruitment of sequence-specific DNA binding factors, more recent studies have questioned the order of recruitment of the estrogen receptors, FOXA1 and GATA3 to estrogen-responsive targets (Swinstead et al, 2016).
R-HSA-9009378 (Reactome) The proliferative effects of estrogen stimulation arise in part through the estrogen-dependent activation of key cell cycle regulators such as Cyclin D1, encoded by the CCND1 gene. Although there is not a classical estrogen response element (ERE) in the proximal CCND1 promoter, estrogen-responsive transcription is mediated through recruitment of hormone-bound ESR1 by other DNA-binding proteins (reviewed in Guo et al, 2011; Klein and Assoian, 2008). A heterodimer of JUN:FOS binds to an estrogen-responsive G1 element (ERGE) between nucleotides -948 and -925 and is responsible for recruitment of ESR1 and estrogen to this site. OCT1 may facilitate this binding by diplacing a YY1:HDAC1 repressive complex that occupies an adjacent site in unstimulated cells (Albanese et al, 1995; Cicatiello et al, 2004; Shen et al, 2007). Binding of ATF2:JUN heterodimers to a cyclic AMP response element (CRE) located 52 nucleotides upstream of the transcriptional start site may also contribute to estrogen-responsive signaling (Sabbah et al, 1999; Castro-Rivera at al, 2001).
R-HSA-9009526 (Reactome) CARM1 is an H3 R17 methyltransferase that is recruited to the TFF promoter where, in conjunction with acetyltransferases, it establishes transcriptionally active chromatin (Métivier et al, 2003; Chen et al, 2000; Daujat et al, 2002). PRMT1 is an alternate arginine methyltransferase with activity toward H4 R3 that acts at the TFF enhancer, however CARM1 and PRMT1 are never found simultaneously at the TFF1 gene (Métivier et al, 2003; reviewed in Xu et al, 2003; Arnal et al, 2017).Note that in this diagram, methylation of H3 R17 is not depicted.
R-HSA-9009533 (Reactome) TFIIA and TBP are recruited to the TFF1 promoter early during transcriptional activation and are often found at the promoter with DDX5 (Métivier et al, 2003; reviewed in Caretti et al, 2007).
R-HSA-9009536 (Reactome) DDX5, also known as p68, is a putative RNA helicase that is implicated in estrogen-responsive signaling (Métivier et al, 2003; Métivier et al, 2004; Wortham et al, 2009; reviewed in Caretti et al, 2007; Arnal et al, 2017). DDX5 is recruited to the TFF1 promoter early during transcriptional activation and modulates the activity of the AF1 activator region of the estrogen receptor (Métivier et al, 2001; Métivier et al, 2003, Métivier et al, 2004).
R-HSA-9009541 (Reactome) TFF1 is an estrogen-responsive gene with an ESR1-bound promoter/enhancer that is primed for ligand-dependent expression by the binding of 'pioneer' transcription factors, such as FOXA1 and GATA3 (Berry et al, 1989; Shang et al, 2000; Carroll et al, 2005; Laganière et al, 2005; Eeckhoute et al, 2006; Hurtado et al, 2011; Theodorou et al, 2013; reviewed in Klinge, 2001; Zaret and Carroll, 2011; Fiorito et al, 2013). Ligand-bound estrogen receptor binds to a functional ERE between -405 and -393 and to a region 10.5 kb upstream of the TFF1 transcription start site (Berry et al, 1989; Sewack and Hansen, 1997; Métivier et al, 2003; Carroll et al, 2005). Detailed ChIP studies of the TFF1 promoter in synchronized cells after estrogen stimulation reveal an ordered and cyclical recruitment of co-activators, chromatin remodellers and general transcriptional machinery that modify the epigenetic and chromatin environment to regulate transcriptional activity (Metivier et al, 2003; Metivier et al, 2008; Kangaspeska et al, 2008). Three phases are observed after estrogen stimulation of blocked cells, including an initial unproductive cycle followed by two transcriptionally productive cycles. These are marked by the combinatorial recruitment of different subsets of proteins and cyclical alterations to the methylation and acetylation status of the promoter (Metivier et al, 2003; Metivier et al, 2008; Kangaspeska et al, 2008; reviewed in Reid et al, 2009).
R-HSA-9011941 (Reactome) ESR1 and HIST1H2AC contribute to estrogen-responsive transcriptional activation at the BCL and MYC genes by promoting long-range chromatin loops between enhancer elements. This is accompanied by the recruitment of EP300 and RNA polymerase II (Su et al, 2014).
R-HSA-9011949 (Reactome) KDM4B (also known as JMJD2B) is an H3 K9 demethylase that is recruited to estrogen-responsive enhancers through interaction with ESR1 (Kawazu et al, 2011; Gaughan et al, 2013). KDM4B promotes target gene activation in the presence of estrogen by removing the repressive H3K9 methylation mark, and KDM4B has been shown to interact with the SWI/SNF-B complex component SMARCA4 and to promote recruitment of RNA polymerase II (Kawazu et al, 2011; Gaughan et al, 2013).
R-HSA-9011950 (Reactome) GREB1 is transcribed in response to estrogen stimulation in a manner that depends on NCOA3, ZNF217 and KDM4B (Ghosh et al, 2000; Rae et al, 2005; Sun et al, 2007; Kawazu et al, 2011; Nguyen et al, 2014). Estrogen-responsive transcription is directed by three EREs at -21.2, -9.5 and -1.6kb relative to the transcription start site and may be facilitated by the formation of chromatin loops (Lin et al, 2004; Sun et al, 2007; Deschenes et al, 2007; Lin et al, 2007).
R-HSA-9011952 (Reactome) Transcriptional induction of a number of estrogen-responsive genes, including MYC, MYB, GREB1 and KDM4B itself, is dependent on KDM4B-dependent H3K9 promoter/enhancer demethylation. KDM4B interacts with ESR1 and is recruited to estrogen-responsive target gene promoters or enhancers in an estrogen-dependent manner (Kawazu et al, 2011; Gaughan et al, 2013). Depletion of KDM4B in T47D and MCF7 breast cancer cell lines abrogates the proliferative response to estrogen, consistent with its role in driving expression of estrogen-dependent cell cycle regulators like MYC and CCND1 (Kawazu et al, 2011; Yang et al, 2010). KDM4B additionally interacts with the transcriptional activator SMARCA4, and depletion of KDM4B compromises the recruitment of RNA polymerase II to the MYB promoter in T47D cells (Kawazu et al, 2011). KDM4B is highly expressed in ER alpha-positive breast cancer and prostate cancer (Gaughan et al, 2013; Coffey et al, 2013). KDM4B may also promote estrogen-responsive signaling by interacting with GATA3 and binding to the enhancers of ESR1and FOXA1 genes (Gaughan et al, 2013).
R-HSA-9011958 (Reactome) Translation of GREB1 mRNA is negatively regulated by mIR-26A and B, which bind directly to the 3'UTR. mIR-26A and B are both downregulated in the presence of estrogen in a manner that depends on estrogen-stimulated MYC gene expression. Of the nine identified estrogen-responsive, mIR-26 regulated genes, GREB1, CHD1 and KPNA2 are the only three that contribute to the proliferative response to estrogen (Tan et al, 2014).
R-HSA-9011961 (Reactome) Translation of GREB1 mRNA is negatively regulated by direct binding of mIR-26A and mIR-26B to the 3' UTR. mIR-26 expression is itself negatively regulated in response to estrogen in a manner that depends on estrogen-stimulated MYC gene expression (Tan et al, 2014).
R-HSA-9011966 (Reactome) KDM4B regulates its own expression by interacting with the estrogen receptor to promote estrogen-dependent demethylation of its promoter. KDM4B also interacts with the transcriptional activator SMARCA4 to promote recruitment of RNA polymerase II (Kawazu et al, 2011; Gaughan et al, 2013).



R-HSA-9011971 (Reactome) MYB is frequently expressed in breast cancer and its expression is correlated with ER positive tumors (Guerin et al, 1990; Kauraniemi et al, 2000). MYB expression is estrogen-responsive, but hormone-dependent control is exerted at the level of transcriptional elongation rather than initiation (Frasor et al, 2003; Carroll et al, 2006; Bender et al, 1987; Watson et al, 1988; Drabsch et al, 2007). In the absence of estrogen, RNA polymerase II stalls at a stem-loop poly-T (SL-dT) tract between within intron 1 (Drabsch et al, 2007). Upon estrogen stimulation, a complex containing estrogen, the estrogen receptor and P-TEFb (an elongation factor consisting of Cyclin T and CDK9) is recruited to an ERE near the SL-dT. P-TEFb phosphorylates serine 2 in the RNA polymerase II CTD, allowing the polymerase to continue elongating (Drabsch et al, 2007; Mitra et al, 2012; reviewed in Gonda et al, 2008; Garriga and Grana, 2004). Although EREs have been identified around the SL-dT and have been shown by ChIP to be bound by ESR1, mutation of the EREs does not abrogate estrogen-responsive MYB expression, suggesting that the estrogen receptor either binds to a non-canonical site or it interacts through another transcription factor in this reaction (Drabsch et al, 2007; Mitra et al, 2012).
Transcriptional induction of MYB is also dependent on KDM4B-dependent H3K9 promoter/enhancer demethylation. KDM4B interacts with ESR1 and is recruited to estrogen-responsive target gene promoters or enhancers in an estrogen-dependent manner (Kawazu et al, 2011; Gaughan et al, 2013). Depletion of KDM4B in T47D and MCF7 breast cancer cell lines abrogates the proliferative response to estrogen, consistent with its role in driving expression of estrogen-dependent cell cycle regulators like MYC and CCND1 (Kawazu et al, 2011; Yang et al, 2010). KDM4B additionally interacts with the transcriptional activator SMARCA4, and depletion of KDM4B compromises the recruitment of RNA polymerase II to the MYB promoter in T47D cells (Kawazu et al, 2011). KDM4B is highly expressed in ER alpha-positive breast cancer and prostate cancer (Gaughan et al, 2013; Coffey et al, 2013). KDM4B may also promote estrogen-responsive signaling by interacting with GATA3 and binding to the enhancers of ESR1and FOXA1 genes (Gaughan et al, 2013). How and when (or whether) KDM4B interacts with P-TEFb has not been examined.
R-HSA-9011975 (Reactome) MYC gene expression is estrogen-responsive and expression of MYC and CCND1 contribute to the proliferative response stimulated by estrogen treatment (Dubnik et al, 1987; Dubnik et al, 1988; Dubnik and Shu, 1992; Prall et al, 1998). Estrogen-responsive MYC expression appears to depend at least in part on a distal enhancer element 67 kb from the transcriptional start site that contains a half ERE and an AP-1 site (Denardo et al, 2005; Carroll et al, 2006; Wang et al, 2011). Upon estrogen stimulation, these sites are occupied by ESR1 and a JUND:FOSB heterodimer, respectively (Wang et al, 2011). Estrogen-responsive MYC expression also depends on the cohesin complex, as depletion of the RAD21 cohesin subunit abrogates expression (Stedman et al, 2008; Schmidt et al, 2010; McEwan et al, 2011; Antony et al, 2015). Genome-wide studies have shown that RAD21 and ESR1 binding sites overlap in a fraction of estrogen-responsive genes, including MYC (Schmidt et al, 2010). Cohesin may contribute to target gene expression by promoting chromatin looping structures between distal enhancers and the target gene promoters or through other mechanisms that remain to be elucidated (Li et al, 2012; Antony et al, 2015; reviewed Rhodes et al, 2011; Losada, 2014). Overexpression of histone isoform HIST1H2AC in breast cancer has been shown to contribute to MYC gene expression by promoting the formation of activating chromatin loops and facilitating the recruitment of ESR1, EP300 and RNA polymerase II (Su et al, 2014).
R-HSA-9011981 (Reactome) ESR1 and HIST1H2AC contribute to estrogen-responsive transcriptional activation at the BCL and MYC genes by promoting long-range chromatin loops between enhancer elements. This is accompanied by the recruitment of EP300 and RNA polymerase II (Su et al, 2014).
R-HSA-9011983 (Reactome) HIST1H2AC (also known as H2ac) is a replicative histone H2A isoform that is overexpressed in breast cancer (Shann et al, 2008). HIST1H2AC and HIST1H2AA, unique among HIST1H2 family members, contains a HAR domain that in yeast has been shown mediate interaction with histone H3 and to regulate gene expression (Zheng et al, 2010). Estrogen-dependent recruitment of HIST1H2AC to target genes contributes to the proliferative response to estrogen, and siRNA depletion of HIST1H2AC abrogates expression of genes including MYC, CCND1 and BCL2, among others, and results in cell cycle arrest at G0/G1. By ChIP, both the estrogen receptor and HIST1H2AC are present at distal enhancer elements and in the 3' UTR of target genes upon estrogen stimulation, and the proteins physically interact both in vitro and in vivo. HIST1H2AC and ESR1 contribute to target gene activation by promoting the formation of long distance chromatin loops between disparate regulatory regions (Su et al, 2013). Overexpression of HIST1H2AC additionally decreases the levels of the repressive epigenetic modification H3K9me2 that is associated with estrogen-responsive signaling, and HIST1H2AC contributes to the recruitment of the histone demethylase KDM1A (Perillo et al, 2008; Su et al, 2014).
R-HSA-9011984 (Reactome) Histone demethylase KDM1A (also known as LSD1) is recruited to estrogen-responsive promoters and enhancers in a manner that depends on the HAR domain of HIST1H2AC. KDM1A removes the repressive H3K9me2 epigenetic mark, and consistent with this, KDM1A knockdown leads to abrogated expression of BCL2 and MYC genes in response to estrogen stimulation (Perillo et al, 2008; Su et al, 2014; Wang et al, 2009; Wissmann et al, 2007)
R-HSA-9011985 (Reactome) KDM1A removes the H3K9me2 repressive epigenetic mark at estrogen-responsive enhancers, allowing transcriptional activation (Wang et al, 2009; Su et al, 2014).
R-HSA-9011997 (Reactome) MYC gene expression is estrogen-responsive and expression of MYC and CCND1 contribute to the proliferative response stimulated by estrogen treatment (Dubnik et al, 1987; Dubnik et al, 1988; Dubnik and Shu, 1992; Prall et al, 1998). Estrogen-responsive MYC expression appears to depend at least in part on a distal enhancer element 67 kb from the transcriptional start site that contains a half ERE and an AP-1 site (Denardo et al, 2005; Carroll et al, 2006; Wang et al, 2011). Upon estrogen stimulation, these sites are occupied by ESR1 and a JUND:FOSB heterodimer, respectively (Wang et al, 2011). Estrogen-responsive MYC expression also depends on the cohesin complex, as depletion of the RAD21 cohesin subunit abrogates expression (Stedman et al, 2008; Schmidt et al, 2010; McEwan et al, 2011; Antony et al, 2015). Genome-wide studies have shown that RAD21 and ESR1 binding sites overlap in a fraction of estrogen-responsive genes, including MYC (Schmidt et al, 2010). Cohesin may contribute to target gene expression by promoting chromatin looping structures between distal enhancers and the target gene promoters or through other mechanisms that remain to be elucidated (Li et al, 2012; Antony et al, 2015; reviewed Rhodes et al, 2011; Losada, 2014). Overexpression of histone isoform HIST1H2AC in breast cancer has been shown to contribute to MYC gene expression by promoting the formation of activating chromatin loops and facilitating the recruitment of ESR1, EP300 and RNA polymerase II (Su et al, 2014).
R-HSA-9012000 (Reactome) GREB1 (growth regulation by estrogen in breast cancer 1) is an estrogen-responsive gene that contains three EREs located 1.6, 9.5 and 21.2 kb upstream of the transcriptional start site (Ghosh et al 2000; Lin et al, 2004; Rae et al, 2005; Deschenes et al, 2007; Sun et al, 2007). By ChIP, all three EREs are bound by ESR1 and the transcriptional co-activator NCOA3 (also known as SRC3). Although this binding occurs even in the absence of estradiol treatment, binding is enhanced after estrogen stimulation (Sun et al, 2007). Estrogen-dependent GREB1 expression also depends on removal of the repressive H3K9 methlyation mark by KDM4B (Kawazu et al, 2011; Gaughan et al, 2013). Estrogen stimulation increases the occupancy of RNA polymerase II at the GREB1 gene and may promote transcription through the formation of chromatin loops. Estrogen stimulation also increases the level of H4 acetylation at the promoter (Sun et al, 2007; Deschenes et al, 2007). In addition to ESR1 and NCOA3, Kruppel-like finger (KLF) protein ZNF217 has also been shown to bind to ESR1 and enhance recruitment to GREB1 EREs. ZNF217 overexpression is associated with anchorage independent growth in MCF7 cell lines (Nguyen et al, 2014). Although both NCOA3 and ZNF217 have been shown to interact with the GREB1 EREs, no study has examined co-occupancy of the GREB1 enhancer by these two regulators.
R-HSA-9012186 (Reactome) Translation of CHD1 is negatively regulated by binding of mIR-26A and mIR-26B to the 3'UTR. Estrogen-and MYC-dependent CHD1 expression contributes to the proliferative response to estrogen stimulation (Tan et al, 2014).
R-HSA-9012196 (Reactome) Translation of KPNA2 is negatively regulated by binding of mIR-26A and mIR-26B to the 3' UTR.
R-HSA-9012203 (Reactome) Translation of CHD1 mRNA is negatively regulated by mIR-26A and B, which bind directly to the 3'UTR. mIR-26A and B are both downregulated in the presence of estrogen in a manner that depends on estrogen-stimulated MYC gene expression. Of the nine identified estrogen-responsive, mIR-26 regulated genes, GREB1, CHD1 and KPNA2 are the only three that contribute to the proliferative response to estrogen (Tan et al, 2014).
R-HSA-9012205 (Reactome) CHD1 is an ATP-dependent chromatin remodelling factor that is a component of the SAGA complex (Sims et al, 2007; reviewed in Marfella and Imbalzano, 2007). CHD1 expression has been shown to be responsive to estrogen stimulation, and negatively regulated by direct binding of mIR-26A and mIR-26B to the 3' UTR. MYC- and estrogen-dependent down-regulation of mIR-26 expression abrogates the repressive effect on CHD1 expression and promotes the estrogen-responsive proliferative effect (Tan et al, 2014).
R-HSA-9012208 (Reactome) Translation of KPNA2 mRNA is negatively regulated by mIR-26A and B, which bind directly to the 3'UTR. mIR-26A and B are both downregulated in the presence of estrogen in a manner that depends on estrogen-stimulated MYC gene expression. Of the nine identified estrogen-responsive, mIR-26 regulated genes, GREB1, CHD1 and KPNA2 are the only three that contribute to the proliferative response to estrogen (Tan et al, 2014). KPNA2 expression has also been demonstrated to be regulated by mIR-26 binding in ovarian cancer (Lin et al 2015).
R-HSA-9012209 (Reactome) KPNA2 is a member of the karyopherin alpha family that recognized cargo proteins at the nuclear pore to facilitate their nucleocytoplasmic transport (reviewed in Christiansen and Dyrskjot, 2013). KPNA2 is highly expressed in many cancers and has been shown to be stimulated by estrogen (Tan et al, 2014). KPNA2 expression is negatively regulated by direct binding of mIR-26A and mIR-26B to the 3'UTR (Tan et al, 2014).
R-HSA-9012315 (Reactome) MYB is frequently expressed in breast cancer and its expression is correlated with ER positive tumors (Guerin et al, 1990; Kauraniemi et al, 2000). MYB expression is estrogen-responsive, but hormone-dependent control is exerted at the level of transcriptional elongation rather than initiation (Frasor et al, 2003; Carroll et al, 2006; Bender et al, 1987; Watson et al, 1988; Drabsch et al, 2007). In the absence of estrogen, RNA polymerase II stalls at a stem-loop poly-T (SL-dT) tract between within intron 1 (Drabsch et al, 2007). Upon estrogen stimulation, a complex containing estrogen, the estrogen receptor and P-TEFb (an elongation factor consisting of Cyclin T and CDK9) is recruited to an ERE near the SL-dT. P-TEFb phosphorylates serine 2 in the RNA polymerase II CTD, allowing the polymerase to continue elongating (Drabsch et al, 2007; Mitra et al, 2012; reviewed in Gonda et al, 2008; Garriga and Grana, 2004). Although EREs have been identified around the SL-dT and have been shown by ChIP to be bound by ESR1, mutation of the EREs does not abrogate estrogen-responsive MYB expression, suggesting that the estrogen receptor either binds to a non-canonical site or it interacts through another transcription factor in this reaction (Drabsch et al, 2007; Mitra et al, 2012)
R-HSA-9012319 (Reactome) Transcriptional pausing at the SL-dT site in the MYB gene is overcome in response to estrogen by the P-TEFb-mediated phosphorylation of serine 2 in the C-terminal domain of RNA polymerase II (Drabsch et al, 2007; Mitra et al, 2012).
R-HSA-9018325 (Reactome) ESR1 binds to an ERE at -242 in the promoter of the CXXC5 gene and promotes transcription in an estrogen-dependent fashion. CXXC5 is a member of the zinc finger CXXC family of transcription factors and plays roles in cellular proliferation and differentiation (Nott et al, 2009; YaÅŸar et al, 2016).
R-HSA-9018334 (Reactome) CXXC5 expression is estrogen-responsive and depends on the interaction of ligand-bound ESR1 with an ERE at -242 of the promoter (Nott et al, 2009; YaÅŸar et al, 2016). CXXC5 is a transcription factor that plays roles in cellular proliferation and differentiation (Andersson et al, 2009; Kim et al, 2010; Aras et al, 2013; Li et al, 2014; Kim et al, 2016; Kim et al, 2015; Lee et al, 2015; Wang et al, 2013)
R-HSA-9018494 (Reactome) Trefoil factor family (TFF) 1 and 3 are secreted in mucous epithelia and the nervous system and have been implicated in oncogenesis and metastasis (reviewed in Busch and Dünker, 2015). TFF1 and 3 are estrogen-responsive genes with ESR1-bound promoters/enhancers that are primed for ligand-dependent expression by the binding of 'pioneer' transcription factors, such as FOXA1 and GATA3 (Berry et al, 1989; Shang et al, 2000; Carroll et al, 2005; Laganière et al, 2005; Eeckhoute et al, 2006; Hurtado et al, 2011; Kong et al, 2011; Theodorou et al, 2013; reviewed in Zaret and Carroll, 2011; Augello et al, 2011; Fiorito et al, 2013; Wilson and Giguere, 2008). FOXA factors have a winged helix structure that is thought to bind to closed chromatin structures in a manner analogous to linker histones, displacing linker histones and rendering the DNA more accessible to other transcription factors (reviewed in Zaret and Carroll, 2011). FOXA binding sites tend to be enriched at enhancer elements, characterized by H3K4 mono- and dimethylation and H3K27 acetylation, active histone markers (Heintzman et al, 2009; Creyghton et al, 2010; Theodorou et al, 2013).
R-HSA-9018497 (Reactome) Estrogen-dependent TFF3 expression is promoted by the formation of FOXA1- and GATA3-dependent chromatin loops. Interaction of ligand-bound ESR1 with the enhancer promotes recruitment of EP300 and other chromatin modifying enzymes, and stimulates the deposition of active chromatin marks like H3K4 methylation and H3K27 acteylation (Laganière et al, 2005; Theodorou et al, 2013; reviewed in Zaret and Carroll, 2011)
R-HSA-9018499 (Reactome) TFF3 is an estrogen-responsive gene whose expression is primed prior to estrogen receptor binding by the formation of FOXA1- and GATA3-dependent chromatin loops. Interaction of ligand-bound ESR1 with the enhancer promotes recruitment of EP300 and other chromatin modifiying enzymes, and stimulates the deposition of active chromatin marks like H3K4 methylation and H3K27 acteylation (Laganière et al, 2005; Theodorou et al, 2013; reviewed in Zaret and Carroll, 2011)
R-HSA-9018503 (Reactome) EBAG9 is an estrogen-responsive gene with an ill-characterized role in tumorigenesis and is overexpressed in a number of cancers (Jóźwicki et al, 2015; Xu et al, 2014; Giagnis et al, 2013). EBAG9 has been implicated in glycan maturation at the Golgi, and may also play roles in immune response and apoptosis during tumor growth (Wolf et al, 2010; Miyazaki et al, 2014; Tanaka et al, 2014; Mayeama et al, 2011). Estrogen-dependent transcription is mediated by an ERE in the 5'-flanking region which has been shown to bind ESR1 by electrophoretic mobility shift assay (Ikeda et al, 2000).
R-HSA-9018505 (Reactome) EBAG9, also known as RCAS1, is an estrogen-responsive gene with an ERE in the 5' flanking region (Ikeda et al, 2000). EBAG9 may play a role in immune response during tumorigenesis, and expression of EBAG9 is often upregulated in malignant tumors (Jóźwicki et al, 2015; Miyazaki et al, 2014; Xu et al, 2014; Tanaka et al, 2014; Wolf et al, 2010; Maeyama et al, 2011)
R-HSA-9023840 (Reactome) Estrogen-stimulated expression of CTSD depends on the cyclic recruitment of DNA-binding and other transcriptional activators. Binding sites for the DNA-binding transcriptional activators SP1, USF1 and 2 have been identified in the proximal CTSD promoter (Xing and Archer, 1998; Wang et al, 1998; Krishnan et al, 1994; Wang et al, 2001; reviewed in Safe, 2000). Other early factors that contribute to estrogen-dependent CTSD expression include the co-activator NCOA3, EP300 and MED1, a component of the mediator complex. These factors contribute to the formation of transcriptionally active chromatin and to the recruitment of RNA polymerase II (Shang et al, 2000; Bretschneider et al, 2008). Note that although these factors are shown at the CTSD promoter simultaneously, they have not all been demonstrated to form part of a single complex on an individual CTSD promoter.
R-HSA-9023845 (Reactome) Cathepsin D (CTSD) is an estrogen-responsive gene encoding a lysosomal protease with roles in cellular proliferation, apoptosis, cell migration and differentiation, among others (reviewed in Zaidi et al, 2008; Khalkhali-Ellis and Hendrix, 2015). Estrogen-dependence is conferred by the presence of non-canonical EREs in the proximal and distal promoter regions which are bound by ESR1 in a ligand-dependent manner (Augereau et al, 1994; Cavaillès et al, 1993; Wang et al, 1997; Wang et al, 1998; Xing and Archer, 1998; Shang et al, 2000; Wang et al, 2001; Bourdeau et al, 2004). Estrogen-stimulated transcriptional activation is facilitated by the formation of ESR1-dependent loops and by the cyclic recruitment of activators, coactivators, HATs and other components of the general transcriptional machinery (Shang et al, 2000; Bretschneider et al, 2008).
R-HSA-9023846 (Reactome) Cathepsin D (CTSD) is a lysosomal aspartyl protease that plays a role in the protein processing and degradation. In addition to its 'housekeeping' roles, CTSD controls the processing of proteins involved in cell cycle progression, differentiation, migration, immunology, neurogenesis, apoptosis and angiogenesis (reviewed in Zaidi et al, 2008; Khalkhali-Ellis and Hendrix, 2015). CTSD is overexpressed in many breast cancers and is implicated in tumor progression and metastasis (Fusek and Vetvicka, 2005). CTSD expression is constitutive in ESR1-negative cells, but estrogen-dependent in ESR1-positive cells (Liaudet-Coopman et al, 2006). Estrogen-responsiveness is conferred by imperfect EREs in both the proximal and the distal promoter and is facilitated by ESR1-dependent looping of the enhancer (Cavaillès et al, 1993; Augereau et al, 1994; Shang et al, 2004; Bourdeau et al, 2004; Bretschneider et al, 2008)
R-HSA-9023859 (Reactome) Estrogen-dependent TFF1 expression is promoted by the formation of FOXA1- and GATA3-dependent chromatin loops. (Laganière et al, 2005; Theodorou et al, 2013; reviewed in Zaret and Carroll, 2011).Interaction of ligand-bound ESR1 with the enhancer promotes recruitment of histone acetyltransferases and methyltransferases, which establish transcriptionally active chromatin structures and facilitate recruitment of RNA polymerase II (Métivier et al, 2003; reviewed in Xu et al, 2003, Arnal et al, 2017).
R-HSA-9023860 (Reactome) Estrogen-dependent expression of TFF1 depends on the recruitment of histone acetyltransferases such as KAT5, EP300, CITED1 and KAT2B, as well as coactivators such as NCOA1 and NCOA3 (Métivier et al, 2003; reviewed in Arnal et al, 2017). ChIP analysis suggests that NCOA1 and NCOA3 do not co-occupy the TFF1 promoter, but may be differentially recruited under different conditions (Métivier et al, 2003). Note that the acetyltransferase activity of these HATs is not depicted in this diagram.
R-HSA-9023861 (Reactome) PRMT1 is an H4 R3 methyltransferase that is recruited to the TFF promoter where, in conjunction with acetyltransferases, it establishes transcriptionally active chromatin (Métivier et al, 2003. CARM1 is an alternate arginine methyltransferase with activity toward H3 R17 that acts at the TFF enhancer, however CARM1 and PRMT1 are never found simultaneously at the TFF1 gene (Métivier et al, 2003; reviewed in Xu et al, 2003; Arnal et al, 2017).Note that in this diagram, methylation of H4 R3 is not depicted.
R-HSA-9023884 (Reactome) Estrogen-dependent interaction between NCOA1 and EP300 recruits EP300 to the TGFA promoter (Halachmi et al, 1994; Cavaillès et al, 1994; Harnstein et al, 2001). NCOA1 and EP300 contribute to active chromatin structures through their coactivator and histone acetyltransferase activity (reviewed in Xu et al, 2007; Arnal et al, 2017).
R-HSA-9032751 (Reactome) ESR1-mediated signaling can be initiated in an estrogen-independent manner downstream of stimuli such as EGF, NRG1, IGF, insulin, dopamine and cAMP (Ignar-Trowbridge et al, 1993, Pietras et al, 1995; Ma et al, 1994; Newton et al, 1994; Smith et al, 1993; Aronica and Katzenellenbogen, 1993). Stimulation with EGF or IFGF-1 promotes the MAPK-dependent phosphorylation of ESR1 at serine 118, which contributes to interaction with CBP/p300 and the p160 family of coactivators (Bunone et al, 1996; Chen et al, 2002; Cheng et al, 2007; reviewed in Anbalagan and Rowan, 2105). Serine 118 is also phosphorylated in response to estrogen stimulation (Chen et al, 2002; reviewed in Anbalagan and Rowan, 2015).
The relationship between MAPK-dependent S118 phosphorylation of ESR1 and the release from the cochaperone complex and ESR1 dimerization is not clear. In this reaction, all these events are shown happening simultaneously.
R-HSA-9038029 (Reactome) 27-hydroxycholesterol binds directly to ESR1 and ESR2 to modulate estrogen signaling in a cell-, tissue-, and gene-specific manner, making it a physiological selective ER modulator (SERM) (Umetani et al, 2007; Nelson et al, 2013; Nguyen et al, 2015). In the context of breast cancer, 27-HC acts as an estrogen agonist, promoting ER-dependent cellular proliferation. The development of resistance to aromatase inhibitors in breast cancer can arise in part through epigenetic reprogramming that activates the cholesterol biosynthetic pathway, elevating 27-HC levels and resulting in constitutive ER alpha activation (Nelson et al, 2013; Nguyen et al, 2015). Note that 27-HC binding to the estrogen receptors likely occurs in the context of a chaperone complex as is the case for estrogens, however this has not been explicitly demonstrated.
R-HSA-9038052 (Reactome) In addition to being an estrogen-responsive target, GREB1 also interacts directly with ESR1 and functions as an coactivator at numerous estrogen-responsive promoters, as assessed in MCF7 cell lines, xenograft models and primary tumors (Mohammed et al, 2013). ESR1-binding coincides with ~95% of GREB1 binding events sites as assessed by ChIP-seq, and expression of up to half of ESR1- and estrogen-dependent genes is compromised when GREB1 expression is silenced, without affecting ESR1 binding. GREB1 may function to stabilize interactions with other coactivators such as EP300 and CREBBP (also known as p300 and CBP, respectively), as co-occupancy with these proteins is lost upon GREB1 silencing (Mohammed et al, 2013). GREB1 expression is high in ER+ cancers and is associated with positive prognosis (Mohammed et al, 2013; reviewed in Hodgkinson and Vanderhyden, 2014).
R-HSA-9038161 (Reactome) In addition to being a target of estrogen-dependent transcription, the progesterone receptor (PGR) interacts directly with ER alpha after stimulation with progesterone and modulates ESR1:ESTG binding (Ballare et al, 2003; Mohammed et al, 2015). Progesterone stimulation under estrogen-rich conditions promotes the release of PGR from the chaperone complex to facilitate interaction with ESR1 (Mohammed et al, 2015; reviewed in ).
R-HSA-9038163 (Reactome) Rapid immunoprecipitation by mass spectrometry of endogenous proteins (RIME) analysis shows that in addition to interacting with PGR after progesterone stimulation, ESR1 also interacts with known co-activators NRIP, GATA3 and TLE3 (Mohammed et al, 2013; Mohammed et al, 2015). Progesterone treatment of breast cancer cell lines under estrogen-rich conditions promotes a redistribution of ER alpha binding to PGR binding sites. This redistribution coincides with co-occupancy of FOXA1 and EP300 at the novel binding sites as well as with the H3K27Ac mark, suggesting that the binding events are functional (Clarke et al, 2012; Mohammed et al, 2015).
RUNX1:CBFB:ESR1:estrogen:AXIN1 geneArrowR-HSA-8932076 (Reactome)
RUNX1:CBFB:ESR1:estrogen:AXIN1 geneArrowR-HSA-8932084 (Reactome)
RUNX1:CBFB:ESR1:estrogen:GPAM geneArrowR-HSA-8932020 (Reactome)
RUNX1:CBFB:ESR1:estrogen:GPAM geneArrowR-HSA-8932021 (Reactome)
RUNX1:CBFB:ESR1:estrogen:KCTD6 geneArrowR-HSA-8932033 (Reactome)
RUNX1:CBFB:ESR1:estrogen:KCTD6 geneArrowR-HSA-8932037 (Reactome)
RUNX1:CBFB:ESR1:estrogenArrowR-HSA-8931981 (Reactome)
RUNX1:CBFB:ESR1:estrogenR-HSA-8932021 (Reactome)
RUNX1:CBFB:ESR1:estrogenR-HSA-8932037 (Reactome)
RUNX1:CBFB:ESR1:estrogenR-HSA-8932084 (Reactome)
RUNX1:CBFBR-HSA-8931981 (Reactome)
SP1R-HSA-9023840 (Reactome)
TBP:TFIIA:DDX5:ESR1:estrogen:TFF1 gene:FOXA1:GATA3ArrowR-HSA-9009533 (Reactome)
TBP:TFIIA:DDX5:ESR1:estrogen:TFF1 gene:FOXA1:GATA3R-HSA-9009526 (Reactome)
TBP:TFIIA:DDX5:ESR1:estrogen:TFF1 gene:FOXA1:GATA3R-HSA-9023861 (Reactome)
TBPR-HSA-9009533 (Reactome)
TFF1 gene:FOXA1:GATA3R-HSA-9009541 (Reactome)
TFF1 geneR-HSA-9023859 (Reactome)
TFF1, TFF3 geneR-HSA-9018494 (Reactome)
TFF1,TFF3 gene:FOXA1:GATA3ArrowR-HSA-9018494 (Reactome)
TFF1ArrowR-HSA-9023859 (Reactome)
TFF3 gene:FOXA1:GATA3:ESR1:ESTG:EP300ArrowR-HSA-9018497 (Reactome)
TFF3 gene:FOXA1:GATA3:ESR1:ESTG:EP300ArrowR-HSA-9018499 (Reactome)
TFF3 gene:FOXA1:GATA3R-HSA-9018499 (Reactome)
TFF3 geneR-HSA-9018497 (Reactome)
TFF3ArrowR-HSA-9018497 (Reactome)
TFIIAR-HSA-9009533 (Reactome)
TGFA GeneR-HSA-9008267 (Reactome)
TGFA GeneR-HSA-9008315 (Reactome)
TGFA precursorArrowR-HSA-9008315 (Reactome)
TLE3R-HSA-9038163 (Reactome)
TPR-containing co-chaperonesArrowR-HSA-8939203 (Reactome)
TPR-containing co-chaperonesArrowR-HSA-9032751 (Reactome)
USF1R-HSA-9023840 (Reactome)
USF2R-HSA-9023840 (Reactome)
YY1ArrowR-HSA-9009065 (Reactome)
ZNF217R-HSA-9012000 (Reactome)
histone acetyltransferasesR-HSA-9023860 (Reactome)
miR-26 RISCR-HSA-9011958 (Reactome)
miR-26 RISCR-HSA-9012203 (Reactome)
miR-26 RISCR-HSA-9012208 (Reactome)
p-S118-ESR1 dimerArrowR-HSA-9032751 (Reactome)
p-T,Y MAPK dimersmim-catalysisR-HSA-9032751 (Reactome)
Personal tools