Mitotic G2-G2/M phases (Homo sapiens)

From WikiPathways

Revision as of 12:30, 5 November 2018 by DeSl (Talk | contribs)
Jump to: navigation, search
31, 70, 7353274915, 44, 78, 8011, 75, 843, 32, 71526, 15, 645674655692619, 35, 825624305272603367, 76, 87135286458645724518, 323684, 8553172, 8526692118, 4054, 6646318, 4020, 215, 19, 41, 48, 61...57, 8334, 39245320, 2125, 58433256409, 33, 38, 50, 5932744057, 8333471, 25, 512910, 12, 60878816, 34, 39776987423014, 46, 6818, 30Golgi membranecytosolnucleoplasmNEK2 CCNB1 TUBB HAUS2 p-T161-CDK1 CEP70 PSMA5 CEP192 PLK4 p-T14-CDK1 NDE1 CCNB1 CSNK1E CSNK1E CEP135 CCNB:p-T14-CDK1HAUS8 PCNT Centrosome:p-T288-AURKA:TPX2:HMMRODF2 AKAP9 UBB(1-76) CEP72 PSMA1 SDCCAG8 YWHAG PRKACA YWHAE UBB(77-152) CEP78 NINL AZI1 PSMD1 CSNK1D ATPHAUS7 CCNA1 p-T611,S730,S739-FOXM1 CEP41 p-T210-PLK1 DCTN2 CENPJ TUBGCP5 MZT2A PSMD5 CEP250 ADPALMS1 CCNB1 p-T161-CDK1 AZI1 TUBB HAUS3 UBC(77-152) YWHAE p-T611,S730,S739-FOXM1:CENPF GeneCNTRL CSNK1E CDC25AMAPRE1 PLK1 CEP78 GTSE1:CDKN1A:FKBPL:HSP90NEDD1 PSMB8 PSMD10 CDK5RAP2 CETN2 p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB2 GeneTUBA4A Centrosome:p-T288-AURKA:p-S252-BORA:PLK1CCNA2 CSNK1D ATPCEP192 MeL-PP2AOFD1 PSMB5 HAUS5 HAUS4 HAUS5 CDK1 MZT2A CEP76 MAPRE1 CNTRL PLK1PiMicrotubule protofilament DCTN3 PPP2R1A PolyUb-TP53 CKAP5 TPX2E2F1 HAUS5 YWHAG CDK1 CEP41 p-S252,S497,T501-BORA CNTRL CDK5RAP2 AJUBACETN2 OFD1 CEP76 TUBB4A MYBL2 CCNB1 DYNC1I2 HAUS1 GTP PSMA8 CEP41 DCTN3 DYNC1I2 NEDD1 HAUS3 UBB(153-228) CCNB1:p-T14,Y15,T161-CDK1CEP70 PSMA7 PSMD7 AURKA CCNA1 CEP78 TUBB4B FBXL7 HSP90:HSP90CETN2 PRKACA OPTN RBBP4 ATPp-NINL HSP90AA1 FBXL7 BORACSNK1D NINL p-T160-CDK2 HAUS3 CEP135 HAUS3 TUBA4A CCNA:p-T160-CDK2:E2F1/E2F3PAFAH1B1 MZT2B DYNC1H1 CEP41 p-T611,S730,S739-FOXM1 PSMB7 ODF2 YWHAG CCNACEP78 p-T14,Y15,T161-CDK1 NEK2 NINL UBC(77-152) GTSE1 DYNLL1 CENPFCDC25B TUBB4A OFD1 ODF2 CCP110 PSME1 YWHAE HAUS4 YWHAG Ub-p-S252,S497,T501-BORATUBG1 H2OCCNA2 CEP152 PRKAR2B p-T160-CDK2 HAUS6 YWHAE PolyUb-K109-FBXL7TUBA1A CEP250 PSMC5 SDCCAG8 PSMB11 ATPPSMD3 ACTR1A CCNA1 PLK1 Genep-4S-CCNB1 NDE1 CUL1 CCNA1 CDC25CEP70 CEP72 p-T161-CDK1 ADPCCNA2 PSMC4 PSMD2 PRKAR2B HAUS4 CKAP5 CEP152 TUBB p-T210-PLK1 CLASP1 DCTN3 CEP63 CEP57 SFI1 CSNK1E CEP152 CDK1 SDCCAG8 PSME2 MAPRE1 ACTR1A CDC25Cp-T161-CDK1 DCTN1-2 PLK4 NEK2 AZI1 CUL1 HSP90AA1 TUBA4A CCP110 CKAP5 p-S435-GTSE1:PolyUb-TP53 TetramerPCNT TUBGCP5 MAPRE1 SDCCAG8 PSMD3 AURKA HAUS4 CDK11B G2/M transitionproteinsALMS1 CEP76 CCNB1SHFM1 CDK1 MicrotubulePLK4 phospho-CyclinB1(CRS):phospho-Cdc2 (Thr 161)NEK2 CCNA1 UBC(229-304) NINL p-T14-CDK1 TUBB4B DYNC1I2 AURKAHAUS4 MAPRE1 E2F3 AZI1 CCNB1 PSMD12 PCNT UBB(1-76) PPP2R1A CEP41 PSMA4 HAUS1 CEP57 RBX1 ODF2 MAPRE1 TUBB CLASP1 CEP250 UBC(533-608) PhosphorylatedMyosin PhosphataseFBXL18 ADPTUBB4B MYBL2 PSMD6 CSNK1E CCP110 CEP250 GTSE1:microtubulePAFAH1B1 LIN54 PSMA6 CEP70 SSNA1 PSME3 HAUS4 CCP110 SFI1 PAFAH1B1 YWHAE HAUS7 NEK2 CDK1YWHAG DCTN2 CEP290 MAPRE1 CENPJ RBX1 p-S435-GTSE1ATPYWHAG ATPDYNLL1 NDE1 CDKN1APPP2R1A TranscriptionalRegulation by TP53CEP76 ATPCEP290 CNTRL MAPRE1 TUBG1 PSMB2 PSMC1 DCTN1-2 CEP192 TUBGCP6 CEP70 FGFR1OP NEDD1 CEP290 OFD1 Mature centrosomesenriched ingamma-TURCcomplexesGTSE1:MAPRE1:microtubule plus endACTR1A p-NINLCEP78 YWHAE HAUS6 DYNC1I2 UBB(1-76) PCNT HAUS3 CDC25A CNTRL p-S435-GTSE1:PolyUb-TP53 TetramerPPP1R12B-4 CUL1 H2OCEP164 HAUS6 AdoHcyHAUS4 CDC25Bp-S473-PPP1R12A PRKACA CDK5RAP2 PLK1 CCNA1 TUBG1 PPP2R3B E2F3 HSP90AA1 CCNA2 CEP72 ADPTUBB4B NEK2 CEP70 CEP290 PPP2R1B TUBG1 HAUS1 p-T288-AURKA HSP90AB1 PRKAR2B PSMB11 PSMF1 cytoplasmic CyclinB1:Cdc2 complexes(BTRC:CUL1:SKP1),(FBXW11:CUL1:SKP1)UBC(77-152) CCNB2 CEP152 ALMS1 SFI1 DCTN2 FBXW11 PCM1 UBC(1-76) PPP2R1A CCNB1,CCNB2:p-T161-CDK1 SDCCAG8 AURKA UBC(153-228) DCTN2 SDCCAG8 MAPRE1 TUBA1A CDK11A CEP78 TUBB CEP290 MAPRE1 CEP250 ACTR1A Mitotic kinaseHAUS5 CCNB2 TUBB4A DCTN3 PCM1 NME7 DCTN2 PAFAH1B1 PLK4 UBC(153-228) CEP72 NDE1 TUBB ALMS1 TUBB4A CEP152 DYNC1H1 CDK1 UBB(153-228) CCNA2 PLK1 CEP152 TUBA1A PSMB2 ATPTUBGCP2 p-S252-BORAUBC(457-532) ATPCDKN1A CLASP1 HAUS1 CEP78 SKP1 HAUS5 SHFM1 HAUS1 FBXW11 Centrosome:AURKA:TPX2:HMMRDCTN2 AKAP9 TUBB p-T160-CDK2 p-T210-PLK1 SKP1 UBA52(1-76) PPP2R1A 26S proteasomeCDK5RAP2 DCTN3 CCNA:p-T14,Y15,T161-CDK1PPP2CB TUBG1 YWHAE NDE1 PSMA3 NDE1 CCNB2 GeneCEP192 NEDD1 CDK5RAP2 EP300TUBA4A PSMA5 HAUS7 OFD1 ADPCEP78 CCNA1 LIN54 YWHAG YWHAG HAUS7 PRKAR2B p-T210-PLK1UBC(305-380) AKAP9 DCTN1-2 CEP152 UBC(609-684) MYBL2 p-T14,Y15,T161-CDK1 UBC(77-152) TUBB4A PPP2R1A PSMD14 PKMYT1H2OSSNA1 CEP72 26S proteasomeCKAP5 CCNB2 p-T210-PLK1HSP90AA1 HSP90AA1 CEP290 CNTRL MZT1 PCNT SFI1 p-T161-CDK1 UBB(77-152) PSME3 HAUS8 CETN2 DYNLL1 ATPPAFAH1B1 CCNB1,CCNB2:p-T161-CDK1CCNB2MAPRE1:microtubuleplus endCEP192 p-T161-CDK1 CCNA2 UBC(229-304) p-T611,S730,S739-FOXM1 PCNT p-T14-CDK1 CCNA:p-T160-CDK2:p-E2F1/p-E2F3OFD1 LIN37 CCP110 G2/M transitionproteinsCEP41 UBB(153-228) SSNA1 PSME4 UBB(77-152) FGFR1OP PLK1 NINL UBC(1-76) ADPPAFAH1B1 SFI1 AKAP9 NME7 PSMD6 SKP1TUBA4A ADPTUBGCP3 UBC(305-380) RAB8A:GTPPSMA2 PCNT PCM1 CCNA:p-T161-CDK1centrosomecontainingphosphorylated NlpHAUS1 YWHAG CSNK1D PLK1 CKAP5 NEDD1 NEK2 CEP78 CCNBPLK1 CETN2 CDK5RAP2 ADPCCP110 DYNC1I2 PPP2R2A CCNB1 PSME4 FKBPL SSNA1 HAUS1 PCM1 DYNC1H1 PLK4 HAUS8 PRKAR2B NDE1 PSMB9 WEE1ADPTUBB4B p-S252-BORA TUBGCP6 p-S252-BORA TUBG1 HAUS2 HAUS1 ATPCEP70 PAFAH1B1 GTSE1 PiCDK5RAP2 p-T161-CDK1 GTSE1ACTR1A RPS27A(1-76) TUBA4A CCNB1 ODF2 UBC(381-456) HAUS6 PCNT AJUBA CCNB1 NDE1 p-4S-CCNB1 HSP90AB1 ADPNEK2 NDE1 AZI1 SSNA1 CUL1 OFD1 PSMB8 CCNA2 CDK1 FOXM1Centrosomeassociated Plk1UBC(609-684) TPX2 HAUS8 UBC(533-608) CEP135 TUBB CDK1 FKBPLCEP164 ATPNEDD1 TUBA4A PSMC4 ADPTUBA1A ADPSKP1 CAKp-S252-BORA:p-T210-PLK1HAUS1 TUBB4B LIN9 CKAP5 CEP70 GTSE1 CLASP1 PPP2CB ADPCEP152 CNTRL ATPCUL1 p-T161-CDK1 PSMB10 YWHAG UBA52(1-76) OPTN:RAB8A:GTPp-S198-CDC25C LIN54 PPP2R1A CDK11B UBC(609-684) OFD1 PPP2R1A p-T611-FOXM1:p-T210-PLK1HAUS1 CCNA:p-CDK1/2 CCNB2 Gene CEP72 CEP57 YWHAE HAUS7 CEP63 AKAP9 AZI1 TUBG1 CEP250AKAP9 DCTN1-2 CLASP1 CEP72 CSNK1E LIN9 ATPYWHAE SFI1 PPP2R1A PSMF1 FGFR1OP FGFR1OP FBXL7TUBA1A ODF2 CEP152 HAUS7 PPP2R1A HAUS8 CCP110 p-E2F1 CCNB1 PSMA3 PSMB7 UBB(77-152) CEP78 PSMB3 CCNB1 GenePSMB3 CEP250 HAUS8 p-4S-CCNB1 PSMD9 ATPCNTRL PSMD12 AZI1 CEP164 PPP2R1B CEP63 CDC25B CLASP1 HAUS8 p-S252,S497,T501-BORACentrosome:AURKAODF2 HAUS3 PPP2R1A TUBGCP4 AKAP9 PCM1 p-T288-AURKA HAUS8 UBC(229-304) ALMS1 CEP76 CEP70 SDCCAG8 SFI1 DYNC1H1 PLK1HAUS8 UbPRKACA MYBL2SDCCAG8 DYNLL1 CCP110 DYNLL1 PPP2R1A CEP192 PLK4 CEP290 UBC(457-532) CCNH CDK1 CENPJ DYNLL1 CCNA1 RBBP4 HAUS4 CSNK1D CDK11A CKAP5 UBC(609-684) CCNA1 OFD1 p-T161-CDK1 CENPJ DYNC1I2 PiAZI1 CDK5RAP2 OFD1 MeL-PPP2CB CETN2 PSMD10 CEP135 CEP63 p-T14,Y15,T161-CDK1 CEP135 CEP63 NEDD1 TUBB4B PSMD13 CENPJ PSME2 AZI1 CEP78 YWHAE CEP63 CEP78 CENPJ PPP2R2A PSMA4 PCM1 UBC(381-456) CCNB2 phospho-cyclinB1(CRS):phosph-Cdc2(Thr 161)CSNK1E CEP41 HAUS4 CDK1 CEP152 HAUS2 NEDD1 HAUS7 p-T161-CDK1 AZI1 DYNC1H1 CDK7 ATPPSMB10 CEP63 ODF2 NEDD1 PPME1YWHAE PPP2R1A UBC(533-608) CCNA1 CEP250 p-T611,S730,S739-FOXM1:MuvB:MYBL2:PLK1 GeneCEP41 ALMS1 CETN2 CETN2 NEK2 PSMB4 HAUS3 PSMD1 p-T14,Y15,T161-CDK1 DCTN1-2 SCF-FBXL7:AURKATUBG1 ADPp-T611,S730,S739-FOXM1 Microtubule protofilament HAUS2 HAUS6 p-S252,S497,T501-BORA:SCF-beta-TrCp1/2CEP57 HAUS2 CEP135 UBA52(1-76) AZI1 PAFAH1B1 DCTN2 MAPRE1 PSME1 HAUS4 HSP90AA1 ADPSKP1 CSNK1D p-T14-CDK1 p-T210-PLK1CEP164 NEDD1 p-S53-WEE1p-4S-CCNB1 PRKAR2B TUBA1A H2OCRS kinaseCDK1 AURKA HAUS8 CUL1 SSNA1 CEP135 SKP1 DYNLL1 CCNB1 CEP41 HAUS6 CEP57 PRKACA ADPCEP70 GTSE1:p-T210-PLK1CNTRL TUBA4A HAUS7 DYNLL1 GTP CSNK1D CEP70 CEP164 UbCEP76 CEP63 CCNB1 ATPNEK2 CCNB1:p-T161-CDK1nuclear CyclinB1:Cdc2 complexesCEP57 PSMD8 PAFAH1B1 LIN54 SDCCAG8 TUBB4B MAPRE1 CENPF GeneCEP164 RPS27A(1-76) CEP72 UBC(153-228) BTRC ATPDYNC1H1 HAUS3 RPS27A(1-76) HAUS4 DCTN2 PAFAH1B1 p-T611,S730,S739-FOXM1p-T611,S730,S739-FOXM1:EP300:CDC25A GeneUbTUBG1 p-PKMYT1TUBA4A Centrosome:AURKA:AJUBADYNC1H1 DCTN2 CLASP1 ADPCEP78 CLASP1 NEDD1 TUBB4B HSP90AA1 LIN37 TUBB4A p-S-AJUBATUBG1 ACTR1A DYNC1I2 HAUS6 phospho-G2/Mtransition proteinHSP90AA1 CEP57 PRKACA NDE1 HAUS6 CEP41 HAUS6 UBA52(1-76) SSNA1 H2OPSMD11 p-T288-AURKA HAUS5 PRKAR2B FGFR1OP CDK1 CCNA2 ALMS1 HAUS2 Cyclin A1:Cdk2phosphorylated G2/Mtransition proteinLIN9 PSMB5 E2F1 DCTN1-2 PiPRKACA SSNA1 DCTN1-2 CEP135 PSMC6 DYNC1H1 CEP290 PRKACA CETN2 PSMA7 UBC(1-76) PLK1 CLASP1 TUBB4B LIN52 TPX2 LIN37 DYNC1I2 DYNC1I2 YWHAG ATPDYNC1H1 DCTN1-2 p-E2F3 DCTN1-2 ALMS1 CEP57 PLK1 PSMB6 SSNA1 DCTN1-2 CDC25SFI1 p-S177-OPTNODF2 CCP110 CDK1 SFI1 CCNB1 DYNC1I2 CCNA:p-T14-CDK1TUBB4A PSMC3 PLK4 p-T611,S730,S739-FOXM1 PLK1 PSMD4 PSMC1 CDK5RAP2 PCM1 ADPMicrotubule protofilament PPP2R2A SFI1 PRKAR2B CCNB2 PRKAR2B SKP1 HAUS7 EP300 NEDD1 UBB(1-76) UBC(609-684) CSNK1E centrosomeRAB8A PAFAH1B1 CEP250 DYNLL1 CEP72 HAUS2 ACTR1A PP2AFGFR1OP PLK4 p-S435-GTSE1 CEP290 PRKACA TUBB4B CKAP5 HSP90AA1 UBB(77-152) PCNT ODF2 DCTN2 MAPRE1 TUBB4B CEP164 PSMD13 TUBGCP4 CSNK1E CEP76 CENPJ CEP164 TUBB UBC(1-76) CEP152 MeL-PPP2CA AZI1 DCTN1-2 CEP164 ADPTUBB4A p-S435-GTSE1 CENPF Gene CSNK1D CEP41 ODF2 ALMS1 CETN2 PCM1 p-T161-CDK1 PPP2R1B p-T14-CDK1 PCNT NEK2 PLK1 SFI1 SKP1:CUL1:RBX1:FBXL18CDK1 MuvB complexDCTN2 PolyUb-TP53 TetramerCEP192 NEK2 CDK5RAP2 PSMC2 p-T611-FOXM1CCNA:p-T14-CDK1HAUS1 PSMD5 p-CDK1/2:CCNA/p-T161-CDK1:CCNB1PPP2R1A OFD1 PSMA2 PSMC5 AdoMetp-T161-CDK1 PLK1 CCP110 CEP152 p-T14,Y15,T161-CDK1 LIN52 PRKACA NDE1 CCNA1 PSMC3 HAUS3 AURKA:PHLDA1HAUS7 CEP57 CCP110 AKAP9 CKAP5 PSMD2 CDK5RAP2 CEP250 Phospho-CyclinB1(CRS):phospho-Cdc2(Thr 161)p-T14,T161-CDK1 HAUS3 p-T14,Y15,T161-CDK1 PolyUb-TP53 UBC(229-304) CSNK1D CEP63 RBBP4 CCNA1:p-T161-CDK1CLASP1 CSNK1E PCM1 FGFR1OP Cyclin A2:Cdk2phosphorylated G2/Mtransition proteinPHLDA1PPP2CA ATPCEP57 CKAP5 HAUS5 PSMA1 CEP76 NDE1 CCNB1,CCNB2:p-T14,Y15,T161-CDK1PolyUb-TP53 CENPJ SFI1 DYNC1I2 HAUS5 CEP290 YWHAG UBB(1-76) PSMD7 CENPJ DCTN3 PLK1 DYNLL1 DCTN3 HAUS2 PLK1 UBC(77-152) CNTRL PRKAR2B HAUS2 CEP135 TUBA1A TUBB PPP2CA p-T14-CDK1 CEP70 LIN52 CENPJ TUBA4A UBC(381-456) CCNB1:p-T161-CDK1p-4S-CCNB1 cNAP-1 depletedcentrosomeNEDD1 HAUS5 HSP90AA1 CEP290 TUBB4A UBC(153-228) CDK1 CDC25A gene methanolCCNB1:p-T14,T161-CDK1DYNC1H1 HSP90AA1 PLK4 UbCEP72 SSNA1 FGFR1OP ACTR1A CDC25A CSNK1E ACTR1A AURKA CEP250 CENPJ NINL CEP72 PSMA6 PSMC2 HSP90AA1 HAUS2 CEP57 CCNB1 ATPCCNA:CDK1HAUS3 DCTN2 NINL CCNB1 TUBGCP3 Nlp-depletedcentrosomeDCTN3 TUBA1A CSNK1D HAUS5 CCNA2 YWHAE AKAP9 CCNB1 AKAP9 HAUS7 p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB1 GeneCEP72 PCM1 CEP192 PolyUb-AURKA ATPPCNT FGFR1OP H2OSKP1:CUL1:RBX1:FBXL7NEK2 PSMB1 UBC(153-228) OFD1 CCNA:p-T14,T161-CDK1HMMR CCNA2:p-T161-CDK1PSMC6 gamma-tubulincomplexp-T14,T161-CDK1 CEP41 CEP76 AKAP9 CENPJ HAUS5 LIN37 FGFR1OP HAUS3 SDCCAG8 PLK4 HAUS7 PLK4 CEP250 CCNB:CDK1PCNT RPS27A(1-76) CEP192 CCNB1:p-T14,Y15,T161-CDK1CDC25BTUBG1 PLK1 CCNB1:p-T14-CDK1ATPSDCCAG8 GTSE1 UBC(1-76) PPP1CB YWHAE p-T513,T526-GTSE1LCMT1MAPRE1 CEP164 ADPPHLDA1 p-S252,S497,T501-BORA CEP57 CETN2 PRKACA FBXL7 DYNLL1 CEP164 TUBA1A DYNC1I2 DYNC1I2 TUBA4A DCTN3 PRKAR2B HAUS6 PPP2R1A CUL1UBC(533-608) UBC(305-380) HSP90AA1 CEP192 DYNC1H1 TUBA1A PRKACA CEP41 ADPCEP63 DCTN3 HSP90AA1 LIN9 CLASP1 UBC(533-608) ALMS1 DYNLL1 TUBA4A CKAP5 p-S95-PHLDA1PAFAH1B1 ODF2 MNAT1 CEP135 p-S435-GTSE1p-S177-OPTNPRKAR2B HAUS8 CLASP1 CEP135 HAUS8 HAUS2 CEP164 PRKAR2B RBX1 UBA52(1-76) PP2A-PPP2R2ASCF-FBXL7:PolyUb-AURKADCTN2 ACTR1A CDK11p58UBC(381-456) CEP192 NINL FGFR1OP CNTRL DYNC1H1 DCTN3 CCP110 RPS27A(1-76) TUBB4A CNTRL ODF2 UBB(153-228) HAUS2 TUBG1 CEP76 PLK1 Gene CCP110 PCM1 CSNK1D PKMYT1HAUS5 NEDD1 HAUS4 ACTR1A PCM1 UBB(153-228) CENPJ ALMS1 p-T161-CDK1 RAB8A CSNK1E CEP63 p-S198-CDC25CADPp-S198-CDC25CNINL CEP192 CEP164 RBX1Centrosomescontainingrecruited CDK11p58SFI1 ALMS1 DYNLL1 PSMB1 CKAP5 TUBB PLK4 TUBB4A CKAP5 ADPPPP2R3B CEP76 SSNA1 E2F1/E2F3ACTR1A CDK1 HAUS6 PSMD9 TUBGCP2 CEP76 HAUS1 DCTN1-2 TUBG2 HAUS4 PSMA8 CEP290 NDE1 ACTR1A CEP290 BTRC DCTN3 p-T611-FOXM1 HAUS6 RBBP4 AKAP9 HMMR CEP72 TUBA1A CLASP1 UBC(305-380) CETN2 CEP70 PRKACA LIN52 HAUS1 SSNA1 CDC25A geneCCNA2 SDCCAG8 TUBA1A CETN2 RBX1 CEP192 PLK4 CDK5RAP2 DCTN1-2 CEP152 ALMS1 CSNK1E CSNK1D CCNA2 HAUS6 UBC(229-304) CEP135 PCNT ATPUBC(457-532) CCNA:p-T160-CDK2CEP63 PSMB6 PAFAH1B1 TUBA1A FGFR1OP PSMD14 MZT2B DYNC1H1 PSMB9 TUBA4A MAPRE1 UBC(381-456) TUBG1 DCTN3 CEP76 UBC(457-532) HAUS7 FGFR1OP NINL AKAP9 HAUS2 PSMB4 ADPUBC(305-380) HAUS5 TUBB CEP135 MZT1 AZI1 CSNK1D CEP250 TUBB4A PSMD11 XPO1TUBB4B PPP2R1A TUBB4A SSNA1 CNTRL SDCCAG8 YWHAG TUBG2 p-S198-CDC25C HMMRCCNB1 Gene NINL Microtubule protofilament HSP90AA1 PSMD4 PCM1 CDK5RAP2 PSMD8 HAUS8 CEP57 CEP63 TUBG1 Centrosome:p-T288-AURKAHAUS3 TUBB OFD1 UBC(457-532) 86565222322169557, 231837, 8114, 4622, 28561518, 405322, 282430454052562182215


Description

Mitotic G2 (gap 2) phase is the second growth phase during eukaryotic mitotic cell cycle. G2 encompasses the interval between the completion of DNA synthesis and the beginning of mitosis. During G2, the cytoplasmic content of the cell increases. At G2/M transition, duplicated centrosomes mature and separate and CDK1:cyclin B complexes become active, setting the stage for spindle assembly and chromosome condensation that occur in the prophase of mitosis (O'Farrell 2001, Bruinsma et al. 2012, Jiang et al. 2014). View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 453274
Reactome-version 
Reactome version: 73

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Bublik DR, Scolz M, Triolo G, Monte M, Schneider C.; ''Human GTSE-1 regulates p21(CIP1/WAF1) stability conferring resistance to paclitaxel treatment.''; PubMed Europe PMC Scholia
  2. Chiyoda T, Sugiyama N, Shimizu T, Naoe H, Kobayashi Y, Ishizawa J, Arima Y, Tsuda H, Ito M, Kaibuchi K, Aoki D, Ishihama Y, Saya H, Kuninaka S.; ''LATS1/WARTS phosphorylates MYPT1 to counteract PLK1 and regulate mammalian mitotic progression.''; PubMed Europe PMC Scholia
  3. Chan EH, Santamaria A, Silljé HH, Nigg EA.; ''Plk1 regulates mitotic Aurora A function through betaTrCP-dependent degradation of hBora.''; PubMed Europe PMC Scholia
  4. Strausfeld U, Labbé JC, Fesquet D, Cavadore JC, Picard A, Sadhu K, Russell P, Dorée M.; ''Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein.''; PubMed Europe PMC Scholia
  5. Kruiswijk F, Labuschagne CF, Vousden KH.; ''p53 in survival, death and metabolic health: a lifeguard with a licence to kill.''; PubMed Europe PMC Scholia
  6. Källström H, Lindqvist A, Pospisil V, Lundgren A, Rosenthal CK.; ''Cdc25A localisation and shuttling: characterisation of sequences mediating nuclear export and import.''; PubMed Europe PMC Scholia
  7. Bonnet J, Mayonove P, Morris MC.; ''Differential phosphorylation of Cdc25C phosphatase in mitosis.''; PubMed Europe PMC Scholia
  8. Seki A, Coppinger JA, Du H, Jang CY, Yates JR, Fang G.; ''Plk1- and beta-TrCP-dependent degradation of Bora controls mitotic progression.''; PubMed Europe PMC Scholia
  9. Parker LL, Piwnica-Worms H.; ''Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase.''; PubMed Europe PMC Scholia
  10. Macůrek L, Lindqvist A, Lim D, Lampson MA, Klompmaker R, Freire R, Clouin C, Taylor SS, Yaffe MB, Medema RH.; ''Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery.''; PubMed Europe PMC Scholia
  11. Strausfeld U, Fernandez A, Capony JP, Girard F, Lautredou N, Derancourt J, Labbe JC, Lamb NJ.; ''Activation of p34cdc2 protein kinase by microinjection of human cdc25C into mammalian cells. Requirement for prior phosphorylation of cdc25C by p34cdc2 on sites phosphorylated at mitosis.''; PubMed Europe PMC Scholia
  12. Hirota T, Kunitoku N, Sasayama T, Marumoto T, Zhang D, Nitta M, Hatakeyama K, Saya H.; ''Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells.''; PubMed Europe PMC Scholia
  13. Seki A, Coppinger JA, Jang CY, Yates JR, Fang G.; ''Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry.''; PubMed Europe PMC Scholia
  14. Bruinsma W, Raaijmakers JA, Medema RH.; ''Switching Polo-like kinase-1 on and off in time and space.''; PubMed Europe PMC Scholia
  15. Alvarez-Fernández M, Halim VA, Aprelia M, Laoukili J, Mohammed S, Medema RH.; ''Protein phosphatase 2A (B55α) prevents premature activation of forkhead transcription factor FoxM1 by antagonizing cyclin A/cyclin-dependent kinase-mediated phosphorylation.''; PubMed Europe PMC Scholia
  16. McGowan CH, Russell P.; ''Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15.''; PubMed Europe PMC Scholia
  17. Xu M, Sheppard KA, Peng CY, Yee AS, Piwnica-Worms H.; ''Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation.''; PubMed Europe PMC Scholia
  18. Jang YJ, Ma S, Terada Y, Erikson RL.; ''Phosphorylation of threonine 210 and the role of serine 137 in the regulation of mammalian polo-like kinase.''; PubMed Europe PMC Scholia
  19. Xing Y, Li Z, Chen Y, Stock JB, Jeffrey PD, Shi Y.; ''Structural mechanism of demethylation and inactivation of protein phosphatase 2A.''; PubMed Europe PMC Scholia
  20. Kumagai A, Dunphy WG.; ''Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts.''; PubMed Europe PMC Scholia
  21. Krek W, Ewen ME, Shirodkar S, Arany Z, Kaelin WG, Livingston DM.; ''Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase.''; PubMed Europe PMC Scholia
  22. Laoukili J, Alvarez M, Meijer LA, Stahl M, Mohammed S, Kleij L, Heck AJ, Medema RH.; ''Activation of FoxM1 during G2 requires cyclin A/Cdk-dependent relief of autorepression by the FoxM1 N-terminal domain.''; PubMed Europe PMC Scholia
  23. Yu D, Jing T, Liu B, Yao J, Tan M, McDonnell TJ, Hung MC.; ''Overexpression of ErbB2 blocks Taxol-induced apoptosis by upregulation of p21Cip1, which inhibits p34Cdc2 kinase.''; PubMed Europe PMC Scholia
  24. Mailand N, Podtelejnikov AV, Groth A, Mann M, Bartek J, Lukas J.; ''Regulation of G(2)/M events by Cdc25A through phosphorylation-dependent modulation of its stability.''; PubMed Europe PMC Scholia
  25. Voges D, Zwickl P, Baumeister W.; ''The 26S proteasome: a molecular machine designed for controlled proteolysis.''; PubMed Europe PMC Scholia
  26. Sakchaisri K, Asano S, Yu LR, Shulewitz MJ, Park CJ, Park JE, Cho YW, Veenstra TD, Thorner J, Lee KS.; ''Coupling morphogenesis to mitotic entry.''; PubMed Europe PMC Scholia
  27. Liu D, Liao C, Wolgemuth DJ.; ''A role for cyclin A1 in the activation of MPF and G2-M transition during meiosis of male germ cells in mice.''; PubMed Europe PMC Scholia
  28. Scolz M, Widlund PO, Piazza S, Bublik DR, Reber S, Peche LY, Ciani Y, Hubner N, Isokane M, Monte M, Ellenberg J, Hyman AA, Schneider C, Bird AW.; ''GTSE1 is a microtubule plus-end tracking protein that regulates EB1-dependent cell migration.''; PubMed Europe PMC Scholia
  29. Mailand N, Falck J, Lukas C, Syljuâsen RG, Welcker M, Bartek J, Lukas J.; ''Rapid destruction of human Cdc25A in response to DNA damage.''; PubMed Europe PMC Scholia
  30. Teixidó-Travesa N, Villén J, Lacasa C, Bertran MT, Archinti M, Gygi SP, Caelles C, Roig J, Lüders J.; ''The gammaTuRC revisited: a comparative analysis of interphase and mitotic human gammaTuRC redefines the set of core components and identifies the novel subunit GCP8.''; PubMed Europe PMC Scholia
  31. Hagting A, Karlsson C, Clute P, Jackman M, Pines J.; ''MPF localization is controlled by nuclear export.''; PubMed Europe PMC Scholia
  32. Nakajima H, Toyoshima-Morimoto F, Taniguchi E, Nishida E.; ''Identification of a consensus motif for Plk (Polo-like kinase) phosphorylation reveals Myt1 as a Plk1 substrate.''; PubMed Europe PMC Scholia
  33. Fu Z, Malureanu L, Huang J, Wang W, Li H, van Deursen JM, Tindall DJ, Chen J.; ''Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression.''; PubMed Europe PMC Scholia
  34. Lindqvist A, Källström H, Karlsson Rosenthal C.; ''Characterisation of Cdc25B localisation and nuclear export during the cell cycle and in response to stress.''; PubMed Europe PMC Scholia
  35. Scrofani J, Sardon T, Meunier S, Vernos I.; ''Microtubule nucleation in mitosis by a RanGTP-dependent protein complex.''; PubMed Europe PMC Scholia
  36. Takizawa CG, Weis K, Morgan DO.; ''Ran-independent nuclear import of cyclin B1-Cdc2 by importin beta.''; PubMed Europe PMC Scholia
  37. Xu X, Wang X, Xiao Z, Li Y, Wang Y.; ''Two TPX2-dependent switches control the activity of Aurora A.''; PubMed Europe PMC Scholia
  38. Honda R, Ohba Y, Nagata A, Okayama H, Yasuda H.; ''Dephosphorylation of human p34cdc2 kinase on both Thr-14 and Tyr-15 by human cdc25B phosphatase.''; PubMed Europe PMC Scholia
  39. Maxwell CA, Keats JJ, Belch AR, Pilarski LM, Reiman T.; ''Receptor for hyaluronan-mediated motility correlates with centrosome abnormalities in multiple myeloma and maintains mitotic integrity.''; PubMed Europe PMC Scholia
  40. Mayor T, Stierhof YD, Tanaka K, Fry AM, Nigg EA.; ''The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion.''; PubMed Europe PMC Scholia
  41. Yamashiro S, Yamakita Y, Totsukawa G, Goto H, Kaibuchi K, Ito M, Hartshorne DJ, Matsumura F.; ''Myosin phosphatase-targeting subunit 1 regulates mitosis by antagonizing polo-like kinase 1.''; PubMed Europe PMC Scholia
  42. Vousden KH, Prives C.; ''Blinded by the Light: The Growing Complexity of p53.''; PubMed Europe PMC Scholia
  43. Sadasivam S, Duan S, DeCaprio JA.; ''The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression.''; PubMed Europe PMC Scholia
  44. Jackman M, Firth M, Pines J.; ''Human cyclins B1 and B2 are localized to strikingly different structures: B1 to microtubules, B2 primarily to the Golgi apparatus.''; PubMed Europe PMC Scholia
  45. Dodson CA, Bayliss R.; ''Activation of Aurora-A kinase by protein partner binding and phosphorylation are independent and synergistic.''; PubMed Europe PMC Scholia
  46. Taniguchi E, Toyoshima-Morimoto F, Nishida E.; ''Nuclear translocation of plk1 mediated by its bipartite nuclear localization signal.''; PubMed Europe PMC Scholia
  47. Shi P, Zhu S, Lin Y, Liu Y, Liu Y, Chen Z, Shi Y, Qian Y.; ''Persistent stimulation with interleukin-17 desensitizes cells through SCFβ-TrCP-mediated degradation of Act1.''; PubMed Europe PMC Scholia
  48. Sen I, Veprintsev D, Akhmanova A, Steinmetz MO.; ''End binding proteins are obligatory dimers.''; PubMed Europe PMC Scholia
  49. Johnson EO, Chang KH, de Pablo Y, Ghosh S, Mehta R, Badve S, Shah K.; ''PHLDA1 is a crucial negative regulator and effector of Aurora A kinase in breast cancer.''; PubMed Europe PMC Scholia
  50. Petretti C, Savoian M, Montembault E, Glover DM, Prigent C, Giet R.; ''The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation.''; PubMed Europe PMC Scholia
  51. De Baere I, Derua R, Janssens V, Van Hoof C, Waelkens E, Merlevede W, Goris J.; ''Purification of porcine brain protein phosphatase 2A leucine carboxyl methyltransferase and cloning of the human homologue.''; PubMed Europe PMC Scholia
  52. Wang G, Jiang Q, Zhang C.; ''The role of mitotic kinases in coupling the centrosome cycle with the assembly of the mitotic spindle.''; PubMed Europe PMC Scholia
  53. Liu Y, Lear T, Zhao Y, Zhao J, Zou C, Chen BB, Mallampalli RK.; ''F-box protein Fbxl18 mediates polyubiquitylation and proteasomal degradation of the pro-apoptotic SCF subunit Fbxl7.''; PubMed Europe PMC Scholia
  54. Hutterer A, Berdnik D, Wirtz-Peitz F, Zigman M, Schleiffer A, Knoblich JA.; ''Mitotic activation of the kinase Aurora-A requires its binding partner Bora.''; PubMed Europe PMC Scholia
  55. Hutchins JR, Toyoda Y, Hegemann B, Poser I, Hériché JK, Sykora MM, Augsburg M, Hudecz O, Buschhorn BA, Bulkescher J, Conrad C, Comartin D, Schleiffer A, Sarov M, Pozniakovsky A, Slabicki MM, Schloissnig S, Steinmacher I, Leuschner M, Ssykor A, Lawo S, Pelletier L, Stark H, Nasmyth K, Ellenberg J, Durbin R, Buchholz F, Mechtler K, Hyman AA, Peters JM.; ''Systematic analysis of human protein complexes identifies chromosome segregation proteins.''; PubMed Europe PMC Scholia
  56. Timofeev O, Cizmecioglu O, Hu E, Orlik T, Hoffmann I.; ''Human Cdc25A phosphatase has a non-redundant function in G2 phase by activating Cyclin A-dependent kinases.''; PubMed Europe PMC Scholia
  57. Monte M, Benetti R, Buscemi G, Sandy P, Del Sal G, Schneider C.; ''The cell cycle-regulated protein human GTSE-1 controls DNA damage-induced apoptosis by affecting p53 function.''; PubMed Europe PMC Scholia
  58. Takahashi M, Yamagiwa A, Nishimura T, Mukai H, Ono Y.; ''Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex.''; PubMed Europe PMC Scholia
  59. Casenghi M, Meraldi P, Weinhart U, Duncan PI, Körner R, Nigg EA.; ''Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation.''; PubMed Europe PMC Scholia
  60. Dynlacht BD, Flores O, Lees JA, Harlow E.; ''Differential regulation of E2F transactivation by cyclin/cdk2 complexes.''; PubMed Europe PMC Scholia
  61. O'Farrell PH.; ''Triggering the all-or-nothing switch into mitosis.''; PubMed Europe PMC Scholia
  62. Galaktionov K, Beach D.; ''Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins.''; PubMed Europe PMC Scholia
  63. Kachaner D, Filipe J, Laplantine E, Bauch A, Bennett KL, Superti-Furga G, Israël A, Weil R.; ''Plk1-dependent phosphorylation of optineurin provides a negative feedback mechanism for mitotic progression.''; PubMed Europe PMC Scholia
  64. Pines J, Hunter T.; ''Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport.''; PubMed Europe PMC Scholia
  65. Graves PR, Lovly CM, Uy GL, Piwnica-Worms H.; ''Localization of human Cdc25C is regulated both by nuclear export and 14-3-3 protein binding.''; PubMed Europe PMC Scholia
  66. Coon TA, Glasser JR, Mallampalli RK, Chen BB.; ''Novel E3 ligase component FBXL7 ubiquitinates and degrades Aurora A, causing mitotic arrest.''; PubMed Europe PMC Scholia
  67. Sullivan C, Liu Y, Shen J, Curtis A, Newman C, Hock JM, Li X.; ''Novel interactions between FOXM1 and CDC25A regulate the cell cycle.''; PubMed Europe PMC Scholia
  68. Laoukili J, Kooistra MR, Brás A, Kauw J, Kerkhoven RM, Morrison A, Clevers H, Medema RH.; ''FoxM1 is required for execution of the mitotic programme and chromosome stability.''; PubMed Europe PMC Scholia
  69. Bayliss R, Sardon T, Vernos I, Conti E.; ''Structural basis of Aurora-A activation by TPX2 at the mitotic spindle.''; PubMed Europe PMC Scholia
  70. Goda T, Ishii T, Nakajo N, Sagata N, Kobayashi H.; ''The RRASK motif in Xenopus cyclin B2 is required for the substrate recognition of Cdc25C by the cyclin B-Cdc2 complex.''; PubMed Europe PMC Scholia
  71. Chen X, Müller GA, Quaas M, Fischer M, Han N, Stutchbury B, Sharrocks AD, Engeland K.; ''The forkhead transcription factor FOXM1 controls cell cycle-dependent gene expression through an atypical chromatin binding mechanism.''; PubMed Europe PMC Scholia
  72. Jascur T, Brickner H, Salles-Passador I, Barbier V, El Khissiin A, Smith B, Fotedar R, Fotedar A.; ''Regulation of p21(WAF1/CIP1) stability by WISp39, a Hsp90 binding TPR protein.''; PubMed Europe PMC Scholia
  73. Monte M, Benetti R, Collavin L, Marchionni L, Del Sal G, Schneider C.; ''hGTSE-1 expression stimulates cytoplasmic localization of p53.''; PubMed Europe PMC Scholia
  74. Draviam VM, Orrechia S, Lowe M, Pardi R, Pines J.; ''The localization of human cyclins B1 and B2 determines CDK1 substrate specificity and neither enzyme requires MEK to disassemble the Golgi apparatus.''; PubMed Europe PMC Scholia
  75. Desai D, Wessling HC, Fisher RP, Morgan DO.; ''Effects of phosphorylation by CAK on cyclin binding by CDC2 and CDK2.''; PubMed Europe PMC Scholia
  76. Timofeev O, Cizmecioglu O, Settele F, Kempf T, Hoffmann I.; ''Cdc25 phosphatases are required for timely assembly of CDK1-cyclin B at the G2/M transition.''; PubMed Europe PMC Scholia
  77. Bellanger S, de Gramont A, Sobczak-Thépot J.; ''Cyclin B2 suppresses mitotic failure and DNA re-replication in human somatic cells knocked down for both cyclins B1 and B2.''; PubMed Europe PMC Scholia
  78. Watanabe N, Arai H, Nishihara Y, Taniguchi M, Watanabe N, Hunter T, Osada H.; ''M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP.''; PubMed Europe PMC Scholia
  79. Major ML, Lepe R, Costa RH.; ''Forkhead box M1B transcriptional activity requires binding of Cdk-cyclin complexes for phosphorylation-dependent recruitment of p300/CBP coactivators.''; PubMed Europe PMC Scholia
  80. Toyoshima-Morimoto F, Taniguchi E, Nishida E.; ''Plk1 promotes nuclear translocation of human Cdc25C during prophase.''; PubMed Europe PMC Scholia
  81. Yang J, Bardes ES, Moore JD, Brennan J, Powers MA, Kornbluth S.; ''Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1.''; PubMed Europe PMC Scholia
  82. Liu XS, Li H, Song B, Liu X.; ''Polo-like kinase 1 phosphorylation of G2 and S-phase-expressed 1 protein is essential for p53 inactivation during G2 checkpoint recovery.''; PubMed Europe PMC Scholia
  83. Takizawa CG, Morgan DO.; ''Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C.''; PubMed Europe PMC Scholia
  84. Groen AC, Cameron LA, Coughlin M, Miyamoto DT, Mitchison TJ, Ohi R.; ''XRHAMM functions in ran-dependent microtubule nucleation and pole formation during anastral spindle assembly.''; PubMed Europe PMC Scholia
  85. Wei SJ, Williams JG, Dang H, Darden TA, Betz BL, Humble MM, Chang FM, Trempus CS, Johnson K, Cannon RE, Tennant RW.; ''Identification of a specific motif of the DSS1 protein required for proteasome interaction and p53 protein degradation.''; PubMed Europe PMC Scholia
  86. Hagting A, Jackman M, Simpson K, Pines J.; ''Translocation of cyclin B1 to the nucleus at prophase requires a phosphorylation-dependent nuclear import signal.''; PubMed Europe PMC Scholia
  87. Golsteyn RM, Mundt KE, Fry AM, Nigg EA.; ''Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function.''; PubMed Europe PMC Scholia
  88. Liu F, Stanton JJ, Wu Z, Piwnica-Worms H.; ''The human Myt1 kinase preferentially phosphorylates Cdc2 on threonine 14 and localizes to the endoplasmic reticulum and Golgi complex.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114706view16:18, 25 January 2021ReactomeTeamReactome version 75
113151view11:21, 2 November 2020ReactomeTeamReactome version 74
112379view15:31, 9 October 2020ReactomeTeamReactome version 73
101750view12:30, 5 November 2018DeSlOntology Term : 'G2/M transition pathway' added !
101749view12:29, 5 November 2018DeSlOntology Term : 'G2 phase pathway' added !
101282view11:17, 1 November 2018ReactomeTeamreactome version 66
100819view20:47, 31 October 2018ReactomeTeamreactome version 65
100360view19:22, 31 October 2018ReactomeTeamreactome version 64
99905view16:06, 31 October 2018ReactomeTeamreactome version 63
99461view14:38, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
94019view13:51, 16 August 2017ReactomeTeamreactome version 61
93638view11:29, 9 August 2017ReactomeTeamreactome version 61
86753view09:25, 11 July 2016ReactomeTeamreactome version 56
83378view11:04, 18 November 2015ReactomeTeamVersion54
81553view13:05, 21 August 2015ReactomeTeamVersion53
77022view08:32, 17 July 2014ReactomeTeamFixed remaining interactions
76727view12:09, 16 July 2014ReactomeTeamFixed remaining interactions
75762view11:26, 10 June 2014ReactomeTeamReactome 48 Update
75112view14:06, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74759view08:50, 30 April 2014ReactomeTeamReactome46
44913view10:36, 6 October 2011MartijnVanIerselOntology Term : 'cell cycle pathway, mitotic' added !
42077view21:55, 4 March 2011MaintBotAutomatic update
39885view05:54, 21 January 2011MaintBotNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
(BTRC:CUL1:SKP1),(FBXW11:CUL1:SKP1)ComplexR-HSA-1168601 (Reactome)
26S proteasomeComplexR-HSA-68819 (Reactome)
ACTR1A ProteinP61163 (Uniprot-TrEMBL)
ADPMetaboliteCHEBI:456216 (ChEBI)
AJUBA ProteinQ96IF1 (Uniprot-TrEMBL)
AJUBAProteinQ96IF1 (Uniprot-TrEMBL)
AKAP9 ProteinQ99996 (Uniprot-TrEMBL)
ALMS1 ProteinQ8TCU4 (Uniprot-TrEMBL)
ATPMetaboliteCHEBI:30616 (ChEBI)
AURKA ProteinO14965 (Uniprot-TrEMBL)
AURKA:PHLDA1ComplexR-HSA-8853432 (Reactome)
AURKAProteinO14965 (Uniprot-TrEMBL)
AZI1 ProteinQ9UPN4 (Uniprot-TrEMBL)
AdoHcyMetaboliteCHEBI:16680 (ChEBI)
AdoMetMetaboliteCHEBI:15414 (ChEBI)
BORAProteinQ6PGQ7 (Uniprot-TrEMBL)
BTRC ProteinQ9Y297 (Uniprot-TrEMBL)
CAKComplexR-HSA-69221 (Reactome)
CCNA1 ProteinP78396 (Uniprot-TrEMBL)
CCNA1:p-T161-CDK1ComplexR-HSA-68892 (Reactome)
CCNA2 ProteinP20248 (Uniprot-TrEMBL)
CCNA2:p-T161-CDK1ComplexR-HSA-68906 (Reactome)
CCNA:CDK1ComplexR-HSA-170091 (Reactome)
CCNA:p-CDK1/2 R-HSA-4088020 (Reactome)
CCNA:p-T14,T161-CDK1ComplexR-HSA-170092 (Reactome)
CCNA:p-T14,Y15,T161-CDK1ComplexR-HSA-170147 (Reactome)
CCNA:p-T14-CDK1ComplexR-HSA-170085 (Reactome)
CCNA:p-T14-CDK1ComplexR-HSA-170090 (Reactome)
CCNA:p-T160-CDK2:E2F1/E2F3ComplexR-HSA-187932 (Reactome)
CCNA:p-T160-CDK2:p-E2F1/p-E2F3ComplexR-HSA-187944 (Reactome)
CCNA:p-T160-CDK2ComplexR-HSA-187952 (Reactome)
CCNA:p-T161-CDK1ComplexR-HSA-170146 (Reactome)
CCNAComplexR-HSA-170089 (Reactome)
CCNB1 Gene ProteinENSG00000134057 (Ensembl)
CCNB1 GeneGeneProductENSG00000134057 (Ensembl)
CCNB1 ProteinP14635 (Uniprot-TrEMBL)
CCNB1,CCNB2:p-T14,Y15,T161-CDK1ComplexR-HSA-8981821 (Reactome)
CCNB1,CCNB2:p-T161-CDK1 R-HSA-2311324 (Reactome)
CCNB1,CCNB2:p-T161-CDK1ComplexR-HSA-2311324 (Reactome)
CCNB1:p-T14,T161-CDK1ComplexR-HSA-170073 (Reactome)
CCNB1:p-T14,Y15,T161-CDK1ComplexR-HSA-170065 (Reactome)
CCNB1:p-T14,Y15,T161-CDK1ComplexR-HSA-170068 (Reactome)
CCNB1:p-T14-CDK1ComplexR-HSA-170056 (Reactome)
CCNB1:p-T161-CDK1ComplexR-HSA-157456 (Reactome)
CCNB1:p-T161-CDK1ComplexR-HSA-170160 (Reactome)
CCNB1ProteinP14635 (Uniprot-TrEMBL)
CCNB2 Gene ProteinENSG00000157456 (Ensembl)
CCNB2 GeneGeneProductENSG00000157456 (Ensembl)
CCNB2 ProteinO95067 (Uniprot-TrEMBL)
CCNB2ProteinO95067 (Uniprot-TrEMBL)
CCNB:CDK1ComplexR-HSA-170077 (Reactome)
CCNB:p-T14-CDK1ComplexR-HSA-170069 (Reactome)
CCNBComplexR-HSA-157461 (Reactome)
CCNH ProteinP51946 (Uniprot-TrEMBL)
CCP110 ProteinO43303 (Uniprot-TrEMBL)
CDC25A ProteinP30304 (Uniprot-TrEMBL)
CDC25A gene ProteinENSG00000164045 (Ensembl)
CDC25A geneGeneProductENSG00000164045 (Ensembl)
CDC25AProteinP30304 (Uniprot-TrEMBL)
CDC25B ProteinP30305 (Uniprot-TrEMBL)
CDC25BProteinP30305 (Uniprot-TrEMBL)
CDC25CProteinP30307 (Uniprot-TrEMBL)
CDC25ComplexR-HSA-170108 (Reactome)
CDC25ComplexR-HSA-69261 (Reactome)
CDK1 ProteinP06493 (Uniprot-TrEMBL)
CDK11A ProteinQ9UQ88 (Uniprot-TrEMBL)
CDK11B ProteinP21127 (Uniprot-TrEMBL)
CDK11p58ComplexR-HSA-380452 (Reactome)
CDK1ProteinP06493 (Uniprot-TrEMBL)
CDK5RAP2 ProteinQ96SN8 (Uniprot-TrEMBL)
CDK7 ProteinP50613 (Uniprot-TrEMBL)
CDKN1A ProteinP38936 (Uniprot-TrEMBL)
CDKN1AProteinP38936 (Uniprot-TrEMBL)
CENPF Gene ProteinENSG00000117724 (Ensembl)
CENPF GeneGeneProductENSG00000117724 (Ensembl)
CENPFProteinP49454 (Uniprot-TrEMBL)
CENPJ ProteinQ9HC77 (Uniprot-TrEMBL)
CEP135 ProteinQ66GS9 (Uniprot-TrEMBL)
CEP152 ProteinO94986 (Uniprot-TrEMBL)
CEP164 ProteinQ9UPV0 (Uniprot-TrEMBL)
CEP192 ProteinQ8TEP8 (Uniprot-TrEMBL)
CEP250 ProteinQ9BV73 (Uniprot-TrEMBL)
CEP250ProteinQ9BV73 (Uniprot-TrEMBL)
CEP290 ProteinO15078 (Uniprot-TrEMBL)
CEP41 ProteinQ9BYV8 (Uniprot-TrEMBL)
CEP57 ProteinQ86XR8 (Uniprot-TrEMBL)
CEP63 ProteinQ96MT8 (Uniprot-TrEMBL)
CEP70 ProteinQ8NHQ1 (Uniprot-TrEMBL)
CEP72 ProteinQ9P209 (Uniprot-TrEMBL)
CEP76 ProteinQ8TAP6 (Uniprot-TrEMBL)
CEP78 ProteinQ5JTW2 (Uniprot-TrEMBL)
CETN2 ProteinP41208 (Uniprot-TrEMBL)
CKAP5 ProteinQ14008 (Uniprot-TrEMBL)
CLASP1 ProteinQ7Z460 (Uniprot-TrEMBL)
CNTRL ProteinQ7Z7A1 (Uniprot-TrEMBL)
CRS kinaseComplexR-HSA-170106 (Reactome)
CSNK1D ProteinP48730 (Uniprot-TrEMBL)
CSNK1E ProteinP49674 (Uniprot-TrEMBL)
CUL1 ProteinQ13616 (Uniprot-TrEMBL)
CUL1ProteinQ13616 (Uniprot-TrEMBL)
Centrosome associated Plk1ComplexR-HSA-380288 (Reactome)
Centrosome:AURKA:AJUBAComplexR-HSA-2574836 (Reactome)
Centrosome:AURKA:TPX2:HMMRComplexR-HSA-8853414 (Reactome)
Centrosome:AURKAComplexR-HSA-2574827 (Reactome)
Centrosome:p-T288-AURKA:TPX2:HMMRComplexR-HSA-8853422 (Reactome)
Centrosome:p-T288-AURKA:p-S252-BORA:PLK1ComplexR-HSA-3000313 (Reactome)
Centrosome:p-T288-AURKAComplexR-HSA-3000302 (Reactome)
Centrosomes

containing

recruited CDK11p58
ComplexR-HSA-380453 (Reactome)
Cyclin A1:Cdk2

phosphorylated G2/M

transition protein
R-HSA-617372 (Reactome)
Cyclin A2:Cdk2

phosphorylated G2/M

transition protein
R-HSA-617371 (Reactome)
DCTN1-2 ProteinQ14203-2 (Uniprot-TrEMBL)
DCTN2 ProteinQ13561 (Uniprot-TrEMBL)
DCTN3 ProteinO75935 (Uniprot-TrEMBL)
DYNC1H1 ProteinQ14204 (Uniprot-TrEMBL)
DYNC1I2 ProteinQ13409 (Uniprot-TrEMBL)
DYNLL1 ProteinP63167 (Uniprot-TrEMBL)
E2F1 ProteinQ01094 (Uniprot-TrEMBL)
E2F1/E2F3ComplexR-HSA-187942 (Reactome)
E2F3 ProteinO00716 (Uniprot-TrEMBL)
EP300 ProteinQ09472 (Uniprot-TrEMBL)
EP300ProteinQ09472 (Uniprot-TrEMBL)
FBXL18 ProteinQ96ME1 (Uniprot-TrEMBL)
FBXL7 ProteinQ9UJT9 (Uniprot-TrEMBL)
FBXL7ProteinQ9UJT9 (Uniprot-TrEMBL)
FBXW11 ProteinQ9UKB1 (Uniprot-TrEMBL)
FGFR1OP ProteinO95684 (Uniprot-TrEMBL)
FKBPL ProteinQ9UIM3 (Uniprot-TrEMBL)
FKBPLProteinQ9UIM3 (Uniprot-TrEMBL)
FOXM1ProteinQ08050 (Uniprot-TrEMBL)
G2/M transition proteinsR-HSA-617370 (Reactome)
G2/M transition proteinsR-HSA-617374 (Reactome)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTSE1 ProteinQ9NYZ3 (Uniprot-TrEMBL)
GTSE1:CDKN1A:FKBPL:HSP90ComplexR-HSA-8852380 (Reactome)
GTSE1:MAPRE1:microtubule plus endComplexR-HSA-8852295 (Reactome)
GTSE1:microtubuleComplexR-HSA-8852286 (Reactome)
GTSE1:p-T210-PLK1ComplexR-HSA-8852323 (Reactome)
GTSE1ProteinQ9NYZ3 (Uniprot-TrEMBL)
H2OMetaboliteCHEBI:15377 (ChEBI)
HAUS1 ProteinQ96CS2 (Uniprot-TrEMBL)
HAUS2 ProteinQ9NVX0 (Uniprot-TrEMBL)
HAUS3 ProteinQ68CZ6 (Uniprot-TrEMBL)
HAUS4 ProteinQ9H6D7 (Uniprot-TrEMBL)
HAUS5 ProteinO94927 (Uniprot-TrEMBL)
HAUS6 ProteinQ7Z4H7 (Uniprot-TrEMBL)
HAUS7 ProteinQ99871 (Uniprot-TrEMBL)
HAUS8 ProteinQ9BT25 (Uniprot-TrEMBL)
HMMR ProteinO75330 (Uniprot-TrEMBL)
HMMRProteinO75330 (Uniprot-TrEMBL)
HSP90:HSP90ComplexR-HSA-3371429 (Reactome)
HSP90AA1 ProteinP07900 (Uniprot-TrEMBL)
HSP90AB1 ProteinP08238 (Uniprot-TrEMBL)
LCMT1ProteinQ9UIC8 (Uniprot-TrEMBL)
LIN37 ProteinQ96GY3 (Uniprot-TrEMBL)
LIN52 ProteinQ52LA3 (Uniprot-TrEMBL)
LIN54 ProteinQ6MZP7 (Uniprot-TrEMBL)
LIN9 ProteinQ5TKA1 (Uniprot-TrEMBL)
MAPRE1 ProteinQ15691 (Uniprot-TrEMBL)
MAPRE1:microtubule plus endComplexR-HSA-8852300 (Reactome)
MNAT1 ProteinP51948 (Uniprot-TrEMBL)
MYBL2 ProteinP10244 (Uniprot-TrEMBL)
MYBL2ProteinP10244 (Uniprot-TrEMBL)
MZT1 ProteinQ08AG7 (Uniprot-TrEMBL)
MZT2A ProteinQ6P582 (Uniprot-TrEMBL)
MZT2B ProteinQ6NZ67 (Uniprot-TrEMBL)
Mature centrosomes

enriched in gamma-TURC

complexes
ComplexR-HSA-380440 (Reactome)
MeL-PP2AComplexR-HSA-8857787 (Reactome)
MeL-PPP2CA ProteinP67775 (Uniprot-TrEMBL)
MeL-PPP2CB ProteinP62714 (Uniprot-TrEMBL)
Microtubule protofilament R-HSA-8982424 (Reactome)
MicrotubuleComplexR-HSA-190599 (Reactome)
Mitotic kinaseComplexR-HSA-8853807 (Reactome)
MuvB complexComplexR-HSA-1362248 (Reactome)
NDE1 ProteinQ9NXR1 (Uniprot-TrEMBL)
NEDD1 ProteinQ8NHV4 (Uniprot-TrEMBL)
NEK2 ProteinP51955 (Uniprot-TrEMBL)
NINL ProteinQ9Y2I6 (Uniprot-TrEMBL)
NME7 ProteinQ9Y5B8 (Uniprot-TrEMBL)
Nlp-depleted centrosomeComplexR-HSA-380705 (Reactome)
ODF2 ProteinQ5BJF6 (Uniprot-TrEMBL)
OFD1 ProteinO75665 (Uniprot-TrEMBL)
OPTN ProteinQ96CV9 (Uniprot-TrEMBL)
OPTN:RAB8A:GTPComplexR-HSA-2562537 (Reactome)
PAFAH1B1 ProteinP43034 (Uniprot-TrEMBL)
PCM1 ProteinQ15154 (Uniprot-TrEMBL)
PCNT ProteinO95613 (Uniprot-TrEMBL)
PHLDA1 ProteinQ8WV24 (Uniprot-TrEMBL)
PHLDA1ProteinQ8WV24 (Uniprot-TrEMBL)
PKMYT1ProteinQ99640 (Uniprot-TrEMBL)
PLK1 Gene ProteinENSG00000166851 (Ensembl)
PLK1 GeneGeneProductENSG00000166851 (Ensembl)
PLK1 ProteinP53350 (Uniprot-TrEMBL)
PLK1ProteinP53350 (Uniprot-TrEMBL)
PLK4 ProteinO00444 (Uniprot-TrEMBL)
PP2A-PPP2R2AComplexR-HSA-4088142 (Reactome)
PP2AComplexR-HSA-1363265 (Reactome)
PPME1ProteinQ9Y570 (Uniprot-TrEMBL)
PPP1CB ProteinP62140 (Uniprot-TrEMBL)
PPP1R12B-4 ProteinO60237-4 (Uniprot-TrEMBL)
PPP2CA ProteinP67775 (Uniprot-TrEMBL)
PPP2CB ProteinP62714 (Uniprot-TrEMBL)
PPP2R1A ProteinP30153 (Uniprot-TrEMBL)
PPP2R1B ProteinP30154 (Uniprot-TrEMBL)
PPP2R2A ProteinP63151 (Uniprot-TrEMBL)
PPP2R3B ProteinQ9Y5P8 (Uniprot-TrEMBL)
PRKACA ProteinP17612 (Uniprot-TrEMBL)
PRKAR2B ProteinP31323 (Uniprot-TrEMBL)
PSMA1 ProteinP25786 (Uniprot-TrEMBL)
PSMA2 ProteinP25787 (Uniprot-TrEMBL)
PSMA3 ProteinP25788 (Uniprot-TrEMBL)
PSMA4 ProteinP25789 (Uniprot-TrEMBL)
PSMA5 ProteinP28066 (Uniprot-TrEMBL)
PSMA6 ProteinP60900 (Uniprot-TrEMBL)
PSMA7 ProteinO14818 (Uniprot-TrEMBL)
PSMA8 ProteinQ8TAA3 (Uniprot-TrEMBL)
PSMB1 ProteinP20618 (Uniprot-TrEMBL)
PSMB10 ProteinP40306 (Uniprot-TrEMBL)
PSMB11 ProteinA5LHX3 (Uniprot-TrEMBL)
PSMB2 ProteinP49721 (Uniprot-TrEMBL)
PSMB3 ProteinP49720 (Uniprot-TrEMBL)
PSMB4 ProteinP28070 (Uniprot-TrEMBL)
PSMB5 ProteinP28074 (Uniprot-TrEMBL)
PSMB6 ProteinP28072 (Uniprot-TrEMBL)
PSMB7 ProteinQ99436 (Uniprot-TrEMBL)
PSMB8 ProteinP28062 (Uniprot-TrEMBL)
PSMB9 ProteinP28065 (Uniprot-TrEMBL)
PSMC1 ProteinP62191 (Uniprot-TrEMBL)
PSMC2 ProteinP35998 (Uniprot-TrEMBL)
PSMC3 ProteinP17980 (Uniprot-TrEMBL)
PSMC4 ProteinP43686 (Uniprot-TrEMBL)
PSMC5 ProteinP62195 (Uniprot-TrEMBL)
PSMC6 ProteinP62333 (Uniprot-TrEMBL)
PSMD1 ProteinQ99460 (Uniprot-TrEMBL)
PSMD10 ProteinO75832 (Uniprot-TrEMBL)
PSMD11 ProteinO00231 (Uniprot-TrEMBL)
PSMD12 ProteinO00232 (Uniprot-TrEMBL)
PSMD13 ProteinQ9UNM6 (Uniprot-TrEMBL)
PSMD14 ProteinO00487 (Uniprot-TrEMBL)
PSMD2 ProteinQ13200 (Uniprot-TrEMBL)
PSMD3 ProteinO43242 (Uniprot-TrEMBL)
PSMD4 ProteinP55036 (Uniprot-TrEMBL)
PSMD5 ProteinQ16401 (Uniprot-TrEMBL)
PSMD6 ProteinQ15008 (Uniprot-TrEMBL)
PSMD7 ProteinP51665 (Uniprot-TrEMBL)
PSMD8 ProteinP48556 (Uniprot-TrEMBL)
PSMD9 ProteinO00233 (Uniprot-TrEMBL)
PSME1 ProteinQ06323 (Uniprot-TrEMBL)
PSME2 ProteinQ9UL46 (Uniprot-TrEMBL)
PSME3 ProteinP61289 (Uniprot-TrEMBL)
PSME4 ProteinQ14997 (Uniprot-TrEMBL)
PSMF1 ProteinQ92530 (Uniprot-TrEMBL)
Phospho-Cyclin

B1

(CRS):phospho-Cdc2(Thr 161)
ComplexR-HSA-170121 (Reactome)
Phosphorylated Myosin PhosphataseComplexR-HSA-3002804 (Reactome) All known myosin phosphatases consist of PP1 beta and both a large and a small myosin phosphatase targetting (Mypt) subunit. The large Mypt targets PP1 beta to myosin and determines the substrate specifity of the phosphatase. The Large Mypt subunit is encoded by one of three human genes, PPP1R12A (MYPT1), PPP1R12B (MYPT2) and PPP1R12C. Only MYPT1 is represented here. The small subunit is an alternative transcript of MYPT2. The function of the small Mypt subunit remains unclear, but because it is known to interact directly with myosin and the large Mypt it is thought to have an unspecified regulatory role.
PiMetaboliteCHEBI:18367 (ChEBI)
PolyUb-AURKA ProteinO14965 (Uniprot-TrEMBL)
PolyUb-K109-FBXL7ProteinQ9UJT9 (Uniprot-TrEMBL)
PolyUb-TP53 ProteinP04637 (Uniprot-TrEMBL)
PolyUb-TP53 TetramerComplexR-HSA-3209186 (Reactome)
RAB8A ProteinP61006 (Uniprot-TrEMBL)
RAB8A:GTPComplexR-HSA-2562539 (Reactome)
RBBP4 ProteinQ09028 (Uniprot-TrEMBL)
RBX1 ProteinP62877 (Uniprot-TrEMBL)
RBX1ProteinP62877 (Uniprot-TrEMBL)
RPS27A(1-76) ProteinP62979 (Uniprot-TrEMBL)
SCF-FBXL7:AURKAComplexR-HSA-8854031 (Reactome)
SCF-FBXL7:PolyUb-AURKAComplexR-HSA-8854038 (Reactome)
SDCCAG8 ProteinQ86SQ7 (Uniprot-TrEMBL)
SFI1 ProteinA8K8P3 (Uniprot-TrEMBL)
SHFM1 ProteinP60896 (Uniprot-TrEMBL)
SKP1 ProteinP63208 (Uniprot-TrEMBL)
SKP1:CUL1:RBX1:FBXL18ComplexR-HSA-8854059 (Reactome)
SKP1:CUL1:RBX1:FBXL7ComplexR-HSA-8854030 (Reactome)
SKP1ProteinP63208 (Uniprot-TrEMBL)
SSNA1 ProteinO43805 (Uniprot-TrEMBL)
TPX2 ProteinQ9ULW0 (Uniprot-TrEMBL)
TPX2ProteinQ9ULW0 (Uniprot-TrEMBL)
TUBA1A ProteinQ71U36 (Uniprot-TrEMBL)
TUBA4A ProteinP68366 (Uniprot-TrEMBL)
TUBB ProteinP07437 (Uniprot-TrEMBL)
TUBB4A ProteinP04350 (Uniprot-TrEMBL)
TUBB4B ProteinP68371 (Uniprot-TrEMBL)
TUBG1 ProteinP23258 (Uniprot-TrEMBL)
TUBG2 ProteinQ9NRH3 (Uniprot-TrEMBL)
TUBGCP2 ProteinQ9BSJ2 (Uniprot-TrEMBL)
TUBGCP3 ProteinQ96CW5 (Uniprot-TrEMBL)
TUBGCP4 ProteinQ9UGJ1 (Uniprot-TrEMBL)
TUBGCP5 ProteinQ96RT8 (Uniprot-TrEMBL)
TUBGCP6 ProteinQ96RT7 (Uniprot-TrEMBL)
Transcriptional Regulation by TP53PathwayR-HSA-3700989 (Reactome) The tumor suppressor TP53 (encoded by the gene p53) is a transcription factor. Under stress conditions, it recognizes specific responsive DNA elements and thus regulates the transcription of many genes involved in a variety of cellular processes, such as cellular metabolism, survival, senescence, apoptosis and DNA damage response. Because of its critical function, p53 is frequently mutated in around 50% of all malignant tumors. For a recent review, please refer to Vousden and Prives 2009 and Kruiswijk et al. 2015.
UBA52(1-76) ProteinP62987 (Uniprot-TrEMBL)
UBB(1-76) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(153-228) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(77-152) ProteinP0CG47 (Uniprot-TrEMBL)
UBC(1-76) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(153-228) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(229-304) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(305-380) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(381-456) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(457-532) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(533-608) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(609-684) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(77-152) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-p-S252,S497,T501-BORAComplexR-HSA-3000337 (Reactome)
UbComplexR-HSA-113595 (Reactome)
WEE1ProteinP30291 (Uniprot-TrEMBL)
XPO1ProteinO14980 (Uniprot-TrEMBL)
YWHAE ProteinP62258 (Uniprot-TrEMBL)
YWHAG ProteinP61981 (Uniprot-TrEMBL)
cNAP-1 depleted centrosomeComplexR-HSA-380698 (Reactome)
centrosome

containing

phosphorylated Nlp
ComplexR-HSA-380704 (Reactome)
centrosomeComplexR-HSA-380268 (Reactome)
cytoplasmic Cyclin B1:Cdc2 complexesComplexR-HSA-170079 (Reactome)
gamma-tubulin complexComplexR-HSA-379277 (Reactome) A current model of the arrangement of subunits within the TuRC postulates that 6-7 TuSC subcomplexes are held together by the other Grip proteins, which together form the cap subunits(Reviewed in Wiese and Zheng, 2006).
methanolMetaboliteCHEBI:17790 (ChEBI)
nuclear Cyclin B1:Cdc2 complexesComplexR-HSA-170051 (Reactome)
p-4S-CCNB1 ProteinP14635 (Uniprot-TrEMBL) At the onset of mitosis, Cyclin B1 is phosphorylated in the CRS region. The identity of the kinase(s) responsible for this phosphorylation have not yet been determined with certainty.
p-CDK1/2:CCNA/p-T161-CDK1:CCNB1ComplexR-HSA-4088061 (Reactome)
p-E2F1 ProteinQ01094 (Uniprot-TrEMBL)
p-E2F3 ProteinO00716 (Uniprot-TrEMBL)
p-NINL ProteinQ9Y2I6 (Uniprot-TrEMBL)
p-NINLProteinQ9Y2I6 (Uniprot-TrEMBL)
p-PKMYT1ProteinQ99640 (Uniprot-TrEMBL)
p-S-AJUBAProteinQ96IF1 (Uniprot-TrEMBL)
p-S177-OPTNProteinQ96CV9 (Uniprot-TrEMBL)
p-S198-CDC25C ProteinP30307 (Uniprot-TrEMBL)
p-S198-CDC25CProteinP30307 (Uniprot-TrEMBL)
p-S252,S497,T501-BORA ProteinQ6PGQ7 (Uniprot-TrEMBL)
p-S252,S497,T501-BORA:SCF-beta-TrCp1/2ComplexR-HSA-3000340 (Reactome)
p-S252,S497,T501-BORAProteinQ6PGQ7 (Uniprot-TrEMBL)
p-S252-BORA ProteinQ6PGQ7 (Uniprot-TrEMBL)
p-S252-BORA:p-T210-PLK1ComplexR-HSA-3000305 (Reactome)
p-S252-BORAProteinQ6PGQ7 (Uniprot-TrEMBL)
p-S435-GTSE1 ProteinQ9NYZ3 (Uniprot-TrEMBL)
p-S435-GTSE1:PolyUb-TP53 TetramerComplexR-HSA-8852344 (Reactome)
p-S435-GTSE1:PolyUb-TP53 TetramerComplexR-HSA-8852349 (Reactome)
p-S435-GTSE1ProteinQ9NYZ3 (Uniprot-TrEMBL)
p-S473-PPP1R12A ProteinO14974 (Uniprot-TrEMBL)
p-S53-WEE1ProteinP30291 (Uniprot-TrEMBL)
p-S95-PHLDA1ProteinQ8WV24 (Uniprot-TrEMBL)
p-T14,T161-CDK1 ProteinP06493 (Uniprot-TrEMBL)
p-T14,Y15,T161-CDK1 ProteinP06493 (Uniprot-TrEMBL)
p-T14-CDK1 ProteinP06493 (Uniprot-TrEMBL)
p-T160-CDK2 ProteinP24941 (Uniprot-TrEMBL)
p-T161-CDK1 ProteinP06493 (Uniprot-TrEMBL)
p-T210-PLK1 ProteinP53350 (Uniprot-TrEMBL)
p-T210-PLK1ProteinP53350 (Uniprot-TrEMBL)
p-T288-AURKA ProteinO14965 (Uniprot-TrEMBL)
p-T513,T526-GTSE1ProteinQ9NYZ3 (Uniprot-TrEMBL)
p-T611,S730,S739-FOXM1 ProteinQ08050 (Uniprot-TrEMBL)
p-T611,S730,S739-FOXM1:CENPF GeneComplexR-HSA-4088442 (Reactome)
p-T611,S730,S739-FOXM1:EP300:CDC25A GeneComplexR-HSA-4088158 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB1 GeneComplexR-HSA-4088308 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB2 GeneComplexR-HSA-4088297 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:PLK1 GeneComplexR-HSA-4088300 (Reactome)
p-T611,S730,S739-FOXM1ProteinQ08050 (Uniprot-TrEMBL)
p-T611-FOXM1 ProteinQ08050 (Uniprot-TrEMBL)
p-T611-FOXM1:p-T210-PLK1ComplexR-HSA-4088136 (Reactome)
p-T611-FOXM1ProteinQ08050 (Uniprot-TrEMBL)
phospho-Cyclin B1(CRS):phospho-Cdc2 (Thr 161)ComplexR-HSA-170127 (Reactome)
phospho-G2/M transition proteinR-HSA-69753 (Reactome)
phospho-cyclin B1(CRS):phosph-Cdc2(Thr 161)ComplexR-HSA-170047 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
(BTRC:CUL1:SKP1),(FBXW11:CUL1:SKP1)ArrowR-HSA-3000335 (Reactome)
(BTRC:CUL1:SKP1),(FBXW11:CUL1:SKP1)R-HSA-3000339 (Reactome)
26S proteasomemim-catalysisR-HSA-8852354 (Reactome)
26S proteasomemim-catalysisR-HSA-8854044 (Reactome)
26S proteasomemim-catalysisR-HSA-8854071 (Reactome)
ADPArrowR-HSA-156678 (Reactome)
ADPArrowR-HSA-156699 (Reactome)
ADPArrowR-HSA-162657 (Reactome)
ADPArrowR-HSA-170055 (Reactome)
ADPArrowR-HSA-170070 (Reactome)
ADPArrowR-HSA-170076 (Reactome)
ADPArrowR-HSA-170087 (Reactome)
ADPArrowR-HSA-170116 (Reactome)
ADPArrowR-HSA-170126 (Reactome)
ADPArrowR-HSA-170156 (Reactome)
ADPArrowR-HSA-187959 (Reactome)
ADPArrowR-HSA-2562526 (Reactome)
ADPArrowR-HSA-2574840 (Reactome)
ADPArrowR-HSA-3000310 (Reactome)
ADPArrowR-HSA-3000327 (Reactome)
ADPArrowR-HSA-380272 (Reactome)
ADPArrowR-HSA-4086410 (Reactome)
ADPArrowR-HSA-4088024 (Reactome)
ADPArrowR-HSA-4088134 (Reactome)
ADPArrowR-HSA-69754 (Reactome)
ADPArrowR-HSA-69756 (Reactome)
ADPArrowR-HSA-8852306 (Reactome)
ADPArrowR-HSA-8852317 (Reactome)
ADPArrowR-HSA-8853419 (Reactome)
ADPArrowR-HSA-8853444 (Reactome)
AJUBAR-HSA-2574845 (Reactome)
ATPR-HSA-156678 (Reactome)
ATPR-HSA-156699 (Reactome)
ATPR-HSA-162657 (Reactome)
ATPR-HSA-170055 (Reactome)
ATPR-HSA-170070 (Reactome)
ATPR-HSA-170076 (Reactome)
ATPR-HSA-170087 (Reactome)
ATPR-HSA-170116 (Reactome)
ATPR-HSA-170126 (Reactome)
ATPR-HSA-170156 (Reactome)
ATPR-HSA-187959 (Reactome)
ATPR-HSA-2562526 (Reactome)
ATPR-HSA-2574840 (Reactome)
ATPR-HSA-3000310 (Reactome)
ATPR-HSA-3000327 (Reactome)
ATPR-HSA-380272 (Reactome)
ATPR-HSA-4086410 (Reactome)
ATPR-HSA-4088024 (Reactome)
ATPR-HSA-4088134 (Reactome)
ATPR-HSA-69754 (Reactome)
ATPR-HSA-69756 (Reactome)
ATPR-HSA-8852306 (Reactome)
ATPR-HSA-8852317 (Reactome)
ATPR-HSA-8853419 (Reactome)
ATPR-HSA-8853444 (Reactome)
AURKA:PHLDA1ArrowR-HSA-8853429 (Reactome)
AURKA:PHLDA1R-HSA-8853444 (Reactome)
AURKA:PHLDA1mim-catalysisR-HSA-8853444 (Reactome)
AURKAArrowR-HSA-8853444 (Reactome)
AURKAR-HSA-8853429 (Reactome)
AURKAR-HSA-8853496 (Reactome)
AdoHcyArrowR-HSA-8856945 (Reactome)
AdoMetR-HSA-8856945 (Reactome)
BORAR-HSA-4086410 (Reactome)
CAKmim-catalysisR-HSA-170076 (Reactome)
CAKmim-catalysisR-HSA-170087 (Reactome)
CCNA1:p-T161-CDK1mim-catalysisR-HSA-69754 (Reactome)
CCNA2:p-T161-CDK1mim-catalysisR-HSA-69756 (Reactome)
CCNA:CDK1ArrowR-HSA-170084 (Reactome)
CCNA:CDK1R-HSA-170116 (Reactome)
CCNA:p-T14,T161-CDK1ArrowR-HSA-170087 (Reactome)
CCNA:p-T14,T161-CDK1R-HSA-170156 (Reactome)
CCNA:p-T14,Y15,T161-CDK1ArrowR-HSA-170156 (Reactome)
CCNA:p-T14,Y15,T161-CDK1R-HSA-170158 (Reactome)
CCNA:p-T14-CDK1ArrowR-HSA-170088 (Reactome)
CCNA:p-T14-CDK1ArrowR-HSA-170116 (Reactome)
CCNA:p-T14-CDK1R-HSA-170087 (Reactome)
CCNA:p-T14-CDK1R-HSA-170088 (Reactome)
CCNA:p-T160-CDK2:E2F1/E2F3ArrowR-HSA-187937 (Reactome)
CCNA:p-T160-CDK2:E2F1/E2F3R-HSA-187959 (Reactome)
CCNA:p-T160-CDK2:E2F1/E2F3mim-catalysisR-HSA-187959 (Reactome)
CCNA:p-T160-CDK2:p-E2F1/p-E2F3ArrowR-HSA-187959 (Reactome)
CCNA:p-T160-CDK2R-HSA-187937 (Reactome)
CCNA:p-T161-CDK1ArrowR-HSA-170158 (Reactome)
CCNAR-HSA-170084 (Reactome)
CCNB1 GeneR-HSA-4088298 (Reactome)
CCNB1 GeneR-HSA-4088307 (Reactome)
CCNB1,CCNB2:p-T14,Y15,T161-CDK1R-HSA-170161 (Reactome)
CCNB1,CCNB2:p-T161-CDK1ArrowR-HSA-170161 (Reactome)
CCNB1,CCNB2:p-T161-CDK1mim-catalysisR-HSA-4086410 (Reactome)
CCNB1:p-T14,T161-CDK1ArrowR-HSA-170076 (Reactome)
CCNB1:p-T14,T161-CDK1R-HSA-170070 (Reactome)
CCNB1:p-T14,Y15,T161-CDK1ArrowR-HSA-170070 (Reactome)
CCNB1:p-T14,Y15,T161-CDK1ArrowR-HSA-170072 (Reactome)
CCNB1:p-T14,Y15,T161-CDK1R-HSA-170072 (Reactome)
CCNB1:p-T14,Y15,T161-CDK1R-HSA-170153 (Reactome)
CCNB1:p-T14-CDK1R-HSA-170076 (Reactome)
CCNB1:p-T161-CDK1ArrowR-HSA-170153 (Reactome)
CCNB1:p-T161-CDK1R-HSA-170126 (Reactome)
CCNB1ArrowR-HSA-4088298 (Reactome)
CCNB2 GeneR-HSA-4088299 (Reactome)
CCNB2 GeneR-HSA-4088309 (Reactome)
CCNB2ArrowR-HSA-4088299 (Reactome)
CCNB:CDK1ArrowR-HSA-170057 (Reactome)
CCNB:CDK1R-HSA-170055 (Reactome)
CCNB:p-T14-CDK1ArrowR-HSA-170055 (Reactome)
CCNBR-HSA-170057 (Reactome)
CDC25A geneR-HSA-4088152 (Reactome)
CDC25A geneR-HSA-4088162 (Reactome)
CDC25AArrowR-HSA-4088152 (Reactome)
CDC25Amim-catalysisR-HSA-170158 (Reactome)
CDC25ArrowR-HSA-170159 (Reactome)
CDC25BArrowR-HSA-170120 (Reactome)
CDC25BR-HSA-170120 (Reactome)
CDC25Bmim-catalysisR-HSA-170161 (Reactome)
CDC25CR-HSA-156678 (Reactome)
CDC25R-HSA-170159 (Reactome)
CDC25mim-catalysisR-HSA-170153 (Reactome)
CDK11p58ArrowR-HSA-380311 (Reactome)
CDK11p58R-HSA-380455 (Reactome)
CDK1R-HSA-170057 (Reactome)
CDK1R-HSA-170084 (Reactome)
CDKN1AR-HSA-8852362 (Reactome)
CENPF GeneR-HSA-4088439 (Reactome)
CENPF GeneR-HSA-4088441 (Reactome)
CENPFArrowR-HSA-4088441 (Reactome)
CEP250ArrowR-HSA-380294 (Reactome)
CRS kinasemim-catalysisR-HSA-170126 (Reactome)
CUL1R-HSA-8854052 (Reactome)
Centrosome associated Plk1ArrowR-HSA-380311 (Reactome)
Centrosome:AURKA:AJUBAArrowR-HSA-2574845 (Reactome)
Centrosome:AURKA:AJUBAR-HSA-2574840 (Reactome)
Centrosome:AURKA:AJUBAmim-catalysisR-HSA-2574840 (Reactome)
Centrosome:AURKA:TPX2:HMMRArrowR-HSA-8853405 (Reactome)
Centrosome:AURKA:TPX2:HMMRR-HSA-8853419 (Reactome)
Centrosome:AURKA:TPX2:HMMRmim-catalysisR-HSA-8853419 (Reactome)
Centrosome:AURKAR-HSA-2574845 (Reactome)
Centrosome:AURKAR-HSA-8853405 (Reactome)
Centrosome:p-T288-AURKA:TPX2:HMMRArrowR-HSA-8853419 (Reactome)
Centrosome:p-T288-AURKA:p-S252-BORA:PLK1ArrowR-HSA-3000319 (Reactome)
Centrosome:p-T288-AURKA:p-S252-BORA:PLK1R-HSA-3000310 (Reactome)
Centrosome:p-T288-AURKA:p-S252-BORA:PLK1mim-catalysisR-HSA-3000310 (Reactome)
Centrosome:p-T288-AURKAArrowR-HSA-2574840 (Reactome)
Centrosome:p-T288-AURKAArrowR-HSA-3000310 (Reactome)
Centrosome:p-T288-AURKAR-HSA-3000319 (Reactome)
Centrosomes

containing

recruited CDK11p58
ArrowR-HSA-380455 (Reactome)
Cyclin A1:Cdk2

phosphorylated G2/M

transition protein
ArrowR-HSA-69754 (Reactome)
Cyclin A2:Cdk2

phosphorylated G2/M

transition protein
ArrowR-HSA-69756 (Reactome)
E2F1/E2F3R-HSA-187937 (Reactome)
EP300R-HSA-4088162 (Reactome)
FBXL7R-HSA-8854051 (Reactome)
FBXL7R-HSA-8854052 (Reactome)
FKBPLR-HSA-8852362 (Reactome)
FOXM1ArrowR-HSA-4088141 (Reactome)
FOXM1R-HSA-4088024 (Reactome)
G2/M transition proteinsR-HSA-69754 (Reactome)
G2/M transition proteinsR-HSA-69756 (Reactome)
GTSE1:CDKN1A:FKBPL:HSP90ArrowR-HSA-8852362 (Reactome)
GTSE1:MAPRE1:microtubule plus endArrowR-HSA-8852298 (Reactome)
GTSE1:MAPRE1:microtubule plus endR-HSA-8852306 (Reactome)
GTSE1:microtubuleArrowR-HSA-8852280 (Reactome)
GTSE1:p-T210-PLK1ArrowR-HSA-8852324 (Reactome)
GTSE1:p-T210-PLK1R-HSA-8852317 (Reactome)
GTSE1:p-T210-PLK1mim-catalysisR-HSA-8852317 (Reactome)
GTSE1R-HSA-8852280 (Reactome)
GTSE1R-HSA-8852298 (Reactome)
GTSE1R-HSA-8852324 (Reactome)
GTSE1R-HSA-8852362 (Reactome)
H2OR-HSA-170153 (Reactome)
H2OR-HSA-170158 (Reactome)
H2OR-HSA-170161 (Reactome)
H2OR-HSA-3002811 (Reactome)
H2OR-HSA-4088141 (Reactome)
H2OR-HSA-8856951 (Reactome)
HMMRR-HSA-8853405 (Reactome)
HSP90:HSP90R-HSA-8852362 (Reactome)
LCMT1mim-catalysisR-HSA-8856945 (Reactome)
MAPRE1:microtubule plus endArrowR-HSA-8852306 (Reactome)
MAPRE1:microtubule plus endR-HSA-8852298 (Reactome)
MYBL2R-HSA-4088306 (Reactome)
MYBL2R-HSA-4088307 (Reactome)
MYBL2R-HSA-4088309 (Reactome)
Mature centrosomes

enriched in gamma-TURC

complexes
ArrowR-HSA-380283 (Reactome)
MeL-PP2AArrowR-HSA-8856945 (Reactome)
MeL-PP2AR-HSA-8856951 (Reactome)
MicrotubuleR-HSA-8852280 (Reactome)
Mitotic kinasemim-catalysisR-HSA-8852306 (Reactome)
MuvB complexR-HSA-4088306 (Reactome)
MuvB complexR-HSA-4088307 (Reactome)
MuvB complexR-HSA-4088309 (Reactome)
Nlp-depleted centrosomeArrowR-HSA-380303 (Reactome)
OPTN:RAB8A:GTPR-HSA-2562526 (Reactome)
PHLDA1R-HSA-8853429 (Reactome)
PKMYT1R-HSA-162657 (Reactome)
PKMYT1mim-catalysisR-HSA-170055 (Reactome)
PKMYT1mim-catalysisR-HSA-170116 (Reactome)
PLK1 GeneR-HSA-4088305 (Reactome)
PLK1 GeneR-HSA-4088306 (Reactome)
PLK1ArrowR-HSA-3002811 (Reactome)
PLK1ArrowR-HSA-4088305 (Reactome)
PLK1R-HSA-3000319 (Reactome)
PLK1R-HSA-380311 (Reactome)
PP2A-PPP2R2Amim-catalysisR-HSA-4088141 (Reactome)
PP2AArrowR-HSA-8856951 (Reactome)
PP2AR-HSA-8856945 (Reactome)
PPME1mim-catalysisR-HSA-8856951 (Reactome)
Phospho-Cyclin

B1

(CRS):phospho-Cdc2(Thr 161)
ArrowR-HSA-170126 (Reactome)
Phosphorylated Myosin Phosphatasemim-catalysisR-HSA-3002811 (Reactome)
PiArrowR-HSA-170153 (Reactome)
PiArrowR-HSA-170158 (Reactome)
PiArrowR-HSA-170161 (Reactome)
PiArrowR-HSA-3002811 (Reactome)
PiArrowR-HSA-4088141 (Reactome)
PolyUb-K109-FBXL7ArrowR-HSA-8854051 (Reactome)
PolyUb-K109-FBXL7R-HSA-8854071 (Reactome)
PolyUb-TP53 TetramerR-HSA-8852337 (Reactome)
R-HSA-156678 (Reactome) PLK1 phosphorylates CDC25C on serine residue S198. In addition to catalytically activating CDC25C, PLK1-mediated phosphorylation also results in the nuclear accumulation of CDC25C (Toyoshima-Morimoto et al. 2002). It has been shown that Xenopus polo homolog, Plx1, directly phosphorylates and activates Cdc25C, which in turn dephosphorylates and activates Cdc2. This step is critical for the onset of mitosis. Since Plx1-dependent Cdc25C phosphorylation occurs in the absence of Cdc2 activity, it is likely that Plx1 is a triggering kinase, which leads to the activation of Cdc2 and therefore the normal onset of mitosis (Kumagai and Dunphy 1996).
R-HSA-156699 (Reactome) *Plk1 is shown to phosphorylate Wee1A, an event that is likely critical for recognition and ubiquitination of Wee1A by SCF and therefore for the subsequent degradation of Wee1A . **Plk1 phosphorylates Wee1A at S53, creating the second phosphodegron, PD53. ** Evidence also exists in budding yeast that the budding yeast polo homolog Cdc5 directly phosphorylates and down-regulate the budding yeast Wee1 ortholog Swe1. Thus, polo kinase-dependent phosphorylation and degradation of Wee1A (or Swe1) is likely conserved throughout evolution and is critical for normal mitotic entry.
R-HSA-162657 (Reactome) At mitotic entry Plk1 phosphorylates and inhibits Myt1 activity. Cyclin B1-bound Cdc2, which is the target of Myt1, functions in a feedback loop and phosphorylates and further inhibits Myt1.
R-HSA-170044 (Reactome) During interphase, cyclin B1:Cdc2 shuttles continuously in and out of the nucleus. Cyclin B1:Cdc2 is transported into the nucleus by an unusual mechanism that requires importin b but not importin a or Ran. Dissociation of the cyclin-B1:Cdc2:importin complex in the nucleus requires ATP and involves other yet unidentified nuclear factors (Takizawa et al.,1991).
R-HSA-170055 (Reactome) Myt1, which localizes preferentially to the endoplasmic reticulum and Golgi complex, phosphorylates Cdc2 on threonine 14 ( Liu et al., 1997).
R-HSA-170057 (Reactome) Cyclin dependent kinases are themselves catalytically inactive due to the fact that their active site is blocked by a portion of the Cdk molecule itself. Binding to their corresponding cyclin partner results in conformational change that partially exposes the active site. The two B-type cyclins localize to different regions within the cell and and are thought to have specific roles as CDK1-activating subunits (see Bellanger et al., 2007). Cyclin B1 is primarily cytoplasmic during interphase and translocates into the nucleus at the onset of mitosis (Jackman et al., 1995; Hagting et al., 1999). Cyclin B2 colocalizes with the Golgi apparatus and contributes to its fragmentation during mitosis (Jackman et al., 1995; Draviam et al., 2001).
R-HSA-170070 (Reactome) WEE1, a nuclear kinase, phosphorylates cyclin B1:Cdc2 (CCNB1:CDK1) on tyrosine 15 (Y15), inactivating the complex (Parker and Piwnica-Worms 1992, McGowan and Russell 1993). The complex of cyclin B2 and Cdc2 (CCNB2:CDK1) is also phosphorylated on Y15 (Galaktionov and Beach 1991).
R-HSA-170072 (Reactome) During interphase, cyclin B1 shuttles continuously in and out of the nucleus. The cyclin B cytoplasmic retention sequence (CRS), which is responsible for its interphase cytoplasmic localization, functions as a nuclear export sequence (Yang et al., 1998).
R-HSA-170076 (Reactome) Full activity of most CDKs is dependent on CAK mediated phosphorylation at a conserved residue (Thr161 in Cdc2). This modification is thought to improve substrate binding. Cyclin B:Cdc2 complexes have considerably low activity in the absence of CAK mediated phosphorylation (Desai et al 1995).
R-HSA-170084 (Reactome) Cyclin A is synthesized and associates with Cdc2 in G1. Cyclin dependent kinases are themselves catalytically inactive due to the fact that their active sites are blocked by a portion of the CDK molecule itself. Binding to their corresponding cyclin partner results in a conformational change that partially exposes the active site.
R-HSA-170087 (Reactome) Full activity of most CDKs is dependent on CAK mediated phosphorylation at a conserved residue (Thr 161 in Cdc2). This modification is thought to improve substrate binding. High affinity binding of Cyclin A within the Cyclin A:Cdc2 complex requires this phosphorylation (Desai et al 1995).
R-HSA-170088 (Reactome) Cyclin A:Cdc2 complexes translocate to the nucleus in G1 and may associate with condensing chromosomes in prophase (Pines and Hunter 1991).
R-HSA-170116 (Reactome) Myt1, which localizes preferentially to the endoplasmic reticulum and Golgi complex, phosphorylates Cdc2 on threonine 14 ( Liu et al., 1997).
R-HSA-170120 (Reactome) Cdc25B shuttles between the nucleus and the cytoplasm. Translocation out of the nucleus involves a nuclear export sequence in the N-terminus of Cdc25B (Lindqvist et al., 2004).
R-HSA-170126 (Reactome) At the onset of mitosis, cyclin B is phosphorylated in the CRS sequence which creates a nuclear import signal in the amino terminus. The kinase(s) responsible for this phosphorylation are not yet known (Hagting et al., 1999).
R-HSA-170131 (Reactome) The rapid translocation of cyclin B1:Cdc2 from the cytoplasm to the nucleus at the onset of mitosis is a result of an increase in the rate of import and, likely, a decreased rate of export. The increased rate of nuclear import is dependent upon phosphorylation of the CRS which creates a nuclear import signal in the amino terminus of cyclin B1 (Hagting et al, 1999).
R-HSA-170149 (Reactome) During interphase, CDC25C, phosphorylated on serine residue 216, is associated with 14-3-3 proteins, preventing nuclear import. At the onset of mitosis, dephosphorylation of S216 of Cdc25C and dissociation of 14-3-3, with phosphorylation of CDC25C on S198 by activated PLK1 promotes nuclear import (Takizawa and Morgan 2000, Toyoshima-Morimoto et al. 2002, Bonnet et al. 2008). Activating CDC25C phosphorylation and nuclear translocation may further be enhanced by activated CCNB:CDK1 complexes (Bonnet et al. 2008).
R-HSA-170153 (Reactome) Following its translocation to the nucleus, Cdc25 dephosphorylates and activates nuclear cyclin B1:Cdc2 complexes (Strausfeld et al., 1991).
R-HSA-170156 (Reactome) The human Wee1 kinase phosphorylates Cdc2 on tyrosine 15 inactivating the cyclin:CDK complex (Watanabe et al., 1995).
R-HSA-170158 (Reactome) Activation of the cyclin A:Cdc2 complexes at mitosis requires the removal of the inhibitory phosphate groups on Cdc2 (CDK1). This dephosphorylation is achieved by the activity of the CDC25A phosphatase (Timofeev et al. 2009). CDC25A, CDC25B, and CDC25C are kept inactive during interphase and are activated at the G2/M transition (see Wolfe and Gould 2004).
R-HSA-170159 (Reactome) The localization of the Cdc25A, B and C proteins is dynamic involving the shuttling of these proteins between the nucleus and the cytoplasm. Sequences in these proteins mediate both nuclear export and import (Kallstrom et al., 2005; Lindqvist et al., 2004; Graves et al, 2001; Takizawa and Morgan, 2000).
R-HSA-170161 (Reactome) Activation of the mitotic cyclinB:Cdc2 (CCNB:CDK1) complexes at mitosis requires the removal of the inhibitory phosphate groups on Cdc2 (CDK1). This dephosphorylation is achieved by the activity of the CDC25 family of phosphatases, which act on both CCNB1 and CCNB2-bound CDK1 (Galaktionov and Beach 1991, Goda et al. 2003, Timofeev et al. 2010). The CDC25 members, CDC25A, CDC25B, and CDC25C are kept inactive during interphase and are activated at the G2/M transition. CCNB:CDK1 complexes appear to participate in the full activation of CDC25 in a process that involves an amplification loop (see Wolfe and Gould, 2004). The initial activation of the CCNB:CDK1 (cyclin B1:Cdc2 and cyclin-B2:Cdc2) complexes occurs in the cytoplasm in prophase (Jackman et al., 2003). CDC25B, which is present at highest concentrations in the cytoplasm at this time, is thought to trigger the activation of CCNB1:CDK1 (Lindqvist et al. 2004; Honda et al., 1993). Active CCNB1:CDK1 then phosphorylates CDC25C (contributing to its PLK1-mediated activation) and stabilizes CDC25A (Strausfeld et al., 1994; Hoffman et al.,1993; Mailand et al, 2002). This creates positive feedback loops that allows CDC25A and CDC25C to dephosphorylate and further activate CDK1. As active CDC25C is nuclear, it presumably predominantly contributes to activation of nuclear CDK1 (Strausfeld et al. 1994, Toyoshima-Morimoto et al. 2002, Bonnet, Coopman et al. 2008, Bonnet Mayonove et al. 2008).
R-HSA-187937 (Reactome) In G2, the cyclin A:Cdk2 complex associates with E2F1 and E2F3.
R-HSA-187959 (Reactome) In G2 Cdk2, in association with cyclin A, phosphorylates E2F1 and E2F3 resulting in the inactivation and possibly degradation of these two transcription factors (Dynlacht et al., 1994; Krek et al., 1994).
R-HSA-2562526 (Reactome) Activated PLK1 phosphorylates OPTN (optineurin) on serine residue S177. Phosphorylation at S177 disrupts OPTN binding to Golgi-membrane localized RAB8A (Kachaner et al. 2012).
R-HSA-2562594 (Reactome) Phosphorylation of OPTN (optineurin) on serine S177 by PLK1 promotes translocation of OPTN to the nucleus (Kachaner et al. 2012).
R-HSA-2574840 (Reactome) AURKA (Aurora A kinase) activation through autophosphorylation of threonine T288 is facilitated by AJUBA binding. AJUBA is also phosphorylated by AURKA on an unidentified serine or threonine residue (Hirota et al. 2003).
R-HSA-2574845 (Reactome) AJUBA, a LIM domain-containing protein, binds centrosome-associated AURKA (Aurora A kinase) through interaction of LIM-2 and LIM-3 domains of AJUBA with the N-terminus of AURKA (Hirota et al. 2003).
R-HSA-3000310 (Reactome) AURKA (Aurora A kinase) phosphorylates PLK1 on threonine residue T210 that lies in the conserved aurora kinase consensus site (Seki et al. 2008). PLK1 needs to be phosphorylated on T210 to become catalytically active (Jang et al. 2002). BORA, but not other AURKA co-activators, facilitate PLK1 phosphorylation by AURKA (Macurek et al. 2008, Seki et al. 2008).
R-HSA-3000319 (Reactome) BORA is able to interact with both AURKA (Aurora A kinase) and PLK1. Binding of BORA to PLK1 increases the accessibility of PLK1 threonine residue T210 and also brings PLK1 in proximity to AURKA, enabling AURKA to phosphorylate T210 of PLK1 and thereby activate PLK1 (Seki et al. 2008). While BORA is required for mitotic activation of AURKA in Drosophila (Hutterer et al. 2006), it does not significantly activate AURKA in human cells (Seki et al. 2008). AURKA is able to phosphorylate BORA in vitro, but the functional significance of this modification has not been determined (Hutterer et al. 2006).
R-HSA-3000327 (Reactome) PLK1 phosphorylates BORA on serine residue S497 and threonine residue T501 that both lie in the DSGYNT degron recognized by beta-TrCP F-box proteins (Seki et al. 2008).
R-HSA-3000335 (Reactome) SCF-beta-TrCP ubiquitin ligases promote ubiquitination and degradation of BORA phosphorylated by PLK1, and this is required for timely mitotic progression (Seki et al. 2008).
R-HSA-3000339 (Reactome) The substrate recognition subunits beta-TrCP (BTRC) and beta-TrCP2 (FBXW11) of SCF-beta-TrPC1 and SCF-beta-TrPC2 ubiquitin ligases, respectively, bind the phosphorylated DSGYNT motif of BORA (Seki et al. 2008).
R-HSA-3002798 (Reactome) PLK1 is induced in S phase and can be find in both cytosol and nucleus in S and G2 phases of the cell cycle. PLK1 possesses a bipartite nuclear localization signal (NLS) that enables it to enter the nucleus (Taniguchi et al. 2002).
R-HSA-3002811 (Reactome) The myosin phosphatase complex can dephosphorylate PLK1 threonine residue T210 and inactivate PLK1 (Yamashiro et al. 2008). Myosin phosphatase is activated through phosphorylation of its PPP1R12A (MYPT1) subunit. Several kinases, including CDK1 (Yamashiro et al. 2008) and LATS1 (Chiyoda et al. 2012) have been implicated in myosin phosphatase activation, but the position and temporal order of key PPP1R12A phosphorylations need to be investigated further. Phosphorylated OPTN (optineurin) is able to bind PPP1R12A (MYPT1) and positively regulates PLK1 dephosphorylation by myosin phosphatase, posibly by facilitating PPP1R12A phosphorylation and myosin phosphatase activation (Kachaner et al. 2012).
R-HSA-380272 (Reactome) Phosphorylation of NlP by Plk1 regulates the interaction of Nlp with both centrosomes and ?-TuRCs (Casenghi et al., 2003).
R-HSA-380283 (Reactome) Microtubule nucleation at the centrosome is mediated by the gamma tubulin ring complex (gamma TuRC) (reviewed in Raynaud-Messina and Merdes, 2006; Wiese and Zheng, 2006). In humans, this large complex contains the tubulin superfamily member gamma-tubulin, five gamma complex proteins (GCP2-GPC6) and NEDD1/GCP-WD. A current model of the arrangement of subunits within the gamma-TuRC proposes that 6-7 TuSC subcomplexes are held together by the other Grip proteins (at an unknown stoichiometry), which together form the cap subunits. In many animal cells, the recruitment of gamma-tubulin complexes to the centrosome rapidly increases (3–5 fold ) before mitosis to support the formation of new spindle microtubules (Khodjakov and Rieder 1999). NEDD1/GCP-WD plays an essential role in recruitment of these complexes to the centrosomes (Haren et al., 2006; Luders et al., 2006) and to the mitotic spindle (Luders et al., 2006). GCP-WD/NEDD1 associates directly with the gamma-TuRC. The carboxy-terminal half binds to the gamma-TuRC whereas the amino-terminal half, corresponding to the WD-repeat domain, is responsible for its attachment to the centrosome (Haren et al., 2006). Additional centrosomal proteins have also been implicated in the docking of gamma-TuRC to the centrosomes. CG-NAP/AKAP450 and kendrin are necessary for the initiation of microtubule nucleation and interact with GCP2/GCP3 and GCP2, respectively (Takahashi et al., 2002). Pericentrin plays an important role in microtubule organization in mitotic cells and anchors gamma- TuRC through domains that bind GCP2 and GCP3 (Zimmerman et al. 2004). Ninein localizes to the centriole via its C-terminus and interacts with gamma-tubulin-containing complexes via its N-terminus.

Nucleoside diphosphate kinase (NME7) is a poorly characterised member of the NME family and has been observed to exhibit no NADPK activity (Yoon et al. 2005, Liu et al. 2014). NME7 has recently been found to be a component of the γ-tubulin ring complex (γTuRC) where it regulates the microtubule-nucleating activity (the event that initiates de novo formation of microtubules) of the γTuRC. NME7 contains two putative kinase domains, A and B; domain A is involved in autophosphorylation whereas domain B is inactive. NME7 interacts with the γTuRC through both domains, with Arg-322 in domain B being critical for binding. In association with the γTuRC, NME7 localizes to centrosomes throughout the cell cycle and to mitotic spindles during mitosis (Liu et al. 2014).
R-HSA-380294 (Reactome) The centrosomal protein C-Nap1 is thought to play an important role in centrosome cohesion during interphase (Fry et al.,1998). At the onset of mitosis, when centrosomes separate to form the bipolar spindle, C-Nap1 dissociates (Mayor et al., 2000). Dissociation of C-Nap1 from mitotic centrosomes appears to be regulated by phosphorylation (Mayor et al. 2002).
R-HSA-380303 (Reactome) Mitotic activation of Plk1 is required for efficient displacement of Nlp from the centrosome (Casenghi et al., 2003).
R-HSA-380311 (Reactome) Plk1 is associated with the centrosomes early in mitosis (Golsteyn et al. 1995). Plk1 activity is necessary for the maturation of centrosomes at the G2/M transition and the establishment of a bipolar spindle (Lane and Nigg 1996). Specific inhibitors against Plk1 or silencing of Plk1 produce a monopolar mitotic apparatus (Sumara et al, 2004, van Vugt et al, 2004, McInnes et al, 2006, Peters et al, 2006, Lénárt et al, 2007).
R-HSA-380455 (Reactome) CDK11p58 is a kinase that is active during mitosis when it associates with centrosomes, and has a crucial role in centrosome maturation and bipolar spindle formation (Petretti et al., 2006). CDK11p58 facilitates microtubule nucleation and is required for the recruitment of Aurora and Plk1 to the centrosome (Petretti et al., 2006).
R-HSA-4086410 (Reactome) CDK1 phosphorylates both human and Drosophila BORA protein (Hutterer et al. 2006) on an evolutionarily conserved serine residue - S252 in human BORA (Chan et al. 2008), providing a docking site for PLK1.
R-HSA-4088024 (Reactome) In the G2 phase of the cell cycle, cyclin A (CCNA) and B (CCNB)-dependent kinases CDK1 and CDK2 phosphorylate FOXM1 transcription factor, increasing its transcriptional activity. Threonine residue T611 (corresponds to T596 in FOXM1B isoform) was shown to be phosphorylated by both CCNA:CDK1/2 and CCNB:CDK1 complexes and its functional relevance is best establshed (Major et al. 2004, Laoukili et al. 2008, Fu et al. 2008). CCNA:CDK1/2 may also phosphorylate FOXM1 on T600 (Laoukili et al. 2008), while CCNB:CDK1 may phosphorylate it on S693 (S678 in FOXM1B isoform) (Fu et al. 2008). The phosphorylation of FOXM1 threonine residue T611 relieves the N-terminal domain-mediated autoinhibition of FOXM1 transcriptional activity (Laoukili et al. 2008), likely enabling interaction with transcriptional co-activators (Major et al. 2004), and creates a docking site for the Polo-box domain (PBD) of PLK1 (Fu et al. 2008).
R-HSA-4088130 (Reactome) PLK1 polo-box domain (PBD) binds a consensus sequence S-pS/pT-P/X in the transactivation domain (TAD) of FOXM1 after the threonine T611 (T596 in FOXM1B isoform) in this sequence is phosphorylated by cyclin-dependent kinase(s). PLK1 may also bind to another consensus site in the TAD of FOXM1, which involves CDK-phosphorylated serine S693 (S678 in FOXM1B isoform) (Fu et al. 2008).
R-HSA-4088134 (Reactome) PLK1 phosphorylates FOXM1 on serine residues S730 and S739 (S715 and S724 in FOXM1B isoform) in the C-terminal transactivation domain (TAD). PLK1-mediated phosphorylation of FOXM1 upregulates FOXM1 transcriptional activity and is crucial for FOXM1 function at G2/M transition (Fu et al. 2008).
R-HSA-4088141 (Reactome) FOXM1 can bind the regulatory subunit B55-alpha (PPP2R2A) of serine/threonine-protein phosphatase 2A (PP2A). PP2A dephosphorylates FOXM1, preventing its premature activation (Alvarez-Fernandez et al. 2011).
R-HSA-4088152 (Reactome) Binding of phosphorylated FOXM1 to CDC25A promoter stimulates CDC25A transcription (Sullivan et al. 2012).
R-HSA-4088162 (Reactome) Phosphorylated FOXM1 transcription factor binds the promoter of CDC25A gene and also recruits EP300 (p300) transcriptional coactivator to the promoter (Sullivan et al. 2012). While FOXM1 DNA binding may not depend on phosphorylation, the phosphorylation of the threonine residue T611 (T596 in FOXM1B isoform) is necessary for EP300 recruitment (Major et al. 2004).
R-HSA-4088298 (Reactome) FOXM1 bound to the MuvB complex (consisting of LIN9, LIN37, LIN52, LIN54 and RBBP4) and MYBL2 (B-MYB) stimulates CCNB1 (cyclin B1) transcription (Laoukili et al. 2005, Sadasivam et al. 2012).
R-HSA-4088299 (Reactome) FOXM1, bound to the MuvB complex (consisting of LIN9, LIN37, LIN52, LIN54 and RBBP4) and MYBL2 (B-MYB), stimulates CCNB2 (cyclin B2) transcription (Chen et al. 2013).
R-HSA-4088305 (Reactome) FOXM1 bound to the MuvB complex (consisting of LIN9, LIN37, LIN52, LIN54 and RBBP4) and MYBL2 (B-MYB) stimulates PLK1 transcription. This creates a positive feedback loop, where PLK1 phosphorylates and activates FOXM1 (Fu et al. 2008), while FOXM1 transcriptional activity results in increased PLK1 levels. MuvB and FOXM1 may persist on the PLK1 promoter throughout G2, while MYBL2 may gradually dissociate from the PLK1 promoter due to proteasome-mediated degradation initiated when MYBL2 is phosphorylated by CCNA (cyclin A)-associated CDKs (Sadasivam et al. 2012).
R-HSA-4088306 (Reactome) MuvB complex, consisting of LIN9, LIN37, LIN52, LIN54 and RBBP4, together with MYBL2 (B-MYB), recruits FOXM1 to CHR (cell cycle genes homology regions) motifs in the promoter of PLK1 gene (Sadasivam et al. 2012, Chen et al. 2013).
R-HSA-4088307 (Reactome) The MuvB complex (consisting of LIN9, LIN37, LIN52, LIN54 and RBBP4), together with MYBL2 (B-MYB), recruits FOXM1 to CHR motifs in the promoter of the CCNB1 (cyclin B1) gene (Sadasivam et al. 2012, Chen et al. 2013).
R-HSA-4088309 (Reactome) MuvB complex (consisting of LIN9, LIN37, LIN52, LIN54 and RBBP4), together with MYBL2 (B-MYB) recruits FOMX1 to the CCNB2 (cyclin B2) promoter (Chen et al. 2013).
R-HSA-4088439 (Reactome) FOXM1, possibly in cooperation with other transcription factors, binds the promoter of the CENPF gene (Laoukili et al. 2005).
R-HSA-4088441 (Reactome) FOXM1 stimulates the transcription of the kinetochore protein CENPF. FOXM1-depleted cells have reduced CENPF levels, leading to the misalignment of mitotic chromosomes (Laoukili et al. 2005).
R-HSA-69754 (Reactome) At the beginning of this reaction, 1 molecule of 'ATP', and 1 molecule of 'G2/M transition protein' are present. At the end of this reaction, 1 molecule of 'ADP', and 1 molecule of 'phospho-G2/M transition protein' are present.

This reaction takes place in the 'nucleoplasm' and is mediated by the 'cyclin-dependent protein kinase activity' of 'Cyclin A1:Cdc2' (Liu et al. 2000).

R-HSA-69756 (Reactome) At the beginning of this reaction, 1 molecule of 'ATP', and 1 molecule of 'G2/M transition protein' are present. At the end of this reaction, 1 molecule of 'ADP', and 1 molecule of 'phospho-G2/M transition protein' are present.

This reaction takes place in the 'nucleoplasm' and is mediated by the 'cyclin-dependent protein kinase activity' of 'Cyclin A2:Cdc2'.

R-HSA-8852280 (Reactome) In interphase cells, GTSE1 localizes to the microtubule lattice, probably due to direct binding to tubulin (Scolz et al. 2012).
R-HSA-8852298 (Reactome) During interphase, GTSE1 localizes to the growing plus-end tip of microtubules by binding to the microtubule plus end protein MAPRE1 (EB1). This interaction involves two SKIP-like EB1-interaction motifs of GTSE1 and the C-terminal EB-homology (EBH) domain of MAPRE1. The interaction between GTSE1 and MAPRE1 is evolutionarily conserved. The interaction between GTSE1 and MAPRE1 at growing microtubule plus ends promotes cell migration, likely through microtubule-induced disassembly of focal adhesions. GTSE1 expression levels in G1 phase correlate with invasiveness of breast cancer cell lines (Scolz et al. 2012).
R-HSA-8852306 (Reactome) Starting in mitotic prometaphase, GTSE1 becomes phosphorylated at threonine residues T513 and T526 (and possibly other sites), located adjacent to the two SKIP-like motifs involved in binding to MAPRE1 (EB1). Mitotic phosphorylation of GTSE1 inhibits its association with microtubule plus ends. CDK1 activity inhibits the association of recombinant human GTSE1 with microtubule plus ends in Xenopus extracts, but it is not certain whether CDK1 or another mitotic kinase phosphorylates GTSE1 (Scolz et al. 2012).
R-HSA-8852317 (Reactome) Activated PLK1 phosphorylates GTSE1 on serine residue S435, located in immediate vicinity of the GTSE1 nuclear localization signal (NLS) R431RR433 (Arg431Arg432Arg433). PLK1-mediated phosphorylation promotes GTSE1 nuclear translocation, possibly by exposing the NLS of GTSE1 to the nuclear import machinery. PLK1 can also phosphorylate human GTSE1 on serine residue S233. S233 is not evolutionarily conserved and is therefore not shown (Liu et al. 2010).
R-HSA-8852324 (Reactome) GTSE1 binds PLK1. The two proteins co-localize on centrosomes from G2 phase to prophase, but not after metaphase (Liu et al. 2010).
R-HSA-8852331 (Reactome) PLK1-mediated phosphorylation of GTSE1 is needed for nuclear accumulation of GTSE1, probably because it exposes the nuclear localization signal (NLS) of GTSE1 to the nuclear import machinery. Nuclear localization of GTSE1 is not needed for normal G2 phase progression, but is needed for the G2 checkpoint recovery (cell cycle re-entry after G2 checkpoint arrest) (Liu et al. 2010).
R-HSA-8852337 (Reactome) Since MDM2-mediated ubiquitination of TP53 promotes translocation of TP53 to the cytosol, and since GTSE1-facilitated translocation of TP53 to the cytosol depends on the functional MDM2 (with no reported interaction between GTSE1 and MDM2) (Monte et al. 2004), it is plausible that GTSE1 binds to TP53 polyubiquitinated by MDM2. The interaction between TP53 and GTSE1 involves the C-terminal regulatory domain of TP53 and the C-terminus of GTSE1 (Monte et al. 2003).
R-HSA-8852351 (Reactome) Binding of GTSE1 to TP53 (p53) in the nucleus promotes translocation of TP53 to the cytosol. This process is dependent on the nuclear export signal (NES) of GTSE1 (Monte et al. 2004).
R-HSA-8852354 (Reactome) GTSE1 promotes down-regulation of TP53 in a proteasome-dependent way. Nuclear export of TP53 facilitated by GTSE1 and MDM2likely makes ubiquitinated TP53 available to the proteasome machinery. GTSE1-mediated decrease of TP53 levels is needed for the G2 checkpoint recovery (cell cycle re-entry after DNA damage induced G2 arrest) and rescues cells from DNA damage induced apoptosis during S/G2 phase (Monte et al. 2003, Monte et al. 2004).
R-HSA-8852362 (Reactome) Stabilization of the newly synthesized protein product of the CDKN1A (p21) gene, a CDK inhibitor and a TP53 (p53) transcriptional target, requires binding of CDKN1A to FKBPL (WISp39). FKBPL simultaneously interacts with CDKN1A and a chaperone protein HSP90, forming a ternary complex (Jascur et al. 2005). GTSE1 was identified as another component of the complex of CDKN1A, FKBPL and HSP90. GTSE1 directly interacts with CDKN1A and FKBPL and contributes to CDKN1A stabilization (Bublik et al. 2010). Increased CDKN1A levels delay G2/M onset and rescue cells from G2 checkpoint-induced apoptosis, thus causing resistance to taxol induced cytotoxicity (Yu et al. 1998, Bublik et al. 2010).
R-HSA-8853405 (Reactome) TPX2 binds to aurora kinase A (AURKA) at centrosomes. The first 43 amino acids at the N-terminus of TPX2 are needed for binding to AURKA (Bayliss et al. 2003). HMMR (RHAMM) binds to TPX2 (Groen et al. 2004, Maxwell et al. 2005) and is involved in the proper localization of TPX2 to centrosomes and TPX2-mediated AURKA activation (Chen et al. 2014, Scrofani et al. 2015).

TPX2 binding to Aurora A protects premature AURKA degradation by APC/C-mediated proteolysis during early mitosis. TPX2 differentially regulates AURKA stability, activity and localization. While amino acids 1-43 in TPX2 facilitate complex formation between AURKA and TPX2 and promote kinase activation, they are insufficient for AURKA targeting to the mitotic spindle (Giubettini et al. 2011).

R-HSA-8853419 (Reactome) TPX2 promotes aurora kinase A (AURKA) activation via autophosphorylation of AURKA on threonine residue T288. Continuous association of TPX2 with AURKA facilitates active state conformation of AURKA and may prevent inactivation of AURKA by protein phosphatases (Bayliss et al. 2003).

Molecular dynamic simulations suggest the existence of two TPX2-dependent switches for Aurora A activation. 1) TPX2 binding to Aurora A forces lysine residue K143 of AURKA into an “open� state, which pulls ADP out of the ATP binding site in AURKA to promote kinase activation. 2) Arginine residue R180 of AURKA undergoes a “closed� movement upon TPX2 binding, thus capturing phosphorylated threonine T288 of AURKA into a buried position and locking AURKA in its active conformation. The existence of two TPX2-dependent switches in AURKA activation was further verified by the analysis of two AURKA mutants (K143A and R180A) (Xu et al. 2011).AURKA activation is enabled through phosphorylation and TPX2 binding; these two activating switches act synergistically and withough a predefined order (Dodson and Bayliss 2012).

R-HSA-8853429 (Reactome) Aurora kinase A binds PHLDA1 (TDAG51) and the two proteins co-localize in the cytosol (Johnson et al. 2011). Although phosphorylation of AURKA at threonine residue T288 within the catalytic loop of AURKA is needed for AURKA kinase activity (Walter et al. 2000), AURKA phosphorylation has not been specifically examined in the context of AURKA interaction with PHLDA1 and AURKA is therefore shown as unphosphorylated.
R-HSA-8853444 (Reactome) Aurora kinase A (AURKA) phosphorylates PHLDA1 on serine residue S95. This residue is conserved in mouse and matches S98 in the recombinant mouse protein used for identification of the AURKA target site in PHLDA1. Although phosphorylation of AURKA on threonine residue T288 within the catalytic loop is needed for AURKA kinase activity (Walter et al. 2000), AURKA phosphorylation has not been specifically examined in the context of PHLDA1 phosphorylation and AURKA is therefore shown as unphosphorylated. AURKA-mediated phosphorylation promotes PHLDA1 ubiquitination by an unknown ubiquitin ligase, which triggers degradation of PHLDA1 and may contribute to the oncogenic role of AURKA in breast cancer. Unphosphorylated PHLDA1 contributes to AURKA ubiquitination and degradation but the identity of the ubiquitin ligase and cell cycle timing have not been determined (Johnson et al. 2011).

PHLDA1 is implicated as both a tumor suppressor and an oncogene. As a putative tumor suppressor, PHLDA1 may act by promoting cell death (Park et al. 1996, Neef et al. 2002, Hossain et al. 2003, Hayashida et al. 2006, Oberst et al. 2008) or inhibiting protein synthesis (Hinz et al. 2001). Higher levels of PHLDA1 in ERBB2 (HER2) positive breast tumors correlate with increased sensitivity to ERBB2 inhibitor, lapatinib (Li et al. 2014).

In estrogen receptor positive tumors, higher levels of PHLDA1 correlate with increased risk of cancer recurrence and distant metastases after hormone therapy, which may depend on the concomitant up-regulation of the NF-kappa B (NFKB) complex activity (Kastrati et al. 2015).

PHLDA1 has also been reported as a mediator of anti-apoptotic effect of IGF1 (Toyoshima et al. 2004). These studies suggest that PHLDA1 may have an oncogenic role in some settings.

Regulation of PHLDA1 expression has not been fully elucidated. PHLDA1 transcription may be directly stimulated by the activated estrogen receptor (Marchiori et al. 2008, Kastrati et al. 2015), possibly in cooperation with the NFKB complex (Kastrati et al. 2015). Indirectly, downregulation of microRNAs miR-181a and miR-181b in an estrogen and NFKB-dependent manner, increases stability of the PHLDA1 mRNA (Kastrati et al. 2015). Activation of ERK1 (MAPK3) or ERK2 (MAPK1) in response to ERBB2 or EGFR activation may also be involved in PHLDA1 up-regulation, possibly through a route that also involves JAK2 and STAT3 (Oberst et al. 2008, Li et al. 2014, Lyu et al. 2016). PHLDA1 may also be up-regulated in response to cellular stress such as heat shock (Hayashida et al. 2006), endoplasmic reticulum stress (Hossain et al. 2003) and oxidative stress (Park et al. 2013).

R-HSA-8853496 (Reactome) FBXL7, a component of the SCF E3 ubiquitin ligase complex, associates with aurora kinase A (AURKA) during mitosis (Coon et al. 2012).
R-HSA-8854041 (Reactome) The SCF-FBXL7 E3 ubiquitin ligase complex, composed of SKP1, CUL1, RBX1 and FBXL7, ubiquitinates aurora kinase A (AURKA), targeting it for degradation (Coon et al. 2012).
R-HSA-8854044 (Reactome) Upon ubiquitination by the SCF-FBXL7 E3 ubiquitin ligase complex, aurora kinase A (AURKA) is degraded by the proteasome (Coon et al. 2012).
R-HSA-8854051 (Reactome) FBXL18, a substrate recognition subunit of the SCF E3 ubiquitin ligase complex can bind to the FQ motif of FBXL7. The E3 ubiquitin ligase complex SCF-FBXL18 (SKP1:CUL1:RBX1:FBXL18) polyubiquitinates FBXL7 on lysine residue K109, targeting it for proteasome-mediated degradation (Liu et al. 2015).
R-HSA-8854052 (Reactome) FBXL7 associates with SKP1, CUL1 and RBX1 to form the SCF E3 ubiquitin ligase complex (Coon et al. 2011).
R-HSA-8854071 (Reactome) FBXL7, polyubiquitinated by the FBXL18-containing SCF complex, is degraded by the proteasome (Liu et al. 2015).
R-HSA-8856945 (Reactome) Reversible methylation of the PP2A C subunit is a highly conserved and essential regulatory mechanism (Lee et al. 1996). Methylation of the carboxy-termius of PP2A C enhances the affinity of the PP2A core enzyme for some regulatory subunits (Xing et al. 2008). Changes in PP2A methylation appear to regulate formation of PP2A complexes and alter the specificity of PP2A phosphatase activity (Mumby 2001). Blockade of PP2A methylation in yeast causes a set of phenotypes that are consistent with decreased formation of PP2A holoenzymes (Wu et al. 2000). Reversible methylation of PP2A is catalyzed by two highly conserved enzymes, a 38 kDa leucine carboxyl methyltransferase (LCMT1) (De Baere et al. 1999, Lee & Stock 1993) and a 42 kDa methylesterase (PPME1) (Lee et al. 1996, Ogris et al. 1999). PP2A carboxy-methylation by LCMT1 requires an active PP2A conformation and is significantly facilitated by the PP2A scaffold (or A) subunit (Stanevich et al. 2011, Stanevich et al. 2014). LCMT1 also methylates the PP2A-like phosphatases PP4 and PP6 (Hwang et al. 2016). PPME1 catalyzes removal of the methyl group, thus reversing the activity of LCMT1 (Lee et al. 1996). Overexpression of yeast PPME caused phenotypes similar to those associated with loss of the methyltransferase gene (Wu et al. 2000).

Methylation and demethylation are spatially separated within mammalian cells, as the majority of LCMT1 is cytoplasmic and PPME1 predominantly localizes in the nucleus (Longin et al. 2008). In mammalian cells, LCMT1 knockdown results in apoptotic cell death (Longin et al. 2007). In mice, LCMT1 or PPME1 knockout are lethal (Lee & Pallas 2007, Ortega-Gutiérrez et al. 2008). Methylation levels of PP2A change during the cell cycle, suggesting a critical role of methylation in cell-cycle regulation (Turowski et al. 1995, Lee & Pallas 2007). Regulation of PP2A methylation by LCMT1 and PPME1 plays a critical role in differentiation of neuroblastoma cells (Sontag et al. 2010). Decreased PP2A methylation in Alzheimer’s and Parkinson’s disease patients contributes to PP2A inactivation and increased phosphorylation of tau and alpha-synuclein (Sontag & Sontag 2014, Park et al. 2016). PPME1 may also inhibit PP2A by sequestration (Longin et al. 2004) and/or by evicting catalytic metal ions from the PP2A active site (Xing et al. 2008). As such, increased PPME1 expression suppresses PP2A tumor suppressive function and promotes oncogenic MAPK/ERK and AKT pathway activities in various cancer types (Kaur & Westermarck 2016). PPME1 may also protect PP2A from ubiquitin/proteasome degradation (Yabe et al. 2015).
R-HSA-8856951 (Reactome) The reversible methylation of the PP2A C subunit is a highly conserved and essential regulatory mechanism (Lee et al. 1996). Methylation of the carboxy-termius of PP2A C enhances the affinity of the PP2A core enzyme for some regulatory subunits (Xing et al. 2008). Changes in PP2A methylation appear to regulate formation of PP2A complexes and alter the specificity of PP2A phosphatase activity (Mumby 2001). Blockade of PP2A methylation in yeast causes a set of phenotypes that are consistent with decreased formation of PP2A holoenzymes (Wu et al. 2000). Reversible methylation of PP2A is catalyzed by two highly conserved enzymes, a 38 kDa leucine carboxyl methyltransferase (LCMT1) (De Baere et al. 1999, Lee & Stock 1993) and a 42 kDa methylesterase (PPME1) (Lee et al. 1996, Ogris et al. 1999). PP2A carboxy-methylation by LCMT1 requires an active PP2A conformation and is significantly facilitated by the PP2A scaffold (or A) subunit (Stanevich et al. 2011, Stanevich et al. 2014). LCMT1 also methylates the PP2A-like phosphatases PP4 and PP6 (Hwang et al. 2016). PPME1 catalyzes removal of the methyl group, thus reversing the activity of LCMT1 (Lee et al. 1996). Overexpression of yeast PPME caused phenotypes similar to those associated with loss of the methyltransferase gene (Wu et al. 2000).

Methylation and demethylation are spatially separated within mammalian cells, as the majority of LCMT1 is cytoplasmic and PPME1 predominantly localizes in the nucleus (Longin et al. 2008). In mammalian cells, LCMT1 knockdown results in apoptotic cell death (Longin et al. 2007). In mice, LCMT1 or PPME1 knockout are lethal (Lee & Pallas 2007, Ortega-Gutiérrez et al. 2008). Methylation levels of PP2A change during the cell cycle, suggesting a critical role of methylation in cell-cycle regulation (Turowski et al. 1995, Lee & Pallas 2007). Regulation of PP2A methylation by LCMT1 and PPME1 plays a critical role in differentiation of neuroblastoma cells (Sontag et al. 2010). Decreased PP2A methylation in Alzheimer’s and Parkinson’s disease patients contributes to PP2A inactivation and increased phosphorylation of tau and alpha-synuclein (Sontag & Sontag 2014, Park et al. 2016). PPME1 may also inhibit PP2A by sequestration (Longin et al. 2004) and/or by evicting catalytic metal ions from the PP2A active site (Xing et al. 2008). As such, increased PPME1 expression suppresses PP2A tumor suppressive function and promotes oncogenic MAPK/ERK and AKT pathway activities in various cancer types (Kaur & Westermarck 2016). PPME1 may also protect PP2A from ubiquitin/proteasome degradation (Yabe et al. 2015).
RAB8A:GTPArrowR-HSA-2562526 (Reactome)
RBX1R-HSA-8854052 (Reactome)
SCF-FBXL7:AURKAArrowR-HSA-8853496 (Reactome)
SCF-FBXL7:AURKAR-HSA-8854041 (Reactome)
SCF-FBXL7:AURKAmim-catalysisR-HSA-8854041 (Reactome)
SCF-FBXL7:PolyUb-AURKAArrowR-HSA-8854041 (Reactome)
SCF-FBXL7:PolyUb-AURKAR-HSA-8854044 (Reactome)
SKP1:CUL1:RBX1:FBXL18mim-catalysisR-HSA-8854051 (Reactome)
SKP1:CUL1:RBX1:FBXL7ArrowR-HSA-8854044 (Reactome)
SKP1:CUL1:RBX1:FBXL7ArrowR-HSA-8854052 (Reactome)
SKP1:CUL1:RBX1:FBXL7R-HSA-8853496 (Reactome)
SKP1R-HSA-8854052 (Reactome)
TPX2R-HSA-8853405 (Reactome)
Ub-p-S252,S497,T501-BORAArrowR-HSA-3000335 (Reactome)
UbArrowR-HSA-8852354 (Reactome)
UbArrowR-HSA-8854044 (Reactome)
UbArrowR-HSA-8854071 (Reactome)
UbR-HSA-3000335 (Reactome)
UbR-HSA-8854041 (Reactome)
UbR-HSA-8854051 (Reactome)
WEE1R-HSA-156699 (Reactome)
WEE1mim-catalysisR-HSA-170070 (Reactome)
WEE1mim-catalysisR-HSA-170156 (Reactome)
XPO1ArrowR-HSA-170072 (Reactome)
cNAP-1 depleted centrosomeArrowR-HSA-380294 (Reactome)
centrosome

containing

phosphorylated Nlp
ArrowR-HSA-380272 (Reactome)
centrosome

containing

phosphorylated Nlp
R-HSA-380303 (Reactome)
centrosomeR-HSA-380272 (Reactome)
centrosomeR-HSA-380283 (Reactome)
centrosomeR-HSA-380294 (Reactome)
centrosomeR-HSA-380311 (Reactome)
centrosomeR-HSA-380455 (Reactome)
cytoplasmic Cyclin B1:Cdc2 complexesR-HSA-170044 (Reactome)
gamma-tubulin complexR-HSA-380283 (Reactome)
methanolArrowR-HSA-8856951 (Reactome)
nuclear Cyclin B1:Cdc2 complexesArrowR-HSA-170044 (Reactome)
p-CDK1/2:CCNA/p-T161-CDK1:CCNB1mim-catalysisR-HSA-4088024 (Reactome)
p-NINLArrowR-HSA-380303 (Reactome)
p-PKMYT1ArrowR-HSA-162657 (Reactome)
p-S-AJUBAArrowR-HSA-2574840 (Reactome)
p-S177-OPTNArrowR-HSA-2562526 (Reactome)
p-S177-OPTNArrowR-HSA-2562594 (Reactome)
p-S177-OPTNArrowR-HSA-3002811 (Reactome)
p-S177-OPTNR-HSA-2562594 (Reactome)
p-S198-CDC25CArrowR-HSA-156678 (Reactome)
p-S198-CDC25CArrowR-HSA-170149 (Reactome)
p-S198-CDC25CR-HSA-170149 (Reactome)
p-S252,S497,T501-BORA:SCF-beta-TrCp1/2ArrowR-HSA-3000339 (Reactome)
p-S252,S497,T501-BORA:SCF-beta-TrCp1/2R-HSA-3000335 (Reactome)
p-S252,S497,T501-BORA:SCF-beta-TrCp1/2mim-catalysisR-HSA-3000335 (Reactome)
p-S252,S497,T501-BORAArrowR-HSA-3000327 (Reactome)
p-S252,S497,T501-BORAR-HSA-3000339 (Reactome)
p-S252-BORA:p-T210-PLK1ArrowR-HSA-3000310 (Reactome)
p-S252-BORA:p-T210-PLK1R-HSA-3000327 (Reactome)
p-S252-BORA:p-T210-PLK1mim-catalysisR-HSA-3000327 (Reactome)
p-S252-BORAArrowR-HSA-4086410 (Reactome)
p-S252-BORAR-HSA-3000319 (Reactome)
p-S435-GTSE1:PolyUb-TP53 TetramerArrowR-HSA-8852337 (Reactome)
p-S435-GTSE1:PolyUb-TP53 TetramerArrowR-HSA-8852351 (Reactome)
p-S435-GTSE1:PolyUb-TP53 TetramerR-HSA-8852351 (Reactome)
p-S435-GTSE1:PolyUb-TP53 TetramerR-HSA-8852354 (Reactome)
p-S435-GTSE1ArrowR-HSA-8852317 (Reactome)
p-S435-GTSE1ArrowR-HSA-8852331 (Reactome)
p-S435-GTSE1ArrowR-HSA-8852354 (Reactome)
p-S435-GTSE1R-HSA-8852331 (Reactome)
p-S435-GTSE1R-HSA-8852337 (Reactome)
p-S53-WEE1ArrowR-HSA-156699 (Reactome)
p-S95-PHLDA1ArrowR-HSA-8853444 (Reactome)
p-T210-PLK1ArrowR-HSA-3000327 (Reactome)
p-T210-PLK1ArrowR-HSA-3002798 (Reactome)
p-T210-PLK1ArrowR-HSA-4088134 (Reactome)
p-T210-PLK1ArrowR-HSA-8852317 (Reactome)
p-T210-PLK1R-HSA-3002798 (Reactome)
p-T210-PLK1R-HSA-3002811 (Reactome)
p-T210-PLK1R-HSA-4088130 (Reactome)
p-T210-PLK1R-HSA-8852324 (Reactome)
p-T210-PLK1mim-catalysisR-HSA-156678 (Reactome)
p-T210-PLK1mim-catalysisR-HSA-156699 (Reactome)
p-T210-PLK1mim-catalysisR-HSA-162657 (Reactome)
p-T210-PLK1mim-catalysisR-HSA-2562526 (Reactome)
p-T210-PLK1mim-catalysisR-HSA-380272 (Reactome)
p-T513,T526-GTSE1ArrowR-HSA-8852306 (Reactome)
p-T611,S730,S739-FOXM1:CENPF GeneArrowR-HSA-4088439 (Reactome)
p-T611,S730,S739-FOXM1:CENPF GeneArrowR-HSA-4088441 (Reactome)
p-T611,S730,S739-FOXM1:EP300:CDC25A GeneArrowR-HSA-4088152 (Reactome)
p-T611,S730,S739-FOXM1:EP300:CDC25A GeneArrowR-HSA-4088162 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB1 GeneArrowR-HSA-4088298 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB1 GeneArrowR-HSA-4088307 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB2 GeneArrowR-HSA-4088299 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB2 GeneArrowR-HSA-4088309 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:PLK1 GeneArrowR-HSA-4088305 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:PLK1 GeneArrowR-HSA-4088306 (Reactome)
p-T611,S730,S739-FOXM1ArrowR-HSA-4088134 (Reactome)
p-T611,S730,S739-FOXM1R-HSA-4088162 (Reactome)
p-T611,S730,S739-FOXM1R-HSA-4088306 (Reactome)
p-T611,S730,S739-FOXM1R-HSA-4088307 (Reactome)
p-T611,S730,S739-FOXM1R-HSA-4088309 (Reactome)
p-T611,S730,S739-FOXM1R-HSA-4088439 (Reactome)
p-T611-FOXM1:p-T210-PLK1ArrowR-HSA-4088130 (Reactome)
p-T611-FOXM1:p-T210-PLK1R-HSA-4088134 (Reactome)
p-T611-FOXM1:p-T210-PLK1mim-catalysisR-HSA-4088134 (Reactome)
p-T611-FOXM1ArrowR-HSA-4088024 (Reactome)
p-T611-FOXM1R-HSA-4088130 (Reactome)
p-T611-FOXM1R-HSA-4088141 (Reactome)
phospho-Cyclin B1(CRS):phospho-Cdc2 (Thr 161)ArrowR-HSA-170131 (Reactome)
phospho-G2/M transition proteinArrowR-HSA-69756 (Reactome)
phospho-cyclin B1(CRS):phosph-Cdc2(Thr 161)R-HSA-170131 (Reactome)
Personal tools