Eukaryotic translation elongation (Homo sapiens)

From WikiPathways

Revision as of 11:07, 18 November 2015 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
153cytosolRPL3L RPS20 RPL10A RPS5 RPL35A RPL10A RPL26L1 RPS4Y1 RPS3A RPLP0 RPL17 RPL23A RPS4Y1 RPS19 RPL17 RPS4X 5S rRNA RPS11 RPL23A RPLP1 RPS28 RPL24 RPL28 RPL37A RPS14 RPS16 RPS15A RPL35 Ile-tRNA(Ile) RPL26L1 RPL36A RPL23A RPL27 RPL18 RPL3L FAU RPL19 RPL24 RPLP0 5S rRNA Cys-tRNA(Cys) 80S:Met-tRNAi:mRNARPL7A RPS13 RPS23 RPS15 RPL4 Val-tRNA(Val) RPS14 Trp-tRNA(Trp) RPL23A RPS25 28S rRNA Tyr-tRNA(Tyr) RPL15 RPS17 RPL27A 18S rRNA Gln-tRNA(Gln) RPS9 28S rRNA RPL7A RPL6 RPS15A RPS26 RPL23 28S rRNA RPL7 RPL31 RPL7 Asp-tRNA(Asp) RPS17 5.8S rRNA RPS20 RPLP2 RPL14 RPL30 RPL12 RPS4Y1 RPS13 RPS24 RPL28 RPL18A 18S rRNA GDP RPL27 RPS16 GTP RPLP0 5.8S rRNA RPL28 RPL29 RPS24 RPLP1 RPS23 RPS29 eEF1A:GDPRPL19 RPS12 Lys-tRNA(Lys) RPS21 RPL32 GTPRPL9 RPS8 RPS5 RPL32 RPS12 Ile-tRNA(Ile) EEF1A1P5 RPS26 5S rRNA 18S rRNA eEF2:GTPRPL11 RPS19 Ile-tRNA(Ile) RPS3A RPL23 RPS28 RPL7A RPS21 RPL18 RPS24 RPL38 RPSA RPS15A Asp-tRNA(Asp) RPL27 RPL13A RPS13 Phe-tRNA(Phe) RPS2 RPL18 RPL41 RPL36 RPL41 EEF1D 5.8S rRNA RPL14 RPL18 RPL27A RPS13 RPL26L1 RPLP1 Met-tRNAi RPS9 RPS15 RPL3 RPS27 RPL10A RPL34 EEF1GLys-tRNA(Lys) RPS13 RPL18A RPL27A Phe-tRNA(Phe) RPS12 RPL10 Leu-tRNA(Leu) RPL36A RPL36A RPS21 RPL11 5.8S rRNA RPL7A EEF1A1 RPL38 EEF2 RPL36 RPS15A RPL19 RPL4 RPL11 RPL13A RPL26 RPL27 Thr-tRNA(Thr) Met-tRNAi RPS2 RPL21 RPS8 RPS14 RPL11 RPS23 RPL8 RPL27A RPL36A EEF1A1eEF1A:GTPPhe-tRNA(Phe) RPL36 Asn-tRNA(Asn) RPL36A RPL35 RPL38 RPS21 Lys-tRNA(Lys) PiRPL35A RPL10 Gly-tRNA(Gly) 5.8S rRNA RPL10A RPL12 RPL21 RPL34 RPL27A RPS27A(77-156) RPL37 RPS10 Ala-tRNA(Ala) RPS5 RPS2 Met-tRNA(Met) Ala-tRNA(Ala) RPL35 Gly-tRNA(Gly) RPSA RPL10 Val-tRNA(Val) RPLP0 RPS24 RPS14 RPL36 RPS17 RPS2 RPL6 RPL5 5.8S rRNA Gln-tRNA(Gln) RPS15A Thr-tRNA(Thr) RPS27A(77-156) RPS16 RPL37A RPL5 RPL6 RPL29 RPL37 RPL32 RPS16 RPL5 GTP 80SRibosome:mRNA:peptidyl-tRNA with elongating peptideRPL4 RPS24 RPL26 RPL14 RPS23 RPL24 RPS14 EEF1A2 RPL40 RPL29 RPL30 RPL13 RPSA RPS18 RPS18 Elongation complexwith growingpeptide chainRPL18A RPS15 RPS25 RPS6 RPL15 RPL22 RPL15 EEF1A1-like proteinsGTPRPL41 80S:aminoacyltRNA:mRNA:eEF1A:GTPRPL40 RPL27 RPL15 RPL34 RPLP1 RPL36A RPL24 RPL10 RPL36 RPS3 RPL14 RPL18 RPS16 Aminoacyl-tRNARPS25 RPS2 Trp-tRNA(Trp) RPL26L1 RPL29 RPLP2 RPS21 RPL26 RPS19 RPL8 RPS5 RPS3 RPS20 RPL29 RPL39 RPS3A Glu-tRNA(Glu) RPL37A Met-tRNAi RPL9 RPS7 Ser-tRNA(Ser) His-tRNA(His) Cys-tRNA(Cys) RPLP2 RPL9 His-tRNA(His) RPLP0 Tyr-tRNA(Tyr) Glu-tRNA(Glu) RPS12 RPL3 Ile-tRNA(Ile) RPLP2 RPL35A EEF1DRPL18A RPL28 RPS18 RPS17 RPS15A RPLP2 RPSA RPL5 RPL5 RPS4Y1 RPS19 RPS4X 5S rRNA RPS17 RPL13A RPL15 RPL34 eEF1A:GTP:aminoacyl-tRNA complexRPS17 peptidyl-tRNA with elongated peptide RPS18 RPS3 RPL7A RPL32 Trp-tRNA(Trp) RPL21 RPL3L RPS9 Ser-tRNA(Ser) RPS11 RPL3 RPL4 RPS15 FAU Met-tRNA(Met) Val-tRNA(Val) RPL31 RPL7 RPL26L1 Ceruloplasmin mRNA RPS27 Gln-tRNA(Gln) EEF2RPL3 Trp-tRNA(Trp) RPS15 Pro-tRNA(Pro) RPS7 RPS29 RPL23 RPL8 RPLP1 Arg-tRNA(Arg) RPS29 GDP RPL14 RPL39 RPLP2 Cys-tRNA(Cys) RPL12 RPLP1 RPL10A Tyr-tRNA(Tyr) RPS11 RPL34 RPL23 Asp-tRNA(Asp) RPL41 RPL12 RPL22 RPL37A Thr-tRNA(Thr) RPL32 RPS28 RPS11 RPS27 RPL11 RPL13 RPS13 RPS23 RPSA RPS9 RPS15 Asn-tRNA(Asn) Leu-tRNA(Leu) Met-tRNA(Met) RPS24 RPL39 RPL18A Glu-tRNA(Glu) RPS12 RPL6 Cys-tRNA(Cys) RPS27A(77-156) FAU FAU Ceruloplasmin mRNA RPS28 RPL37 RPL30 RPL40 Arg-tRNA(Arg) RPL31 Ala-tRNA(Ala) RPS28 EEF1A1 RPL7 18S rRNA RPL13 RPL13 RPL37 RPS14 RPL27A RPL15 eEF1B complexRPL3L Asn-tRNA(Asn) RPS6 RPL10A RPL23 RPL23A RPL37A RPS5 28S rRNA Asn-tRNA(Asn) RPL18 RPL39 RPS9 RPL7 RPS8 RPS5 RPS10 RPS4X EEF2 RPL40 RPS27A(77-156) Leu-tRNA(Leu) RPL30 RPS18 RPL41 RPS23 Ceruloplasmin mRNA RPL31 RPL35A RPL30 GTP RPL6 Phe-tRNA(Phe) RPS4Y1 Glu-tRNA(Glu) EEF1A1 RPS3A RPL28 RPL32 RPS4X RPL24 eEF1B:GDP exchangecomplexThr-tRNA(Thr) Ala-tRNA(Ala) EEF1B2 RPL21 RPL13 RPS27A(77-156) 80S ribosomeRPL6 RPL26 RPL23A EEF1B2 RPS6 RPL3 RPS10 RPL36 RPL10 RPL19 RPS9 RPL37 80S:Met-tRNAi:mRNA:aminoacyl-tRNAHis-tRNA(His) RPL22 Ceruloplasmin mRNA Gly-tRNA(Gly) RPS27 RPL38 RPS26 Pro-tRNA(Pro) RPL30 RPS7 RPL4 RPL21 5S rRNA RPL26L1 RPS11 GDP RPL28 RPS3A EEF1A1 RPL37 EEF1A1 RPS6 RPL34 RPL17 RPS16 RPS27 RPL7A RPL35A RPL3L Asp-tRNA(Asp) RPL13A RPL5 RPL31 RPL13A RPL22 RPS29 RPS6 RPL38 FAU RPS20 RPS10 Arg-tRNA(Arg) RPS26 RPS29 RPL17 RPL13A RPL12 RPL22 RPS4Y1 RPL21 EEF1G RPL14 28S rRNA RPS8 RPS28 RPS10 peptidyl-tRNA with elongated peptide RPL11 RPLP0 RPS20 RPS19 GTP RPS12 RPL35 Gln-tRNA(Gln) RPS27A(77-156) Pro-tRNA(Pro) RPL39 RPL37A Leu-tRNA(Leu) Ser-tRNA(Ser) 18S rRNA RPL12 RPS10 RPS7 RPS3 RPL26 RPS11 RPL8 RPS19 RPS3 RPL19 RPS26 RPS20 RPL10 EEF1D Met-tRNA(Met) PiRPS4X RPL38 RPS6 RPL22 RPS2 RPL4 RPL13 RPS26 RPS27 RPS7 RPL9 RPL35 His-tRNA(His) RPS3A RPS21 RPSA RPL31 Ceruloplasmin mRNA RPL8 EEF1B2RPL39 5S rRNA RPL17 RPL19 RPL17 RPS29 RPL8 RPS25 eEF2:GDPRPL35 Lys-tRNA(Lys) RPS7 RPS8 RPL41 RPS25 Pro-tRNA(Pro) RPL27 EEF1G RPS3 Val-tRNA(Val) RPL9 RPL18A Tyr-tRNA(Tyr) RPL3L 28S rRNA RPS8 Ser-tRNA(Ser) RPL26 Arg-tRNA(Arg) RPL23 Gly-tRNA(Gly) RPL3 RPS18 RPS25 RPL40 RPL29 RPS4X RPL9 RPL35A FAU RPL7 RPL40 18S rRNA RPL24 2, 42, 42, 4


Description

The translation elongation cycle adds one amino acid at a time to a growing polypeptide according to the sequence of codons found in the mRNA. The next available codon on the mRNA is exposed in the aminoacyl-tRNA (aa-tRNA) binding site (A site) on the 30S subunit.
A: Ternary complexes of aa -tRNA:eEF1A:GTP enter the ribosome and enable the anticodon of the tRNA to make a codon/anticodon interaction with the A-site codon of the mRNA. B: Upon cognate recognition, the eEF1A:GTP is brought into the GTPase activating center of the ribosome, GTP is hydrolyzed and eEF1A:GDP leaves the ribosome. C: The peptidyl transferase center of ribosome catalyses the formation of a peptide bond between the incoming amino acid and the peptide found in the peptidyl-tRNA binding site (P site). D: In the pre-translocation state of the ribosome, the eEF2:GTP enters the ribosome, physically translocating the peptidyl-tRNA out of the A site to P site and leaves the ribosome eEF2:GDP. This action of eEF2:GTP accounts for the precise movement of the mRNA by 3 nucleotides.Consequently, deacylated tRNA is shifted to the E site. A ribosome associated ATPase activity is proposed to stimulate the release of deacylated tRNA from the E site subsequent to translocation (Elskaya et al., 1991). In this post-translocation state, the ribosome is now ready to receive a new ternary complex.
This process is illustrated below with: an amino acyl-tRNA with an amino acid, a peptidyl-tRNA with a growing peptide, a deacylated tRNA with an -OH, and a ribosome with A,P and E sites to accommodate these three forms of tRNA. View original pathway at:Reactome.

Comments

Reactome Converter 
Pathway is converted from Reactome id:

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Carvalho MD, Carvalho JF, Merrick WC.; ''Biological characterization of various forms of elongation factor 1 from rabbit reticulocytes.''; PubMed Europe PMC Scholia
  2. Pérez JM, Siegal G, Kriek J, Hård K, Dijk J, Canters GW, Möller W.; ''The solution structure of the guanine nucleotide exchange domain of human elongation factor 1beta reveals a striking resemblance to that of EF-Ts from Escherichia coli.''; PubMed Europe PMC Scholia
  3. Van Ness BG, Howard JB, Bodley JW.; ''ADP-ribosylation of elongation factor 2 by diphtheria toxin. Isolation and properties of the novel ribosyl-amino acid and its hydrolysis products.''; PubMed Europe PMC Scholia
  4. Veremieva M, Khoruzhenko A, Zaicev S, Negrutskii B, El'skaya A.; ''Unbalanced expression of the translation complex eEF1 subunits in human cardioesophageal carcinoma.''; PubMed Europe PMC Scholia
  5. Guillot D, Penin F, Di Pietro A, Sontag B, Lavergne JP, Reboud JP.; ''GTP binding to elongation factor eEF-2 unmasks a tryptophan residue required for biological activity.''; PubMed Europe PMC Scholia
  6. Van Ness BG, Howard JB, Bodley JW.; ''ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-diphthamide and its hydrolysis products.''; PubMed Europe PMC Scholia
  7. Kapp LD, Lorsch JR.; ''The molecular mechanics of eukaryotic translation.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
117719view12:33, 22 May 2021EweitzModified title
114891view16:40, 25 January 2021ReactomeTeamReactome version 75
113337view11:41, 2 November 2020ReactomeTeamReactome version 74
112548view15:51, 9 October 2020ReactomeTeamReactome version 73
101462view11:32, 1 November 2018ReactomeTeamreactome version 66
101000view21:12, 31 October 2018ReactomeTeamreactome version 65
100536view19:46, 31 October 2018ReactomeTeamreactome version 64
100083view16:30, 31 October 2018ReactomeTeamreactome version 63
99634view15:02, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
99240view12:44, 31 October 2018ReactomeTeamreactome version 62
93857view13:41, 16 August 2017ReactomeTeamreactome version 61
93420view11:23, 9 August 2017ReactomeTeamreactome version 61
86508view09:19, 11 July 2016ReactomeTeamreactome version 56
83399view11:07, 18 November 2015ReactomeTeamVersion54
81592view13:08, 21 August 2015ReactomeTeamVersion53
77053view08:35, 17 July 2014ReactomeTeamFixed remaining interactions
76758view12:11, 16 July 2014ReactomeTeamFixed remaining interactions
76083view10:14, 11 June 2014ReactomeTeamRe-fixing comment source
75793view11:32, 10 June 2014ReactomeTeamReactome 48 Update
75143view14:09, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74790view08:52, 30 April 2014ReactomeTeamReactome46
69032view17:50, 8 July 2013MaintBotUpdated to 2013 gpml schema
45249view18:35, 7 October 2011AlexanderPicoOntology Term : 'translation elongation pathway' added !
42034view21:51, 4 March 2011MaintBotAutomatic update
39837view05:52, 21 January 2011MaintBotNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
18S rRNA ProteinX03205 (EMBL)
28S rRNA ProteinM11167 (EMBL)
5.8S rRNA ProteinJ01866 (EMBL)
5S rRNA ProteinV00589 (EMBL)
80S Ribosome:mRNA:peptidyl-tRNA with elongating peptideComplexR-HSA-141952 (Reactome)
80S ribosomeComplexR-HSA-72500 (Reactome)
80S:Met-tRNAi:mRNA:aminoacyl-tRNAComplexR-HSA-72506 (Reactome)
80S:Met-tRNAi:mRNAComplexR-HSA-72505 (Reactome)
80S:aminoacyl tRNA:mRNA:eEF1A:GTPComplexR-HSA-156903 (Reactome)
Ala-tRNA(Ala) R-HSA-379700 (Reactome)
Aminoacyl-tRNAComplexR-HSA-37001 (Reactome)
Arg-tRNA(Arg) R-HSA-379720 (Reactome)
Asn-tRNA(Asn) R-HSA-379728 (Reactome)
Asp-tRNA(Asp) R-HSA-379707 (Reactome)
Ceruloplasmin mRNA ProteinM13699 (EMBL)
Cys-tRNA(Cys) R-HSA-379719 (Reactome)
EEF1A1 ProteinP68104 (Uniprot-TrEMBL)
EEF1A1-like proteinsComplexR-HSA-3907260 (Reactome) This CandidateSet contains sequences identified by William Pearson's analysis of Reactome catalyst entities. Catalyst entity sequences were used to identify analagous sequences that shared overall homology and active site homology. Sequences in this Candidate set were identified in an April 24, 2012 analysis.
EEF1A1P5 ProteinQ5VTE0 (Uniprot-TrEMBL)
EEF1A1ProteinP68104 (Uniprot-TrEMBL)
EEF1A2 ProteinQ05639 (Uniprot-TrEMBL)
EEF1B2 ProteinP24534 (Uniprot-TrEMBL)
EEF1B2ProteinP24534 (Uniprot-TrEMBL)
EEF1D ProteinP29692 (Uniprot-TrEMBL)
EEF1DProteinP29692 (Uniprot-TrEMBL)
EEF1G ProteinP26641 (Uniprot-TrEMBL)
EEF1GProteinP26641 (Uniprot-TrEMBL)
EEF2 ProteinP13639 (Uniprot-TrEMBL)
EEF2ProteinP13639 (Uniprot-TrEMBL)
Elongation complex

with growing

peptide chain
ComplexR-HSA-156927 (Reactome)
FAU ProteinP62861 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTPMetaboliteCHEBI:15996 (ChEBI)
Gln-tRNA(Gln) R-HSA-379772 (Reactome)
Glu-tRNA(Glu) R-HSA-379751 (Reactome)
Gly-tRNA(Gly) R-HSA-379784 (Reactome)
His-tRNA(His) R-HSA-379786 (Reactome)
Ile-tRNA(Ile) R-HSA-379787 (Reactome)
Leu-tRNA(Leu) R-HSA-379757 (Reactome)
Lys-tRNA(Lys) R-HSA-379736 (Reactome)
Met-tRNA(Met) R-HSA-379794 (Reactome)
Met-tRNAi R-NUL-72393 (Reactome)
Phe-tRNA(Phe) R-HSA-379792 (Reactome)
PiMetaboliteCHEBI:18367 (ChEBI)
Pro-tRNA(Pro) R-HSA-379746 (Reactome)
RPL10 ProteinP27635 (Uniprot-TrEMBL)
RPL10A ProteinP62906 (Uniprot-TrEMBL)
RPL11 ProteinP62913 (Uniprot-TrEMBL)
RPL12 ProteinP30050 (Uniprot-TrEMBL)
RPL13 ProteinP26373 (Uniprot-TrEMBL)
RPL13A ProteinP40429 (Uniprot-TrEMBL)
RPL14 ProteinP50914 (Uniprot-TrEMBL)
RPL15 ProteinP61313 (Uniprot-TrEMBL)
RPL17 ProteinP18621 (Uniprot-TrEMBL)
RPL18 ProteinQ07020 (Uniprot-TrEMBL)
RPL18A ProteinQ02543 (Uniprot-TrEMBL)
RPL19 ProteinP84098 (Uniprot-TrEMBL)
RPL21 ProteinP46778 (Uniprot-TrEMBL)
RPL22 ProteinP35268 (Uniprot-TrEMBL)
RPL23 ProteinP62829 (Uniprot-TrEMBL)
RPL23A ProteinP62750 (Uniprot-TrEMBL)
RPL24 ProteinP83731 (Uniprot-TrEMBL)
RPL26 ProteinP61254 (Uniprot-TrEMBL)
RPL26L1 ProteinQ9UNX3 (Uniprot-TrEMBL)
RPL27 ProteinP61353 (Uniprot-TrEMBL)
RPL27A ProteinP46776 (Uniprot-TrEMBL)
RPL28 ProteinP46779 (Uniprot-TrEMBL)
RPL29 ProteinP47914 (Uniprot-TrEMBL)
RPL3 ProteinP39023 (Uniprot-TrEMBL)
RPL30 ProteinP62888 (Uniprot-TrEMBL)
RPL31 ProteinP62899 (Uniprot-TrEMBL)
RPL32 ProteinP62910 (Uniprot-TrEMBL)
RPL34 ProteinP49207 (Uniprot-TrEMBL)
RPL35 ProteinP42766 (Uniprot-TrEMBL)
RPL35A ProteinP18077 (Uniprot-TrEMBL)
RPL36 ProteinQ9Y3U8 (Uniprot-TrEMBL)
RPL36A ProteinP83881 (Uniprot-TrEMBL)
RPL37 ProteinP61927 (Uniprot-TrEMBL)
RPL37A ProteinP61513 (Uniprot-TrEMBL)
RPL38 ProteinP63173 (Uniprot-TrEMBL)
RPL39 ProteinP62891 (Uniprot-TrEMBL)
RPL3L ProteinQ92901 (Uniprot-TrEMBL)
RPL4 ProteinP36578 (Uniprot-TrEMBL)
RPL40 ProteinP62987 (Uniprot-TrEMBL)
RPL41 ProteinP62945 (Uniprot-TrEMBL)
RPL5 ProteinP46777 (Uniprot-TrEMBL)
RPL6 ProteinQ02878 (Uniprot-TrEMBL)
RPL7 ProteinP18124 (Uniprot-TrEMBL)
RPL7A ProteinP62424 (Uniprot-TrEMBL)
RPL8 ProteinP62917 (Uniprot-TrEMBL)
RPL9 ProteinP32969 (Uniprot-TrEMBL)
RPLP0 ProteinP05388 (Uniprot-TrEMBL)
RPLP1 ProteinP05386 (Uniprot-TrEMBL)
RPLP2 ProteinP05387 (Uniprot-TrEMBL)
RPS10 ProteinP46783 (Uniprot-TrEMBL)
RPS11 ProteinP62280 (Uniprot-TrEMBL)
RPS12 ProteinP25398 (Uniprot-TrEMBL)
RPS13 ProteinP62277 (Uniprot-TrEMBL)
RPS14 ProteinP62263 (Uniprot-TrEMBL)
RPS15 ProteinP62841 (Uniprot-TrEMBL)
RPS15A ProteinP62244 (Uniprot-TrEMBL)
RPS16 ProteinP62249 (Uniprot-TrEMBL)
RPS17 ProteinP08708 (Uniprot-TrEMBL)
RPS18 ProteinP62269 (Uniprot-TrEMBL)
RPS19 ProteinP39019 (Uniprot-TrEMBL)
RPS2 ProteinP15880 (Uniprot-TrEMBL)
RPS20 ProteinP60866 (Uniprot-TrEMBL)
RPS21 ProteinP63220 (Uniprot-TrEMBL)
RPS23 ProteinP62266 (Uniprot-TrEMBL)
RPS24 ProteinP62847 (Uniprot-TrEMBL)
RPS25 ProteinP62851 (Uniprot-TrEMBL)
RPS26 ProteinP62854 (Uniprot-TrEMBL)
RPS27 ProteinP42677 (Uniprot-TrEMBL)
RPS27A(77-156) ProteinP62979 (Uniprot-TrEMBL)
RPS28 ProteinP62857 (Uniprot-TrEMBL)
RPS29 ProteinP62273 (Uniprot-TrEMBL)
RPS3 ProteinP23396 (Uniprot-TrEMBL)
RPS3A ProteinP61247 (Uniprot-TrEMBL)
RPS4X ProteinP62701 (Uniprot-TrEMBL)
RPS4Y1 ProteinP22090 (Uniprot-TrEMBL)
RPS5 ProteinP46782 (Uniprot-TrEMBL)
RPS6 ProteinP62753 (Uniprot-TrEMBL)
RPS7 ProteinP62081 (Uniprot-TrEMBL)
RPS8 ProteinP62241 (Uniprot-TrEMBL)
RPS9 ProteinP46781 (Uniprot-TrEMBL)
RPSA ProteinP08865 (Uniprot-TrEMBL)
Ser-tRNA(Ser) R-HSA-379738 (Reactome)
Thr-tRNA(Thr) R-HSA-379783 (Reactome)
Trp-tRNA(Trp) R-HSA-379765 (Reactome)
Tyr-tRNA(Tyr) R-HSA-379785 (Reactome)
Val-tRNA(Val) R-HSA-379790 (Reactome)
eEF1A:GDPComplexR-HSA-156929 (Reactome)
eEF1A:GTP:aminoacyl-tRNA complexComplexR-HSA-156911 (Reactome)
eEF1A:GTPComplexR-HSA-156921 (Reactome)
eEF1B complexComplexR-HSA-156920 (Reactome)
eEF1B:GDP exchange complexComplexR-HSA-156917 (Reactome)
eEF2:GDPComplexR-HSA-156922 (Reactome)
eEF2:GTPComplexR-HSA-156916 (Reactome)
peptidyl-tRNA with elongated peptide R-NUL-141678 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
80S Ribosome:mRNA:peptidyl-tRNA with elongating peptideArrowR-HSA-156915 (Reactome)
80S ribosomemim-catalysisR-HSA-156912 (Reactome)
80S ribosomemim-catalysisR-HSA-156923 (Reactome)
80S:Met-tRNAi:mRNA:aminoacyl-tRNAArrowR-HSA-156923 (Reactome)
80S:Met-tRNAi:mRNA:aminoacyl-tRNAR-HSA-156912 (Reactome)
80S:Met-tRNAi:mRNAR-HSA-156907 (Reactome)
80S:aminoacyl tRNA:mRNA:eEF1A:GTPArrowR-HSA-156907 (Reactome)
80S:aminoacyl tRNA:mRNA:eEF1A:GTPR-HSA-156923 (Reactome)
Aminoacyl-tRNAR-HSA-156908 (Reactome)
EEF1A1-like proteinsmim-catalysisR-HSA-156909 (Reactome)
EEF1A1R-HSA-156909 (Reactome)
EEF1B2R-HSA-156910 (Reactome)
EEF1DR-HSA-156910 (Reactome)
EEF1GR-HSA-156910 (Reactome)
EEF2R-HSA-156930 (Reactome)
Elongation complex

with growing

peptide chain
ArrowR-HSA-156912 (Reactome)
Elongation complex

with growing

peptide chain
R-HSA-156915 (Reactome)
GTPR-HSA-156909 (Reactome)
GTPR-HSA-156913 (Reactome)
GTPR-HSA-156930 (Reactome)
PiArrowR-HSA-156915 (Reactome)
PiArrowR-HSA-156923 (Reactome)
R-HSA-156907 (Reactome) Once the correct codon-anticodon match occurs between the mRNA and aa-tRNA, the decoding event triggers GTP hydrolysis on eEF1A. The resulting conformational change releases the aa-tRNA to the A-site, and GDP bound form eEF1A is released from the ribosome.
Insight into the mechanics of this system has been obtained from earlier works with rabbit reticulocytes and the E.coli system.
This process is illustrated below with: an amino acyl-tRNA with an amino acid, a peptidyl-tRNA with a growing peptide and a ribosome with A,P and E sites to accommodate these two forms of tRNA.
R-HSA-156908 (Reactome) The binding of eEF1A:GTP to aminoacyl tRNA (aa-tRNA) results in the formation of a ternary complex (eEF1A:GTP:aa-tRNA). Human eEF1A and rabbit eEF1A are 100% identical, and prokaryotic homologue of eEF1A (EF-Tu) shows 59% identity in the GTP-binding domain.This process is illustrated below with: a GTP molecule in white and eEF1A protein in yellow.
R-HSA-156909 (Reactome) The cycle of elongation starts with an empty ribosomal A-site and the peptidyl-tRNA in the P-site. eEF1A is activated by GTP binding and allows for the subsequent binding of aminoacyl-tRNA (aa-tRNA).This process is illustrated below with a GTP molecule in white and eEF1A protein in yellow.
R-HSA-156910 (Reactome) At the beginning of this reaction, 1 molecule of 'eEF1B alpha', 1 molecule of 'eEF1B gamma', and 1 molecule of 'eEF1B beta' are present. At the end of this reaction, 1 molecule of 'eEF1B complex' is present.

This reaction takes place in the 'cytosol'.

R-HSA-156912 (Reactome) The A- and P-sites of the ribosome positions the aa-tRNA and peptidyl-tRNA such that a nucleophilic attack can occur between the amine group of the A-site aa-tRNA and the carbonyl group of the growing peptide chain on the P-site tRNA, resulting in the formation of a peptide bond. The carboxyl end of the peptide chain is uncoupled from the tRNA molecule in the P-site and forms a new peptide bond with the amino acid that is in the A-site.
This process is illustrated below with: a peptidyl-tRNA with a growing peptide,a deacylated tRNA with an -OH and a ribosome with A,P and E sites to accommodate these three forms of tRNA.
R-HSA-156913 (Reactome) The eEF1B complex binds to eEF1A and regulates its activity by catalyzing the release of GDP. Subsequently, GTP is able to bind eEF1A allowing the formation of the ternary complex (eEF1A-GTP-aa-tRNA).In metazoans eEF1 protein family is composed of four subunits: eEF1A and eEF1B alpha, beta, and gamma (formerly EF-1alpha, EF-1beta, EF-1delta, and EF-1gamma, respectively). Both eEF1B alpha and eEF1B beta function as nucleotide exchange proteins. eEF1B gamma associates with eEF1B alpha and stimulates its exchange activity.
This process is illustrated below with a GTP molecule in white and eEF1A protein in yellow.The three subunits of eEF1B are also shown.
R-HSA-156915 (Reactome) Following peptide bond formation, GTP-bound eEF2 catalyzes the translocation of the deacylated tRNA in the P-site and the peptidyl-tRNA in the A-site (the pre-translocation state) into the E- and P- sites (the post-translocation state), respectively. Thus, the mRNA advances by three bases to expose the next codon in the A-site. After translocation, GDP-bound eEF2 leaves the ribosome to allow another round of elongation. eEF2 is reactivated by the release of GDP and binds GTP for subsequent rounds.
This process is illustrated below with a peptidyl-tRNA with a growing peptide, a deacylated tRNA with an -OH and a ribosome with A,P and E sites to accommodate these three forms of tRNA is also shown.
R-HSA-156923 (Reactome) Once the correct codon-anticodon match occurs between the mRNA and aa-tRNA, the decoding event triggers GTP hydrolysis on eEF1A. The resulting conformational change releases the aa-tRNA to the A-site, and GDP bound form of eEF1A is released from the ribosome.
This process is illustrated below with: an amino acyl-tRNA with an amino acid,a peptidyl-tRNA with a growing peptide and a ribosome with A,P and E sites to accommodate these two forms of tRNA.
R-HSA-156930 (Reactome) At the beginning of this reaction, 1 molecule of 'eEF2', and 1 molecule of 'GTP' are present. At the end of this reaction, 1 molecule of 'eEF2:GTP' is present.

This reaction takes place in the 'cytosol'.

eEF1A:GDPArrowR-HSA-156915 (Reactome)
eEF1A:GDPArrowR-HSA-156923 (Reactome)
eEF1A:GDPR-HSA-156913 (Reactome)
eEF1A:GTP:aminoacyl-tRNA complexArrowR-HSA-156908 (Reactome)
eEF1A:GTP:aminoacyl-tRNA complexR-HSA-156907 (Reactome)
eEF1A:GTP:aminoacyl-tRNA complexR-HSA-156915 (Reactome)
eEF1A:GTPArrowR-HSA-156909 (Reactome)
eEF1A:GTPArrowR-HSA-156913 (Reactome)
eEF1A:GTPR-HSA-156908 (Reactome)
eEF1B complexArrowR-HSA-156910 (Reactome)
eEF1B complexR-HSA-156913 (Reactome)
eEF1B complexmim-catalysisR-HSA-156913 (Reactome)
eEF1B:GDP exchange complexArrowR-HSA-156913 (Reactome)
eEF2:GDPArrowR-HSA-156915 (Reactome)
eEF2:GTPArrowR-HSA-156930 (Reactome)
eEF2:GTPR-HSA-156915 (Reactome)
Personal tools