Mitotic G2-G2/M phases (Homo sapiens)

From WikiPathways

Revision as of 11:04, 18 November 2015 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
2366, 6842, 61614720494643, 5229, 32, 641958562126931, 387, 269, 20, 6743, 50, 548364, 15, 27, 45636152, 5342, 61255331576642, 57133510, 18, 3066, 683722, 39, 60, 65217, 265931, 38, 6224, 48, 65585563595520, 423247445717, 413566, 16, 216320191411333328464744Golgi membranenucleoplasmcytosolCDK1 p-S435-GTSE1:PolyUb-TP53 TetramerCCNA2 CDK5RAP2 DCTN2 HAUS7 TUBA1A PRKACA TUBA4A PRKAR2B AZI1 CDK5RAP2 CDK1 NEDD1 ATPHAUS8 DYNC1I2 TUBA1A CEP70 OFD1 ALMS1 TUBB4A GTSE1:microtubuleCEP290 PCM1 CEP78 TUBGCP4 TUBGCP5 CCNA2 CCNA:p-T14-CDK1PLK4 p-T14-CDK1 SSNA1 SFI1 p-T288-AURKA PSMA3 CCNA1:p-T161-CDK1CCNA1 microtubule PSMD6 CEP70 p-S435-GTSE1 TUBG1 MAPRE1 CRS kinaseDCTN3 ACTR1A CDK5RAP2 CEP70 YWHAG p-S435-GTSE1 p-T161-CDK1 p-NINLNDE1 Centrosomeassociated Plk1CETN2 OFD1 p-T210-PLK1 CCNB2:p-T161-CDK1UBC(1-76) NINL PSMD5 TUBA1A p-S435-GTSE1CDK11p58CAKPLK4 CLASP1 TUBB CCNA1 YWHAG PLK4 p-T14,Y15,T161-CDK1 CCP110 CLASP1 PSMA2 DCTN1-2 TUBG1 ODF2 CEP70 FGFR1OP TUBA4A CDC25A LIN37 UBC(305-380) SSNA1 HAUS1 PSMD10 DYNC1H1 CDK1HAUS7 PCNT CEP290 NEK2 DCTN2 HAUS5 CEP63 PCM1 CDK1 CEP57 CDC25C CEP78 CEP41 CEP72 CEP41 CEP135 NINL RPS27A(1-76) CKAP5 ATPSFI1 ATPCCNB1:p-T161-CDK1PCNT DYNC1I2 CDC25B CEP164 ODF2 RBBP4 G2/M transitionproteinTUBG1 NEK2 YWHAE UBC(457-532) NEK2 TUBA4A LIN52 NDE1 TUBB4B CDK1 PSMB9 OFD1 DCTN2 AZI1 TUBB DCTN2 YWHAG CEP135 ADPTUBGCP3 TUBA1A SDCCAG8 HAUS3 TUBGCP3 TPX2 DYNC1I2 CNTRL TUBG1 HSP90AB1 PPP2R1A PAFAH1B1 ACTR1A CEP152 TUBA4A HAUS2 CCNB1 HAUS7 CCNA2 ALMS1 CETN2 PP2A-PPP2R2ATUBA1A CCNA2 AKAP9 HAUS4 OFD1 CCNA:p-T160-CDK2:p-E2F1/p-E2F3CDK1 p-T14,T161-CDK1 CCNB1:p-T14,Y15,T161-CDK1NEK2 HAUS8 ODF2 NEDD1 EP300CEP192 HAUS4 CCNA1 AKAP9 ALMS1 SDCCAG8 AZI1 CKAP5 UBC(77-152) CEP135 HAUS5 ADPPCM1 UBB(153-228) HAUS2 TUBA1A CLASP1 PCNT p-S252-BORACEP290 ODF2 p-T611-FOXM1:p-T210-PLK1BORASDCCAG8 CEP57 CEP70 CEP250 ALMS1 DYNC1I2 TUBA1A CSNK1E DCTN2 p-T210-PLK1TUBB4B PRKACA LIN54 FGFR1OP HSP90AA1 PRKACA CSNK1D PLK4 PCNT CEP57 DYNC1I2 HAUS6 CEP135 AKAP9 TUBG1 p-S53-WEE1PRKACA CETN2 SDCCAG8 CSNK1D PLK4 CCNB2 CKAP5 CNTRL PSMB3 PSMA7 AZI1 NEK2 p-T288-AURKA CEP290 DYNC1H1 CEP164 CEP135 p-S473-PPP1R12A TUBA4A MAPRE1 CEP63 CEP41 CEP57 PRKAR2B HAUS4 CDC25ACEP57 p-NUMA1 RAB8A p-T210-PLK1p-T160-CDK2 p-T611,S730,S739-FOXM1 SDCCAG8 LIN9 LIN9 TUBG1 nuclear CyclinB1:Cdc2 complexesCEP135 ALMS1 TUBG1 p-T160-CDK2 PLK4 ACTR1A PSMB5 CDK5RAP2 CSNK1D ODF2 CEP76 PPP1CB CEP72 RBBP4 HMMR DCTN2 phospho-CyclinB1(CRS):phospho-Cdc2 (Thr 161)p-E2F3 YWHAE TUBB UBC(457-532) PSMA8 ALMS1 FGFR1OP ATPCSNK1D CCNB1 CEP76 TUBB4A LIN52 CEP135 ALMS1 CENPJ CEP192 AZI1 FGFR1OP PLK1 CEP72 CyclinB2:phospho-Cdc2(Thr14, Thr 161)CEP63 NDE1 CEP78 p-S95-PHLDA1TUBB CEP152 DYNLL1 HAUS2 CEP152 p-4S-CCNB1 PLK1 CEP57 SFI1 ATPCKAP5 CEP78 TUBGCP6 DYNLL1 CDC25CCCNB2CEP72 CCNB:p-T14-CDK1CKAP5 CENPJ CEP152 CDKN1ANUMA1DCTN2 TUBG1 HAUS3 CEP135 SSNA1 HAUS7 RPS27A(1-76) p-4S-CCNB1 SSNA1 TUBB NINL YWHAG TUBGCP2 HAUS5 NINL NINL PiOFD1 Centrosome:AURKA:AJUBAphospho-G2/Mtransition proteinCentrosome:AURKA:TPX2:HMMRUBC(77-152) HAUS7 OFD1 CEP78 DYNC1H1 ADPATPCEP41 NEK2 p-T14,Y15,T161-CDK1 p-E2F1 AZI1 CSNK1D CCNB1:p-T14-CDK1ATPHAUS8 AJUBA PSMB6 PSMC6 CCNA:p-CDK1/2 DCTN1-2 PSMB11 CDK1 DYNLL1 cytoplasmic CyclinB1:Cdc2 complexesCEP76 SDCCAG8 CCNB1 Gene UBA52(1-76) PhosphorylatedMyosin PhosphataseHAUS2 HAUS3 ODF2 p-4S-CCNB1 UBC(609-684) TUBB DYNC1I2 LIN52 p-T161-CDK1 UBC(533-608) ATPCNTRL MAPRE1 CEP290 PPP2R1A PRKAR2B HAUS7 PAFAH1B1 CKAP5 PPP1R12B-4 YWHAE CKAP5 TUBG2 PRKACA CEP57 UBB(1-76) LIN54 CEP250 CDC25C SDCCAG8 ATPmicrotubuleATPADPp-T161-CDK1 YWHAE NINL HAUS8 nuclear CyclinB1:Cdc2 substratesHAUS4 TUBGCP4 UBC(229-304) AZI1 gamma-tubulincomplexp-T611,S730,S739-FOXM1:EP300:CDC25A Genep-NUMA1 CEP70 YWHAE PCM1 CDK1 DYNLL1 PiPPP2R1A FGFR1OP HAUS5 PCNT CEP135 CDC25C HAUS3 p-T611,S730,S739-FOXM1 UBC(533-608) CEP78 TUBGCP4 PPP2R1A GTSE1 CEP192 HAUS4 E2F3 CSNK1E CNTRL GTP PLK1NDE1 H2ODCTN1-2 phospho-cyclinB1(CRS):phosph-Cdc2(Thr 161)CETN2 PSMB1 CEP164 ACTR1A CEP290 HAUS8 CEP72 p-4S-CCNB1 LIN9 p-T14-CDK1 MYBL2FGFR1OP p-S252,S497,T501-BORAHAUS2 TUBB4A CEP152 TUBB CEP135 CEP41 MAPRE1 26S proteasomeNEDD1 CDC25BCEP76 CCNB2 Gene TUBG2 CEP72 CEP192 CCNA:p-T14,T161-CDK1CEP152 CUL1 PSMD1 p-T210-PLK1 HMMR CENPJ ATPCEP76 HAUS3 PCM1 CKAP5 CDC25HAUS4 TUBB4B HAUS7 NEDD1 TUBG1 HAUS5 CCP110 NINL CEP78 CEP250HAUS1 TUBG2 PPP2R1A PSMC5 TUBG1 HAUS4 PPP2R1A HAUS4 HAUS4 HAUS4 CCNB:CDK1ACTR1A ALMS1 PSME2 CEP290 SDCCAG8 TUBB HAUS3 TUBB4B SDCCAG8 PolyUb-TP53 CEP192 WEE1NINL CEP57 MAPRE1 MuvB complexPSMA6 NDE1 ADPp-T288-AURKA TUBGCP4 p-T14-CDK1 CEP250 CEP72 TUBB4B ADPp-S435-GTSE1OFD1 CEP63 CEP290 CCNB2 CCP110 TUBGCP5 PCM1 CCNB:p-T161-CDK1 HAUS6 CCNB1 PAFAH1B1 CNTRL p-T161-CDK1 p-S435-GTSE1:PolyUb-TP53 TetramerCentrosome:AURKACEP164 CNTRL PLK1 CEP70 SDCCAG8 CLASP1 CENPJ HAUS8 CEP164 ADPDYNC1I2 CLASP1 CCNB1 GeneHSP90AA1 TUBGCP3 E2F1/E2F3CCNACEP135 HSP90AA1 NEDD1 DCTN1-2 DCTN1-2 PSMD9 CDK5RAP2 OPTN:RAB8A:GTPPCM1 SSNA1 DYNC1I2 CLASP1 HAUS8 CCP110 CLASP1 HAUS3 LIN9 ADPDCTN3 HAUS1 UBC(457-532) CDK1 p-T161-CDK1 CEP41 TUBA1A PSMC3 CCNA2 DCTN1-2 TUBB CCNA2 AZI1 p-T611,S730,S739-FOXM1 CEP41 PSMD2 p-T161-CDK1 TUBA4A CETN2 TUBG2 TUBG2 CEP192 YWHAG NEK2 CEP152 Phospho-CyclinB1(CRS):phospho-Cdc2(Thr 161)p-4S-CCNB1 HAUS6 OFD1 HAUS8 p-S177-OPTNPPP2R1A HAUS6 HAUS7 phospho-G2/Mtransition proteinUBC(1-76) ADPPSMD3 PRKACA YWHAE PLK1 TUBG1 microtubule PCM1 SDCCAG8 PolyUb-TP53 TetramerDCTN3 CEP192 NuMA homodimerYWHAE DYNC1H1 UbCLASP1 TUBB4A HSP90AA1 GTSE1 PAFAH1B1 p-T161-CDK1 PLK1PLK1 CETN2 CCNB1 OFD1 FBXW11 HSP90AA1 TUBB4A p-S252-BORA Mature centrosomesenriched ingamma-TURCcomplexesMAPRE1 p-T611,S730,S739-FOXM1 CCNB:p-T161-CDK1p-S198-CDC25C CDC25BCEP63 ATPDCTN3 DCTN2 TUBB4A ADPp-T161-CDK1 CEP63 CDK1 CCNBDCTN2 CCNA:CDK1ATPNDE1 CSNK1E CDK11B PLK1 GeneHAUS6 PAFAH1B1 HSP90AA1 PPP2R1A H2OCDK5RAP2 ODF2 TUBB4B TUBA4A PiPLK1 CEP78 CEP250 CLASP1 CSNK1E PiCSNK1E CEP57 SFI1 PSMB8 CEP78 ACTR1A UBC(381-456) CLASP1 ACTR1A BTRC PCM1 CEP192 p-T14-CDK1 MAPRE1 HAUS5 CDC25A DCTN3 PLK1 FGFR1OP TUBGCP5 PPP2R1A PRKAR2B TUBG1 CEP152 SDCCAG8 FKBPLCEP192 HAUS1 SKP1 p-T14-CDK1 PSMD8 CETN2 Centrosome:p-T288-AURKA:TPX2:HMMRDYNLL1 UBB(77-152) CSNK1D NEK2 CENPF Gene CSNK1D CEP152 HAUS1 MAPRE1 NEDD1 TUBB4A NEDD1 CDK11A NDE1 ADPPCNT HAUS3 E2F3 LIN37 SFI1 UBA52(1-76) CCNA:p-T14,Y15,T161-CDK1E2F1 ADPODF2 HSP90AA1 p-T14-CDK1 YWHAE CDC25CHAUS3 CEP57 DYNC1H1 HAUS6 UBB(77-152) ADPYWHAE ADPCDK11A PSMB10 HAUS3 UBB(77-152) PCM1 TUBA4A YWHAE MAPRE1 CEP41 ALMS1 ODF2 CCNB1 PLK4 Mitotic kinaseCEP63 ATPPCNT DYNC1H1 p-S177-OPTNCDK5RAP2 CCNB1 TranscriptionalRegulation by TP53ATPHAUS6 CCNH PLK1 CyclinB1:phospho-Cdc2(Thr161, Thr 14, Tyr15)CEP70 CEP250 CDKN1A ATPTUBB4A DYNC1H1 H2OPCM1 p-T14,T161-CDK1 CCP110 CDK5RAP2 OFD1 SSNA1 CCNB1:p-T161-CDK1ALMS1 CSNK1D TUBGCP3 PRKACA SFI1 DYNC1H1 AURKA PLK1 Gene ATPDYNC1H1 UBC(533-608) CENPJ CEP76 PCM1 PPP2R1A OFD1 CSNK1E CDK1 ATPTUBGCP2 MYBL2 CEP164 AKAP9 ADPCNTRL PRKACA SDCCAG8 p-S198-CDC25CAURKA:PHLDA1TUBG1 PRKAR2B CNTRL FGFR1OP PRKAR2B PRKACA DCTN3 p-T161-CDK1 CEP76 DYNLL1 p-T611-FOXM1TUBG1 TUBA4A ADPPLK1 Ub-p-S252,S497,T501-BORACEP152 DYNC1I2 ODF2 PLK4 AURKA PLK4 CCNA2 SSNA1 AKAP9 AKAP9 CDC25B AURKA PKMYT1HAUS2 MNAT1 CCNA2 DCTN1-2 CETN2 p-S252-BORA CDK1 TUBA1A PCM1 CENPJ PPP2R1B TUBG1 TUBB4B ODF2 G2/M transitionproteinsp-T513,T526-GTSE1UBC(1-76) PCNT DCTN1-2 CEP135 HAUS1 CEP41 YWHAE CNTRL HMMRAKAP9 CCNA1 CCP110 HAUS8 CEP192 CEP72 p-S252,S497,T501-BORA SSNA1 PLK1 CCNA2:p-T161-CDK1TUBB4A CCNA:p-T160-CDK2:E2F1/E2F3CEP164 PSMD13 AZI1 DYNLL1 DYNLL1 CKAP5 PLK1 LIN54 AKAP9 CDK5RAP2 CDK11B CCNB1 CEP70 CEP63 HAUS6 CEP290 CEP192 FGFR1OP PLK4 HAUS1 AKAP9 CETN2 DYNC1I2 p-T611,S730,S739-FOXM1:MuvB:MYBL2:PLK1 GeneCEP63 CEP192 DYNC1I2 CENPJ DCTN3 CCNB1 CEP76 FGFR1OP AURKA TUBA4A NEDD1 CSNK1E CCNA:p-T14-CDK1HAUS2 p-T161-CDK1 Cdc25DCTN3 CLASP1 p-T161-CDK1 UBB(153-228) PRKAR2B MYBL2 ADPHSP90:HSP90HAUS6 NEDD1 PSMD4 GTSE1 SSNA1 CKAP5 ADPp-NUMA1 CUL1 HAUS8 microtubule FOXM1YWHAG p-PKMYT1TUBA1A CDK5RAP2 AZI1 PPP2R2A CCNB2 GeneCEP72 TUBB4A CDC25B NEDD1 UBA52(1-76) NEK2 PAFAH1B1 DYNC1I2 CCNA1 PRKACA CEP63 TUBA4A CEP152 CDK1 CEP76 CCNA1 TUBA4A PCNT p-T14,T161-CDK1 CENPF GeneCENPJ PRKACA TUBB4B CETN2 NINL CEP290 HAUS1 CSNK1E NDE1 AKAP9 ATPPRKACA PAFAH1B1 UBB(1-76) TUBGCP5 NEDD1 HAUS7 AKAP9 UBC(229-304) p-T161-CDK1 microtubule HSP90AA1 HAUS6 NEDD1 RBBP4 TUBGCP6 NINL CEP76 CEP164 p-T611,S730,S739-FOXM1:CENPF GeneTUBA1A HAUS5 CEP41 PPP2R1A CCNB2 ACTR1A TUBB4B DCTN2 AKAP9 UBC(381-456) Centrosome:p-T288-AURKA:p-S252-BORA:PLK1CCNA:p-T161-CDK1YWHAG HAUS1 TUBGCP6 CDK5RAP2 NEK2 ACTR1A DYNLL1 CEP250 microtubule PSME1 CEP164 RAB8A:GTPCEP250 CCNB1 p-T14,Y15,T161-CDK1 CCNA1 p-T210-PLK1 CDK1 CCP110 YWHAG MAPRE1 PSMD11 DYNLL1 CEP164 TUBB4B CEP41 SFI1 CCP110 PSME3 p-S252,S497,T501-BORA SFI1 HAUS6 SSNA1 HAUS2 G2/M transitionproteinsUBB(153-228) CEP164 CEP250 CSNK1E RPS27A(1-76) DCTN3 PSMB7 HAUS4 CNTRL CEP72 FGFR1OP PSMC1 CEP72 PSMC2 MAPRE1 p-T161-CDK1 NDE1 PLK4 PAFAH1B1 H2OHSP90AB1 BTRC SSNA1 CCNB2 CEP250 PCNT p-4S-CCNB1 PHLDA1 CEP164 CENPFCCNA:p-T160-CDK2TUBG1 ATPHAUS5 SCF-beta-TrCp1,2HAUS5 CSNK1E LIN52 HAUS1 PiTUBGCP6 CCP110 SSNA1 MAPRE1 HAUS6 CCNA1 TUBB4B TUBB4A TUBGCP6 ADPCCNA1 centrosome-nucleatedmicrotubulesMAPRE1:microtubuleplus endCEP70 CCP110 CETN2 TUBB ATPCEP152 CETN2 CCNB1:p-T14,T161-CDK1ODF2 p-CDK1/2:CCNA/p-T161-CDK1:CCNBGTSE1CEP72 CEP70 PPP2R1A LIN37 CKAP5 CEP63 HAUS5 UBB(1-76) CKAP5 HAUS6 PCNT CDK1 FKBPL p-S252,S497,T501-BORA:SCF-beta-TrCp1/2p-T14,Y15,T161-CDK1 NDE1 HAUS7 CENPJ ALMS1 CEP76 CCNB1 TUBB4A PRKACA DCTN2 CDK1 FGFR1OP HAUS1 AZI1 ATPUBC(153-228) PRKAR2B YWHAG centrosomecontainingphosphorylated NlpDYNC1H1 GTSE1:p-T210-PLK1FGFR1OP CSNK1D ALMS1 CEP78 PCNT DCTN1-2 OFD1 TUBB DCTN1-2 PRKAR2B ALMS1 HSP90AA1 CNTRL HAUS4 CETN2 NDE1 CEP41 microtubule TPX2DYNC1H1 p-T611,S730,S739-FOXM1CCP110 p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB1 GenePSMA5 SFI1 PRKAR2B TUBB CCNA1 FBXW11 CCNA2 HAUS1 Centrosomescontainingrecruited CDK11p58CDC25A Gene p-T14,Y15,T161-CDK1 CCNB2 DYNLL1 CEP192 PLK1 centrosome-associated NuMAPLK4 H2Op-T160-CDK2 NEK2 CDK7 DYNC1I2 ACTR1A MAPRE1 NDE1 HAUS7 Cyclin A2:Cdk2phosphorylated G2/Mtransition proteinNEDD1 CEP63 YWHAG GTP CSNK1D MAPRE1 HAUS2 CDK5RAP2 CEP76 UBC(305-380) GTSE1:MAPRE1:microtubule plus endEP300 TUBGCP3 CEP135 CEP290 LIN37 CLASP1 centrosomeCentrosome:p-T288-AURKACEP72 ACTR1A PPP2CB HSP90AA1 TUBG1 CSNK1D TUBGCP2 PRKAR2B TUBB4B NEDD1 CSNK1E HAUS3 NINL TPX2 HAUS3 TUBA1A CSNK1D PPP2CA ATPCEP250 RBBP4 AJUBAHAUS5 NDE1 PAFAH1B1 DCTN2 Cdc25HAUS8 CEP250 DCTN3 ADPPSMF1 YWHAG DCTN3 PLK1 PRKAR2B PSMA4 CCNB:p-T161-CDK1 CEP76 TUBA1A NEK2 PLK4 SFI1 HAUS2 PSMD14 PSMA1 UBC(153-228) PAFAH1B1 OPTN HAUS4 SFI1 TUBGCP4 PPP2R1A CCP110 phosphorylatednuclear CyclinB1:Cdc2 substratesNEDD1 SKP1 CENPJ CEP164 PSMB4 active nuclearCyclin B1:Cdc2complexesDYNC1H1 DCTN3 PCNT PAFAH1B1 HAUS7 CCNB1 HSP90AA1 HSP90AA1 CEP70 TUBGCP5 CCNB1 UBC(381-456) TUBA4A YWHAE GTSE1 CENPJ TUBGCP2 p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB2 GenePPP2R1A HAUS5 Cyclin A1:Cdk2phosphorylated G2/Mtransition proteinCSNK1E HAUS2 TUBB4A AKAP9 CEP78 CDC25A GeneNEK2 CLASP1 ADPDYNLL1 HAUS2 p-NUMA1YWHAG CEP57 ADPCSNK1E p-NINL PSME4 CEP63 PHLDA1AZI1 MAPRE1 HAUS7 HSP90AA1 AURKACEP290 XPO1CEP41 UBC(153-228) DYNC1H1 PAFAH1B1 UBC(229-304) PolyUb-TP53 HAUS2 PSMC4 OFD1 CEP57 CEP290 YWHAE DCTN1-2 CDK5RAP2 HAUS3 YWHAG E2F1 UBC(609-684) PAFAH1B1 ODF2 CEP78 CEP78 ACTR1A CEP57 CEP70 ATPLIN54 ACTR1A CENPJ ADPRAB8A PSMB2 NEDD1 CENPJ NuMA-boundmicrotubulesCEP152 HSP90AA1 p-S-AJUBACCNB1 UBC(609-684) HAUS8 CCNB2 TUBB DCTN1-2 PLK1 p-T611,S730,S739-FOXM1 CDC25A CCNA2 DYNLL1 ADPCCP110 MYBL2 TUBB4B SFI1 CCNA2 PRKAR2B HAUS8 SFI1 PKMYT1p-T611-FOXM1 TUBGCP2 CEP250 HAUS1 PolyUb-TP53 CCNA1 HAUS5 NEDD1 CNTRL H2OcNAP-1 depletedcentrosomeDCTN3 CKAP5 DCTN2 CSNK1D CCNB1DCTN1-2 p-S252-BORA:p-T210-PLK1HSP90AA1 PSMD12 PLK1UBC(77-152) GTSE1:CDKN1A:FKBPL:HSP90CCNB1 PSMD7 AZI1 p-T161-CDK1 Nlp-depletedcentrosomeCNTRL SSNA1 UBC(305-380) ubiquitin6118, 30466512664233636640, 5133344742, 6120655755


Description

View original pathway at:Reactome.

Comments

Reactome Converter 
Pathway is converted from Reactome id:

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Bublik DR, Scolz M, Triolo G, Monte M, Schneider C.; ''Human GTSE-1 regulates p21(CIP1/WAF1) stability conferring resistance to paclitaxel treatment.''; PubMed Europe PMC Scholia
  2. Chiyoda T, Sugiyama N, Shimizu T, Naoe H, Kobayashi Y, Ishizawa J, Arima Y, Tsuda H, Ito M, Kaibuchi K, Aoki D, Ishihama Y, Saya H, Kuninaka S.; ''LATS1/WARTS phosphorylates MYPT1 to counteract PLK1 and regulate mammalian mitotic progression.''; PubMed Europe PMC Scholia
  3. Chan EH, Santamaria A, Silljé HH, Nigg EA.; ''Plk1 regulates mitotic Aurora A function through betaTrCP-dependent degradation of hBora.''; PubMed Europe PMC Scholia
  4. Strausfeld U, Labbé JC, Fesquet D, Cavadore JC, Picard A, Sadhu K, Russell P, Dorée M.; ''Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein.''; PubMed Europe PMC Scholia
  5. Kruiswijk F, Labuschagne CF, Vousden KH.; ''p53 in survival, death and metabolic health: a lifeguard with a licence to kill.''; PubMed Europe PMC Scholia
  6. Källström H, Lindqvist A, Pospisil V, Lundgren A, Rosenthal CK.; ''Cdc25A localisation and shuttling: characterisation of sequences mediating nuclear export and import.''; PubMed Europe PMC Scholia
  7. Bonnet J, Mayonove P, Morris MC.; ''Differential phosphorylation of Cdc25C phosphatase in mitosis.''; PubMed Europe PMC Scholia
  8. Seki A, Coppinger JA, Du H, Jang CY, Yates JR, Fang G.; ''Plk1- and beta-TrCP-dependent degradation of Bora controls mitotic progression.''; PubMed Europe PMC Scholia
  9. Parker LL, Piwnica-Worms H.; ''Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase.''; PubMed Europe PMC Scholia
  10. Macůrek L, Lindqvist A, Lim D, Lampson MA, Klompmaker R, Freire R, Clouin C, Taylor SS, Yaffe MB, Medema RH.; ''Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery.''; PubMed Europe PMC Scholia
  11. Strausfeld U, Fernandez A, Capony JP, Girard F, Lautredou N, Derancourt J, Labbe JC, Lamb NJ.; ''Activation of p34cdc2 protein kinase by microinjection of human cdc25C into mammalian cells. Requirement for prior phosphorylation of cdc25C by p34cdc2 on sites phosphorylated at mitosis.''; PubMed Europe PMC Scholia
  12. Hirota T, Kunitoku N, Sasayama T, Marumoto T, Zhang D, Nitta M, Hatakeyama K, Saya H.; ''Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells.''; PubMed Europe PMC Scholia
  13. Seki A, Coppinger JA, Jang CY, Yates JR, Fang G.; ''Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry.''; PubMed Europe PMC Scholia
  14. Bruinsma W, Raaijmakers JA, Medema RH.; ''Switching Polo-like kinase-1 on and off in time and space.''; PubMed Europe PMC Scholia
  15. Alvarez-Fernández M, Halim VA, Aprelia M, Laoukili J, Mohammed S, Medema RH.; ''Protein phosphatase 2A (B55α) prevents premature activation of forkhead transcription factor FoxM1 by antagonizing cyclin A/cyclin-dependent kinase-mediated phosphorylation.''; PubMed Europe PMC Scholia
  16. McGowan CH, Russell P.; ''Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15.''; PubMed Europe PMC Scholia
  17. Xu M, Sheppard KA, Peng CY, Yee AS, Piwnica-Worms H.; ''Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation.''; PubMed Europe PMC Scholia
  18. Jang YJ, Ma S, Terada Y, Erikson RL.; ''Phosphorylation of threonine 210 and the role of serine 137 in the regulation of mammalian polo-like kinase.''; PubMed Europe PMC Scholia
  19. Xing Y, Li Z, Chen Y, Stock JB, Jeffrey PD, Shi Y.; ''Structural mechanism of demethylation and inactivation of protein phosphatase 2A.''; PubMed Europe PMC Scholia
  20. Kumagai A, Dunphy WG.; ''Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts.''; PubMed Europe PMC Scholia
  21. Krek W, Ewen ME, Shirodkar S, Arany Z, Kaelin WG, Livingston DM.; ''Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase.''; PubMed Europe PMC Scholia
  22. Laoukili J, Alvarez M, Meijer LA, Stahl M, Mohammed S, Kleij L, Heck AJ, Medema RH.; ''Activation of FoxM1 during G2 requires cyclin A/Cdk-dependent relief of autorepression by the FoxM1 N-terminal domain.''; PubMed Europe PMC Scholia
  23. Yu D, Jing T, Liu B, Yao J, Tan M, McDonnell TJ, Hung MC.; ''Overexpression of ErbB2 blocks Taxol-induced apoptosis by upregulation of p21Cip1, which inhibits p34Cdc2 kinase.''; PubMed Europe PMC Scholia
  24. Mailand N, Podtelejnikov AV, Groth A, Mann M, Bartek J, Lukas J.; ''Regulation of G(2)/M events by Cdc25A through phosphorylation-dependent modulation of its stability.''; PubMed Europe PMC Scholia
  25. Voges D, Zwickl P, Baumeister W.; ''The 26S proteasome: a molecular machine designed for controlled proteolysis.''; PubMed Europe PMC Scholia
  26. Sakchaisri K, Asano S, Yu LR, Shulewitz MJ, Park CJ, Park JE, Cho YW, Veenstra TD, Thorner J, Lee KS.; ''Coupling morphogenesis to mitotic entry.''; PubMed Europe PMC Scholia
  27. Liu D, Liao C, Wolgemuth DJ.; ''A role for cyclin A1 in the activation of MPF and G2-M transition during meiosis of male germ cells in mice.''; PubMed Europe PMC Scholia
  28. Scolz M, Widlund PO, Piazza S, Bublik DR, Reber S, Peche LY, Ciani Y, Hubner N, Isokane M, Monte M, Ellenberg J, Hyman AA, Schneider C, Bird AW.; ''GTSE1 is a microtubule plus-end tracking protein that regulates EB1-dependent cell migration.''; PubMed Europe PMC Scholia
  29. Mailand N, Falck J, Lukas C, Syljuâsen RG, Welcker M, Bartek J, Lukas J.; ''Rapid destruction of human Cdc25A in response to DNA damage.''; PubMed Europe PMC Scholia
  30. Teixidó-Travesa N, Villén J, Lacasa C, Bertran MT, Archinti M, Gygi SP, Caelles C, Roig J, Lüders J.; ''The gammaTuRC revisited: a comparative analysis of interphase and mitotic human gammaTuRC redefines the set of core components and identifies the novel subunit GCP8.''; PubMed Europe PMC Scholia
  31. Hagting A, Karlsson C, Clute P, Jackman M, Pines J.; ''MPF localization is controlled by nuclear export.''; PubMed Europe PMC Scholia
  32. Nakajima H, Toyoshima-Morimoto F, Taniguchi E, Nishida E.; ''Identification of a consensus motif for Plk (Polo-like kinase) phosphorylation reveals Myt1 as a Plk1 substrate.''; PubMed Europe PMC Scholia
  33. Fu Z, Malureanu L, Huang J, Wang W, Li H, van Deursen JM, Tindall DJ, Chen J.; ''Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression.''; PubMed Europe PMC Scholia
  34. Lindqvist A, Källström H, Karlsson Rosenthal C.; ''Characterisation of Cdc25B localisation and nuclear export during the cell cycle and in response to stress.''; PubMed Europe PMC Scholia
  35. Scrofani J, Sardon T, Meunier S, Vernos I.; ''Microtubule nucleation in mitosis by a RanGTP-dependent protein complex.''; PubMed Europe PMC Scholia
  36. Takizawa CG, Weis K, Morgan DO.; ''Ran-independent nuclear import of cyclin B1-Cdc2 by importin beta.''; PubMed Europe PMC Scholia
  37. Xu X, Wang X, Xiao Z, Li Y, Wang Y.; ''Two TPX2-dependent switches control the activity of Aurora A.''; PubMed Europe PMC Scholia
  38. Honda R, Ohba Y, Nagata A, Okayama H, Yasuda H.; ''Dephosphorylation of human p34cdc2 kinase on both Thr-14 and Tyr-15 by human cdc25B phosphatase.''; PubMed Europe PMC Scholia
  39. Maxwell CA, Keats JJ, Belch AR, Pilarski LM, Reiman T.; ''Receptor for hyaluronan-mediated motility correlates with centrosome abnormalities in multiple myeloma and maintains mitotic integrity.''; PubMed Europe PMC Scholia
  40. Mayor T, Stierhof YD, Tanaka K, Fry AM, Nigg EA.; ''The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion.''; PubMed Europe PMC Scholia
  41. Yamashiro S, Yamakita Y, Totsukawa G, Goto H, Kaibuchi K, Ito M, Hartshorne DJ, Matsumura F.; ''Myosin phosphatase-targeting subunit 1 regulates mitosis by antagonizing polo-like kinase 1.''; PubMed Europe PMC Scholia
  42. Vousden KH, Prives C.; ''Blinded by the Light: The Growing Complexity of p53.''; PubMed Europe PMC Scholia
  43. Sadasivam S, Duan S, DeCaprio JA.; ''The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression.''; PubMed Europe PMC Scholia
  44. Jackman M, Firth M, Pines J.; ''Human cyclins B1 and B2 are localized to strikingly different structures: B1 to microtubules, B2 primarily to the Golgi apparatus.''; PubMed Europe PMC Scholia
  45. Dodson CA, Bayliss R.; ''Activation of Aurora-A kinase by protein partner binding and phosphorylation are independent and synergistic.''; PubMed Europe PMC Scholia
  46. Taniguchi E, Toyoshima-Morimoto F, Nishida E.; ''Nuclear translocation of plk1 mediated by its bipartite nuclear localization signal.''; PubMed Europe PMC Scholia
  47. Shi P, Zhu S, Lin Y, Liu Y, Liu Y, Chen Z, Shi Y, Qian Y.; ''Persistent stimulation with interleukin-17 desensitizes cells through SCFβ-TrCP-mediated degradation of Act1.''; PubMed Europe PMC Scholia
  48. Sen I, Veprintsev D, Akhmanova A, Steinmetz MO.; ''End binding proteins are obligatory dimers.''; PubMed Europe PMC Scholia
  49. Johnson EO, Chang KH, de Pablo Y, Ghosh S, Mehta R, Badve S, Shah K.; ''PHLDA1 is a crucial negative regulator and effector of Aurora A kinase in breast cancer.''; PubMed Europe PMC Scholia
  50. Petretti C, Savoian M, Montembault E, Glover DM, Prigent C, Giet R.; ''The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation.''; PubMed Europe PMC Scholia
  51. De Baere I, Derua R, Janssens V, Van Hoof C, Waelkens E, Merlevede W, Goris J.; ''Purification of porcine brain protein phosphatase 2A leucine carboxyl methyltransferase and cloning of the human homologue.''; PubMed Europe PMC Scholia
  52. Wang G, Jiang Q, Zhang C.; ''The role of mitotic kinases in coupling the centrosome cycle with the assembly of the mitotic spindle.''; PubMed Europe PMC Scholia
  53. Liu Y, Lear T, Zhao Y, Zhao J, Zou C, Chen BB, Mallampalli RK.; ''F-box protein Fbxl18 mediates polyubiquitylation and proteasomal degradation of the pro-apoptotic SCF subunit Fbxl7.''; PubMed Europe PMC Scholia
  54. Hutterer A, Berdnik D, Wirtz-Peitz F, Zigman M, Schleiffer A, Knoblich JA.; ''Mitotic activation of the kinase Aurora-A requires its binding partner Bora.''; PubMed Europe PMC Scholia
  55. Hutchins JR, Toyoda Y, Hegemann B, Poser I, Hériché JK, Sykora MM, Augsburg M, Hudecz O, Buschhorn BA, Bulkescher J, Conrad C, Comartin D, Schleiffer A, Sarov M, Pozniakovsky A, Slabicki MM, Schloissnig S, Steinmacher I, Leuschner M, Ssykor A, Lawo S, Pelletier L, Stark H, Nasmyth K, Ellenberg J, Durbin R, Buchholz F, Mechtler K, Hyman AA, Peters JM.; ''Systematic analysis of human protein complexes identifies chromosome segregation proteins.''; PubMed Europe PMC Scholia
  56. Timofeev O, Cizmecioglu O, Hu E, Orlik T, Hoffmann I.; ''Human Cdc25A phosphatase has a non-redundant function in G2 phase by activating Cyclin A-dependent kinases.''; PubMed Europe PMC Scholia
  57. Monte M, Benetti R, Buscemi G, Sandy P, Del Sal G, Schneider C.; ''The cell cycle-regulated protein human GTSE-1 controls DNA damage-induced apoptosis by affecting p53 function.''; PubMed Europe PMC Scholia
  58. Takahashi M, Yamagiwa A, Nishimura T, Mukai H, Ono Y.; ''Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex.''; PubMed Europe PMC Scholia
  59. Casenghi M, Meraldi P, Weinhart U, Duncan PI, Körner R, Nigg EA.; ''Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation.''; PubMed Europe PMC Scholia
  60. Dynlacht BD, Flores O, Lees JA, Harlow E.; ''Differential regulation of E2F transactivation by cyclin/cdk2 complexes.''; PubMed Europe PMC Scholia
  61. O'Farrell PH.; ''Triggering the all-or-nothing switch into mitosis.''; PubMed Europe PMC Scholia
  62. Galaktionov K, Beach D.; ''Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins.''; PubMed Europe PMC Scholia
  63. Kachaner D, Filipe J, Laplantine E, Bauch A, Bennett KL, Superti-Furga G, Israël A, Weil R.; ''Plk1-dependent phosphorylation of optineurin provides a negative feedback mechanism for mitotic progression.''; PubMed Europe PMC Scholia
  64. Pines J, Hunter T.; ''Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport.''; PubMed Europe PMC Scholia
  65. Graves PR, Lovly CM, Uy GL, Piwnica-Worms H.; ''Localization of human Cdc25C is regulated both by nuclear export and 14-3-3 protein binding.''; PubMed Europe PMC Scholia
  66. Coon TA, Glasser JR, Mallampalli RK, Chen BB.; ''Novel E3 ligase component FBXL7 ubiquitinates and degrades Aurora A, causing mitotic arrest.''; PubMed Europe PMC Scholia
  67. Sullivan C, Liu Y, Shen J, Curtis A, Newman C, Hock JM, Li X.; ''Novel interactions between FOXM1 and CDC25A regulate the cell cycle.''; PubMed Europe PMC Scholia
  68. Laoukili J, Kooistra MR, Brás A, Kauw J, Kerkhoven RM, Morrison A, Clevers H, Medema RH.; ''FoxM1 is required for execution of the mitotic programme and chromosome stability.''; PubMed Europe PMC Scholia
  69. Bayliss R, Sardon T, Vernos I, Conti E.; ''Structural basis of Aurora-A activation by TPX2 at the mitotic spindle.''; PubMed Europe PMC Scholia
  70. Goda T, Ishii T, Nakajo N, Sagata N, Kobayashi H.; ''The RRASK motif in Xenopus cyclin B2 is required for the substrate recognition of Cdc25C by the cyclin B-Cdc2 complex.''; PubMed Europe PMC Scholia
  71. Chen X, Müller GA, Quaas M, Fischer M, Han N, Stutchbury B, Sharrocks AD, Engeland K.; ''The forkhead transcription factor FOXM1 controls cell cycle-dependent gene expression through an atypical chromatin binding mechanism.''; PubMed Europe PMC Scholia
  72. Jascur T, Brickner H, Salles-Passador I, Barbier V, El Khissiin A, Smith B, Fotedar R, Fotedar A.; ''Regulation of p21(WAF1/CIP1) stability by WISp39, a Hsp90 binding TPR protein.''; PubMed Europe PMC Scholia
  73. Monte M, Benetti R, Collavin L, Marchionni L, Del Sal G, Schneider C.; ''hGTSE-1 expression stimulates cytoplasmic localization of p53.''; PubMed Europe PMC Scholia
  74. Draviam VM, Orrechia S, Lowe M, Pardi R, Pines J.; ''The localization of human cyclins B1 and B2 determines CDK1 substrate specificity and neither enzyme requires MEK to disassemble the Golgi apparatus.''; PubMed Europe PMC Scholia
  75. Desai D, Wessling HC, Fisher RP, Morgan DO.; ''Effects of phosphorylation by CAK on cyclin binding by CDC2 and CDK2.''; PubMed Europe PMC Scholia
  76. Timofeev O, Cizmecioglu O, Settele F, Kempf T, Hoffmann I.; ''Cdc25 phosphatases are required for timely assembly of CDK1-cyclin B at the G2/M transition.''; PubMed Europe PMC Scholia
  77. Bellanger S, de Gramont A, Sobczak-Thépot J.; ''Cyclin B2 suppresses mitotic failure and DNA re-replication in human somatic cells knocked down for both cyclins B1 and B2.''; PubMed Europe PMC Scholia
  78. Watanabe N, Arai H, Nishihara Y, Taniguchi M, Watanabe N, Hunter T, Osada H.; ''M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP.''; PubMed Europe PMC Scholia
  79. Major ML, Lepe R, Costa RH.; ''Forkhead box M1B transcriptional activity requires binding of Cdk-cyclin complexes for phosphorylation-dependent recruitment of p300/CBP coactivators.''; PubMed Europe PMC Scholia
  80. Toyoshima-Morimoto F, Taniguchi E, Nishida E.; ''Plk1 promotes nuclear translocation of human Cdc25C during prophase.''; PubMed Europe PMC Scholia
  81. Yang J, Bardes ES, Moore JD, Brennan J, Powers MA, Kornbluth S.; ''Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1.''; PubMed Europe PMC Scholia
  82. Liu XS, Li H, Song B, Liu X.; ''Polo-like kinase 1 phosphorylation of G2 and S-phase-expressed 1 protein is essential for p53 inactivation during G2 checkpoint recovery.''; PubMed Europe PMC Scholia
  83. Takizawa CG, Morgan DO.; ''Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C.''; PubMed Europe PMC Scholia
  84. Groen AC, Cameron LA, Coughlin M, Miyamoto DT, Mitchison TJ, Ohi R.; ''XRHAMM functions in ran-dependent microtubule nucleation and pole formation during anastral spindle assembly.''; PubMed Europe PMC Scholia
  85. Wei SJ, Williams JG, Dang H, Darden TA, Betz BL, Humble MM, Chang FM, Trempus CS, Johnson K, Cannon RE, Tennant RW.; ''Identification of a specific motif of the DSS1 protein required for proteasome interaction and p53 protein degradation.''; PubMed Europe PMC Scholia
  86. Hagting A, Jackman M, Simpson K, Pines J.; ''Translocation of cyclin B1 to the nucleus at prophase requires a phosphorylation-dependent nuclear import signal.''; PubMed Europe PMC Scholia
  87. Golsteyn RM, Mundt KE, Fry AM, Nigg EA.; ''Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function.''; PubMed Europe PMC Scholia
  88. Liu F, Stanton JJ, Wu Z, Piwnica-Worms H.; ''The human Myt1 kinase preferentially phosphorylates Cdc2 on threonine 14 and localizes to the endoplasmic reticulum and Golgi complex.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114706view16:18, 25 January 2021ReactomeTeamReactome version 75
113151view11:21, 2 November 2020ReactomeTeamReactome version 74
112379view15:31, 9 October 2020ReactomeTeamReactome version 73
101750view12:30, 5 November 2018DeSlOntology Term : 'G2/M transition pathway' added !
101749view12:29, 5 November 2018DeSlOntology Term : 'G2 phase pathway' added !
101282view11:17, 1 November 2018ReactomeTeamreactome version 66
100819view20:47, 31 October 2018ReactomeTeamreactome version 65
100360view19:22, 31 October 2018ReactomeTeamreactome version 64
99905view16:06, 31 October 2018ReactomeTeamreactome version 63
99461view14:38, 31 October 2018ReactomeTeamreactome version 62 (2nd attempt)
94019view13:51, 16 August 2017ReactomeTeamreactome version 61
93638view11:29, 9 August 2017ReactomeTeamreactome version 61
86753view09:25, 11 July 2016ReactomeTeamreactome version 56
83378view11:04, 18 November 2015ReactomeTeamVersion54
81553view13:05, 21 August 2015ReactomeTeamVersion53
77022view08:32, 17 July 2014ReactomeTeamFixed remaining interactions
76727view12:09, 16 July 2014ReactomeTeamFixed remaining interactions
75762view11:26, 10 June 2014ReactomeTeamReactome 48 Update
75112view14:06, 8 May 2014AnweshaFixing comment source for displaying WikiPathways description
74759view08:50, 30 April 2014ReactomeTeamReactome46
44913view10:36, 6 October 2011MartijnVanIerselOntology Term : 'cell cycle pathway, mitotic' added !
42077view21:55, 4 March 2011MaintBotAutomatic update
39885view05:54, 21 January 2011MaintBotNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
26S proteasomeComplexR-HSA-68819 (Reactome)
ACTR1A ProteinP61163 (Uniprot-TrEMBL)
ADPMetaboliteCHEBI:16761 (ChEBI)
AJUBA ProteinQ96IF1 (Uniprot-TrEMBL)
AJUBAProteinQ96IF1 (Uniprot-TrEMBL)
AKAP9 ProteinQ99996 (Uniprot-TrEMBL)
ALMS1 ProteinQ8TCU4 (Uniprot-TrEMBL)
ATPMetaboliteCHEBI:15422 (ChEBI)
AURKA ProteinO14965 (Uniprot-TrEMBL)
AURKA:PHLDA1ComplexR-HSA-8853432 (Reactome)
AURKAProteinO14965 (Uniprot-TrEMBL)
AZI1 ProteinQ9UPN4 (Uniprot-TrEMBL)
BORAProteinQ6PGQ7 (Uniprot-TrEMBL)
BTRC ProteinQ9Y297 (Uniprot-TrEMBL)
CAKComplexR-HSA-69221 (Reactome)
CCNA1 ProteinP78396 (Uniprot-TrEMBL)
CCNA1:p-T161-CDK1ComplexR-HSA-68892 (Reactome)
CCNA2 ProteinP20248 (Uniprot-TrEMBL)
CCNA2:p-T161-CDK1ComplexR-HSA-68906 (Reactome)
CCNA:CDK1ComplexR-HSA-170091 (Reactome)
CCNA:p-CDK1/2 R-HSA-4088020 (Reactome)
CCNA:p-T14,T161-CDK1ComplexR-HSA-170092 (Reactome)
CCNA:p-T14,Y15,T161-CDK1ComplexR-HSA-170147 (Reactome)
CCNA:p-T14-CDK1ComplexR-HSA-170085 (Reactome)
CCNA:p-T14-CDK1ComplexR-HSA-170090 (Reactome)
CCNA:p-T160-CDK2:E2F1/E2F3ComplexR-HSA-187932 (Reactome)
CCNA:p-T160-CDK2:p-E2F1/p-E2F3ComplexR-HSA-187944 (Reactome)
CCNA:p-T160-CDK2ComplexR-HSA-187952 (Reactome)
CCNA:p-T161-CDK1ComplexR-HSA-170146 (Reactome)
CCNAComplexR-HSA-170089 (Reactome)
CCNB1 Gene ProteinENSG00000134057 (Ensembl)
CCNB1 GeneGeneProductENSG00000134057 (Ensembl)
CCNB1 ProteinP14635 (Uniprot-TrEMBL)
CCNB1:p-T14,T161-CDK1ComplexR-HSA-170073 (Reactome)
CCNB1:p-T14,Y15,T161-CDK1ComplexR-HSA-170065 (Reactome)
CCNB1:p-T14-CDK1ComplexR-HSA-170056 (Reactome)
CCNB1:p-T161-CDK1ComplexR-HSA-157456 (Reactome)
CCNB1:p-T161-CDK1ComplexR-HSA-170160 (Reactome)
CCNB1ProteinP14635 (Uniprot-TrEMBL)
CCNB2 Gene ProteinENSG00000157456 (Ensembl)
CCNB2 GeneGeneProductENSG00000157456 (Ensembl)
CCNB2 ProteinO95067 (Uniprot-TrEMBL)
CCNB2:p-T161-CDK1ComplexR-HSA-68898 (Reactome)
CCNB2ProteinO95067 (Uniprot-TrEMBL)
CCNB:CDK1ComplexR-HSA-170077 (Reactome)
CCNB:p-T14-CDK1ComplexR-HSA-170069 (Reactome)
CCNB:p-T161-CDK1 R-HSA-2311324 (Reactome)
CCNB:p-T161-CDK1 R-HSA-4088041 (Reactome)
CCNB:p-T161-CDK1ComplexR-HSA-2311324 (Reactome)
CCNBComplexR-HSA-157461 (Reactome)
CCNH ProteinP51946 (Uniprot-TrEMBL)
CCP110 ProteinO43303 (Uniprot-TrEMBL)
CDC25A Gene ProteinENSG00000164045 (Ensembl)
CDC25A GeneGeneProductENSG00000164045 (Ensembl)
CDC25A ProteinP30304 (Uniprot-TrEMBL)
CDC25AProteinP30304 (Uniprot-TrEMBL)
CDC25B ProteinP30305 (Uniprot-TrEMBL)
CDC25BProteinP30305 (Uniprot-TrEMBL)
CDC25C ProteinP30307 (Uniprot-TrEMBL)
CDC25CProteinP30307 (Uniprot-TrEMBL)
CDC25ComplexR-HSA-69261 (Reactome)
CDK1 ProteinP06493 (Uniprot-TrEMBL)
CDK11A ProteinQ9UQ88 (Uniprot-TrEMBL)
CDK11B ProteinP21127 (Uniprot-TrEMBL)
CDK11p58ComplexR-HSA-380452 (Reactome)
CDK1ProteinP06493 (Uniprot-TrEMBL)
CDK5RAP2 ProteinQ96SN8 (Uniprot-TrEMBL)
CDK7 ProteinP50613 (Uniprot-TrEMBL)
CDKN1A ProteinP38936 (Uniprot-TrEMBL)
CDKN1AProteinP38936 (Uniprot-TrEMBL)
CENPF Gene ProteinENSG00000117724 (Ensembl)
CENPF GeneGeneProductENSG00000117724 (Ensembl)
CENPFProteinP49454 (Uniprot-TrEMBL)
CENPJ ProteinQ9HC77 (Uniprot-TrEMBL)
CEP135 ProteinQ66GS9 (Uniprot-TrEMBL)
CEP152 ProteinO94986 (Uniprot-TrEMBL)
CEP164 ProteinQ9UPV0 (Uniprot-TrEMBL)
CEP192 ProteinQ8TEP8 (Uniprot-TrEMBL)
CEP250 ProteinQ9BV73 (Uniprot-TrEMBL)
CEP250ProteinQ9BV73 (Uniprot-TrEMBL)
CEP290 ProteinO15078 (Uniprot-TrEMBL)
CEP41 ProteinQ9BYV8 (Uniprot-TrEMBL)
CEP57 ProteinQ86XR8 (Uniprot-TrEMBL)
CEP63 ProteinQ96MT8 (Uniprot-TrEMBL)
CEP70 ProteinQ8NHQ1 (Uniprot-TrEMBL)
CEP72 ProteinQ9P209 (Uniprot-TrEMBL)
CEP76 ProteinQ8TAP6 (Uniprot-TrEMBL)
CEP78 ProteinQ5JTW2 (Uniprot-TrEMBL)
CETN2 ProteinP41208 (Uniprot-TrEMBL)
CKAP5 ProteinQ14008 (Uniprot-TrEMBL)
CLASP1 ProteinQ7Z460 (Uniprot-TrEMBL)
CNTRL ProteinQ7Z7A1 (Uniprot-TrEMBL)
CRS kinaseComplexR-HSA-170106 (Reactome)
CSNK1D ProteinP48730 (Uniprot-TrEMBL)
CSNK1E ProteinP49674 (Uniprot-TrEMBL)
CUL1 ProteinQ13616 (Uniprot-TrEMBL)
Cdc25ComplexR-HSA-170108 (Reactome)
Cdc25ComplexR-HSA-186979 (Reactome)
Centrosome associated Plk1ComplexR-HSA-380288 (Reactome)
Centrosome:AURKA:AJUBAComplexR-HSA-2574836 (Reactome)
Centrosome:AURKA:TPX2:HMMRComplexR-HSA-8853414 (Reactome)
Centrosome:AURKAComplexR-HSA-2574827 (Reactome)
Centrosome:p-T288-AURKA:TPX2:HMMRComplexR-HSA-8853422 (Reactome)
Centrosome:p-T288-AURKA:p-S252-BORA:PLK1ComplexR-HSA-3000313 (Reactome)
Centrosome:p-T288-AURKAComplexR-HSA-3000302 (Reactome)
Centrosomes

containing

recruited CDK11p58
ComplexR-HSA-380453 (Reactome)
Cyclin

B1:phospho-Cdc2(Thr 161, Thr 14, Tyr

15)
ComplexR-HSA-170068 (Reactome)
Cyclin

B2:phospho-Cdc2(Thr

14, Thr 161)
ComplexR-HSA-170152 (Reactome)
Cyclin A1:Cdk2

phosphorylated G2/M

transition protein
R-HSA-617372 (Reactome)
Cyclin A2:Cdk2

phosphorylated G2/M

transition protein
R-HSA-617371 (Reactome)
DCTN1-2 ProteinQ14203-2 (Uniprot-TrEMBL)
DCTN2 ProteinQ13561 (Uniprot-TrEMBL)
DCTN3 ProteinO75935 (Uniprot-TrEMBL)
DYNC1H1 ProteinQ14204 (Uniprot-TrEMBL)
DYNC1I2 ProteinQ13409 (Uniprot-TrEMBL)
DYNLL1 ProteinP63167 (Uniprot-TrEMBL)
E2F1 ProteinQ01094 (Uniprot-TrEMBL)
E2F1/E2F3ComplexR-HSA-187942 (Reactome)
E2F3 ProteinO00716 (Uniprot-TrEMBL)
EP300 ProteinQ09472 (Uniprot-TrEMBL)
EP300ProteinQ09472 (Uniprot-TrEMBL)
FBXW11 ProteinQ9UKB1 (Uniprot-TrEMBL)
FGFR1OP ProteinO95684 (Uniprot-TrEMBL)
FKBPL ProteinQ9UIM3 (Uniprot-TrEMBL)
FKBPLProteinQ9UIM3 (Uniprot-TrEMBL)
FOXM1ProteinQ08050 (Uniprot-TrEMBL)
G2/M transition proteinR-HSA-157449 (Reactome)
G2/M transition proteinsR-HSA-617370 (Reactome)
G2/M transition proteinsR-HSA-617374 (Reactome)
GTP MetaboliteCHEBI:15996 (ChEBI)
GTSE1 ProteinQ9NYZ3 (Uniprot-TrEMBL)
GTSE1:CDKN1A:FKBPL:HSP90ComplexR-HSA-8852380 (Reactome)
GTSE1:MAPRE1:microtubule plus endComplexR-HSA-8852295 (Reactome)
GTSE1:microtubuleComplexR-HSA-8852286 (Reactome)
GTSE1:p-T210-PLK1ComplexR-HSA-8852323 (Reactome)
GTSE1ProteinQ9NYZ3 (Uniprot-TrEMBL)
H2OMetaboliteCHEBI:15377 (ChEBI)
HAUS1 ProteinQ96CS2 (Uniprot-TrEMBL)
HAUS2 ProteinQ9NVX0 (Uniprot-TrEMBL)
HAUS3 ProteinQ68CZ6 (Uniprot-TrEMBL)
HAUS4 ProteinQ9H6D7 (Uniprot-TrEMBL)
HAUS5 ProteinO94927 (Uniprot-TrEMBL)
HAUS6 ProteinQ7Z4H7 (Uniprot-TrEMBL)
HAUS7 ProteinQ99871 (Uniprot-TrEMBL)
HAUS8 ProteinQ9BT25 (Uniprot-TrEMBL)
HMMR ProteinO75330 (Uniprot-TrEMBL)
HMMRProteinO75330 (Uniprot-TrEMBL)
HSP90:HSP90ComplexR-HSA-3371429 (Reactome)
HSP90AA1 ProteinP07900 (Uniprot-TrEMBL)
HSP90AB1 ProteinP08238 (Uniprot-TrEMBL)
LIN37 ProteinQ96GY3 (Uniprot-TrEMBL)
LIN52 ProteinQ52LA3 (Uniprot-TrEMBL)
LIN54 ProteinQ6MZP7 (Uniprot-TrEMBL)
LIN9 ProteinQ5TKA1 (Uniprot-TrEMBL)
MAPRE1 ProteinQ15691 (Uniprot-TrEMBL)
MAPRE1:microtubule plus endComplexR-HSA-8852300 (Reactome)
MNAT1 ProteinP51948 (Uniprot-TrEMBL)
MYBL2 ProteinP10244 (Uniprot-TrEMBL)
MYBL2ProteinP10244 (Uniprot-TrEMBL)
Mature centrosomes

enriched in gamma-TURC

complexes
ComplexR-HSA-380440 (Reactome)
Mitotic kinaseComplexR-HSA-8853807 (Reactome)
MuvB complexComplexR-HSA-1362248 (Reactome)
NDE1 ProteinQ9NXR1 (Uniprot-TrEMBL)
NEDD1 ProteinQ8NHV4 (Uniprot-TrEMBL)
NEK2 ProteinP51955 (Uniprot-TrEMBL)
NINL ProteinQ9Y2I6 (Uniprot-TrEMBL)
NUMA1ProteinQ14980 (Uniprot-TrEMBL)
Nlp-depleted centrosomeComplexR-HSA-380705 (Reactome)
NuMA homodimerComplexR-HSA-380486 (Reactome)
NuMA-bound microtubulesComplexR-HSA-380495 (Reactome)
ODF2 ProteinQ5BJF6 (Uniprot-TrEMBL)
OFD1 ProteinO75665 (Uniprot-TrEMBL)
OPTN ProteinQ96CV9 (Uniprot-TrEMBL)
OPTN:RAB8A:GTPComplexR-HSA-2562537 (Reactome)
PAFAH1B1 ProteinP43034 (Uniprot-TrEMBL)
PCM1 ProteinQ15154 (Uniprot-TrEMBL)
PCNT ProteinO95613 (Uniprot-TrEMBL)
PHLDA1 ProteinQ8WV24 (Uniprot-TrEMBL)
PHLDA1ProteinQ8WV24 (Uniprot-TrEMBL)
PKMYT1ProteinQ99640 (Uniprot-TrEMBL)
PLK1 Gene ProteinENSG00000166851 (Ensembl)
PLK1 GeneGeneProductENSG00000166851 (Ensembl)
PLK1 ProteinP53350 (Uniprot-TrEMBL)
PLK1ProteinP53350 (Uniprot-TrEMBL)
PLK4 ProteinO00444 (Uniprot-TrEMBL)
PP2A-PPP2R2AComplexR-HSA-4088142 (Reactome)
PPP1CB ProteinP62140 (Uniprot-TrEMBL)
PPP1R12B-4 ProteinO60237-4 (Uniprot-TrEMBL)
PPP2CA ProteinP67775 (Uniprot-TrEMBL)
PPP2CB ProteinP62714 (Uniprot-TrEMBL)
PPP2R1A ProteinP30153 (Uniprot-TrEMBL)
PPP2R1B ProteinP30154 (Uniprot-TrEMBL)
PPP2R2A ProteinP63151 (Uniprot-TrEMBL)
PRKACA ProteinP17612 (Uniprot-TrEMBL)
PRKAR2B ProteinP31323 (Uniprot-TrEMBL)
PSMA1 ProteinP25786 (Uniprot-TrEMBL)
PSMA2 ProteinP25787 (Uniprot-TrEMBL)
PSMA3 ProteinP25788 (Uniprot-TrEMBL)
PSMA4 ProteinP25789 (Uniprot-TrEMBL)
PSMA5 ProteinP28066 (Uniprot-TrEMBL)
PSMA6 ProteinP60900 (Uniprot-TrEMBL)
PSMA7 ProteinO14818 (Uniprot-TrEMBL)
PSMA8 ProteinQ8TAA3 (Uniprot-TrEMBL)
PSMB1 ProteinP20618 (Uniprot-TrEMBL)
PSMB10 ProteinP40306 (Uniprot-TrEMBL)
PSMB11 ProteinA5LHX3 (Uniprot-TrEMBL)
PSMB2 ProteinP49721 (Uniprot-TrEMBL)
PSMB3 ProteinP49720 (Uniprot-TrEMBL)
PSMB4 ProteinP28070 (Uniprot-TrEMBL)
PSMB5 ProteinP28074 (Uniprot-TrEMBL)
PSMB6 ProteinP28072 (Uniprot-TrEMBL)
PSMB7 ProteinQ99436 (Uniprot-TrEMBL)
PSMB8 ProteinP28062 (Uniprot-TrEMBL)
PSMB9 ProteinP28065 (Uniprot-TrEMBL)
PSMC1 ProteinP62191 (Uniprot-TrEMBL)
PSMC2 ProteinP35998 (Uniprot-TrEMBL)
PSMC3 ProteinP17980 (Uniprot-TrEMBL)
PSMC4 ProteinP43686 (Uniprot-TrEMBL)
PSMC5 ProteinP62195 (Uniprot-TrEMBL)
PSMC6 ProteinP62333 (Uniprot-TrEMBL)
PSMD1 ProteinQ99460 (Uniprot-TrEMBL)
PSMD10 ProteinO75832 (Uniprot-TrEMBL)
PSMD11 ProteinO00231 (Uniprot-TrEMBL)
PSMD12 ProteinO00232 (Uniprot-TrEMBL)
PSMD13 ProteinQ9UNM6 (Uniprot-TrEMBL)
PSMD14 ProteinO00487 (Uniprot-TrEMBL)
PSMD2 ProteinQ13200 (Uniprot-TrEMBL)
PSMD3 ProteinO43242 (Uniprot-TrEMBL)
PSMD4 ProteinP55036 (Uniprot-TrEMBL)
PSMD5 ProteinQ16401 (Uniprot-TrEMBL)
PSMD6 ProteinQ15008 (Uniprot-TrEMBL)
PSMD7 ProteinP51665 (Uniprot-TrEMBL)
PSMD8 ProteinP48556 (Uniprot-TrEMBL)
PSMD9 ProteinO00233 (Uniprot-TrEMBL)
PSME1 ProteinQ06323 (Uniprot-TrEMBL)
PSME2 ProteinQ9UL46 (Uniprot-TrEMBL)
PSME3 ProteinP61289 (Uniprot-TrEMBL)
PSME4 ProteinQ14997 (Uniprot-TrEMBL)
PSMF1 ProteinQ92530 (Uniprot-TrEMBL)
Phospho-Cyclin

B1

(CRS):phospho-Cdc2(Thr 161)
ComplexR-HSA-170121 (Reactome)
Phosphorylated Myosin PhosphataseComplexR-HSA-3002804 (Reactome) All known myosin phosphatases consist of PP1 beta and both a large and a small myosin phosphatase targetting (Mypt) subunit. The large Mypt targets PP1 beta to myosin and determines the substrate specifity of the phosphatase. The Large Mypt subunit is encoded by one of three human genes, PPP1R12A (MYPT1), PPP1R12B (MYPT2) and PPP1R12C. Only MYPT1 is represented here. The small subunit is an alternative transcript of MYPT2. The function of the small Mypt subunit remains unclear, but because it is known to interact directly with myosin and the large Mypt it is thought to have an unspecified regulatory role.
PiMetaboliteCHEBI:18367 (ChEBI)
PolyUb-TP53 ProteinP04637 (Uniprot-TrEMBL)
PolyUb-TP53 TetramerComplexR-HSA-3209186 (Reactome)
RAB8A ProteinP61006 (Uniprot-TrEMBL)
RAB8A:GTPComplexR-HSA-2562539 (Reactome)
RBBP4 ProteinQ09028 (Uniprot-TrEMBL)
RPS27A(1-76) ProteinP62979 (Uniprot-TrEMBL)
SCF-beta-TrCp1,2ComplexR-HSA-1168601 (Reactome)
SDCCAG8 ProteinQ86SQ7 (Uniprot-TrEMBL)
SFI1 ProteinA8K8P3 (Uniprot-TrEMBL)
SKP1 ProteinP63208 (Uniprot-TrEMBL)
SSNA1 ProteinO43805 (Uniprot-TrEMBL)
TPX2 ProteinQ9ULW0 (Uniprot-TrEMBL)
TPX2ProteinQ9ULW0 (Uniprot-TrEMBL)
TUBA1A ProteinQ71U36 (Uniprot-TrEMBL)
TUBA4A ProteinP68366 (Uniprot-TrEMBL)
TUBB ProteinP07437 (Uniprot-TrEMBL)
TUBB4A ProteinP04350 (Uniprot-TrEMBL)
TUBB4B ProteinP68371 (Uniprot-TrEMBL)
TUBG1 ProteinP23258 (Uniprot-TrEMBL)
TUBG2 ProteinQ9NRH3 (Uniprot-TrEMBL)
TUBGCP2 ProteinQ9BSJ2 (Uniprot-TrEMBL)
TUBGCP3 ProteinQ96CW5 (Uniprot-TrEMBL)
TUBGCP4 ProteinQ9UGJ1 (Uniprot-TrEMBL)
TUBGCP5 ProteinQ96RT8 (Uniprot-TrEMBL)
TUBGCP6 ProteinQ96RT7 (Uniprot-TrEMBL)
Transcriptional Regulation by TP53PathwayR-HSA-3700989 (Reactome) The tumor suppressor TP53 (encoded by the gene p53) is a transcription factor. Under stress conditions, it recognizes specific responsive DNA elements and thus regulates the transcription of many genes involved in a variety of cellular processes, such as cellular metabolism, survival, senescence, apoptosis and DNA damage response. Because of its critical function, p53 is frequently mutated in around 50% of all malignant tumors. For a recent review, please refer to Vousden and Prives 2009 and Kruiswijk et al. 2015.
UBA52(1-76) ProteinP62987 (Uniprot-TrEMBL)
UBB(1-76) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(153-228) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(77-152) ProteinP0CG47 (Uniprot-TrEMBL)
UBC(1-76) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(153-228) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(229-304) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(305-380) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(381-456) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(457-532) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(533-608) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(609-684) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(77-152) ProteinP0CG48 (Uniprot-TrEMBL)
Ub-p-S252,S497,T501-BORAComplexR-HSA-3000337 (Reactome)
UbComplexR-HSA-113595 (Reactome)
WEE1ProteinP30291 (Uniprot-TrEMBL)
XPO1ProteinO14980 (Uniprot-TrEMBL)
YWHAE ProteinP62258 (Uniprot-TrEMBL)
YWHAG ProteinP61981 (Uniprot-TrEMBL)
active nuclear

Cyclin B1:Cdc2

complexes
ComplexR-HSA-170168 (Reactome)
cNAP-1 depleted centrosomeComplexR-HSA-380698 (Reactome)
centrosome

containing

phosphorylated Nlp
ComplexR-HSA-380704 (Reactome)
centrosome-associated NuMAComplexR-HSA-380503 (Reactome)
centrosome-nucleated microtubulesComplexR-HSA-379273 (Reactome)
centrosomeComplexR-HSA-380268 (Reactome)
cytoplasmic Cyclin B1:Cdc2 complexesComplexR-HSA-170079 (Reactome)
gamma-tubulin complexComplexR-HSA-379277 (Reactome) A current model of the arrangement of subunits within the  TuRC postulates that 6-7 TuSC subcomplexes are held together by  the other Grip proteins, which together form the cap subunits(Reviewed in Wiese and Zheng, 2006).
microtubule R-HSA-190599 (Reactome)
microtubuleR-HSA-190599 (Reactome)
nuclear Cyclin B1:Cdc2 complexesComplexR-HSA-170051 (Reactome)
nuclear Cyclin B1:Cdc2 substratesR-NUL-170150 (Reactome)
p-4S-CCNB1 ProteinP14635 (Uniprot-TrEMBL)
p-CDK1/2:CCNA/p-T161-CDK1:CCNBComplexR-HSA-4088061 (Reactome)
p-E2F1 ProteinQ01094 (Uniprot-TrEMBL)
p-E2F3 ProteinO00716 (Uniprot-TrEMBL)
p-NINL ProteinQ9Y2I6 (Uniprot-TrEMBL)
p-NINLProteinQ9Y2I6 (Uniprot-TrEMBL)
p-NUMA1 ProteinQ14980 (Uniprot-TrEMBL)
p-NUMA1ProteinQ14980 (Uniprot-TrEMBL)
p-PKMYT1ProteinQ99640 (Uniprot-TrEMBL)
p-S-AJUBAProteinQ96IF1 (Uniprot-TrEMBL)
p-S177-OPTNProteinQ96CV9 (Uniprot-TrEMBL)
p-S198-CDC25C ProteinP30307 (Uniprot-TrEMBL)
p-S198-CDC25CProteinP30307 (Uniprot-TrEMBL)
p-S252,S497,T501-BORA ProteinQ6PGQ7 (Uniprot-TrEMBL)
p-S252,S497,T501-BORA:SCF-beta-TrCp1/2ComplexR-HSA-3000340 (Reactome)
p-S252,S497,T501-BORAProteinQ6PGQ7 (Uniprot-TrEMBL)
p-S252-BORA ProteinQ6PGQ7 (Uniprot-TrEMBL)
p-S252-BORA:p-T210-PLK1ComplexR-HSA-3000305 (Reactome)
p-S252-BORAProteinQ6PGQ7 (Uniprot-TrEMBL)
p-S435-GTSE1 ProteinQ9NYZ3 (Uniprot-TrEMBL)
p-S435-GTSE1:PolyUb-TP53 TetramerComplexR-HSA-8852344 (Reactome)
p-S435-GTSE1:PolyUb-TP53 TetramerComplexR-HSA-8852349 (Reactome)
p-S435-GTSE1ProteinQ9NYZ3 (Uniprot-TrEMBL)
p-S473-PPP1R12A ProteinO14974 (Uniprot-TrEMBL)
p-S53-WEE1ProteinP30291 (Uniprot-TrEMBL)
p-S95-PHLDA1ProteinQ8WV24 (Uniprot-TrEMBL)
p-T14,T161-CDK1 ProteinP06493 (Uniprot-TrEMBL)
p-T14,Y15,T161-CDK1 ProteinP06493 (Uniprot-TrEMBL)
p-T14-CDK1 ProteinP06493 (Uniprot-TrEMBL)
p-T160-CDK2 ProteinP24941 (Uniprot-TrEMBL)
p-T161-CDK1 ProteinP06493 (Uniprot-TrEMBL)
p-T210-PLK1 ProteinP53350 (Uniprot-TrEMBL)
p-T210-PLK1ProteinP53350 (Uniprot-TrEMBL)
p-T288-AURKA ProteinO14965 (Uniprot-TrEMBL)
p-T513,T526-GTSE1ProteinQ9NYZ3 (Uniprot-TrEMBL)
p-T611,S730,S739-FOXM1 ProteinQ08050 (Uniprot-TrEMBL)
p-T611,S730,S739-FOXM1:CENPF GeneComplexR-HSA-4088442 (Reactome)
p-T611,S730,S739-FOXM1:EP300:CDC25A GeneComplexR-HSA-4088158 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB1 GeneComplexR-HSA-4088308 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB2 GeneComplexR-HSA-4088297 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:PLK1 GeneComplexR-HSA-4088300 (Reactome)
p-T611,S730,S739-FOXM1ProteinQ08050 (Uniprot-TrEMBL)
p-T611-FOXM1 ProteinQ08050 (Uniprot-TrEMBL)
p-T611-FOXM1:p-T210-PLK1ComplexR-HSA-4088136 (Reactome)
p-T611-FOXM1ProteinQ08050 (Uniprot-TrEMBL)
phospho-Cyclin B1(CRS):phospho-Cdc2 (Thr 161)ComplexR-HSA-170127 (Reactome)
phospho-G2/M transition proteinR-HSA-157604 (Reactome)
phospho-G2/M transition proteinR-HSA-69753 (Reactome)
phospho-cyclin B1(CRS):phosph-Cdc2(Thr 161)ComplexR-HSA-170047 (Reactome)
phosphorylated

nuclear Cyclin

B1:Cdc2 substrates
R-NUL-182620 (Reactome)
ubiquitinComplexR-HSA-6793517 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
26S proteasomemim-catalysisR-HSA-8852354 (Reactome)
ADPArrowR-HSA-156678 (Reactome)
ADPArrowR-HSA-170055 (Reactome)
ADPArrowR-HSA-170070 (Reactome)
ADPArrowR-HSA-170076 (Reactome)
ADPArrowR-HSA-170087 (Reactome)
ADPArrowR-HSA-170116 (Reactome)
ADPArrowR-HSA-170126 (Reactome)
ADPArrowR-HSA-170156 (Reactome)
ADPArrowR-HSA-170157 (Reactome)
ADPArrowR-HSA-187959 (Reactome)
ADPArrowR-HSA-2562526 (Reactome)
ADPArrowR-HSA-2574840 (Reactome)
ADPArrowR-HSA-3000310 (Reactome)
ADPArrowR-HSA-3000327 (Reactome)
ADPArrowR-HSA-380272 (Reactome)
ADPArrowR-HSA-380278 (Reactome)
ADPArrowR-HSA-4086410 (Reactome)
ADPArrowR-HSA-4088024 (Reactome)
ADPArrowR-HSA-4088134 (Reactome)
ADPArrowR-HSA-69754 (Reactome)
ADPArrowR-HSA-69756 (Reactome)
ADPArrowR-HSA-69759 (Reactome)
ADPArrowR-HSA-8852306 (Reactome)
ADPArrowR-HSA-8852317 (Reactome)
ADPArrowR-HSA-8853419 (Reactome)
ADPArrowR-HSA-8853444 (Reactome)
AJUBAR-HSA-2574845 (Reactome)
ATPR-HSA-156678 (Reactome)
ATPR-HSA-170055 (Reactome)
ATPR-HSA-170070 (Reactome)
ATPR-HSA-170076 (Reactome)
ATPR-HSA-170087 (Reactome)
ATPR-HSA-170116 (Reactome)
ATPR-HSA-170126 (Reactome)
ATPR-HSA-170156 (Reactome)
ATPR-HSA-170157 (Reactome)
ATPR-HSA-187959 (Reactome)
ATPR-HSA-2562526 (Reactome)
ATPR-HSA-2574840 (Reactome)
ATPR-HSA-3000310 (Reactome)
ATPR-HSA-3000327 (Reactome)
ATPR-HSA-380272 (Reactome)
ATPR-HSA-380278 (Reactome)
ATPR-HSA-4086410 (Reactome)
ATPR-HSA-4088024 (Reactome)
ATPR-HSA-4088134 (Reactome)
ATPR-HSA-69754 (Reactome)
ATPR-HSA-69756 (Reactome)
ATPR-HSA-69759 (Reactome)
ATPR-HSA-8852306 (Reactome)
ATPR-HSA-8852317 (Reactome)
ATPR-HSA-8853419 (Reactome)
ATPR-HSA-8853444 (Reactome)
AURKA:PHLDA1ArrowR-HSA-8853429 (Reactome)
AURKA:PHLDA1R-HSA-8853444 (Reactome)
AURKA:PHLDA1mim-catalysisR-HSA-8853444 (Reactome)
AURKAArrowR-HSA-8853444 (Reactome)
AURKAR-HSA-8853429 (Reactome)
BORAR-HSA-4086410 (Reactome)
CAKmim-catalysisR-HSA-170076 (Reactome)
CAKmim-catalysisR-HSA-170087 (Reactome)
CCNA1:p-T161-CDK1mim-catalysisR-HSA-69754 (Reactome)
CCNA2:p-T161-CDK1mim-catalysisR-HSA-69756 (Reactome)
CCNA:CDK1ArrowR-HSA-170084 (Reactome)
CCNA:CDK1R-HSA-170116 (Reactome)
CCNA:p-T14,T161-CDK1ArrowR-HSA-170087 (Reactome)
CCNA:p-T14,T161-CDK1R-HSA-170156 (Reactome)
CCNA:p-T14,Y15,T161-CDK1ArrowR-HSA-170156 (Reactome)
CCNA:p-T14,Y15,T161-CDK1R-HSA-170158 (Reactome)
CCNA:p-T14-CDK1ArrowR-HSA-170088 (Reactome)
CCNA:p-T14-CDK1ArrowR-HSA-170116 (Reactome)
CCNA:p-T14-CDK1R-HSA-170087 (Reactome)
CCNA:p-T14-CDK1R-HSA-170088 (Reactome)
CCNA:p-T160-CDK2:E2F1/E2F3ArrowR-HSA-187937 (Reactome)
CCNA:p-T160-CDK2:E2F1/E2F3R-HSA-187959 (Reactome)
CCNA:p-T160-CDK2:E2F1/E2F3mim-catalysisR-HSA-187959 (Reactome)
CCNA:p-T160-CDK2:p-E2F1/p-E2F3ArrowR-HSA-187959 (Reactome)
CCNA:p-T160-CDK2R-HSA-187937 (Reactome)
CCNA:p-T161-CDK1ArrowR-HSA-170158 (Reactome)
CCNAR-HSA-170084 (Reactome)
CCNB1 GeneR-HSA-4088298 (Reactome)
CCNB1 GeneR-HSA-4088307 (Reactome)
CCNB1:p-T14,T161-CDK1ArrowR-HSA-170076 (Reactome)
CCNB1:p-T14,T161-CDK1R-HSA-170070 (Reactome)
CCNB1:p-T14,Y15,T161-CDK1ArrowR-HSA-170070 (Reactome)
CCNB1:p-T14,Y15,T161-CDK1R-HSA-170072 (Reactome)
CCNB1:p-T14,Y15,T161-CDK1R-HSA-170153 (Reactome)
CCNB1:p-T14-CDK1R-HSA-170076 (Reactome)
CCNB1:p-T161-CDK1ArrowR-HSA-170153 (Reactome)
CCNB1:p-T161-CDK1ArrowR-HSA-170161 (Reactome)
CCNB1:p-T161-CDK1R-HSA-170126 (Reactome)
CCNB1:p-T161-CDK1mim-catalysisR-HSA-380278 (Reactome)
CCNB1ArrowR-HSA-4088298 (Reactome)
CCNB2 GeneR-HSA-4088299 (Reactome)
CCNB2 GeneR-HSA-4088309 (Reactome)
CCNB2:p-T161-CDK1ArrowR-HSA-170162 (Reactome)
CCNB2:p-T161-CDK1mim-catalysisR-HSA-69759 (Reactome)
CCNB2ArrowR-HSA-4088299 (Reactome)
CCNB:CDK1ArrowR-HSA-170057 (Reactome)
CCNB:CDK1R-HSA-170055 (Reactome)
CCNB:p-T14-CDK1ArrowR-HSA-170055 (Reactome)
CCNB:p-T161-CDK1mim-catalysisR-HSA-4086410 (Reactome)
CCNBR-HSA-170057 (Reactome)
CDC25A GeneR-HSA-4088152 (Reactome)
CDC25A GeneR-HSA-4088162 (Reactome)
CDC25AArrowR-HSA-4088152 (Reactome)
CDC25BArrowR-HSA-170120 (Reactome)
CDC25BR-HSA-170120 (Reactome)
CDC25CArrowR-HSA-170149 (Reactome)
CDC25CR-HSA-156678 (Reactome)
CDC25CR-HSA-170149 (Reactome)
CDC25mim-catalysisR-HSA-170153 (Reactome)
CDC25mim-catalysisR-HSA-170158 (Reactome)
CDK11p58ArrowR-HSA-380311 (Reactome)
CDK11p58R-HSA-380455 (Reactome)
CDK1R-HSA-170057 (Reactome)
CDK1R-HSA-170084 (Reactome)
CDKN1AR-HSA-8852362 (Reactome)
CENPF GeneR-HSA-4088439 (Reactome)
CENPF GeneR-HSA-4088441 (Reactome)
CENPFArrowR-HSA-4088441 (Reactome)
CEP250ArrowR-HSA-380294 (Reactome)
CRS kinasemim-catalysisR-HSA-170126 (Reactome)
Cdc25ArrowR-HSA-170159 (Reactome)
Cdc25R-HSA-170159 (Reactome)
Cdc25mim-catalysisR-HSA-170161 (Reactome)
Cdc25mim-catalysisR-HSA-170162 (Reactome)
Centrosome associated Plk1ArrowR-HSA-380311 (Reactome)
Centrosome:AURKA:AJUBAArrowR-HSA-2574845 (Reactome)
Centrosome:AURKA:AJUBAR-HSA-2574840 (Reactome)
Centrosome:AURKA:AJUBAmim-catalysisR-HSA-2574840 (Reactome)
Centrosome:AURKA:TPX2:HMMRArrowR-HSA-8853405 (Reactome)
Centrosome:AURKA:TPX2:HMMRR-HSA-8853419 (Reactome)
Centrosome:AURKA:TPX2:HMMRmim-catalysisR-HSA-8853419 (Reactome)
Centrosome:AURKAR-HSA-2574845 (Reactome)
Centrosome:AURKAR-HSA-8853405 (Reactome)
Centrosome:p-T288-AURKA:TPX2:HMMRArrowR-HSA-8853419 (Reactome)
Centrosome:p-T288-AURKA:p-S252-BORA:PLK1ArrowR-HSA-3000319 (Reactome)
Centrosome:p-T288-AURKA:p-S252-BORA:PLK1R-HSA-3000310 (Reactome)
Centrosome:p-T288-AURKA:p-S252-BORA:PLK1mim-catalysisR-HSA-3000310 (Reactome)
Centrosome:p-T288-AURKAArrowR-HSA-2574840 (Reactome)
Centrosome:p-T288-AURKAArrowR-HSA-3000310 (Reactome)
Centrosome:p-T288-AURKAR-HSA-3000319 (Reactome)
Centrosomes

containing

recruited CDK11p58
ArrowR-HSA-380455 (Reactome)
Cyclin

B1:phospho-Cdc2(Thr 161, Thr 14, Tyr

15)
ArrowR-HSA-170072 (Reactome)
Cyclin

B1:phospho-Cdc2(Thr 161, Thr 14, Tyr

15)
R-HSA-170161 (Reactome)
Cyclin

B2:phospho-Cdc2(Thr

14, Thr 161)
R-HSA-170162 (Reactome)
Cyclin A1:Cdk2

phosphorylated G2/M

transition protein
ArrowR-HSA-69754 (Reactome)
Cyclin A2:Cdk2

phosphorylated G2/M

transition protein
ArrowR-HSA-69756 (Reactome)
E2F1/E2F3R-HSA-187937 (Reactome)
EP300R-HSA-4088162 (Reactome)
FKBPLR-HSA-8852362 (Reactome)
FOXM1ArrowR-HSA-4088141 (Reactome)
FOXM1R-HSA-4088024 (Reactome)
G2/M transition proteinR-HSA-69759 (Reactome)
G2/M transition proteinsR-HSA-69754 (Reactome)
G2/M transition proteinsR-HSA-69756 (Reactome)
GTSE1:CDKN1A:FKBPL:HSP90ArrowR-HSA-8852362 (Reactome)
GTSE1:MAPRE1:microtubule plus endArrowR-HSA-8852298 (Reactome)
GTSE1:MAPRE1:microtubule plus endR-HSA-8852306 (Reactome)
GTSE1:microtubuleArrowR-HSA-8852280 (Reactome)
GTSE1:p-T210-PLK1ArrowR-HSA-8852324 (Reactome)
GTSE1:p-T210-PLK1R-HSA-8852317 (Reactome)
GTSE1:p-T210-PLK1mim-catalysisR-HSA-8852317 (Reactome)
GTSE1R-HSA-8852280 (Reactome)
GTSE1R-HSA-8852298 (Reactome)
GTSE1R-HSA-8852324 (Reactome)
GTSE1R-HSA-8852362 (Reactome)
H2OR-HSA-170153 (Reactome)
H2OR-HSA-170158 (Reactome)
H2OR-HSA-170161 (Reactome)
H2OR-HSA-170162 (Reactome)
H2OR-HSA-3002811 (Reactome)
H2OR-HSA-4088141 (Reactome)
HMMRR-HSA-8853405 (Reactome)
HSP90:HSP90R-HSA-8852362 (Reactome)
MAPRE1:microtubule plus endArrowR-HSA-8852306 (Reactome)
MAPRE1:microtubule plus endR-HSA-8852298 (Reactome)
MYBL2R-HSA-4088306 (Reactome)
MYBL2R-HSA-4088307 (Reactome)
MYBL2R-HSA-4088309 (Reactome)
Mature centrosomes

enriched in gamma-TURC

complexes
ArrowR-HSA-380283 (Reactome)
Mitotic kinasemim-catalysisR-HSA-8852306 (Reactome)
MuvB complexR-HSA-4088306 (Reactome)
MuvB complexR-HSA-4088307 (Reactome)
MuvB complexR-HSA-4088309 (Reactome)
NUMA1R-HSA-380278 (Reactome)
Nlp-depleted centrosomeArrowR-HSA-380303 (Reactome)
NuMA homodimerR-HSA-380316 (Reactome)
NuMA homodimerR-HSA-380508 (Reactome)
NuMA-bound microtubulesArrowR-HSA-380316 (Reactome)
OPTN:RAB8A:GTPR-HSA-2562526 (Reactome)
PHLDA1R-HSA-8853429 (Reactome)
PKMYT1R-HSA-162657 (Reactome)
PKMYT1mim-catalysisR-HSA-170055 (Reactome)
PKMYT1mim-catalysisR-HSA-170116 (Reactome)
PLK1 GeneR-HSA-4088305 (Reactome)
PLK1 GeneR-HSA-4088306 (Reactome)
PLK1ArrowR-HSA-3002811 (Reactome)
PLK1ArrowR-HSA-4088305 (Reactome)
PLK1R-HSA-3000319 (Reactome)
PLK1R-HSA-380311 (Reactome)
PLK1mim-catalysisR-HSA-156678 (Reactome)
PLK1mim-catalysisR-HSA-156699 (Reactome)
PLK1mim-catalysisR-HSA-162657 (Reactome)
PLK1mim-catalysisR-HSA-380272 (Reactome)
PP2A-PPP2R2Amim-catalysisR-HSA-4088141 (Reactome)
Phospho-Cyclin

B1

(CRS):phospho-Cdc2(Thr 161)
ArrowR-HSA-170126 (Reactome)
Phosphorylated Myosin Phosphatasemim-catalysisR-HSA-3002811 (Reactome)
PiArrowR-HSA-170153 (Reactome)
PiArrowR-HSA-170158 (Reactome)
PiArrowR-HSA-170161 (Reactome)
PiArrowR-HSA-170162 (Reactome)
PiArrowR-HSA-3002811 (Reactome)
PiArrowR-HSA-4088141 (Reactome)
PolyUb-TP53 TetramerR-HSA-8852337 (Reactome)
R-HSA-156678 (Reactome) It has been shown that Xenopus polo homolog, Plx1, directly phosphorylates and activates Cdc25C, which in turn dephosphorylates and activates Cdc2. This step is critical for the onset of mitosis. Since Plx1-dependent Cdc25C phosphorylation occurs in the absence of Cdc2 activity, it is likely that Plx1 is a triggering kinase, which leads to the activation of Cdc2 and therefore the normal onset of mitosis. In addition to catalytically activating CDC25C, PLK1-mediated phosphorylation also results in the nuclear accumulation of CDC25C (Toyoshima-Morimoto et al. 2002).
R-HSA-156699 (Reactome) *Plk1 is shown to phosphorylate Wee1A, an event that is likely critical for recognition and ubiquitination of Wee1A by SCF and therefore for the subsequent degradation of Wee1A . **Plk1 phosphorylates Wee1A at S53, creating the second phosphodegron, PD53. ** Evidence also exists in budding yeast that the budding yeast polo homolog Cdc5 directly phosphorylates and down-regulate the budding yeast Wee1 ortholog Swe1. Thus, polo kinase-dependent phosphorylation and degradation of Wee1A (or Swe1) is likely conserved throughout evolution and is critical for normal mitotic entry.
R-HSA-162657 (Reactome) At mitotic entry Plk1 phosphorylates and inhibits Myt1 activity. Cyclin B1-bound Cdc2, which is the target of Myt1, functions in a feedback loop and phosphorylates and further inhibits Myt1.
R-HSA-170044 (Reactome) During interphase, cyclin B1:Cdc2 shuttles continuously in and out of the nucleus. Cyclin B1:Cdc2 is transported into the nucleus by an unusual mechanism that requires importin b but not importin a or Ran. Dissociation of the cyclin-B1:Cdc2:importin complex in the nucleus requires ATP and involves other yet unidentified nuclear factors (Takizawa et al.,1991).
R-HSA-170055 (Reactome) Myt1, which localizes preferentially to the endoplasmic reticulum and Golgi complex, phosphorylates Cdc2 on threonine 14 ( Liu et al., 1997).
R-HSA-170057 (Reactome) Cyclin dependent kinases are themselves catalytically inactive due to the fact that their active site is blocked by a portion of the Cdk molecule itself. Binding to their corresponding cyclin partner results in conformational change that partially exposes the active site.
R-HSA-170070 (Reactome) Wee1, a nuclear kinase, phosphorylates cyclin B1:Cdc2 on tyrosine 15 inactivating the complex.
R-HSA-170072 (Reactome) During interphase, cyclin B1 shuttles continuously in and out of the nucleus. The cyclin B cytoplasmic retention sequence (CRS), which is responsible for its interphase cytoplasmic localization, functions as a nuclear export sequence (Yang et al., 1998).
R-HSA-170076 (Reactome) Full activity of most CDKs is dependent on CAK mediated phosphorylation at a conserved residue (Thr 161 in Cdc2). This modification is thought to improve substrate binding. Cyclin B:Cdc2 complexes have considerably low activity in the absence of CAK mediated phosphorylation (Desai et al 1995).
R-HSA-170084 (Reactome) Cyclin A is synthesized and associates with Cdc2 in G1. Cyclin dependent kinases are themselves catalytically inactive due to the fact that their active sites are blocked by a portion of the CDK molecule itself. Binding to their corresponding cyclin partner results in a conformational change that partially exposes the active site.
R-HSA-170087 (Reactome) Full activity of most CDKs is dependent on CAK mediated phosphorylation at a conserved residue (Thr 161 in Cdc2). This modification is thought to improve substrate binding. High affinity binding of Cyclin A within the Cyclin A:Cdc2 complex requires this phosphorylation (Desai et al 1995).
R-HSA-170088 (Reactome) Cyclin A:Cdc2 complexes translocate to the nucleus in G1 and may associate with condensing chromosomes in prophase (Pines and Hunter 1991).
R-HSA-170116 (Reactome) Myt1, which localizes preferentially to the endoplasmic reticulum and Golgi complex, phosphorylates Cdc2 on threonine 14 ( Liu et al., 1997).
R-HSA-170120 (Reactome) Cdc25B shuttles between the nucleus and the cytoplasm. Translocation out of the nucleus involves a nuclear export sequence in the N-terminus of Cdc25B (Lindqvist et al., 2004).
R-HSA-170126 (Reactome) At the onset of mitosis, cyclin B is phosphorylated in the CRS sequence which creates a nuclear import signal in the amino terminus. The kinase(s) responsible for this phosphorylation are not yet known (Hagting et al., 1999).
R-HSA-170131 (Reactome) The rapid translocation of cyclin B1:Cdc2 from the cytoplasm to the nucleus at the onset of mitosis is a result of an increase in the rate of import and, likely, a decreased rate of export. The increased rate of nuclear import is dependent upon phosphorylation of the CRS which creates a nuclear import signal in the amino terminus of cyclin B1 (Hagting et al, 1999).
R-HSA-170149 (Reactome) During interphase, phopshorylated Cdc25C is associated with 14-3-3 proteins preventing nuclear import. At the onset of mitosis, dephosphorylation of Cdc25C and dissociation of 14-3-3 increases the rate of import (see Takizawa and Morgan, 2000)
R-HSA-170153 (Reactome) Following its translocation to the nucleus, Cdc25 dephosphorylates and activates nuclear cyclin B1:Cdc2 complexes (Strausfeld et al., 1991).
R-HSA-170156 (Reactome) The human Wee1 kinase phosphorylates Cdc2 on tyrosine 15 inactivating the cyclin:CDK complex (Watanabe et al., 1995).
R-HSA-170157 (Reactome) A description of the mitotic proteins targeted by the mitotic cyclin:CDK complexes will be covered in a later release.
R-HSA-170158 (Reactome) Activation of the mitotic cyclin:Cdc2 complexes at mitosis requires the removal of the inhibitory phosphate groups on Cdc2. This dephosphorylation is achieved by the activity of the Cdc25 family of phosphatases. The Cdc25 members, Cdc25A, Cdc25B, and Cdc25C are kept inactive during interphase and are activated at the G2/M transition (see Wolfe and Gould 2004)
R-HSA-170159 (Reactome) The localization of the Cdc25A, B and C proteins is dynamic involving the shuttling of these proteins between the nucleus and the cytoplasm. Sequences in these proteins mediate both nuclear export and import (Kallstrom et al., 2005; Lindqvist et al., 2004; Graves et al, 2001; Takizawa and Morgan, 2000).
R-HSA-170161 (Reactome) Activation of the mitotic cyclin:Cdc2 complexes at mitosis requires the removal of the inhibitory phosphate groups on Cdc2. This dephosphorylation is achieved by the activity of the Cdc25 family of phosphatases. The Cdc25 members, Cdc25A, Cdc25B, and Cdc25C are kept inactive during interphase and are activated at the G2/M transition. Cyclin B1:Cdc2 itself appears to participate in the full activation of Cdc25 in a process that involves an amplication loop (see Wolfe and Gould, 2004). The initial activation of the cyclin B1-Cdc2 complex occurs in the cytoplasm in prophase (Jackman et al., 2003). Cdc25B, which is present at highest concentrations in the cytoplasm at this time, is thought to trigger the activation of cyclin B1-Cdc2 (Lindqvist et al. 2004; Honda et al., 1993). Active cyclin B:Cdc2 then phosphorylates and activates Cdc25C and stabilizes Cdc25A (Strausfeld et al., 1994; Hoffman et al.,1993; Mailand et al, 2002). This creates positive feedback loops that allows Cdc25A and Cdc25C to dephosphorylate and further activate Cdc2.
R-HSA-170162 (Reactome) At the beginning of this reaction, 1 molecule of 'Cyclin B2:phospho-Cdc2(Thr 14, Thr 161)', and 1 molecule of 'H2O' are present. At the end of this reaction, 1 molecule of 'Cyclin B2:phospho-Cdc2(Thr 161)', and 1 molecule of 'Orthophosphate' are present.

This reaction takes place in the 'cytosol' and is mediated by the 'phosphoprotein phosphatase activity' of 'Cdc25'.

R-HSA-187937 (Reactome) In G2, the cyclin A:Cdk2 complex associates with E2F1 and E2F3.
R-HSA-187959 (Reactome) In G2 Cdk2, in association with cyclin A, phosphorylates E2F1 and E2F3 resulting in the inactivation and possibly degradation of these two transcription factors (Dynlacht et al., 1994; Krek et al., 1994).
R-HSA-2562526 (Reactome) Activated PLK1 phosphorylates OPTN (optineurin) on serine residue S177. Phosphorylation at S177 disrupts OPTN binding to Golgi-membrane localized RAB8A (Kachaner et al. 2012).
R-HSA-2562594 (Reactome) Phosphorylation of OPTN (optineurin) on serine S177 by PLK1 promotes translocation of OPTN to the nucleus (Kachaner et al. 2012).
R-HSA-2574840 (Reactome) AURKA (Aurora A kinase) activation through autophosphorylation of threonine T288 is facilitated by AJUBA binding. AJUBA is also phosphorylated by AURKA on an unidentified serine or threonine residue (Hirota et al. 2003).
R-HSA-2574845 (Reactome) AJUBA, a LIM domain-containing protein, binds centrosome-associated AURKA (Aurora A kinase) through interaction of LIM-2 and LIM-3 domains of AJUBA with the N-terminus of AURKA (Hirota et al. 2003).
R-HSA-3000310 (Reactome) AURKA (Aurora A kinase) phosphorylates PLK1 on threonine residue T210 that lies in the conserved aurora kinase consensus site (Seki et al. 2008). PLK1 needs to be phosphorylated on T210 to become catalytically active (Jang et al. 2002). BORA, but not other AURKA co-activators, facilitate PLK1 phosphorylation by AURKA (Macurek et al. 2008, Seki et al. 2008).
R-HSA-3000319 (Reactome) BORA is able to interact with both AURKA (Aurora A kinase) and PLK1. Binding of BORA to PLK1 increases the accessibility of PLK1 threonine residue T210 and also brings PLK1 in proximity to AURKA, enabling AURKA to phosphorylate T210 of PLK1 and thereby activate PLK1 (Seki et al. 2008). While BORA is required for mitotic activation of AURKA in Drosophila (Hutterer et al. 2006), it does not significantly activate AURKA in human cells (Seki et al. 2008). AURKA is able to phosphorylate BORA in vitro, but the functional significance of this modification has not been determined (Hutterer et al. 2006).
R-HSA-3000327 (Reactome) PLK1 phosphorylates BORA on serine residue S497 and threonine residue T501 that both lie in the DSGYNT degron recognized by beta-TrCP F-box proteins (Seki et al. 2008).
R-HSA-3000335 (Reactome) SCF-beta-TrCP ubiquitin ligases promote ubiquitination and degradation of BORA phosphorylated by PLK1, and this is required for timely mitotic progression (Seki et al. 2008).
R-HSA-3000339 (Reactome) The substrate recognition subunits beta-TrCP (BTRC) and beta-TrCP2 (FBXW11) of SCF-beta-TrPC1 and SCF-beta-TrPC2 ubiquitin ligases, respectively, bind the phosphorylated DSGYNT motif of BORA (Seki et al. 2008).
R-HSA-3002798 (Reactome) PLK1 is induced in S phase and can be find in both cytosol and nucleus in S and G2 phases of the cell cycle. PLK1 possesses a bipartite nuclear localization signal (NLS) that enables it to enter the nucleus (Taniguchi et al. 2002).
R-HSA-3002811 (Reactome) The myosin phosphatase complex can dephosphorylate PLK1 threonine residue T210 and inactivate PLK1 (Yamashiro et al. 2008). Myosin phosphatase is activated through phosphorylation of its PPP1R12A (MYPT1) subunit. Several kinases, including CDK1 (Yamashiro et al. 2008) and LATS1 (Chiyoda et al. 2012) have been implicated in myosin phosphatase activation, but the position and temporal order of key PPP1R12A phosphorylations need to be investigated further. Phosphorylated OPTN (optineurin) is able to bind PPP1R12A (MYPT1) and positively regulates PLK1 dephosphorylation by myosin phosphatase, posibly by facilitating PPP1R12A phosphorylation and myosin phosphatase activation (Kachaner et al. 2012).
R-HSA-380272 (Reactome) Phosphorylation of NlP by Plk1 regulates the interaction of Nlp with both centrosomes and ?-TuRCs (Casenghi et al., 2003).
R-HSA-380278 (Reactome) After the initiation of DNA condensation during mitosis, NuMA is phosphorylated by Cdc2 kinase and transported rapidly to the centrosomal region (Hsu and Yeh, 1996). Another phosphorylation event occurs when NuMA associates with the mitotic spindle (Gaglio et al., 1995; Hsu and Yeh, 1996). While p34cdc2/cyclin B-dependent phosphorylation appears to plays an essential role in the targeting of NuMA to the spindle apparatus (Compton and Luo, 1995)(Hsu and Yeh, 1996), there may be additional protein kinases that promote the release of NuMA from the nuclear compartment at nuclear envelope breakdown (Saredi et al., 1997).
R-HSA-380283 (Reactome) Microtubule nucleation at the centrosome is mediated by the gamma tubulin ring complex (gamma TuRC) (reviewed in Raynaud-Messina and Merdes, 2006; Wiese and Zheng, 2006). In humans, this large complex contains the tubulin superfamily member gamma-tubulin, five gamma complex proteins (GCP2-GPC6) and NEDD1/GCP-WD. A current model of the arrangement of subunits within the gamma-TuRC proposes that 6-7 TuSC subcomplexes are held together by the other Grip proteins (at an unknown stoichiometry), which together form the cap subunits. In many animal cells, the recruitment of gamma-tubulin complexes to the centrosome rapidly increases (3–5 fold ) before mitosis  to support the formation of new spindle microtubules (Khodjakov and Rieder 1999).  NEDD1/GCP-WD  plays  an essential role in recruitment of these complexes to the centrosomes (Haren et al., 2006;  Luders et al., 2006) and to the mitotic spindle (Luders et al., 2006). GCP-WD/NEDD1  associates directly with the  gamma-TuRC.  The carboxy-terminal half  binds to the gamma-TuRC whereas the amino-terminal half, corresponding to the WD-repeat domain,  is responsible for its attachment to the centrosome (Haren et al., 2006). Additional centrosomal proteins have also been implicated in the docking of gamma-TuRC to the centrosomes. CG-NAP/AKAP450  and kendrin  are  necessary for the initiation of microtubule nucleation and interact  with GCP2/GCP3 and GCP2, respectively (Takahashi et al., 2002).  Pericentrin  plays an important role in  microtubule organization in mitotic cells and anchors gamma- TuRC through domains that bind GCP2 and GCP3  (Zimmerman  et al. 2004). Ninein localizes to the centriole via its C-terminus and interacts with gamma-tubulin-containing complexes via its N-terminus.
R-HSA-380294 (Reactome) The centrosomal protein C-Nap1 is thought to play an important role in centrosome cohesion during interphase (Fry et al.,1998). At the onset of mitosis, when centrosomes separate to form the bipolar spindle, C-Nap1 dissociates (Mayor et al., 2000). Dissociation of C-Nap1 from mitotic centrosomes appears to be regulated by phosphorylation (Mayor et al. 2002).
R-HSA-380303 (Reactome) Mitotic activation of Plk1 is required for efficient displacement of Nlp from the centrosome (Casenghi et al., 2003).
R-HSA-380311 (Reactome) Plk1 is associated with the centrosomes early in mitosis (Golsteyn et al. 1995). Plk1 activity is necessary for the maturation of centrosomes at the G2/M transition and the establishment of a bipolar spindle (Lane and Nigg 1996). Specific inhibitors against Plk1 or silencing of Plk1 produce a monopolar mitotic apparatus (Sumara et al, 2004, van Vugt et al, 2004, McInnes et al, 2006, Peters et al, 2006, Lénárt et al, 2007).
R-HSA-380316 (Reactome) NuMA can interact with microtubules by direct binding to tubulin. Binding occurs through amino acids 1868-1967 of human NuMA (tail IIA) and appears to play a role in the organization of the spindle poles by stably crosslinking microtubule fibers (Haren and Merdes 2002). While the exact mechanism of microtubule bundling is not known, NuMA has been shown to form large fibrous networks (Saredi et al., 1996; Gueth-Hallonet et al., 1998; Harborth et al., 1999) apparently as a result of dimerization of the NuMA rod domains followed by association of multiple NuMA dimers through their tail domains.
R-HSA-380455 (Reactome) CDK11p58 is a kinase that is active during mitosis when it associates with centrosomes, and has a crucial role in centrosome maturation and bipolar spindle formation (Petretti et al., 2006). CDK11p58 facilitates microtubule nucleation and is required for the recruitment of Aurora and Plk1 to the centrosome (Petretti et al., 2006).
R-HSA-380508 (Reactome) The mechanism by which human NuMA is translocated to the centrosomes has not yet been determined.
R-HSA-4086410 (Reactome) CDK1 phosphorylates both human and Drosophila BORA protein (Hutterer et al. 2006) on an evolutionarily conserved serine residue - S252 in human BORA (Chan et al. 2008), providing a docking site for PLK1.
R-HSA-4088024 (Reactome) In the G2 phase of the cell cycle, cyclin A (CCNA) and B (CCNB)-dependent kinases CDK1 and CDK2 phosphorylate FOXM1 transcription factor, increasing its transcriptional activity. Threonine residue T611 (corresponds to T596 in FOXM1B isoform) was shown to be phosphorylated by both CCNA:CDK1/2 and CCNB:CDK1 complexes and its functional relevance is best establshed (Major et al. 2004, Laoukili et al. 2008, Fu et al. 2008). CCNA:CDK1/2 may also phosphorylate FOXM1 on T600 (Laoukili et al. 2008), while CCNB:CDK1 may phosphorylate it on S693 (S678 in FOXM1B isoform) (Fu et al. 2008). The phosphorylation of FOXM1 threonine residue T611 relieves the N-terminal domain-mediated autoinhibition of FOXM1 transcriptional activity (Laoukili et al. 2008), likely enabling interaction with transcriptional co-activators (Major et al. 2004), and creates a docking site for the Polo-box domain (PBD) of PLK1 (Fu et al. 2008).
R-HSA-4088130 (Reactome) PLK1 polo-box domain (PBD) binds a consensus sequence S-pS/pT-P/X in the transactivation domain (TAD) of FOXM1 after the threonine T611 (T596 in FOXM1B isoform) in this sequence is phosphorylated by cyclin-dependent kinase(s). PLK1 may also bind to another consensus site in the TAD of FOXM1, which involves CDK-phosphorylated serine S693 (S678 in FOXM1B isoform) (Fu et al. 2008).
R-HSA-4088134 (Reactome) PLK1 phosphorylates FOXM1 on serine residues S730 and S739 (S715 and S724 in FOXM1B isoform) in the C-terminal transactivation domain (TAD). PLK1-mediated phosphorylation of FOXM1 upregulates FOXM1 transcriptional activity and is crucial for FOXM1 function at G2/M transition (Fu et al. 2008).
R-HSA-4088141 (Reactome) FOXM1 can bind the regulatory subunit B55-alpha (PPP2R2A) of serine/threonine-protein phosphatase 2A (PP2A). PP2A dephosphorylates FOXM1, preventing its premature activation (Alvarez-Fernandez et al. 2011).
R-HSA-4088152 (Reactome) Binding of phosphorylated FOXM1 to CDC25A promoter stimulates CDC25A transcription (Sullivan et al. 2012).
R-HSA-4088162 (Reactome) Phosphorylated FOXM1 transcription factor binds the promoter of CDC25A gene and also recruits EP300 (p300) transcriptional coactivator to the promoter (Sullivan et al. 2012). While FOXM1 DNA binding may not depend on phosphorylation, the phosphorylation of the threonine residue T611 (T596 in FOXM1B isoform) is necessary for EP300 recruitment (Major et al. 2004).
R-HSA-4088298 (Reactome) FOXM1 bound to the MuvB complex (consisting of LIN9, LIN37, LIN52, LIN54 and RBBP4) and MYBL2 (B-MYB) stimulates CCNB1 (cyclin B1) transcription (Laoukili et al. 2005, Sadasivam et al. 2012).
R-HSA-4088299 (Reactome) FOXM1, bound to the MuvB complex (consisting of LIN9, LIN37, LIN52, LIN54 and RBBP4) and MYBL2 (B-MYB), stimulates CCNB2 (cyclin B2) transcription (Chen et al. 2013).
R-HSA-4088305 (Reactome) FOXM1 bound to the MuvB complex (consisting of LIN9, LIN37, LIN52, LIN54 and RBBP4) and MYBL2 (B-MYB) stimulates PLK1 transcription. This creates a positive feedback loop, where PLK1 phosphorylates and activates FOXM1 (Fu et al. 2008), while FOXM1 transcriptional activity results in increased PLK1 levels. MuvB and FOXM1 may persist on the PLK1 promoter throughout G2, while MYBL2 may gradually dissociate from the PLK1 promoter due to proteasome-mediated degradation initiated when MYBL2 is phosphorylated by CCNA (cyclin A)-associated CDKs (Sadasivam et al. 2012).
R-HSA-4088306 (Reactome) MuvB complex, consisting of LIN9, LIN37, LIN52, LIN54 and RBBP4, together with MYBL2 (B-MYB), recruits FOXM1 to CHR (cell cycle genes homology regions) motifs in the promoter of PLK1 gene (Sadasivam et al. 2012, Chen et al. 2013).
R-HSA-4088307 (Reactome) The MuvB complex (consisting of LIN9, LIN37, LIN52, LIN54 and RBBP4), together with MYBL2 (B-MYB), recruits FOXM1 to CHR motifs in the promoter of the CCNB1 (cyclin B1) gene (Sadasivam et al. 2012, Chen et al. 2013).
R-HSA-4088309 (Reactome) MuvB complex (consisting of LIN9, LIN37, LIN52, LIN54 and RBBP4), together with MYBL2 (B-MYB) recruits FOMX1 to the CCNB2 (cyclin B2) promoter (Chen et al. 2013).
R-HSA-4088439 (Reactome) FOXM1, possibly in cooperation with other transcription factors, binds the promoter of the CENPF gene (Laoukili et al. 2005).
R-HSA-4088441 (Reactome) FOXM1 stimulates the transcription of the kinetochore protein CENPF. FOXM1-depleted cells have reduced CENPF levels, leading to the misalignment of mitotic chromosomes (Laoukili et al. 2005).
R-HSA-69754 (Reactome) At the beginning of this reaction, 1 molecule of 'ATP', and 1 molecule of 'G2/M transition protein' are present. At the end of this reaction, 1 molecule of 'ADP', and 1 molecule of 'phospho-G2/M transition protein' are present.

This reaction takes place in the 'nucleoplasm' and is mediated by the 'cyclin-dependent protein kinase activity' of 'Cyclin A1:Cdc2'.

R-HSA-69756 (Reactome) At the beginning of this reaction, 1 molecule of 'ATP', and 1 molecule of 'G2/M transition protein' are present. At the end of this reaction, 1 molecule of 'ADP', and 1 molecule of 'phospho-G2/M transition protein' are present.

This reaction takes place in the 'nucleoplasm' and is mediated by the 'cyclin-dependent protein kinase activity' of 'Cyclin A2:Cdc2'.

R-HSA-69759 (Reactome) Substrate specificity of cyclin B:Cdk1 complexes is primarily conferred by their subcellular localization (Draviam et al., 2001).
Cyclin B1 is primarily cytoplasmic but shuttles continuously between the nucleus and the cytoplasm during interphase (Hagting et al. 1998 Down; Toyoshima et al. 1998 Down; Yang et al. 1998 Down). At the end of prophase, it abruptly translocates into the nucleus (Furuno et al. 1999 Down; Hagting et al. 1999 Down) and then associates with mitotic apparatus (Pines and Hunter 1991 Down; Hagting et al. 1998 Down; Clute and Pines 1999 Down). Cyclin B2 is primarily associated with the Golgi apparatus during interphase and mitosis (Jackman et al. 1995 Down; Brandeis et al. 1998 Down). Cyclin B1–CDK1 promotes chromosome condensation, reorganization microtubule reorgnization, and disassembly of the nuclear lamina and the Golgi apparatus. Cyclin B2–CDK1 functions in disassembly of the Golgi apparatus (Draviam et al., 2001).


R-HSA-8852280 (Reactome) In interphase cells, GTSE1 localizes to the microtubule lattice, probably due to direct binding to tubulin (Scolz et al. 2012).
R-HSA-8852298 (Reactome) During interphase, GTSE1 localizes to the growing plus-end tip of microtubules by binding to the microtubule plus end protein MAPRE1 (EB1). This interaction involves two SKIP-like EB1-interaction motifs of GTSE1 and the C-terminal EB-homology (EBH) domain of MAPRE1. The interaction between GTSE1 and MAPRE1 is evolutionarily conserved. The interaction between GTSE1 and MAPRE1 at growing microtubule plus ends promotes cell migration, likely through microtubule-induced disassembly of focal adhesions. GTSE1 expression levels in G1 phase correlate with invasiveness of breast cancer cell lines (Scolz et al. 2012).
R-HSA-8852306 (Reactome) Starting in mitotic prometaphase, GTSE1 becomes phosphorylated at threonine residues T513 and T526 (and possibly other sites), located adjacent to the two SKIP-like motifs involved in binding to MAPRE1 (EB1). Mitotic phosphorylation of GTSE1 inhibits its association with microtubule plus ends. CDK1 activity inhibits the association of recombinant human GTSE1 with microtubule plus ends in Xenopus extracts, but it is not certain whether CDK1 or another mitotic kinase phosphorylates GTSE1 (Scolz et al. 2012).
R-HSA-8852317 (Reactome) Activated PLK1 phosphorylates GTSE1 on serine residue S435, located in immediate vicinity of the GTSE1 nuclear localization signal (NLS) R431RR433 (Arg431Arg432Arg433). PLK1-mediated phosphorylation promotes GTSE1 nuclear translocation, possibly by exposing the NLS of GTSE1 to the nuclear import machinery. PLK1 can also phosphorylate human GTSE1 on serine residue S233. S233 is not evolutionarily conserved and is therefore not shown (Liu et al. 2010).
R-HSA-8852324 (Reactome) GTSE1 binds PLK1. The two proteins co-localize on centrosomes from G2 phase to prophase, but not after metaphase (Liu et al. 2010).
R-HSA-8852331 (Reactome) PLK1-mediated phosphorylation of GTSE1 is needed for nuclear accumulation of GTSE1, probably because it exposes the nuclear localization signal (NLS) of GTSE1 to the nuclear import machinery. Nuclear localization of GTSE1 is not needed for normal G2 phase progression, but is needed for the G2 checkpoint recovery (cell cycle re-entry after G2 checkpoint arrest) (Liu et al. 2010).
R-HSA-8852337 (Reactome) Since MDM2-mediated ubiquitination of TP53 promotes translocation of TP53 to the cytosol, and since GTSE1-facilitated translocation of TP53 to the cytosol depends on the functional MDM2 (with no reported interaction between GTSE1 and MDM2) (Monte et al. 2004), it is plausible that GTSE1 binds to TP53 polyubiquitinated by MDM2. The interaction between TP53 and GTSE1 involves the C-terminal regulatory domain of TP53 and the C-terminus of GTSE1 (Monte et al. 2003).
R-HSA-8852351 (Reactome) Binding of GTSE1 to TP53 (p53) in the nucleus promotes translocation of TP53 to the cytosol. This process is dependent on the nuclear export signal (NES) of GTSE1 (Monte et al. 2004).
R-HSA-8852354 (Reactome) GTSE1 promotes down-regulation of TP53 in a proteasome-dependent way. Nuclear export of TP53 facilitated by GTSE1 and MDM2likely makes ubiquitinated TP53 available to the proteasome machinery. GTSE1-mediated decrease of TP53 levels is needed for the G2 checkpoint recovery (cell cycle re-entry after DNA damage induced G2 arrest) and rescues cells from DNA damage induced apoptosis during S/G2 phase (Monte et al. 2003, Monte et al. 2004).
R-HSA-8852362 (Reactome) Stabilization of the newly synthesized protein product of the CDKN1A (p21) gene, a CDK inhibitor and a TP53 (p53) transcriptional target, requires binding of CDKN1A to FKBPL (WISp39). FKBPL simultaneously interacts with CDKN1A and a chaperone protein HSP90, forming a ternary complex (Jascur et al. 2005). GTSE1 was identified as another component of the complex of CDKN1A, FKBPL and HSP90. GTSE1 directly interacts with CDKN1A and FKBPL and contributes to CDKN1A stabilization (Bublik et al. 2010). Increased CDKN1A levels delay G2/M onset and rescue cells from G2 checkpoint-induced apoptosis, thus causing resistance to taxol induced cytotoxicity (Yu et al. 1998, Bublik et al. 2010).
R-HSA-8853405 (Reactome) TPX2 binds to aurora kinase A (AURKA) at centrosomes. The first 43 amino acids at the N-terminus of TPX2 are needed for binding to AURKA (Bayliss et al. 2003). HMMR (RHAMM) binds to TPX2 (Groen et al. 2004, Maxwell et al. 2005) and is involved in the proper localization of TPX2 to centrosomes and TPX2-mediated AURKA activation (Chen et al. 2014, Scrofani et al. 2015).

TPX2 binding to Aurora A protects premature AURKA degradation by APC/C-mediated proteolysis during early mitosis. TPX2 differentially regulates AURKA stability, activity and localization. While amino acids 1-43 in TPX2 facilitate complex formation between AURKA and TPX2 and promote kinase activation, they are insufficient for AURKA targeting to the mitotic spindle (Giubettini et al. 2011).

R-HSA-8853419 (Reactome) TPX2 promotes aurora kinase A (AURKA) activation via autophosphorylation of AURKA on threonine residue T288. Continuous association of TPX2 with AURKA facilitates active state conformation of AURKA and may prevent inactivation of AURKA by protein phosphatases (Bayliss et al. 2003).

Molecular dynamic simulations suggest the existence of two TPX2-dependent switches for Aurora A activation. 1) TPX2 binding to Aurora A forces lysine residue K143 of AURKA into an “open� state, which pulls ADP out of the ATP binding site in AURKA to promote kinase activation. 2) Arginine residue R180 of AURKA undergoes a “closed� movement upon TPX2 binding, thus capturing phosphorylated threonine T288 of AURKA into a buried position and locking AURKA in its active conformation. The existence of two TPX2-dependent switches in AURKA activation was further verified by the analysis of two AURKA mutants (K143A and R180A) (Xu et al. 2011).AURKA activation is enabled through phosphorylation and TPX2 binding; these two activating switches act synergistically and withough a predefined order (Dodson and Bayliss 2012).

R-HSA-8853429 (Reactome) Aurora kinase A binds PHLDA1 (TDAG51) and the two proteins co-localize in the cytosol (Johnson et al. 2011). Although phosphorylation of AURKA at threonine residue T288 within the catalytic loop of AURKA is needed for AURKA kinase activity (Walter et al. 2000), AURKA phosphorylation has not been specifically examined in the context of AURKA interaction with PHLDA1 and AURKA is therefore shown as unphosphorylated.
R-HSA-8853444 (Reactome) Aurora kinase A (AURKA) phosphorylates PHLDA1 on serine residue S95. This residue is conserved in mouse and matches S98 in the recombinant mouse protein used for identification of the AURKA target site in PHLDA1. Although phosphorylation of AURKA on threonine residue T288 within the catalytic loop is needed for AURKA kinase activity (Walter et al. 2000), AURKA phosphorylation has not been specifically examined in the context of PHLDA1 phosphorylation and AURKA is therefore shown as unphosphorylated. AURKA-mediated phosphorylation promotes PHLDA1 ubiquitination by an unknown ubiquitin ligase, which triggers degradation of PHLDA1 and may contribute to the oncogenic role of AURKA in breast cancer. Unphosphorylated PHLDA1 contributes to AURKA ubiquitination and degradation but the identity of the ubiquitin ligase and cell cycle timing have not been determined (Johnson et al. 2011).

PHLDA1 is implicated as both a tumor suppressor and an oncogene. As a putative tumor suppressor, PHLDA1 may act by promoting cell death (Park et al. 1996, Neef et al. 2002, Hossain et al. 2003, Hayashida et al. 2006, Oberst et al. 2008) or inhibiting protein synthesis (Hinz et al. 2001). Higher levels of PHLDA1 in ERBB2 (HER2) positive breast tumors correlate with increased sensitivity to ERBB2 inhibitor, lapatinib (Li et al. 2014).

In estrogen receptor positive tumors, higher levels of PHLDA1 correlate with increased risk of cancer recurrence and distant metastases after hormone therapy, which may depend on the concomitant up-regulation of the NF-kappa B (NFKB) complex activity (Kastrati et al. 2015).

PHLDA1 has also been reported as a mediator of anti-apoptotic effect of IGF1 (Toyoshima et al. 2004). These studies suggest that PHLDA1 may have an oncogenic role in some settings.

Regulation of PHLDA1 expression has not been fully elucidated. PHLDA1 transcription may be directly stimulated by the activated estrogen receptor (Marchiori et al. 2008, Kastrati et al. 2015), possibly in cooperation with the NFKB complex (Kastrati et al. 2015). Indirectly, downregulation of microRNAs miR-181a and miR-181b in an estrogen and NFKB-dependent manner, increases stability of the PHLDA1 mRNA (Kastrati et al. 2015). Activation of ERK1 (MAPK3) or ERK2 (MAPK1) in response to ERBB2 or EGFR activation may also be involved in PHLDA1 up-regulation, possibly through a route that also involves JAK2 and STAT3 (Oberst et al. 2008, Li et al. 2014, Lyu et al. 2016). PHLDA1 may also be up-regulated in response to cellular stress such as heat shock (Hayashida et al. 2006), endoplasmic reticulum stress (Hossain et al. 2003) and oxidative stress (Park et al. 2013).

RAB8A:GTPArrowR-HSA-2562526 (Reactome)
SCF-beta-TrCp1,2ArrowR-HSA-3000335 (Reactome)
SCF-beta-TrCp1,2R-HSA-3000339 (Reactome)
TPX2R-HSA-8853405 (Reactome)
Ub-p-S252,S497,T501-BORAArrowR-HSA-3000335 (Reactome)
UbR-HSA-3000335 (Reactome)
WEE1R-HSA-156699 (Reactome)
WEE1mim-catalysisR-HSA-170070 (Reactome)
WEE1mim-catalysisR-HSA-170156 (Reactome)
XPO1ArrowR-HSA-170072 (Reactome)
active nuclear

Cyclin B1:Cdc2

complexes
mim-catalysisR-HSA-170157 (Reactome)
cNAP-1 depleted centrosomeArrowR-HSA-380294 (Reactome)
centrosome

containing

phosphorylated Nlp
ArrowR-HSA-380272 (Reactome)
centrosome

containing

phosphorylated Nlp
R-HSA-380303 (Reactome)
centrosome-associated NuMAArrowR-HSA-380508 (Reactome)
centrosome-nucleated microtubulesR-HSA-380316 (Reactome)
centrosome-nucleated microtubulesR-HSA-380508 (Reactome)
centrosomeR-HSA-380272 (Reactome)
centrosomeR-HSA-380283 (Reactome)
centrosomeR-HSA-380294 (Reactome)
centrosomeR-HSA-380311 (Reactome)
centrosomeR-HSA-380455 (Reactome)
cytoplasmic Cyclin B1:Cdc2 complexesR-HSA-170044 (Reactome)
gamma-tubulin complexR-HSA-380283 (Reactome)
microtubuleR-HSA-8852280 (Reactome)
nuclear Cyclin B1:Cdc2 complexesArrowR-HSA-170044 (Reactome)
nuclear Cyclin B1:Cdc2 substratesR-HSA-170157 (Reactome)
p-CDK1/2:CCNA/p-T161-CDK1:CCNBmim-catalysisR-HSA-4088024 (Reactome)
p-NINLArrowR-HSA-380303 (Reactome)
p-NUMA1ArrowR-HSA-380278 (Reactome)
p-PKMYT1ArrowR-HSA-162657 (Reactome)
p-S-AJUBAArrowR-HSA-2574840 (Reactome)
p-S177-OPTNArrowR-HSA-2562526 (Reactome)
p-S177-OPTNArrowR-HSA-2562594 (Reactome)
p-S177-OPTNArrowR-HSA-3002811 (Reactome)
p-S177-OPTNR-HSA-2562594 (Reactome)
p-S198-CDC25CArrowR-HSA-156678 (Reactome)
p-S252,S497,T501-BORA:SCF-beta-TrCp1/2ArrowR-HSA-3000339 (Reactome)
p-S252,S497,T501-BORA:SCF-beta-TrCp1/2R-HSA-3000335 (Reactome)
p-S252,S497,T501-BORA:SCF-beta-TrCp1/2mim-catalysisR-HSA-3000335 (Reactome)
p-S252,S497,T501-BORAArrowR-HSA-3000327 (Reactome)
p-S252,S497,T501-BORAR-HSA-3000339 (Reactome)
p-S252-BORA:p-T210-PLK1ArrowR-HSA-3000310 (Reactome)
p-S252-BORA:p-T210-PLK1R-HSA-3000327 (Reactome)
p-S252-BORA:p-T210-PLK1mim-catalysisR-HSA-3000327 (Reactome)
p-S252-BORAArrowR-HSA-4086410 (Reactome)
p-S252-BORAR-HSA-3000319 (Reactome)
p-S435-GTSE1:PolyUb-TP53 TetramerArrowR-HSA-8852337 (Reactome)
p-S435-GTSE1:PolyUb-TP53 TetramerArrowR-HSA-8852351 (Reactome)
p-S435-GTSE1:PolyUb-TP53 TetramerR-HSA-8852351 (Reactome)
p-S435-GTSE1:PolyUb-TP53 TetramerR-HSA-8852354 (Reactome)
p-S435-GTSE1ArrowR-HSA-8852317 (Reactome)
p-S435-GTSE1ArrowR-HSA-8852331 (Reactome)
p-S435-GTSE1ArrowR-HSA-8852354 (Reactome)
p-S435-GTSE1R-HSA-8852331 (Reactome)
p-S435-GTSE1R-HSA-8852337 (Reactome)
p-S53-WEE1ArrowR-HSA-156699 (Reactome)
p-S95-PHLDA1ArrowR-HSA-8853444 (Reactome)
p-T210-PLK1ArrowR-HSA-3000327 (Reactome)
p-T210-PLK1ArrowR-HSA-3002798 (Reactome)
p-T210-PLK1ArrowR-HSA-4088134 (Reactome)
p-T210-PLK1ArrowR-HSA-8852317 (Reactome)
p-T210-PLK1R-HSA-3002798 (Reactome)
p-T210-PLK1R-HSA-3002811 (Reactome)
p-T210-PLK1R-HSA-4088130 (Reactome)
p-T210-PLK1R-HSA-8852324 (Reactome)
p-T210-PLK1mim-catalysisR-HSA-2562526 (Reactome)
p-T513,T526-GTSE1ArrowR-HSA-8852306 (Reactome)
p-T611,S730,S739-FOXM1:CENPF GeneArrowR-HSA-4088439 (Reactome)
p-T611,S730,S739-FOXM1:CENPF GeneArrowR-HSA-4088441 (Reactome)
p-T611,S730,S739-FOXM1:EP300:CDC25A GeneArrowR-HSA-4088152 (Reactome)
p-T611,S730,S739-FOXM1:EP300:CDC25A GeneArrowR-HSA-4088162 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB1 GeneArrowR-HSA-4088298 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB1 GeneArrowR-HSA-4088307 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB2 GeneArrowR-HSA-4088299 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:CCNB2 GeneArrowR-HSA-4088309 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:PLK1 GeneArrowR-HSA-4088305 (Reactome)
p-T611,S730,S739-FOXM1:MuvB:MYBL2:PLK1 GeneArrowR-HSA-4088306 (Reactome)
p-T611,S730,S739-FOXM1ArrowR-HSA-4088134 (Reactome)
p-T611,S730,S739-FOXM1R-HSA-4088162 (Reactome)
p-T611,S730,S739-FOXM1R-HSA-4088306 (Reactome)
p-T611,S730,S739-FOXM1R-HSA-4088307 (Reactome)
p-T611,S730,S739-FOXM1R-HSA-4088309 (Reactome)
p-T611,S730,S739-FOXM1R-HSA-4088439 (Reactome)
p-T611-FOXM1:p-T210-PLK1ArrowR-HSA-4088130 (Reactome)
p-T611-FOXM1:p-T210-PLK1R-HSA-4088134 (Reactome)
p-T611-FOXM1:p-T210-PLK1mim-catalysisR-HSA-4088134 (Reactome)
p-T611-FOXM1ArrowR-HSA-4088024 (Reactome)
p-T611-FOXM1R-HSA-4088130 (Reactome)
p-T611-FOXM1R-HSA-4088141 (Reactome)
phospho-Cyclin B1(CRS):phospho-Cdc2 (Thr 161)ArrowR-HSA-170131 (Reactome)
phospho-G2/M transition proteinArrowR-HSA-69756 (Reactome)
phospho-G2/M transition proteinArrowR-HSA-69759 (Reactome)
phospho-cyclin B1(CRS):phosph-Cdc2(Thr 161)R-HSA-170131 (Reactome)
phosphorylated

nuclear Cyclin

B1:Cdc2 substrates
ArrowR-HSA-170157 (Reactome)
ubiquitinArrowR-HSA-8852354 (Reactome)
Personal tools