Interleukin-1 family signaling (Homo sapiens)
From WikiPathways
Description
IL1B and IL18, are produced as biologically inactive propeptides that are cleaved to produce the mature, active interleukin peptide.
The IL1 receptor (IL1R) family comprises 10 members: Interleukin-1 receptor type 1 (IL1R1, IL1RA), Interleukin-1 receptor type 2 (IL1R2, IL1RB), Interleukin-1 receptor accessory protein (IL1RAP, IL1RAcP, IL1R3), Interleukin-18 receptor 1 (IL18R1, IL18RA) , Interleukin-18 receptor accessory protein (IL18RAP, IL18RB), Interleukin-1 receptor-like 1 (IL1RL1, ST2, IL33R), Interleukin-1 receptor-like 2 (IL1RL2, IL36R), Single Ig IL-1-related receptor (SIGIRR, TIR8), Interleukin-1 receptor accessory protein-like 1 (IL1RAPL1, TIGGIR2) and X-linked interleukin-1 receptor accessory protein-like 2 (IL1RAPL2, TIGGIR1). Most of the genes encoding these receptors are on chromosome 2. IL1 family receptors heterodimerize upon cytokine binding. IL1, IL33 and IL36 bind specific receptors, IL1R1, IL1RL1, and IL1RL2 respectively. All use IL1RAP as a co-receptor. IL18 binds IL18R1 and uses IL18RAP as co-receptor.
The complexes formed by IL1 family cytokines and their heterodimeric receptors recruit intracellular signaling molecules, including Myeloid differentiation primary response protein MyD88 (MYD88), members of he IL1R-associated kinase (IRAK) family, and TNF receptor-associated factor 6 (TRAF6), activating Nuclear factor NF-kappa-B (NFκB), as well as Mitogen-activated protein kinase 14 (MAPK14, p38), c-Jun N-terminal kinases (JNKs), extracellular signal-regulated kinases (ERKs) and other Mitogen-activated protein kinases (MAPKs).
View original pathway at:Reactome.
Try the New WikiPathways
View approved pathways at the new wikipathways.org.Quality Tags
Ontology Terms
Bibliography
History
External references
DataNodes
(TPL2)-dependent
MAPK1/3 activationIn the absence of extra-cellular signals, cytosolic MAP3K8 (TPL2) is held inactive in the complex with ABIN2 (TNIP2) and NFkB p105 (NFKB1) (Beinke S et al., 2003; Waterfield MR et al., 2003; Lang V et al., 2004). This interaction stabilizes MAP3K8 (TPL2) but also prevents MAP3K8 and NFkB from activating their downstream signaling cascades by inhibiting the kinase activity of MAP3K8 and the proteolysis of NFkB precursor protein p105. Upon activation of MAP3K8 by various stimuli (such as LPS, TNF-alpha, and IL-1 beta), IKBKB phosphorylates NFkB p105 (NFKB1) at Ser927 and Ser932, which trigger p105 proteasomal degradation and releases MAP3K8 from the complex (Beinke S et al., 2003, 2004; Roget K et al., 2012). Simultaneously, MAP3K8 is activated by auto- and/or transphosphorylation (Gantke T et al. 2011; Yang HT et al. 2012). The released active MAP3K8 phosphorylates its substrates, MAP2Ks. The free MAP3K8, however, is also unstable and is targeted for proteasome-mediated degradation, thus restricting prolonged activation of MAP3K8 (TPL2) and its downstream signaling pathways (Waterfield MR et al. 2003; Cho J et al., 2005). Furthermore, partially degraded NFkB p105 (NFKB1) into p50 can dimerize with other NFkB family members to regulate the transcription of target genes.
MAP3K8 activity is thought to regulate the dynamics of transcription factors that control an expression of diverse genes involved in growth, differentiation, and inflammation. Suppressing the MAP3K8 kinase activity with selective inhibitors, such as C8-chloronaphthyridine-3-carbonitrile, caused a significant reduction in TNFalpha production in LPS- and IL-1beta-induced both primary human monocytes and human blood (Hall JP et al. 2007). Similar results have been reported for mouse LPS-stimulated RAW264.7 cells (Hirata K et al. 2010). Moreover, LPS-stimulated macrophages derived from Map3k8 knockout mice secreted lower levels of pro-inflammatory cytokines such as TNFalpha, Cox2, Pge2 and CXCL1 (Dumitru CD et al. 2000; Eliopoulos AG et al. 2002). Additionally, bone marrow-derived dendritic cells (BMDCs) and macrophages from Map3k8 knockout mice showed significantly lower expression of IL-1beta in response to LPS, poly IC and LPS/MDP (Mielke et al., 2009). However, several other studies seem to contradict these findings and Map3k8 deficiency in mice has been also reported to enhance pro-inflammatory profiles. Map3k8 deficiency in LPS-stimulated macrophages was associated with an increase in nitric oxide synthase 2 (NOS2) expression (López-Peláez et al., 2011). Similarly, expression of IRAK-M, whose function is to compete with IL-1R-associated kinase (IRAK) family of kinases, was decreased in Map3k8-/- macrophages while levels of TNF and IL6 were elevated (Zacharioudaki et al., 2009). Moreover, significantly higher inflammation level was observed in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated Map3k8-/- mouse skin compared to WT skin (DeCicco-Skinner K. et al., 2011). Additionally, MAP3K8 activity is associated with NFkB inflammatory pathway. High levels of active p65 NFkB were observed in the nucleus of Map3k8 -/- mouse keratinocytes that dramatically increased within 15-30 minutes of TPA treatment. Similarly, increased p65 NFkB was observed in Map3k8-deficient BMDC both basally and after stimulation with LPS when compared to wild type controls (Mielke et al., 2009). The data opposes the findings that Map3k8-deficient mouse embryo fibroblasts and human Jurkat T cells with kinase domain-deficient protein have a reduction in NFkB activation but only when certain stimuli are administered (Lin et al., 1999; Das S et al., 2005). Thus, it is possible that whether MAP3K8 serves more of a pro-inflammatory or anti-inflammatory role may depend on cell- or tissue type and on stimuli (LPS vs. TPA, etc.) (Mielke et al., 2009; DeCicco-Skinner K. et al., 2012).
MAP3K8 has been also studied in the context of carcinogenesis, however the physiological role of MAP3K8 in the etiology of human cancers is also convoluted (Vougioukalaki M et al., 2011; DeCicco-Skinner K. et al., 2012).
by phosphorylation and activation of
IKKs complexoligo-TRAF6:TAK1
complexAnnotated Interactions
This basic trimolecular complex is referred to as the IKK complex. Each catalytic IKK subunit has an N-terminal kinase domain and leucine zipper (LZ) motifs, a helix-loop-helix (HLH) and a C-terminal NEMO binding domain (NBD). IKK catalytic subunits are dimerized through their LZ motifs.
IKK beta is the major IKK catalytic subunit for NF-kB activation. Phosphorylation in the activation loop of IKK beta requires Ser177 and Ser181 and thus activates the IKK kinase activity, leading to the IkB alpha phosphorylation and NF-kB activation.
After IL33:IL1RL1 ligand binding, IL1RL1 undergoes a conformational change, which allows the recruitment of IL1RAP-1 (Lingel et al. 2009, Liu et al. 2013).
Though not clearly demonstrated and therefore not shown here, the current models of IRAK1 involvement suggest it would be within a complex including TRAF6.
Though not shown here, the current models of IRAK1 involvement suggest it is part of a complex that includes TRAF6.
Pellino1-3 possess E3 ligase activity and are believed to directly catalyse polyubiquitylation of IRAK1 (Xiao et al. 2008; Butler et al. 2007; Ordureau et al. 2008). They are capable of catalysing the formation of K63- and K48-linked polyubiquitin chains; the type of linkage is controlled by the collaborating E2 enzyme. All the Pellino proteins can combine with the E2 heterodimer UBE2N:UBE2V1 (Ubc13:Uev1a) to catalyze K63-linked ubiquitylation (Ordureau et al. 2008).
This is a black box event because the mechanism of gene regulation is not totally defined.
Pellino1-3 possess E3 ligase activity and are believed to directly catalyse polyubiquitylation of IRAK1 (Xiao et al. 2008; Butler et al. 2007; Ordureau et al. 2008). They are capable of catalysing the formation of K63- and K48-linked polyubiquitin chains; the type of linkage is controlled by the collaborating E2 enzyme. All the Pellino proteins can combine with the E2 heterodimer UBE2N:UBE2V1 (Ubc13:Uev1a) to catalyze K63-linked ubiquitylation (Ordureau et al. 2008).
IRAK1 polyubiquitination was originally thought to tag IRAK1 for proteolysis by the proteasome, but more recently has been shown to involve K63-linked, not K48-linked polyubiquitination (Windheim et al. 2008; Conze et al. 2008), which is believed to have a scaffoling function. IRAK1 is ubiquitinated on K134 and K180; mutation of these sites impairs IL1R-mediated ubiquitination of IRAK1 (Conze et al. 2008). Some authors have proposed a role for TRAF6 as the E3 ubiquitin ligase that catalyzes polyubiquitination of IRAK1 (Conze et al. 2008) but this view has been refuted (Windheim et al. 2008, Xiao et al. 2008). The current consensus is that Pellino proteins are the physiologically-relevant IRAK1 E3 ubiquitin ligases.oligo-TRAF6:TAK1
complexoligo-TRAF6:TAK1
complex