Class C/3 (metabotropic glutamate/pheromone receptors) (Homo sapiens)

From WikiPathways

Revision as of 16:57, 31 October 2018 by ReactomeTeam (Talk | contribs)
(diff) ←Older revision | Current revision (diff) | Newer revision→ (diff)
Jump to: navigation, search
14, 2113, 2024112, 5, 6, 8-10, 15...2412, 187, 16, 23cytosolThiamine Chloramphenicol GPRC6A Ethylpyrazine Artemorin SACC Ca2+TAS2R42 TAS2R42 Quassin TAS1R2 Cucurbitacin B TAS1R3 Bitter-tastingcompoundsAndrographolide GRM1-8:L-GluCamphor Brucine TAS2R13 CASRGRM2,GRM3,GRM4,GRM6,GRM7,GRM8 TAS2R31 GRM2,GRM3,GRM4,GRM6,GRM7,GRM8 cis-isohumulone ASP GABATAS2R19 Cucurbitacin E Yohimbine Brucine Amarogentin Amarogentin TAS2R10 Amygdalin AITC Tatridin B Crispolide Papaverine Quassin Quinine L-GluAlpha-thujone Helicin Cucurbitacin B TAS2R14 Arglabin Aloin Ethylpyrazine CASR:Ca2+TAS2R50 TAS2R40 Strychnine TAS2R4 Arborescin GABAB receptorCnicin TAS2R7 Aristolochic acid TAS2RsFalcarindiol Sinigrin TAS2R45 TAS2R10 TAS2R45 Arbutin Salicin cis-isohumulone D-Trp Erythromycin TAS2R43 Arglabin TAS2R60 TAS2R1 TAS1R2:TAS1R3TAS2R9 TAS1R3 Helicin TAS2R30 Ca2+ GABA TAS1R2:TAS1R3:Sweettaste compoundsCamphor TAS2R19 TAS2R31 AITC TAS2R41 TAS2R7 Parthenolide TAS1R1 TAS2R38 Noscapine L-Glu GABBR2 Caffeine Absynthin TAS2R4 GABAB receptor:GABAArbutin TAS2R9 TAS2R40 TAS2R5 Thiamine Salicin Tatridin B GPRC6ATAS1R1:TAS1R3Cascarillin TAS2R38 Noscapine Sweet tastecompoundsParthenolide GRM1,GRM5 TAS2R43 D-Trp Cnicin Suc Aloin L-Glu GRM1,GRM5 Papaverine Absynthin TAS2R30 TAS2R8 TAS2R20 Falcarindiol Grosshemin GPRC6Areceptor:GPRC6AligandsCa2+ TAS2R5 Arborescin Picrotoxinin Basic L-amino acids TAS1R1 CASR Ca2+ GABBR2 TAS2R1 Chloramphenicol Phenethyl isothiocyanate TAS1R3 TAS2R3 Coumarin Cucurbitacin E TAS2R16 TAS2R39 Coumarin TAS1R3 TAS2R46 TAS2R14 Grosshemin Phenethyl isothiocyanate TAS2R13 Colchicine TAS2R46 Quinine Basic L-amino acids TAS2R39 Crispolide TAS2R20 Sinigrin Artemorin GABBR1 Picrotoxinin TAS2R60 Colchicine Strychnine Erythromycin ASP Limonin Yohimbine GABBR1 TAS2R41 G alpha (i)signalling eventsTAS2R50 G alpha (q)signalling eventsGPRC6A ligandsAristolochic acid TAS1R2 TAS2R8 Suc Caffeine GRM1-8Andrographolide Cascarillin TAS2R3 TAS2Rs:Bitter-tasting compoundsSACC TAS1R1:TAS1R3:L-GluTAS2R16 Limonin Alpha-thujone Amygdalin 41, 3


Description

The class C G-protein-coupled receptors are a class of G-protein coupled receptors that include the metabotropic glutamate receptors and several additional receptors (Brauner-Osborne H et al, 2007). Family C GPCRs have a large extracellular N-terminus which binds the orthosteric (endogenous) ligand. The shape of this domain is often likened to a clam. Several allosteric ligands to these receptors have been identified and these bind within the seven transmembrane region. View original pathway at:Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 420499
Reactome-version 
Reactome version: 63
Reactome Author 
Reactome Author: Jassal, Bijay

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Conn PJ, Pin JP.; ''Pharmacology and functions of metabotropic glutamate receptors.''; PubMed Europe PMC Scholia
  2. Kifor O, Diaz R, Butters R, Brown EM.; ''The Ca2+-sensing receptor (CaR) activates phospholipases C, A2, and D in bovine parathyroid and CaR-transfected, human embryonic kidney (HEK293) cells.''; PubMed Europe PMC Scholia
  3. Emile L, Mercken L, Apiou F, Pradier L, Bock MD, Menager J, Clot J, Doble A, Blanchard JC.; ''Molecular cloning, functional expression, pharmacological characterization and chromosomal localization of the human metabotropic glutamate receptor type 3.''; PubMed Europe PMC Scholia
  4. Pin JP, Galvez T, Prézeau L.; ''Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors.''; PubMed Europe PMC Scholia
  5. Gilman AG.; ''G proteins: transducers of receptor-generated signals.''; PubMed Europe PMC Scholia
  6. Kaupmann K, Schuler V, Mosbacher J, Bischoff S, Bittiger H, Heid J, Froestl W, Leonhard S, Pfaff T, Karschin A, Bettler B.; ''Human gamma-aminobutyric acid type B receptors are differentially expressed and regulate inwardly rectifying K+ channels.''; PubMed Europe PMC Scholia
  7. Bräuner-Osborne H, Wellendorph P, Jensen AA.; ''Structure, pharmacology and therapeutic prospects of family C G-protein coupled receptors.''; PubMed Europe PMC Scholia
  8. White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH.; ''Heterodimerization is required for the formation of a functional GABA(B) receptor.''; PubMed Europe PMC Scholia
  9. Flor PJ, Lukic S, Rüegg D, Leonhardt T, Knöpfel T, Kuhn R.; ''Molecular cloning, functional expression and pharmacological characterization of the human metabotropic glutamate receptor type 4.''; PubMed Europe PMC Scholia
  10. Laurie DJ, Schoeffter P, Wiederhold KH, Sommer B.; ''Cloning, distribution and functional expression of the human mGlu6 metabotropic glutamate receptor.''; PubMed Europe PMC Scholia
  11. Mizuno N, Itoh H.; ''Functions and regulatory mechanisms of Gq-signaling pathways.''; PubMed Europe PMC Scholia
  12. Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E.; ''Human receptors for sweet and umami taste.''; PubMed Europe PMC Scholia
  13. Pin JP, Duvoisin R.; ''The metabotropic glutamate receptors: structure and functions.''; PubMed Europe PMC Scholia
  14. Garrett JE, Capuano IV, Hammerland LG, Hung BC, Brown EM, Hebert SC, Nemeth EF, Fuller F.; ''Molecular cloning and functional expression of human parathyroid calcium receptor cDNAs.''; PubMed Europe PMC Scholia
  15. Kifor O, MacLeod RJ, Diaz R, Bai M, Yamaguchi T, Yao T, Kifor I, Brown EM.; ''Regulation of MAP kinase by calcium-sensing receptor in bovine parathyroid and CaR-transfected HEK293 cells.''; PubMed Europe PMC Scholia
  16. Minakami R, Katsuki F, Yamamoto T, Nakamura K, Sugiyama H.; ''Molecular cloning and the functional expression of two isoforms of human metabotropic glutamate receptor subtype 5.''; PubMed Europe PMC Scholia
  17. Hildebrandt JD.; ''Role of subunit diversity in signaling by heterotrimeric G proteins.''; PubMed Europe PMC Scholia
  18. Nakanishi S.; ''Molecular diversity of glutamate receptors and implications for brain function.''; PubMed Europe PMC Scholia
  19. Wellendorph P, Bräuner-Osborne H.; ''Molecular cloning, expression, and sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor.''; PubMed Europe PMC Scholia
  20. Wellendorph P, Hansen KB, Balsgaard A, Greenwood JR, Egebjerg J, Bräuner-Osborne H.; ''Deorphanization of GPRC6A: a promiscuous L-alpha-amino acid receptor with preference for basic amino acids.''; PubMed Europe PMC Scholia
  21. Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, Appendino G, Behrens M.; ''The molecular receptive ranges of human TAS2R bitter taste receptors.''; PubMed Europe PMC Scholia
  22. Wu S, Wright RA, Rockey PK, Burgett SG, Arnold JS, Rosteck PR, Johnson BG, Schoepp DD, Belagaje RM.; ''Group III human metabotropic glutamate receptors 4, 7 and 8: molecular cloning, functional expression, and comparison of pharmacological properties in RGT cells.''; PubMed Europe PMC Scholia
  23. Desai MA, Burnett JP, Mayne NG, Schoepp DD.; ''Cloning and expression of a human metabotropic glutamate receptor 1 alpha: enhanced coupling on co-transfection with a glutamate transporter.''; PubMed Europe PMC Scholia
  24. Flor PJ, Lindauer K, Püttner I, Rüegg D, Lukic S, Knöpfel T, Kuhn R.; ''Molecular cloning, functional expression and pharmacological characterization of the human metabotropic glutamate receptor type 2.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
116449view09:53, 7 May 2021EweitzModified title
114643view16:10, 25 January 2021ReactomeTeamReactome version 75
113091view11:15, 2 November 2020ReactomeTeamReactome version 74
112325view15:24, 9 October 2020ReactomeTeamReactome version 73
101721view16:22, 1 November 2018DeSlOntology Term : 'G protein mediated signaling pathway' added !
101224view11:12, 1 November 2018ReactomeTeamreactome version 66
100762view20:37, 31 October 2018ReactomeTeamreactome version 65
100306view19:14, 31 October 2018ReactomeTeamreactome version 64
100267view16:57, 31 October 2018ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
AITC MetaboliteCHEBI:73224 (ChEBI)
ASP MetaboliteCHEBI:2877 (ChEBI)
Absynthin MetaboliteCHEBI:2366 (ChEBI)
Aloin MetaboliteCHEBI:73222 (ChEBI)
Alpha-thujone MetaboliteCHEBI:50042 (ChEBI)
Amarogentin MetaboliteCHEBI:2622 (ChEBI)
Amygdalin MetaboliteCHEBI:27613 (ChEBI)
Andrographolide MetaboliteCHEBI:65408 (ChEBI)
Arborescin MetaboliteCHEBI:73226 (ChEBI)
Arbutin MetaboliteCHEBI:18305 (ChEBI)
Arglabin MetaboliteCHEBI:73228 (ChEBI)
Aristolochic acid MetaboliteCHEBI:2825 (ChEBI)
Artemorin MetaboliteCHEBI:2853 (ChEBI)
Basic L-amino acids R-ALL-420746 (Reactome)
Bitter-tasting compoundsComplexR-ALL-3296423 (Reactome)
Brucine MetaboliteCHEBI:3193 (ChEBI)
CASR ProteinP41180 (Uniprot-TrEMBL)
CASR:Ca2+ComplexR-HSA-420743 (Reactome)
CASRProteinP41180 (Uniprot-TrEMBL)
Ca2+ MetaboliteCHEBI:29108 (ChEBI)
Ca2+MetaboliteCHEBI:29108 (ChEBI)
Caffeine MetaboliteCHEBI:27732 (ChEBI)
Camphor MetaboliteCHEBI:36773 (ChEBI)
Cascarillin MetaboliteCHEBI:3445 (ChEBI)
Chloramphenicol MetaboliteCHEBI:17698 (ChEBI)
Cnicin MetaboliteCHEBI:3768 (ChEBI)
Colchicine MetaboliteCHEBI:23359 (ChEBI)
Coumarin MetaboliteCHEBI:28794 (ChEBI)
Crispolide MetaboliteCHEBI:73231 (ChEBI)
Cucurbitacin B MetaboliteCHEBI:3941 (ChEBI)
Cucurbitacin E MetaboliteCHEBI:3944 (ChEBI)
D-Trp MetaboliteCHEBI:16296 (ChEBI)
Erythromycin MetaboliteCHEBI:48923 (ChEBI)
Ethylpyrazine MetaboliteCHEBI:73232 (ChEBI)
Falcarindiol MetaboliteCHEBI:69236 (ChEBI)
G alpha (i) signalling eventsPathwayR-HSA-418594 (Reactome) The classical signalling mechanism for G alpha (i) is inhibition of the cAMP dependent pathway through inhibition of adenylate cyclase (Dessauer C W et al. 2002). Decreased production of cAMP from ATP results in decreased activity of cAMP-dependent protein kinases. Other functions of G alpha (i) includes activation of the protein tyrosine kinase c-Src (Ma Y C et al. 2000). Regulator of G-protein Signalling (RGS) proteins can regulate the activity of G alpha (i) (Soundararajan M et al. 2008).
G alpha (q) signalling eventsPathwayR-HSA-416476 (Reactome) The classic signalling route for G alpha (q) is activation of phospholipase C beta thereby triggering phosphoinositide hydrolysis, calcium mobilization and protein kinase C activation. This provides a path to calcium-regulated kinases and phosphatases, GEFs, MAP kinase cassettes and other proteins that mediate cellular responses ranging from granule secretion, integrin activation, and aggregation in platelets. Gq participates in many other signalling events including direct interaction with RhoGEFs that stimulate RhoA activity and inhibition of PI3K. Both in vitro and in vivo, the G-protein Gq seems to be the predominant mediator of the activation of platelets. Moreover, G alpha (q) can stimulate the activation of Burton tyrosine kinase (Ma Y C et al. 1998). Regulator of G-protein Signalling (RGS) proteins can regulate the activity of G alpha (z) (Soundararajan M et al. 2008).
GABA MetaboliteCHEBI:59888 (ChEBI)
GABAB receptor:GABAComplexR-HSA-420698 (Reactome)
GABAB receptorComplexR-HSA-420748 (Reactome)
GABAMetaboliteCHEBI:59888 (ChEBI)
GABBR1 ProteinQ9UBS5 (Uniprot-TrEMBL)
GABBR2 ProteinO75899 (Uniprot-TrEMBL)
GPRC6A

receptor:GPRC6A

ligands
ComplexR-HSA-420722 (Reactome)
GPRC6A ProteinQ5T6X5 (Uniprot-TrEMBL)
GPRC6A ligandsComplexR-ALL-420706 (Reactome)
GPRC6AProteinQ5T6X5 (Uniprot-TrEMBL)
GRM1,GRM5 R-HSA-420566 (Reactome)
GRM1-8:L-GluComplexR-HSA-420519 (Reactome)
GRM1-8ComplexR-HSA-420516 (Reactome)
GRM2,GRM3,GRM4,GRM6,GRM7,GRM8 R-HSA-420517 (Reactome)
Grosshemin MetaboliteCHEBI:5547 (ChEBI)
Helicin MetaboliteCHEBI:73235 (ChEBI)
L-Glu MetaboliteCHEBI:29985 (ChEBI)
L-GluMetaboliteCHEBI:29985 (ChEBI)
Limonin MetaboliteCHEBI:16226 (ChEBI)
Noscapine MetaboliteCHEBI:73237 (ChEBI)
Papaverine MetaboliteCHEBI:28241 (ChEBI)
Parthenolide MetaboliteCHEBI:7939 (ChEBI)
Phenethyl isothiocyanate MetaboliteCHEBI:351346 (ChEBI)
Picrotoxinin MetaboliteCHEBI:8206 (ChEBI)
Quassin MetaboliteCHEBI:8692 (ChEBI)
Quinine MetaboliteCHEBI:15854 (ChEBI)
SACC MetaboliteCHEBI:32111 (ChEBI)
Salicin MetaboliteCHEBI:17814 (ChEBI)
Sinigrin MetaboliteCHEBI:9162 (ChEBI)
Strychnine MetaboliteCHEBI:28973 (ChEBI)
Suc MetaboliteCHEBI:17992 (ChEBI)
Sweet taste compoundsComplexR-ALL-444679 (Reactome)
TAS1R1 ProteinQ7RTX1 (Uniprot-TrEMBL)
TAS1R1:TAS1R3:L-GluComplexR-HSA-444655 (Reactome)
TAS1R1:TAS1R3ComplexR-HSA-444633 (Reactome)
TAS1R2 ProteinQ8TE23 (Uniprot-TrEMBL)
TAS1R2:TAS1R3:Sweet taste compoundsComplexR-HSA-444662 (Reactome)
TAS1R2:TAS1R3ComplexR-HSA-444621 (Reactome)
TAS1R3 ProteinQ7RTX0 (Uniprot-TrEMBL)
TAS2R1 ProteinQ9NYW7 (Uniprot-TrEMBL)
TAS2R10 ProteinQ9NYW0 (Uniprot-TrEMBL)
TAS2R13 ProteinQ9NYV9 (Uniprot-TrEMBL)
TAS2R14 ProteinQ9NYV8 (Uniprot-TrEMBL)
TAS2R16 ProteinQ9NYV7 (Uniprot-TrEMBL)
TAS2R19 ProteinP59542 (Uniprot-TrEMBL)
TAS2R20 ProteinP59543 (Uniprot-TrEMBL)
TAS2R3 ProteinQ9NYW6 (Uniprot-TrEMBL)
TAS2R30 ProteinP59541 (Uniprot-TrEMBL)
TAS2R31 ProteinP59538 (Uniprot-TrEMBL)
TAS2R38 ProteinP59533 (Uniprot-TrEMBL)
TAS2R39 ProteinP59534 (Uniprot-TrEMBL)
TAS2R4 ProteinQ9NYW5 (Uniprot-TrEMBL)
TAS2R40 ProteinP59535 (Uniprot-TrEMBL)
TAS2R41 ProteinP59536 (Uniprot-TrEMBL)
TAS2R42 ProteinQ7RTR8 (Uniprot-TrEMBL)
TAS2R43 ProteinP59537 (Uniprot-TrEMBL)
TAS2R45 ProteinP59539 (Uniprot-TrEMBL)
TAS2R46 ProteinP59540 (Uniprot-TrEMBL)
TAS2R5 ProteinQ9NYW4 (Uniprot-TrEMBL)
TAS2R50 ProteinP59544 (Uniprot-TrEMBL)
TAS2R60 ProteinP59551 (Uniprot-TrEMBL)
TAS2R7 ProteinQ9NYW3 (Uniprot-TrEMBL)
TAS2R8 ProteinQ9NYW2 (Uniprot-TrEMBL)
TAS2R9 ProteinQ9NYW1 (Uniprot-TrEMBL)
TAS2Rs:Bitter-tasting compoundsComplexR-HSA-3299631 (Reactome)
TAS2RsComplexR-HSA-3299629 (Reactome)
Tatridin B MetaboliteCHEBI:73239 (ChEBI)
Thiamine MetaboliteCHEBI:26948 (ChEBI)
Yohimbine MetaboliteCHEBI:10093 (ChEBI)
cis-isohumulone MetaboliteCHEBI:73236 (ChEBI)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
Bitter-tasting compoundsR-HSA-3296233 (Reactome)
CASR:Ca2+ArrowR-HSA-420724 (Reactome)
CASRR-HSA-420724 (Reactome)
Ca2+R-HSA-420724 (Reactome)
GABAB receptor:GABAArrowR-HSA-420688 (Reactome)
GABAB receptorR-HSA-420688 (Reactome)
GABAR-HSA-420688 (Reactome)
GPRC6A

receptor:GPRC6A

ligands
ArrowR-HSA-420739 (Reactome)
GPRC6A ligandsR-HSA-420739 (Reactome)
GPRC6AR-HSA-420739 (Reactome)
GRM1-8:L-GluArrowR-HSA-373075 (Reactome)
GRM1-8R-HSA-373075 (Reactome)
L-GluR-HSA-373075 (Reactome)
L-GluR-HSA-444705 (Reactome)
R-HSA-3296233 (Reactome) Humans can perceive thousands of compounds as bitter-tasting despite having around 25 bitter taste receptors, encoded by the Taste 2 Receptor (TAS2R or T2R) gene family (Adler et al. 2000, Chandrashekar et al. 2000, Matsunami et al. 2000), which signal via the Gi family G-protein Gustducin (Caicedo et al. 2003). Some receptors recognize only a few agonists while others have moderate or broad agonist ranges (Meyerhof et al. 2009). Although there is no clear correlation between bitterness and toxicity (Glendinning 1994), it is generally believed that this sense prevents mammals from ingesting potentially harmful food constituents.

Bitter compounds are numerous, esitimates for natural bitter compounds are in the tens of thousands. They are structurally diverse, including hydroxy fatty acids, fatty acids, peptides, amino acids, amines, amides, azacycloalkanes, N-heterocyclic compounds, ureas, thioureas, carbamides, esters, lactones, carbonyl compounds, phenols, crown ethers, terpenoids, secoiridoids, alkaloids, glycosides, flavonoids, steroids, halogenated or acetylated sugars, and metal ions (DuBois et al. 2008). The representative set of compounds in this reaction are taken from Table 1 in Meyerhof et al. (2009).
R-HSA-373075 (Reactome) The metabotropic glutamate receptors (mGluRs) are members of the group C family of G-protein-coupled receptors (GPCRs) (Pin JP et al, 1995; Conn PJ and Pin JP, 1997). Metabotropic glutamate receptors are characterized by a large N-terminal extracellular domain of approximately 560 amino acids which possesses the glutamate binding domain and confers selectivity for agonists. There are eight mGluRs, 1-8 (Desai MA et al, 1995; Flor PJ et al, 1995; Emile L. et al, 1996; Flor PJ et al, 1995b; Minakami R et al, 1994; Laurie DJ et al, 1997; Wu S et al, 1998 respectively). They can be subdivided into 'groups' according to their sequence homology, signal transduction mechanisms and pharmacological properties. Group I contains mGluR1 and 5; Group II contains mGluR2 and 3; Group III contains mGluR4,6,7 and 8 (Nakanishi S, 1992). Group I receptors activate PLC downstream via coupling to Gq/11. Groups II and III inhibit adenylyl cyclase via coupling to Gi.
Like all glutamate receptors, mGluRs bind to glutamate, an amino acid that functions as an excitatory neurotransmitter. Glutamate is the most abundant excitatory neurotransmitter in the mammalian nervous system.
R-HSA-420688 (Reactome) Gamma-aminobutyric acid (GABA) is the chief inhibitory neurotransmitter in the mammalian central nervous system. GABA exerts its effects through two ligand-gated channels and a the GPCR GABAB (Kaupmann K et al, 1998), which acts through G proteins to regulate potassium and calcium channels. GABAB can only bind GABA once it forms a heterodimer composed of the GABABR1 and GABABR2 receptors (White JH et al, 1998). The effects of this dimer are mediated by coupling to the G protein alpha i subunit, which inhibits adenylyl cyclase (Odagaki & Koyama 2001).
R-HSA-420724 (Reactome) The parathyroid glands play a role in ion homeostasis by sensing small changes in extracellular Ca2+ ion concentration. These glands express a cell surface receptor, calcium-sensing receptors (CaR) (Garrett JE et al, 1995) that is activated by increases in the concentration of extracellular calcium and by a variety of other cations. CaR serves as the primary physiological regulator of parathyroid hormone secretion. CaR contributes to regulation of systemic calcium homeostasis by activation of Gq- (Kifor O et al, 1997) and Gi-linked (Kifor O et al, 2001) signaling pathways in the parathyroid glands, kidney and intestine.
R-HSA-420739 (Reactome) G-protein coupled receptor family C group 6 member A (GPRC6A, GPCR33) (Wellendorph P and Brauner-Osborne H, 2004) is a receptor that functions as a sensor for both L-amino acids and extracellular concentration of calcium ions. GPRC6A is a promiscuous L-alpha-amino acid receptor but has preference for the basic amino-acids L-Arg, L-Lys and L-ornithine (Wellendorph P et al, 2005). The effects of this receptor are mediated by coupling to the G protein alpha q/11 subunit, which activates a phosphatidylinositol-calcium second messenger system.
R-HSA-444606 (Reactome) A dimer of T1R2 and T1R3 receptors responds to diverse stimuli associated with the human sense of sweet taste, such as sucrose, d-tryptophan, aspartame, and saccharin. Signaling occurs via the Gi family G-protein Gustducin (Caicedo et al. 2003).
R-HSA-444705 (Reactome) Dimers of the T1R1 and T1R3 receptors responds to the umami taste stimulus L-glutamate, signaling via the Gi family G-protein Gustducin (Caicedo et al. 2003).
Sweet taste compoundsR-HSA-444606 (Reactome)
TAS1R1:TAS1R3:L-GluArrowR-HSA-444705 (Reactome)
TAS1R1:TAS1R3R-HSA-444705 (Reactome)
TAS1R2:TAS1R3:Sweet taste compoundsArrowR-HSA-444606 (Reactome)
TAS1R2:TAS1R3R-HSA-444606 (Reactome)
TAS2Rs:Bitter-tasting compoundsArrowR-HSA-3296233 (Reactome)
TAS2RsR-HSA-3296233 (Reactome)
Personal tools