Linoleic acid metabolism affected by SARS-CoV-2 (Homo sapiens)
From WikiPathways
Description
Editing this pathway is (at this moment) coordinated via the wikipathways.slack.com #sarscov2 channel.
The large viral Spike protein (S or surface glycoprotein) forms trimers. It interacts with the host's ACE2 receptor to establish binding (Hoffmann et al 2020). There are suggestions for more than one cell entry mechanism, with the evidence for ACE2/TMPRSS2 entry being most clear now. Lack of expression of TMPRSS2 may explain age differences in COVID19 severity. In this mechanism, to enter the virus needs to be primed by the host protease TMPRSS2 that splits the Spike protein into 2 peptides S1 and S2. S1 contains the ACE2 receptor binding site, S2 binds to the host cell membrane which leads to membrane fusion, the start of the uptake process. The ACE2 receptor interaction was also suggested as the start of specific lung-damaging effects.
Other human genes that may be involved in alternative cell uptake mechanisms include CTSL and SLC6A19.Quality Tags
Ontology Terms
Bibliography
View all... |
- Paces J, Strizova Z, Smrz D, Cerny J; ''COVID-19 and the immune system.''; Physiol Res, 2020 PubMed Europe PMC Scholia
- Dennis EA, Deems RA, Harkewicz R, Quehenberger O, Brown HA, Milne SB, Myers DS, Glass CK, Hardiman G, Reichart D, Merrill AH Jr, Sullards MC, Wang E, Murphy RC, Raetz CR, Garrett TA, Guan Z, Ryan AC, Russell DW, McDonald JG, Thompson BM, Shaw WA, Sud M, Zhao Y, Gupta S, Maurya MR, Fahy E, Subramaniam S; ''A mouse macrophage lipidome.''; J Biol Chem, 2010 PubMed Europe PMC Scholia
- Goc A, Niedzwiecki A, Rath M; ''Polyunsaturated ω-3 fatty acids inhibit ACE2-controlled SARS-CoV-2 binding and cellular entry.''; Sci Rep, 2021 PubMed Europe PMC Scholia
- Kandeel M, Ibrahim AA, Fayez M, Al-Nazawi M; ''From SARS and MERS CoVs to SARS-CoV-2: moving toward more biased codon usage in viral structural and non-structural genes.''; J Med Virol, 2020 PubMed Europe PMC Scholia
- Hathaway D, Pandav K, Patel M, Riva-Moscoso A, Singh BM, Patel A, Min ZC, Singh-Makkar S, Sana MK, Sanchez-Dopazo R, Desir R, Fahem MMM, Manella S, Rodriguez I, Alvarez A, Abreu R; ''Omega 3 Fatty Acids and COVID-19: A Comprehensive Review.''; Infect Chemother, 2020 PubMed Europe PMC Scholia
- Yan B, Chu H, Yang D, Sze KH, Lai PM, Yuan S, Shuai H, Wang Y, Kao RY, Chan JF, Yuen KY; ''Characterization of the Lipidomic Profile of Human Coronavirus-Infected Cells: Implications for Lipid Metabolism Remodeling upon Coronavirus Replication.''; Viruses, 2019 PubMed Europe PMC Scholia
- Casari I, Manfredi M, Metharom P, Falasca M; ''Dissecting lipid metabolism alterations in SARS-CoV-2.''; Prog Lipid Res, 2021 PubMed Europe PMC Scholia
- Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D; ''Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein.''; Cell, 2020 PubMed Europe PMC Scholia
- Grimes JM, Grimes KV; ''p38 MAPK inhibition: A promising therapeutic approach for COVID-19.''; J Mol Cell Cardiol, 2020 PubMed Europe PMC Scholia
- Miao H, Chen L, Hao L, Zhang X, Chen Y, Ruan Z, Liang H; ''Stearic acid induces proinflammatory cytokine production partly through activation of lactate-HIF1α pathway in chondrocytes.''; Sci Rep, 2015 PubMed Europe PMC Scholia
- Nakazato Y, Sedor JR; ''IL-1 alpha increases arachidonyl-CoA: lysophospholipid acyltransferase activity and stimulates [3H]arachidonate incorporation into phospholipids in rat mesangial cells.''; Life Sci, 1992 PubMed Europe PMC Scholia
- Arnardottir H, Pawelzik SC, Öhlund Wistbacka U, Artiach G, Hofmann R, Reinholdsson I, Braunschweig F, Tornvall P, Religa D, Bäck M; ''Stimulating the Resolution of Inflammation Through Omega-3 Polyunsaturated Fatty Acids in COVID-19: Rationale for theCOVID-Omega-FTrial.''; Front Physiol, 2020 PubMed Europe PMC Scholia
- Sigrist CJ, Bridge A, Le Mercier P; ''A potential role for integrins in host cell entry by SARS-CoV-2.''; Antiviral Res, 2020 PubMed Europe PMC Scholia
- Scialo F, Daniele A, Amato F, Pastore L, Matera MG, Cazzola M, Castaldo G, Bianco A; ''ACE2: The Major Cell Entry Receptor for SARS-CoV-2.''; Lung, 2020 PubMed Europe PMC Scholia
- Joshi C, Jadeja V, Zhou H; ''Molecular Mechanisms of Palmitic Acid Augmentation in COVID-19 Pathologies.''; Int J Mol Sci, 2021 PubMed Europe PMC Scholia
- Müller C, Hardt M, Schwudke D, Neuman BW, Pleschka S, Ziebuhr J; ''Inhibition of Cytosolic Phospholipase A2α Impairs an Early Step of Coronavirus Replication in Cell Culture.''; J Virol, 2018 PubMed Europe PMC Scholia
History
View all... |
External references
DataNodes
View all... |
Name | Type | Database reference | Comment |
---|---|---|---|
Arachidonic acid | Metabolite | LMFA01030001 (LIPID MAPS) | |
Cytosolic Phospholipase A2 (cPLA2) | GeneProduct | 3.1.1.4 (BRENDA) | |
Glycerophospholipids | Metabolite | CHEBI:37739 (ChEBI) | |
Linoleoyl-CoA
desaturase | GeneProduct | 1.14.19.3 (BRENDA) | |
LysPE 16:0 | Metabolite | ||
LysoPC16:0 | Metabolite | LMGP01050113 (LIPID MAPS) | |
SARS-CoV-2 RNA | Rna | Q82069695 (Wikidata) | |
SARS-CoV-2 and
COVID-19 Pathway Molecular mechanism | Pathway | WP4846 (WikiPathways) | |
bishomo-gamma-linolenic acid | Metabolite | LMFA01030158 (LIPID MAPS) | |
envelope protein E | Protein | P0DTC4 (Uniprot-TrEMBL) | |
gamma-linolenic acid | Metabolite | LMFA01030141 (LIPID MAPS) | |
linoleic acid | Metabolite | LMFA01030120 (LIPID MAPS) | |
membrane glycoprotein M | Protein | P0DTC5 (Uniprot-TrEMBL) | |
nucleocapsid protein N | Protein | P0DTC9 (Uniprot-TrEMBL) | |
oleic acid | Metabolite | LMFA01030002 (LIPID MAPS) | |
palmitic acid | Metabolite | LMFA01010001 (LIPID MAPS) | |
surface glycoprotein S | Protein | P0DTC2 (Uniprot-TrEMBL) | |
trimer | Complex | CPX-5682 (Complex Portal) |
Annotated Interactions
No annotated interactions