COPI-mediated anterograde transport (Homo sapiens)

From WikiPathways

Revision as of 11:48, 2 November 2020 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
4, 10, 11, 26, 41...1, 6, 10, 24, 59...1, 6, 10, 19, 25...3, 14, 28, 33, 34, 42...4, 8, 20-24, 29...2, 10, 23, 31, 32, 36...10, 16, 85, 958, 12, 135, 10, 19, 27, 987, 10, 17, 33, 739, 15, 16, 35, 46...16, 18, 61, 974, 29, 30, 39, 41...cytosoltransport vesicleendoplasmic reticulum-Golgi intermediate compartment membraneGolgi lumenDCTN5 GPI-CD55 COG7 USO1 COPE GPI-FOLR1 TMED2 RAB1A COG8 ANK3 ARF3 TMED3 RAB1:GTP:GBF1:USO1SPTBN2 COG6 RAB1A ANK2 COPA TMEM115ARFGAP1 ARCN1 RAB1B TMED10 BET1 NAPG ANK1 TMED2 COPB2 ANK1 RAB1:GTP:GBF1:USO1:ARF:GTPSPTBN4 GPI-CD59 RAB1A COG5 COG5 ARFGAP3 GBF1 GOLGA2 TMED9 GTP COG4 COPB2 GBF1 KDELR1 KDELR3 ACTR10 TMED3 GTP COPB1 ARF:GDPARF5 GOSR1 COPZ1 TMED2 COPG2 TMED2 GOLGB1 TMED10 COPG1 GPI-CD59 RAB1:GTPUSO1 TMED9 RAB1:GDPCOPG2 DYNC1I1 6xHC-INS(25-110) SPTAN1 SPTAN1 SNAPsCOPZ1 COPA COPG2 COPZ2 SPTAN1 SPTBN5 SPTA1 DYNLL2 RAB1B 6xHC-INS(25-110) PalmC-YKT6 COG3 NSF hexamerUSO1 COG3 COPZ2 COPE GOSR2STX5 BET1L COPG1 ARFGAP1 KDELR3 DCTN3 STX5 COG1 ARF1 COPB2 DYNC1LI2 ARF3 TMED7 ARCN1 COPG1 KDELR2 ARF4 ARF4 cis-Golgi cis SNAREbundle6xHC-INS(25-110) DYNC1I1 BET1 cis-SNARE:3xSNAP:NSFhexamerCOG1 CAPZA1 COG6 GPI-FOLR1 GOSR2 PalmC-YKT6 DCTN1 SPTBN4 GOLGB1 homodimerRAB1:GTP:USO1coatomer:PalmC-YKT6:p24 dimers:cargo:anykrin:spectrin:dynein:dynactin:microtubulesBET1 NAPA SPTBN1 SPTBN1 TMED9 RAB1A DYNLL2 CAPZB SPTBN2 ANK1 GOSR1 DYNC1LI2 ARF4 ANK3 GOSR1COG5 GPI-CD55 NAPG ANK1 TMED3 DCTN2 RAB1:GTP:GBF1:USO1:ARF:GDPCOPB1 COG6 COPA GPI-FOLR1 GPI-CD55 DYNC1LI1 ARF1 KDELR3 SPTB RAB1B STX5 PalmC-YKT6GBF1 COPA SPTBN4 COPE SPTA1 COPB1 ARF1 RAB1A KDELR3 ANK3 TMED3 COPE ARFGAP3 TMEM115 GPI-FOLR1 ARCN1 RAB1B GBF1RAB1:GTP:GBF1:USO1:ARF:GTP:coatomer:ARFGAP1,2,3:PalmC-YKT6:p24 dimers:cargo:spectrin:ankyrinSPTA1 SPTBN2 KDELR2 SPTB SPTB GTP COPB1 USO1 ANK3 GPI-CD55 DCTN4 COPG1 COG3 BET1 PiRAB1A KDELR2 GTP DYNC1H1 6xHC-INS(25-110) TMED3 KDELR2 COPZ2 KDELR2 CAPZB COPZ1 TMED10 ATPCOPZ1 NAPB GOLGA2 SPTBN4 KDELR2 KDELR1 ANK2 GPI-CD55 TMED7 ARFGAP1,2,3TMEM115 COPA COPE BET1L GOLGA2:GORASP1USO1 NSF COPZ2 RAB1B GOSR1 PalmC-YKT6GORASP1 PalmC-YKT6 p24 dimersCOPA GOSR2 RAB1B COG8 SPTB COPE ACTR1A SPTA1 BET1L COPB2 SPTBN5 TMED10 ARF5 SPTAN1 COPB2 CAPZA1 RAB1A ERGIC-to-cis-GolgicargoTMED2 DCTN2 TMED10 GPI-CD55 TMED7 COPB2 AnkyrinUSO1 SPTBN5 BET1SPTBN4 GPI-CD59 BET1L GPI-CD59 COG2 ARF4 DYNC1LI1 SPTBN1 COPB1 DYNC1I2 ACTR10 KDELR3 TMED3 GDP SPTBN4 ERGIC-to-cis-GolgicargoUSO1 TMED7 SPTBN2 ADPRAB1:GTP:USO1:coatomer:PalmC-YKT6:p24 dimers:cargo:spectrin:anykrin:COG complex:GOLGA2:GORASP1:GOLGB1:TMEM115DYNC1I2 COPZ1 ANK3 Microtubule protofilament GTP p24 dimersKDELR1 RAB1:GTP:GBF1:USO1:ARF:GTP:coatomerRAB1B COPG2 DCTN3 USO1 TMED10 GOLGB1 COPZ2 COG1 PalmC-YKT6 Spectrin tetramerTMED2 GORASP1 ANK1 COG2 GPI-CD59 Dynein:Dynactin:microtubuleCOG4 KDELR1 TMED7 SPTBN2 DCTN1 ATPGTP 6xHC-INS(25-110) BET1 BET1 COG2 TMED2 COG7 BET1 6xHC-INS(25-110) TMED9 PalmC-YKT6 TMED2 TMED10 COPG2 Microtubule protofilament GBF1 TMED9 RAB1B COPE SPTBN1 COG7 TMED3 GOLGB1 RAB1A GORASP1 STX5COPG2 BET1 RAB1A GTP RAB1A TMED9 ARF3 COPZ1 COG4 GOSR2 GPI-CD55 NAPB DYNLL1 ANK3 STX5 ARF1 ARF5 KDELR1 GTP ARF1 SPTBN1 TMED10 SPTBN5 KDELR1 ANK2 GOSR2 COPG1 ACTR1A COPZ1 CAPZA2 COPG1 PalmC-YKT6 RAB1B BET1 COPZ2 BET1 TMED9 GPI-FOLR1 USO1 ARFGAP2 DCTN6 CAPZA3 SPTB ANK2 SPTAN1 RAB1B COG8 ARF3 SPTBN1 RAB1B ARF3 GBF1 NSF COPG2 DCTN4 GPI-FOLR1 COPA SPTB GDP RAB1:GTP:USO1:coatomer:p24 dimers:cargo:spectrin:ankyrin:COG complex:GOLGA2:GORASP1:TMEM115:cis-SNARE complexARF5 COPB1 USO1 homodimerANK2 TMED7 GDP SPTBN5 SPTBN5 RAB1A DCTN5 ARF4 ARCN1 ANK1 GTP GPI-FOLR1 KDELR1 GOLGA2 USO1 TMED2 RAB1:GTP:USO1:coatomer:PalmC-YKT6:p24 dimers:cargo:spectrin:anykrinCOPG1 GTP ARCN1 CAPZA3 COG complexGOSR1 GPI-CD59 SPTAN1 ARFGAP2 KDELR2 SPTBN2 KDELR3 coatomerANK2 BET1LDYNC1H1 PalmC-YKT6 ARF5 DYNLL1 DCTN6 COPB1 ARCN1 SPTA1 COPB2 ARCN1 SPTA1 COPZ2 cis-Golgi t-SNARES6xHC-INS(25-110) TMED10 GPI-CD59 NAPA TMED7 CAPZA2 KDELR3 37373737373737


Description

The ERGIC (ER-to-Golgi intermediate compartment, also known as vesicular-tubular clusters, VTCs) is a stable, biochemically distinct compartment located adjacent to ER exit sites (Ben-Tekaya et al, 2005; reviewed in Szul and Sztul, 2011). The ERGIC concentrates COPII-derived cargo from the ER for further anterograde transport to the cis-Golgi and also recycles resident ER proteins back to the ER through retrograde traffic. Both of these pathways appear to make use of microtubule-directed COPI-coated vesicles (Pepperkok et al, 1993; Presley et al, 1997; Scales et al, 1997; Stephens and Pepperkok, 2002; Stephens et al, 2000; reviewed in Lord et al, 2001; Spang et al, 2013). View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 6807878
Reactome-version 
Reactome version: 74
Reactome Author 
Reactome Author: Rothfels, Karen

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Weide T, Bayer M, Köster M, Siebrasse JP, Peters R, Barnekow A.; ''The Golgi matrix protein GM130: a specific interacting partner of the small GTPase rab1b.''; PubMed Europe PMC Scholia
  2. Wang H, Kazanietz MG.; ''Chimaerins, novel non-protein kinase C phorbol ester receptors, associate with Tmp21-I (p23): evidence for a novel anchoring mechanism involving the chimaerin C1 domain.''; PubMed Europe PMC Scholia
  3. Willett R, Ungar D, Lupashin V.; ''The Golgi puppet master: COG complex at center stage of membrane trafficking interactions.''; PubMed Europe PMC Scholia
  4. Monetta P, Slavin I, Romero N, Alvarez C.; ''Rab1b interacts with GBF1 and modulates both ARF1 dynamics and COPI association.''; PubMed Europe PMC Scholia
  5. Tanigawa G, Orci L, Amherdt M, Ravazzola M, Helms JB, Rothman JE.; ''Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles.''; PubMed Europe PMC Scholia
  6. Pepperkok R, Scheel J, Horstmann H, Hauri HP, Griffiths G, Kreis TE.; ''Beta-COP is essential for biosynthetic membrane transport from the endoplasmic reticulum to the Golgi complex in vivo.''; PubMed Europe PMC Scholia
  7. Allan BB, Moyer BD, Balch WE.; ''Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion.''; PubMed Europe PMC Scholia
  8. Beard M, Satoh A, Shorter J, Warren G.; ''A cryptic Rab1-binding site in the p115 tethering protein.''; PubMed Europe PMC Scholia
  9. Donaldson JG, Cassel D, Kahn RA, Klausner RD.; ''ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes.''; PubMed Europe PMC Scholia
  10. Ben-Tekaya H, Miura K, Pepperkok R, Hauri HP.; ''Live imaging of bidirectional traffic from the ERGIC.''; PubMed Europe PMC Scholia
  11. Südhof TC, Rothman JE.; ''Membrane fusion: grappling with SNARE and SM proteins.''; PubMed Europe PMC Scholia
  12. Shestakova A, Suvorova E, Pavliv O, Khaidakova G, Lupashin V.; ''Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability.''; PubMed Europe PMC Scholia
  13. Zhang T, Wong SH, Tang BL, Xu Y, Peter F, Subramaniam VN, Hong W.; ''The mammalian protein (rbet1) homologous to yeast Bet1p is primarily associated with the pre-Golgi intermediate compartment and is involved in vesicular transport from the endoplasmic reticulum to the Golgi apparatus.''; PubMed Europe PMC Scholia
  14. Xu Y, Martin S, James DE, Hong W.; ''GS15 forms a SNARE complex with syntaxin 5, GS28, and Ykt6 and is implicated in traffic in the early cisternae of the Golgi apparatus.''; PubMed Europe PMC Scholia
  15. Manolea F, Chun J, Chen DW, Clarke I, Summerfeldt N, Dacks JB, Melançon P.; ''Arf3 is activated uniquely at the trans-Golgi network by brefeldin A-inhibited guanine nucleotide exchange factors.''; PubMed Europe PMC Scholia
  16. Frigerio G, Grimsey N, Dale M, Majoul I, Duden R.; ''Two human ARFGAPs associated with COP-I-coated vesicles.''; PubMed Europe PMC Scholia
  17. Mayer A, Wickner W, Haas A.; ''Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles.''; PubMed Europe PMC Scholia
  18. Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE.; ''A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion.''; PubMed Europe PMC Scholia
  19. Popoff V, Adolf F, Brügger B, Wieland F.; ''COPI budding within the Golgi stack.''; PubMed Europe PMC Scholia
  20. Takida S, Maeda Y, Kinoshita T.; ''Mammalian GPI-anchored proteins require p24 proteins for their efficient transport from the ER to the plasma membrane.''; PubMed Europe PMC Scholia
  21. Béthune J, Kol M, Hoffmann J, Reckmann I, Brügger B, Wieland F.; ''Coatomer, the coat protein of COPI transport vesicles, discriminates endoplasmic reticulum residents from p24 proteins.''; PubMed Europe PMC Scholia
  22. Szul T, Grabski R, Lyons S, Morohashi Y, Shestopal S, Lowe M, Sztul E.; ''Dissecting the role of the ARF guanine nucleotide exchange factor GBF1 in Golgi biogenesis and protein trafficking.''; PubMed Europe PMC Scholia
  23. Luo R, Ha VL, Hayashi R, Randazzo PA.; ''Arf GAP2 is positively regulated by coatomer and cargo.''; PubMed Europe PMC Scholia
  24. Waters MG, Serafini T, Rothman JE.; '''Coatomer': a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles.''; PubMed Europe PMC Scholia
  25. D'Souza-Schorey C, Chavrier P.; ''ARF proteins: roles in membrane traffic and beyond.''; PubMed Europe PMC Scholia
  26. Letourneur F, Gaynor EC, Hennecke S, Démollière C, Duden R, Emr SD, Riezman H, Cosson P.; ''Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum.''; PubMed Europe PMC Scholia
  27. Palmer DJ, Helms JB, Beckers CJ, Orci L, Rothman JE.; ''Binding of coatomer to Golgi membranes requires ADP-ribosylation factor.''; PubMed Europe PMC Scholia
  28. Zolov SN, Lupashin VV.; ''Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells.''; PubMed Europe PMC Scholia
  29. García-Mata R, Sztul E.; ''The membrane-tethering protein p115 interacts with GBF1, an ARF guanine-nucleotide-exchange factor.''; PubMed Europe PMC Scholia
  30. Seemann J, Jokitalo EJ, Warren G.; ''The role of the tethering proteins p115 and GM130 in transport through the Golgi apparatus in vivo.''; PubMed Europe PMC Scholia
  31. Niu TK, Pfeifer AC, Lippincott-Schwartz J, Jackson CL.; ''Dynamics of GBF1, a Brefeldin A-sensitive Arf1 exchange factor at the Golgi.''; PubMed Europe PMC Scholia
  32. Zhao X, Claude A, Chun J, Shields DJ, Presley JF, Melançon P.; ''GBF1, a cis-Golgi and VTCs-localized ARF-GEF, is implicated in ER-to-Golgi protein traffic.''; PubMed Europe PMC Scholia
  33. Scales SJ, Pepperkok R, Kreis TE.; ''Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI.''; PubMed Europe PMC Scholia
  34. Hong W, Lev S.; ''Tethering the assembly of SNARE complexes.''; PubMed Europe PMC Scholia
  35. Godi A, Santone I, Pertile P, Devarajan P, Stabach PR, Morrow JS, Di Tullio G, Polishchuk R, Petrucci TC, Luini A, De Matteis MA.; ''ADP ribosylation factor regulates spectrin binding to the Golgi complex.''; PubMed Europe PMC Scholia
  36. Shah N, Colbert KN, Enos MD, Herschlag D, Weis WI.; ''Three αSNAP and 10 ATP molecules are used in SNARE complex disassembly by N-ethylmaleimide-sensitive factor (NSF).''; PubMed Europe PMC Scholia
  37. Lanoix J, Ouwendijk J, Stark A, Szafer E, Cassel D, Dejgaard K, Weiss M, Nilsson T.; ''Sorting of Golgi resident proteins into different subpopulations of COPI vesicles: a role for ArfGAP1.''; PubMed Europe PMC Scholia
  38. Aoe T, Cukierman E, Lee A, Cassel D, Peters PJ, Hsu VW.; ''The KDEL receptor, ERD2, regulates intracellular traffic by recruiting a GTPase-activating protein for ARF1.''; PubMed Europe PMC Scholia
  39. Ong YS, Tran TH, Gounko NV, Hong W.; ''TMEM115 is an integral membrane protein of the Golgi complex involved in retrograde transport.''; PubMed Europe PMC Scholia
  40. Jahn R, Scheller RH.; ''SNAREs--engines for membrane fusion.''; PubMed Europe PMC Scholia
  41. Muller JM, Shorter J, Newman R, Deinhardt K, Sagiv Y, Elazar Z, Warren G, Shima DT.; ''Sequential SNARE disassembly and GATE-16-GOS-28 complex assembly mediated by distinct NSF activities drives Golgi membrane fusion.''; PubMed Europe PMC Scholia
  42. Luo W, Wang Y, Reiser G.; ''Proteinase-activated receptors, nucleotide P2Y receptors, and μ-opioid receptor-1B are under the control of the type I transmembrane proteins p23 and p24A in post-Golgi trafficking.''; PubMed Europe PMC Scholia
  43. Yu RC, Jahn R, Brunger AT.; ''NSF N-terminal domain crystal structure: models of NSF function.''; PubMed Europe PMC Scholia
  44. Szul T, Garcia-Mata R, Brandon E, Shestopal S, Alvarez C, Sztul E.; ''Dissection of membrane dynamics of the ARF-guanine nucleotide exchange factor GBF1.''; PubMed Europe PMC Scholia
  45. Otto H, Hanson PI, Jahn R.; ''Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles.''; PubMed Europe PMC Scholia
  46. Nakamura N, Lowe M, Levine TP, Rabouille C, Warren G.; ''The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner.''; PubMed Europe PMC Scholia
  47. Szul T, Sztul E.; ''COPII and COPI traffic at the ER-Golgi interface.''; PubMed Europe PMC Scholia
  48. Cosson P, Letourneur F.; ''Coatomer interaction with di-lysine endoplasmic reticulum retention motifs.''; PubMed Europe PMC Scholia
  49. Harter C, Wieland FT.; ''A single binding site for dilysine retrieval motifs and p23 within the gamma subunit of coatomer.''; PubMed Europe PMC Scholia
  50. Alvarez C, Garcia-Mata R, Hauri HP, Sztul E.; ''The p115-interactive proteins GM130 and giantin participate in endoplasmic reticulum-Golgi traffic.''; PubMed Europe PMC Scholia
  51. Müller JM, Rabouille C, Newman R, Shorter J, Freemont P, Schiavo G, Warren G, Shima DT.; ''An NSF function distinct from ATPase-dependent SNARE disassembly is essential for Golgi membrane fusion.''; PubMed Europe PMC Scholia
  52. Sohda M, Misumi Y, Yoshimura S, Nakamura N, Fusano T, Ogata S, Sakisaka S, Ikehara Y.; ''The interaction of two tethering factors, p115 and COG complex, is required for Golgi integrity.''; PubMed Europe PMC Scholia
  53. Devarajan P, Stabach PR, De Matteis MA, Morrow JS.; ''Na,K-ATPase transport from endoplasmic reticulum to Golgi requires the Golgi spectrin-ankyrin G119 skeleton in Madin Darby canine kidney cells.''; PubMed Europe PMC Scholia
  54. Eugster A, Frigerio G, Dale M, Duden R.; ''COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP.''; PubMed Europe PMC Scholia
  55. Kahn RA, Bruford E, Inoue H, Logsdon JM, Nie Z, Premont RT, Randazzo PA, Satake M, Theibert AB, Zapp ML, Cassel D.; ''Consensus nomenclature for the human ArfGAP domain-containing proteins.''; PubMed Europe PMC Scholia
  56. Volpicelli-Daley LA, Li Y, Zhang CJ, Kahn RA.; ''Isoform-selective effects of the depletion of ADP-ribosylation factors 1-5 on membrane traffic.''; PubMed Europe PMC Scholia
  57. Reinhard C, Harter C, Bremser M, Brügger B, Sohn K, Helms JB, Wieland F.; ''Receptor-induced polymerization of coatomer.''; PubMed Europe PMC Scholia
  58. Sönnichsen B, Lowe M, Levine T, Jämsä E, Dirac-Svejstrup B, Warren G.; ''A role for giantin in docking COPI vesicles to Golgi membranes.''; PubMed Europe PMC Scholia
  59. Weimer C, Beck R, Eckert P, Reckmann I, Moelleken J, Brügger B, Wieland F.; ''Differential roles of ArfGAP1, ArfGAP2, and ArfGAP3 in COPI trafficking.''; PubMed Europe PMC Scholia
  60. Donaldson JG, Kahn RA, Lippincott-Schwartz J, Klausner RD.; ''Binding of ARF and beta-COP to Golgi membranes: possible regulation by a trimeric G protein.''; PubMed Europe PMC Scholia
  61. East MP, Kahn RA.; ''Models for the functions of Arf GAPs.''; PubMed Europe PMC Scholia
  62. Schuiki I, Volchuk A.; ''Diverse roles for the p24 family of proteins in eukaryotic cells.''; PubMed Europe PMC Scholia
  63. Zhao L, Helms JB, Brunner J, Wieland FT.; ''GTP-dependent binding of ADP-ribosylation factor to coatomer in close proximity to the binding site for dilysine retrieval motifs and p23.''; PubMed Europe PMC Scholia
  64. Aguilera-Romero A, Kaminska J, Spang A, Riezman H, Muñiz M.; ''The yeast p24 complex is required for the formation of COPI retrograde transport vesicles from the Golgi apparatus.''; PubMed Europe PMC Scholia
  65. Volchuk A, Ravazzola M, Perrelet A, Eng WS, Di Liberto M, Varlamov O, Fukasawa M, Engel T, Söllner TH, Rothman JE, Orci L.; ''Countercurrent distribution of two distinct SNARE complexes mediating transport within the Golgi stack.''; PubMed Europe PMC Scholia
  66. Nagahama M, Orci L, Ravazzola M, Amherdt M, Lacomis L, Tempst P, Rothman JE, Söllner TH.; ''A v-SNARE implicated in intra-Golgi transport.''; PubMed Europe PMC Scholia
  67. Spang A.; ''Retrograde traffic from the Golgi to the endoplasmic reticulum.''; PubMed Europe PMC Scholia
  68. Appenzeller-Herzog C, Hauri HP.; ''The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function.''; PubMed Europe PMC Scholia
  69. Bonnon C, Wendeler MW, Paccaud JP, Hauri HP.; ''Selective export of human GPI-anchored proteins from the endoplasmic reticulum.''; PubMed Europe PMC Scholia
  70. Yu X, Breitman M, Goldberg J.; ''A structure-based mechanism for Arf1-dependent recruitment of coatomer to membranes.''; PubMed Europe PMC Scholia
  71. Moyer BD, Allan BB, Balch WE.; ''Rab1 interaction with a GM130 effector complex regulates COPII vesicle cis--Golgi tethering.''; PubMed Europe PMC Scholia
  72. Kliouchnikov L, Bigay J, Mesmin B, Parnis A, Rawet M, Goldfeder N, Antonny B, Cassel D.; ''Discrete determinants in ArfGAP2/3 conferring Golgi localization and regulation by the COPI coat.''; PubMed Europe PMC Scholia
  73. Chun J, Shapovalova Z, Dejgaard SY, Presley JF, Melançon P.; ''Characterization of class I and II ADP-ribosylation factors (Arfs) in live cells: GDP-bound class II Arfs associate with the ER-Golgi intermediate compartment independently of GBF1.''; PubMed Europe PMC Scholia
  74. Bigay J, Gounon P, Robineau S, Antonny B.; ''Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature.''; PubMed Europe PMC Scholia
  75. Orci L, Stamnes M, Ravazzola M, Amherdt M, Perrelet A, Söllner TH, Rothman JE.; ''Bidirectional transport by distinct populations of COPI-coated vesicles.''; PubMed Europe PMC Scholia
  76. Zink S, Wenzel D, Wurm CA, Schmitt HD.; ''A link between ER tethering and COP-I vesicle uncoating.''; PubMed Europe PMC Scholia
  77. Stephens DJ, Lin-Marq N, Pagano A, Pepperkok R, Paccaud JP.; ''COPI-coated ER-to-Golgi transport complexes segregate from COPII in close proximity to ER exit sites.''; PubMed Europe PMC Scholia
  78. Langer JD, Roth CM, Béthune J, Stoops EH, Brügger B, Herten DP, Wieland FT.; ''A conformational change in the alpha-subunit of coatomer induced by ligand binding to gamma-COP revealed by single-pair FRET.''; PubMed Europe PMC Scholia
  79. Presley JF, Cole NB, Schroer TA, Hirschberg K, Zaal KJ, Lippincott-Schwartz J.; ''ER-to-Golgi transport visualized in living cells.''; PubMed Europe PMC Scholia
  80. Mesmin B, Drin G, Levi S, Rawet M, Cassel D, Bigay J, Antonny B.; ''Two lipid-packing sensor motifs contribute to the sensitivity of ArfGAP1 to membrane curvature.''; PubMed Europe PMC Scholia
  81. Goldberg J.; ''Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex.''; PubMed Europe PMC Scholia
  82. Buechling T, Chaudhary V, Spirohn K, Weiss M, Boutros M.; ''p24 proteins are required for secretion of Wnt ligands.''; PubMed Europe PMC Scholia
  83. Zhao L, Helms JB, Brügger B, Harter C, Martoglio B, Graf R, Brunner J, Wieland FT.; ''Direct and GTP-dependent interaction of ADP ribosylation factor 1 with coatomer subunit beta.''; PubMed Europe PMC Scholia
  84. Lord C, Ferro-Novick S, Miller EA.; ''The highly conserved COPII coat complex sorts cargo from the endoplasmic reticulum and targets it to the golgi.''; PubMed Europe PMC Scholia
  85. Moelleken J, Malsam J, Betts MJ, Movafeghi A, Reckmann I, Meissner I, Hellwig A, Russell RB, Russell RB, Söllner T, Brügger B, Wieland FT.; ''Differential localization of coatomer complex isoforms within the Golgi apparatus.''; PubMed Europe PMC Scholia
  86. Sun Z, Anderl F, Fröhlich K, Zhao L, Hanke S, Brügger B, Wieland F, Béthune J.; ''Multiple and stepwise interactions between coatomer and ADP-ribosylation factor-1 (Arf1)-GTP.''; PubMed Europe PMC Scholia
  87. Gommel DU, Memon AR, Heiss A, Lottspeich F, Pfannstiel J, Lechner J, Reinhard C, Helms JB, Nickel W, Wieland FT.; ''Recruitment to Golgi membranes of ADP-ribosylation factor 1 is mediated by the cytoplasmic domain of p23.''; PubMed Europe PMC Scholia
  88. Zhao C, Smith EC, Whiteheart SW.; ''Requirements for the catalytic cycle of the N-ethylmaleimide-Sensitive Factor (NSF).''; PubMed Europe PMC Scholia
  89. Kawamoto K, Yoshida Y, Tamaki H, Torii S, Shinotsuka C, Yamashina S, Nakayama K.; ''GBF1, a guanine nucleotide exchange factor for ADP-ribosylation factors, is localized to the cis-Golgi and involved in membrane association of the COPI coat.''; PubMed Europe PMC Scholia
  90. Serafini T, Orci L, Amherdt M, Brunner M, Kahn RA, Rothman JE.; ''ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein.''; PubMed Europe PMC Scholia
  91. Holleran EA, Tokito MK, Karki S, Holzbaur EL.; ''Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles.''; PubMed Europe PMC Scholia
  92. Majoul I, Straub M, Hell SW, Duden R, Söling HD.; ''KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: measurements in living cells using FRET.''; PubMed Europe PMC Scholia
  93. Holleran EA, Ligon LA, Tokito M, Stankewich MC, Morrow JS, Holzbaur EL.; ''beta III spectrin binds to the Arp1 subunit of dynactin.''; PubMed Europe PMC Scholia
  94. Linstedt AD, Hauri HP.; ''Giantin, a novel conserved Golgi membrane protein containing a cytoplasmic domain of at least 350 kDa.''; PubMed Europe PMC Scholia
  95. Bremser M, Nickel W, Schweikert M, Ravazzola M, Amherdt M, Hughes CA, Söllner TH, Rothman JE, Wieland FT.; ''Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors.''; PubMed Europe PMC Scholia
  96. Beck R, Rawet M, Wieland FT, Cassel D.; ''The COPI system: molecular mechanisms and function.''; PubMed Europe PMC Scholia
  97. Hara-Kuge S, Kuge O, Orci L, Amherdt M, Ravazzola M, Wieland FT, Rothman JE.; ''En bloc incorporation of coatomer subunits during the assembly of COP-coated vesicles.''; PubMed Europe PMC Scholia
  98. Liu X, Zhang C, Xing G, Chen Q, He F.; ''Functional characterization of novel human ARFGAP3.''; PubMed Europe PMC Scholia
  99. Whiteheart SW, Matveeva EA.; ''Multiple binding proteins suggest diverse functions for the N-ethylmaleimide sensitive factor.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114968view16:49, 25 January 2021ReactomeTeamReactome version 75
113412view11:48, 2 November 2020ReactomeTeamReactome version 74
112614view15:59, 9 October 2020ReactomeTeamReactome version 73
101690view14:18, 1 November 2018DeSlOntology Term : 'transport pathway' added !
101530view11:40, 1 November 2018ReactomeTeamreactome version 66
101065view21:22, 31 October 2018ReactomeTeamreactome version 65
100729view20:11, 31 October 2018ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
6xHC-INS(25-110) ProteinP01308 (Uniprot-TrEMBL)
ACTR10 ProteinQ9NZ32 (Uniprot-TrEMBL)
ACTR1A ProteinP61163 (Uniprot-TrEMBL)
ADPMetaboliteCHEBI:456216 (ChEBI)
ANK1 ProteinP16157 (Uniprot-TrEMBL)
ANK2 ProteinQ01484 (Uniprot-TrEMBL)
ANK3 ProteinQ12955 (Uniprot-TrEMBL)
ARCN1 ProteinP48444 (Uniprot-TrEMBL)
ARF1 ProteinP84077 (Uniprot-TrEMBL)
ARF3 ProteinP61204 (Uniprot-TrEMBL)
ARF4 ProteinP18085 (Uniprot-TrEMBL)
ARF5 ProteinP84085 (Uniprot-TrEMBL)
ARF:GDPComplexR-HSA-6807786 (Reactome)
ARFGAP1 ProteinQ8N6T3 (Uniprot-TrEMBL)
ARFGAP1,2,3ComplexR-HSA-6807832 (Reactome)
ARFGAP2 ProteinQ8N6H7 (Uniprot-TrEMBL)
ARFGAP3 ProteinQ9NP61 (Uniprot-TrEMBL)
ATPMetaboliteCHEBI:30616 (ChEBI)
AnkyrinComplexR-HSA-427190 (Reactome)
BET1 ProteinO15155 (Uniprot-TrEMBL)
BET1L ProteinQ9NYM9 (Uniprot-TrEMBL)
BET1LProteinQ9NYM9 (Uniprot-TrEMBL)
BET1ProteinO15155 (Uniprot-TrEMBL)
CAPZA1 ProteinP52907 (Uniprot-TrEMBL)
CAPZA2 ProteinP47755 (Uniprot-TrEMBL)
CAPZA3 ProteinQ96KX2 (Uniprot-TrEMBL)
CAPZB ProteinP47756 (Uniprot-TrEMBL)
COG complexComplexR-HSA-6808819 (Reactome)
COG1 ProteinQ8WTW3 (Uniprot-TrEMBL)
COG2 ProteinQ14746 (Uniprot-TrEMBL)
COG3 ProteinQ96JB2 (Uniprot-TrEMBL)
COG4 ProteinQ9H9E3 (Uniprot-TrEMBL)
COG5 ProteinQ9UP83 (Uniprot-TrEMBL)
COG6 ProteinQ9Y2V7 (Uniprot-TrEMBL)
COG7 ProteinP83436 (Uniprot-TrEMBL)
COG8 ProteinQ96MW5 (Uniprot-TrEMBL)
COPA ProteinP53621 (Uniprot-TrEMBL)
COPB1 ProteinP53618 (Uniprot-TrEMBL)
COPB2 ProteinP35606 (Uniprot-TrEMBL)
COPE ProteinO14579 (Uniprot-TrEMBL)
COPG1 ProteinQ9Y678 (Uniprot-TrEMBL)
COPG2 ProteinQ9UBF2 (Uniprot-TrEMBL)
COPZ1 ProteinP61923 (Uniprot-TrEMBL)
COPZ2 ProteinQ9P299 (Uniprot-TrEMBL)
DCTN1 ProteinQ14203 (Uniprot-TrEMBL)
DCTN2 ProteinQ13561 (Uniprot-TrEMBL)
DCTN3 ProteinO75935 (Uniprot-TrEMBL)
DCTN4 ProteinQ9UJW0 (Uniprot-TrEMBL)
DCTN5 ProteinQ9BTE1 (Uniprot-TrEMBL)
DCTN6 ProteinO00399 (Uniprot-TrEMBL)
DYNC1H1 ProteinQ14204 (Uniprot-TrEMBL)
DYNC1I1 ProteinO14576 (Uniprot-TrEMBL)
DYNC1I2 ProteinQ13409 (Uniprot-TrEMBL)
DYNC1LI1 ProteinQ9Y6G9 (Uniprot-TrEMBL)
DYNC1LI2 ProteinO43237 (Uniprot-TrEMBL)
DYNLL1 ProteinP63167 (Uniprot-TrEMBL)
DYNLL2 ProteinQ96FJ2 (Uniprot-TrEMBL)
Dynein:Dynactin:microtubuleComplexR-HSA-2029135 (Reactome)
ERGIC-to-cis-Golgi cargoComplexR-HSA-6807816 (Reactome)
ERGIC-to-cis-Golgi cargoComplexR-HSA-6808909 (Reactome)
GBF1 ProteinQ92538 (Uniprot-TrEMBL)
GBF1ProteinQ92538 (Uniprot-TrEMBL)
GDP MetaboliteCHEBI:17552 (ChEBI)
GOLGA2 ProteinQ08379 (Uniprot-TrEMBL)
GOLGA2:GORASP1ComplexR-HSA-6808820 (Reactome)
GOLGB1 ProteinQ14789 (Uniprot-TrEMBL)
GOLGB1 homodimerComplexR-HSA-6810505 (Reactome)
GORASP1 ProteinQ9BQQ3 (Uniprot-TrEMBL)
GOSR1 ProteinO95249 (Uniprot-TrEMBL)
GOSR1ProteinO95249 (Uniprot-TrEMBL)
GOSR2 ProteinO14653 (Uniprot-TrEMBL)
GOSR2ProteinO14653 (Uniprot-TrEMBL)
GPI-CD55 ProteinP08174 (Uniprot-TrEMBL)
GPI-CD59 ProteinP13987 (Uniprot-TrEMBL)
GPI-FOLR1 ProteinP15328 (Uniprot-TrEMBL)
GTP MetaboliteCHEBI:15996 (ChEBI)
KDELR1 ProteinP24390 (Uniprot-TrEMBL)
KDELR2 ProteinP33947 (Uniprot-TrEMBL)
KDELR3 ProteinO43731 (Uniprot-TrEMBL)
Microtubule protofilament R-HSA-8982424 (Reactome)
NAPA ProteinP54920 (Uniprot-TrEMBL)
NAPB ProteinQ9H115 (Uniprot-TrEMBL)
NAPG ProteinQ99747 (Uniprot-TrEMBL)
NSF ProteinP46459 (Uniprot-TrEMBL)
NSF hexamerComplexR-HSA-2193131 (Reactome)
PalmC-YKT6 ProteinO15498 (Uniprot-TrEMBL)
PalmC-YKT6ProteinO15498 (Uniprot-TrEMBL)
PiMetaboliteCHEBI:43474 (ChEBI)
RAB1:GDPComplexR-HSA-5694296 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GDPComplexR-HSA-6807803 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GTP:coatomer:ARFGAP1,2,3:PalmC-YKT6:p24 dimers:cargo:spectrin:ankyrinComplexR-HSA-6807825 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GTP:coatomerComplexR-HSA-6807822 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GTPComplexR-HSA-6807820 (Reactome)
RAB1:GTP:GBF1:USO1ComplexR-HSA-6807800 (Reactome)
RAB1:GTP:USO1 coatomer:PalmC-YKT6:p24 dimers:cargo:anykrin:spectrin:dynein:dynactin:microtubulesComplexR-HSA-6808904 (Reactome)
RAB1:GTP:USO1:coatomer:PalmC-YKT6:p24 dimers:cargo:spectrin:anykrin:COG complex:GOLGA2:GORASP1:GOLGB1:TMEM115ComplexR-HSA-6808912 (Reactome)
RAB1:GTP:USO1:coatomer:PalmC-YKT6:p24 dimers:cargo:spectrin:anykrinComplexR-HSA-6808903 (Reactome)
RAB1:GTP:USO1:coatomer:p24 dimers:cargo:spectrin:ankyrin:COG complex:GOLGA2:GORASP1:TMEM115:cis-SNARE complexComplexR-HSA-6808913 (Reactome)
RAB1:GTPComplexR-HSA-6807799 (Reactome)
RAB1A ProteinP62820 (Uniprot-TrEMBL)
RAB1B ProteinQ9H0U4 (Uniprot-TrEMBL)
SNAPsComplexR-HSA-5694313 (Reactome)
SPTA1 ProteinP02549 (Uniprot-TrEMBL)
SPTAN1 ProteinQ13813 (Uniprot-TrEMBL)
SPTB ProteinP11277 (Uniprot-TrEMBL)
SPTBN1 ProteinQ01082 (Uniprot-TrEMBL)
SPTBN2 ProteinO15020 (Uniprot-TrEMBL)
SPTBN4 ProteinQ9H254 (Uniprot-TrEMBL)
SPTBN5 ProteinQ9NRC6 (Uniprot-TrEMBL)
STX5 ProteinQ13190 (Uniprot-TrEMBL)
STX5ProteinQ13190 (Uniprot-TrEMBL)
Spectrin tetramerComplexR-HSA-420053 (Reactome) Spectrin assembles into heterodimers of alpha and beta spectrin, these then associate in a head to tail tetramer arrangement, the beta chains binding an actin filaments at either end of the tetramer. The actin filaments act as nodes for the attachment of several (5 or 6) spectrin tetramers, allowing the formation of a lattice of pentagonal or hexagonal spectrin structures.
TMED10 ProteinP49755 (Uniprot-TrEMBL)
TMED2 ProteinQ15363 (Uniprot-TrEMBL)
TMED3 ProteinQ9Y3Q3 (Uniprot-TrEMBL)
TMED7 ProteinQ9Y3B3 (Uniprot-TrEMBL)
TMED9 ProteinQ9BVK6 (Uniprot-TrEMBL)
TMEM115 ProteinQ12893 (Uniprot-TrEMBL)
TMEM115ProteinQ12893 (Uniprot-TrEMBL)
USO1 ProteinO60763 (Uniprot-TrEMBL)
USO1 homodimerComplexR-HSA-5694302 (Reactome)
cis-Golgi cis SNARE bundleComplexR-HSA-6809000 (Reactome)
cis-Golgi t-SNARESComplexR-HSA-6807834 (Reactome)
cis-SNARE:3xSNAP:NSF hexamerComplexR-HSA-6808999 (Reactome)
coatomerComplexR-HSA-6807805 (Reactome)
p24 dimersComplexR-HSA-6807812 (Reactome)
p24 dimersComplexR-HSA-6808871 (Reactome)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ADPArrowR-HSA-6807868 (Reactome)
ARF:GDPArrowR-HSA-6807877 (Reactome)
ARF:GDPR-HSA-6807866 (Reactome)
ARFGAP1,2,3ArrowR-HSA-6807877 (Reactome)
ARFGAP1,2,3R-HSA-6807875 (Reactome)
ATPR-HSA-6807868 (Reactome)
ATPR-HSA-6809015 (Reactome)
AnkyrinArrowR-HSA-6809010 (Reactome)
AnkyrinR-HSA-6807875 (Reactome)
BET1ArrowR-HSA-6809015 (Reactome)
BET1LArrowR-HSA-6809015 (Reactome)
COG complexArrowR-HSA-6809010 (Reactome)
COG complexR-HSA-6809006 (Reactome)
Dynein:Dynactin:microtubuleArrowR-HSA-6809006 (Reactome)
Dynein:Dynactin:microtubuleR-HSA-6809003 (Reactome)
ERGIC-to-cis-Golgi cargoArrowR-HSA-6809010 (Reactome)
ERGIC-to-cis-Golgi cargoR-HSA-6807875 (Reactome)
GBF1ArrowR-HSA-6807877 (Reactome)
GBF1R-HSA-6807864 (Reactome)
GOLGA2:GORASP1ArrowR-HSA-6809010 (Reactome)
GOLGA2:GORASP1R-HSA-6809006 (Reactome)
GOLGB1 homodimerArrowR-HSA-6809010 (Reactome)
GOLGB1 homodimerR-HSA-6809006 (Reactome)
GOSR1ArrowR-HSA-6809015 (Reactome)
GOSR2ArrowR-HSA-6809015 (Reactome)
NSF hexamerR-HSA-6809014 (Reactome)
PalmC-YKT6ArrowR-HSA-6809015 (Reactome)
PalmC-YKT6R-HSA-6807875 (Reactome)
PiArrowR-HSA-6809015 (Reactome)
R-HSA-6807864 (Reactome) In its GTP-bound active state, RAB1 recruits the ARF GEF GBF1 to the ERGIC (Monetta et al, 2007). GBF1 is the only ARF activator required for the formation of COPI coats, and it therefore has roles in the anterograde ERGIC-to-cis-Golgi pathway as well as in COPI-mediated retrograde transport within the Golgi and back to the ERGIC and ER (Kawamoto et al, 2002; Szul et al, 2005; Zhao et al, 2006; Szul et al, 2007; reviewed in Szul and Sztul, 2011). GBF1 activates ARF4 which is concentrated at the ERGIC compartment, but also ARF1 and ARF5 which have more generalized localization within the secretory pathway (Volpicelli-Daley et al, 2005; Chun et al, 2008; reviewed in D'Souza-Schorey and Chavrier, 2006). GBF1 also interacts with the USO1 homodimer, a long coiled-coil tethering factor (Garcia-Mata and Sztul, 2003).
R-HSA-6807866 (Reactome) GBF1 recruits inactive ARF:GDP complexes to the ERGIC (Monetta et al, 2007). There are 5 known ADP-ribosylation factor proteins (ARFs) in the human cell. Class I members ARF1 and ARF 3 are expressed at high levels and broadly distributed through the secretory system, while Class II members ARF4 and ARF5 are expressed at lower levels, with ARF4 showing the most specific localization to the ERGIC compartment. ARF6, the single Class III ARF, appears to function more specifically in endocytosis and actin dynamics (Chun et al, 2008; reviewed in D'Souza-Schorey and Chavrier, 2006; Szul and Sztul, 2011). There is conflicting evidence regarding what ARF(s) is required at the ERGIC membrane. GBF1 has been shown to activate ARF1, 4, and 5, but not ARF3, while single and pairwise knockdown of ARF1, 3, 4 and 5 suggests that although no single ARF is responsible for any given step in the secretory pathway, ARF1 and ARF3 contribute most specifically to the ERGIC-Golgi step (Manolea et al, 2010; Volpicelli-Daley et al, 2005). Recruitment of ARF at may also be facilitated by interaction with p24 family members (Gommel et al, 2001; reviewed in Schuiki and Volchuk, 2012).
R-HSA-6807868 (Reactome) GBF1 facilitates the exchange of GDP for GTP, activating ARF (Niu et al, 2005; Szul et al, 2005; Szul et al, 2007; Kawamoto et al, 2002; reviewed in Szul and Sztul, 2011).
R-HSA-6807872 (Reactome) Activation of ARF is tightly linked to the recruitment of the COPI coat (Donaldson et al, 1991; Serafini et al, 1991; Donaldson et el, 1992; Palmer et al, 1993; reveiwed in Szul and Sztul, 2011). Studies in yeast and in mammalian cells support a direct interaction between the GTPase and components of the COPI coat; recruitment may also be facilitated by interactions with p24 family members (Zhao et al, 1997; Zhao et al, 1999; Zhao et al, 2006; Eugster et al, 2000; Aguillera-Ramiero et al, 2008; Sun et al, 2007; Yu et al, 2012; Harter and Wieland, 1998; Bethune et al, 2006; reviewed in Popoff et al, 2011). The COPI coat consists of 7 subunits arranged in 2 subcomplexes. The inner coat is made up of a tetrameric complex consisting of the beta, gamma, zeta and delta COPI subunits, while the outer coat is a trimer consisting of the alpha, beta prime and epsilon subunits (Eugster et al, 2000; Waters et al, 1991). Both of the zeta and gamma subunits have 2 isoforms with different subcellular locations, suggesting that different COPI coats may mediate different steps of the secretory pathway (Moelleken et al, 2007). Unlike the case for COPII or clathrin coats, all components of the COPI coat are recruited simultaneously as a preformed heptameric complex (Hara-Kuge et al, 1994)
R-HSA-6807875 (Reactome) Binding and polymerization of the coatomer (the COPI coat) is coordinated with the incorporation of cargo proteins and Golgi-targeting snares, as well as with recruitment of ARFGAP proteins (Letourneur et al, 1994; Nagahama et al,1996; Bremser et al, 1999).
Typical model cargo for COPI-mediated trafficking includes the viral glycoprotein VSV-G and proinsulin as well as the KDEL receptors, which bind and recycle ER-resident proteins and which themselves must be returned to post-ER compartments (Cosson and Letourner, 1994; Ben-Tekaya et al, 2005; Majoul et al, 2001; Orci et al, 1997, Bremser et al, 1999; Presley et al, 1997; reviewed in Beck et al, 2009).
Other protein components of the COPI vesicle include the p24 family of proteins, which serve diverse roles in the early secretory pathway (reviewed in Schuiki and Volchuk, 2012). Oligomeric p24 proteins interact with ADP-bound ARF and components of the COPI coat, contributing to coatomer recruitment and oligomerization (Gommel et al, 2001; Majoul et al, 2001; Bethune et al, 2006; Harter and Wieland, 1998; Langer et al, 2008; Reinhard et al, 1999). The p24 proteins also act as cargo receptors for various proteins destined for packaging in COPI vesicles; these include GPI-anchored transmembrane proteins, WNT ligands and some G-protein coupled receptors (Takida et al, 2008; Bonnon et al, 2010; Luo et al, 2011; Beuchling et al, 2011; Wang and Kazanietz, 2002; reviewed in Schuiki and Volchuk, 2012). Finally, the p24 proteins contribute to COPI coat disassembly by restricting ARF GTPase activity until cargo has been loaded (Goldberg, 2000; Lanoix et al, 2001).
ARFGAPs are recruited to the budding vesicle through direct interaction with active ARF, the cytoplasmic tails of cargo proteins and with components of the COPI coat (Goldberg, 2000; Majoul et al, 2001; Aoe et al, 1997; Kliouchnikov et al, 2009; Luo et al, 2009). Stimulation of ARF GTPase activity is coordinated with cargo recruitment to ensure that only cargo-loaded vesicles are produced (Goldberg, 2000; Luo et al, 2009).
Mammalian cells have 3 ARFGAPs that appear to be involved in COPI-mediated traffic, ARFGAP1,2 and 3 (Frigerio et al, 2007; Liu et al, 2001; Kahn et al, 2008). ARFGAP1 has a ALPS domain that recognizes membrane curvature and that is required for the GTPase stimulating activity of the protein, suggesting a mechanism for coordinating ARF1-mediated GTP hydrolysis with vesicle formation (Bigay et al, 2003; Mesmin et al, 2007). ARFGAP 2 and 3 do not contain this motif, and their activity is dependent upon interaction with coatomer (Weimar et al 2008; Kliouchnikov et al, 2009; Luo et al, 2009).
Finally, there is evidence that components of the ankyin/spectrin skeleton may be incorporated in the nascent COPI vesicle, acting as a bridge between cargo proteins and the dynein-dynactin complex required for their transport to the Golgi (Devarajan et al, 1997; Godi et al, 1998; Holleran et al, 1996; Holleran et al, 2001).
R-HSA-6807877 (Reactome) The ARFGAP proteins stimulates ARF GTPase activity, promoting the release of the nascent COPI vesicle from the membrane and release of ARF:ADP (Tanigawa et al, 1993; reviewed in Beck et al, 2009; East and Kahn, 2011). Although this reaction shows their dissociation, it is not clear whether ARFGAPs persist on the COPI vesicle after GTP hydrolysis, nor is it known when GBF is released from the nascent COPI vesicle.

R-HSA-6809003 (Reactome) Unlike COPII-mediated traffic from the ER, COPI traffic to the Golgi is microtubule- and dynein-dependent (Scales et al, 1997; Presley et al, 1997; Ben-Tekaya et al, 2005). Recruitment of the dynein:dynactin complex may in turn rely on interaction with the ankyrin-spectrin network, which may contact integral membrane cargo proteins as they are incorporated into nascent COPI vesicles (Devarajan et al, 1997; Godi et al, 1998; Holleran et al, 1996; Holleran et al, 2001). Although not depicted in this reaction, dynein-dependent vesicle transport is energy dependent.
R-HSA-6809006 (Reactome) Vesicles tethering at the cis-Golgi is mediated both by long coiled-coil tethers and by large multisubunit complexes. Vesicle-bound USO1 homodimers associate with the Golgi localized GOLGA2:GORASP1 complex and with the Golgi-localized octameric COG tethering complex (Allan et al, 2000; Moyer et al, 2001; Weide et al, 2001; Nakamura et al, 1997; Seeman et al, 2000; Sohda et al, 2007). GOLGB1 is another Golgi localized tether that may facilitate vesicle tethering at the cis-Golgi, although it is also implicated in intra-Golgi retrograde trafficking (Linstedt and Hauri, 1993; Sonnichsen et al, 1998; Alvarez et al, 2001; Beard et al, 2005; reviewed in Appenzeller-Herzog et al, 2006). In addition to binding to USO1, the COG complex also interacts with components of the COPI coat, as well as with SNARE proteins and the TMEM115 protein (Suvorova et al, 2002; Zolov et al, 2005; Shestakova et al, 2007; Ong et al, 2014; reviewed in Willet et al, 2013).
R-HSA-6809010 (Reactome) The mechanisms of COPI vesicle uncoating are not well established (reviewed in Szul and Sztul, 2011). Coat dissociation may be promoted by changes in protein-protein interactions upon vesicle tethering, as has been suggested for retrograde COPI-traffic to the ER (Zink et al, 2009). After uncoating and membrane fusion, the SNARE complex exists as a four-helix bundle that must be "unzipped" (dissociated) by NSF for reuse, an energetically costly event (reviewed in Hong and Lev, 2014; Sudhof and Rothman, 2009).
R-HSA-6809011 (Reactome) Membrane fusion is mediated by the zippering of a four membered anti-parallel helix bundle formed by the v-SNARE and the three t-SNARES. t-SNARE complexes that are found at the cis-Golgi include STX5:GOSR1:GOSR2, STX5:GOSR1:BET1 and STX5:GOSR1:BET1L among others (Xu et al, 2002; Zhang et al 1997; Volchuk et al, 2004; reviewed in Willet et al, 2014; Szul and Sztul, 2011)
R-HSA-6809014 (Reactome) After membrane fusion, the cis-SNARE complex is dissociated in an ATP-dependent fashion by the AAA protein NSF in conjunction with SNAP proteins (Mayer et al, 1996; Sollner et al, 1993; reviewed in Jahn and Scheller, 2006; Sudhof and Rothman, 2009).
R-HSA-6809015 (Reactome) NSF-dependent hydrolysis of ATP is required to disassociate the cis-SNARE complex, releasing the SNAREs for further rounds of membrane fusion (Mayer et al, 1996; Muller et al, 1999; Muller et al, 2002; Otto et al, 1997; Whiteheart et al, 2004; Yu et al, 1999; Zhao et al, 2012; Shah et al, 2015; reviewed in Sudhof and Rothman, 2009).
RAB1:GDPArrowR-HSA-6809010 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GDPArrowR-HSA-6807866 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GDPR-HSA-6807868 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GDPmim-catalysisR-HSA-6807868 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GTP:coatomer:ARFGAP1,2,3:PalmC-YKT6:p24 dimers:cargo:spectrin:ankyrinArrowR-HSA-6807875 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GTP:coatomer:ARFGAP1,2,3:PalmC-YKT6:p24 dimers:cargo:spectrin:ankyrinR-HSA-6807877 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GTP:coatomer:ARFGAP1,2,3:PalmC-YKT6:p24 dimers:cargo:spectrin:ankyrinmim-catalysisR-HSA-6807877 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GTP:coatomerArrowR-HSA-6807872 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GTP:coatomerR-HSA-6807875 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GTPArrowR-HSA-6807868 (Reactome)
RAB1:GTP:GBF1:USO1:ARF:GTPR-HSA-6807872 (Reactome)
RAB1:GTP:GBF1:USO1ArrowR-HSA-6807864 (Reactome)
RAB1:GTP:GBF1:USO1R-HSA-6807866 (Reactome)
RAB1:GTP:USO1 coatomer:PalmC-YKT6:p24 dimers:cargo:anykrin:spectrin:dynein:dynactin:microtubulesArrowR-HSA-6809003 (Reactome)
RAB1:GTP:USO1 coatomer:PalmC-YKT6:p24 dimers:cargo:anykrin:spectrin:dynein:dynactin:microtubulesR-HSA-6809006 (Reactome)
RAB1:GTP:USO1:coatomer:PalmC-YKT6:p24 dimers:cargo:spectrin:anykrin:COG complex:GOLGA2:GORASP1:GOLGB1:TMEM115ArrowR-HSA-6809006 (Reactome)
RAB1:GTP:USO1:coatomer:PalmC-YKT6:p24 dimers:cargo:spectrin:anykrin:COG complex:GOLGA2:GORASP1:GOLGB1:TMEM115R-HSA-6809011 (Reactome)
RAB1:GTP:USO1:coatomer:PalmC-YKT6:p24 dimers:cargo:spectrin:anykrinArrowR-HSA-6807877 (Reactome)
RAB1:GTP:USO1:coatomer:PalmC-YKT6:p24 dimers:cargo:spectrin:anykrinR-HSA-6809003 (Reactome)
RAB1:GTP:USO1:coatomer:p24 dimers:cargo:spectrin:ankyrin:COG complex:GOLGA2:GORASP1:TMEM115:cis-SNARE complexArrowR-HSA-6809011 (Reactome)
RAB1:GTP:USO1:coatomer:p24 dimers:cargo:spectrin:ankyrin:COG complex:GOLGA2:GORASP1:TMEM115:cis-SNARE complexR-HSA-6809010 (Reactome)
RAB1:GTPR-HSA-6807864 (Reactome)
SNAPsR-HSA-6809014 (Reactome)
STX5ArrowR-HSA-6809015 (Reactome)
Spectrin tetramerArrowR-HSA-6809010 (Reactome)
Spectrin tetramerR-HSA-6807875 (Reactome)
TMEM115ArrowR-HSA-6809010 (Reactome)
TMEM115R-HSA-6809006 (Reactome)
USO1 homodimerArrowR-HSA-6809010 (Reactome)
USO1 homodimerR-HSA-6807864 (Reactome)
cis-Golgi cis SNARE bundleArrowR-HSA-6809010 (Reactome)
cis-Golgi cis SNARE bundleR-HSA-6809014 (Reactome)
cis-Golgi t-SNARESR-HSA-6809011 (Reactome)
cis-SNARE:3xSNAP:NSF hexamerArrowR-HSA-6809014 (Reactome)
cis-SNARE:3xSNAP:NSF hexamerR-HSA-6809015 (Reactome)
cis-SNARE:3xSNAP:NSF hexamermim-catalysisR-HSA-6809015 (Reactome)
coatomerArrowR-HSA-6809010 (Reactome)
coatomerR-HSA-6807872 (Reactome)
p24 dimersArrowR-HSA-6809010 (Reactome)
p24 dimersR-HSA-6807875 (Reactome)
Personal tools