Peroxisomal protein import (Homo sapiens)

From WikiPathways

Revision as of 11:50, 2 November 2020 by ReactomeTeam (Talk | contribs)
Jump to: navigation, search
2, 5, 8, 13, 14, 16...15, 16, 27, 60, 706, 14, 59, 69, 821, 5, 10, 31, 53...4, 7, 15, 31, 35...15, 371, 8, 28, 68, 808, 12, 25, 51, 54...1, 23, 31, 51, 68...15, 374, 7, 15, 16, 35...2, 8, 18, 21, 22, 25...376, 14, 59, 69, 822, 5, 10, 12, 26...3714, 17, 31, 47, 49...41, 72, 74, 80, 83...15, 16, 27, 60, 7014, 17, 47, 49, 59peroxisomal matrixcytosolUBB(77-152) PEX13 PEX1:PEX6:PEX26PEX1 TYSND1 cleavesperoxisomalproteinsUBC(305-380) Ub-C11-PEX5L Ub-C85-UBE2D2 UBB(77-152) PEX12 UBE2D2 PEX5 isoform L CRAT DAO PEX12 UBA52(1-76) PEX12 UBC(533-608) H2OUBC(229-304) PEX26 HAO2 PEX5 isoform L UBB(153-228) UBC(1-76) PEX7 UBC(381-456) UBE2D1 ACOX3 RPS27A(1-76) PEX6 PECR NUDT19 PEX2 ACAA1(1-424) LONP2 ACOT4 UBC(1-76) Ub-C11-PEX5L UBC(305-380) IDE UBC(153-228) Ub-C85-UBE2D3 ACOT4 UBC(305-380) AMACR PEX5 isoform L UBC(77-152) RPS27A(1-76) AMACR HACL1 PEX5 isoform L ACOT2(1-483) UBC(533-608) MPV17 Ub-C11-PEX5S EHHADH UBC(381-456) UBC(305-380) CRAT UBC(1-76) DECR2 PEX6 IDE RPS27A(1-76) UBC(381-456) UBA52(1-76) UBC(381-456) UBE2D3 DHRS4 UBC(229-304) UBC(533-608) DHRS4 PEX10 Ub:PEX5SECH1(1-328) GSTK1 HACL1 IDE UBB(77-152) MLYCD(40-493) Ub-C85-UBE2D3 UBC(457-532) ADPUBC(533-608) UBC(457-532) UBC(457-532) Cargo proteinscontaining PTS2UBC(533-608) PEX7 CAT UBC(229-304) UBC(457-532) UBB(153-228) AGPS(1-658) UBC(77-152) HSD17B4 HAO2 ACOX2 UBC(229-304) NUDT7 UBC(609-684) PEX12 UBB(1-76) PEX13 PEX5 isoform L EHHADH PECR UBC(609-684) HSD17B4 CAT RPS27A(1-76) Ub-C11-PEX5L UBB(153-228) PEX14 RPS27A(1-76) PEX1 ZFAND6 PECR ACOT2(1-483) PEX14 Ub-C85-UBE2D3 UBC(77-152) UBC(229-304) PEX14 PEX26 HAO1 GNPAT UBA52(1-76) PEX2 PEX5S,L:CargoproteinUBC(305-380) DDO ACOT8 UBC(153-228) UBC(609-684) UBC(533-608) RPS27A(1-76) NOS2 ACOT4 PHYH(1-338) UBB(153-228) UBC(457-532) MLYCD(40-493) UBB(153-228) UBB(153-228) RPS27A(1-76) UBC(305-380) UBC(1-76) UBC(457-532) UBB(1-76) UBC(1-76) UBA52(1-76) UBB(153-228) Ub-C85-UBE2D1 UBB(77-152) ECH1(1-328) NUDT7 CROT UBC(77-152) UBC(533-608) PEX7 PEX5S,LACOX1 SCP2 UBC(609-684) UBC(533-608) PAOX USP9X:Ub:PEX5SPEX10 HAO1 NUDT19 UBC(381-456) RPS27A(1-76) DAO PEX10 HMGCL(1-325) GNPAT NUDT19 Ub-C11-PEX5L UBA52(1-76) UBC(153-228) TYSND1 UBC(457-532) UBC(533-608) BAAT CAT UBC(1-76) PEX14 RPS27A(1-76) ECH1(1-328) ACOT2(1-483) PEX10 AGPS(1-658) UBC(229-304) CROT Ub-C11-PEX5S UBC(305-380) PAOX ACOT2(1-483) PEX5 isoform L CROT PEX13 UBB(77-152) UBB(77-152) RPS27A(1-76) UBA52(1-76) ACAA1(1-424) UBA52(1-76) PIPOX PEX2 UBC(533-608) PEX2 ACOX3 HACL1 UBB(77-152) ZFAND6 Ub-C85-UBE2D2 DDO UBC(229-304) LONP2 Ub-C11-PEX5S UBC(1-76) UBB(77-152) ECI2 LONP2 IDH1 UBC(77-152) PEX14 UBC(533-608) PEX2 HAO2 UBC(153-228) Ub:UBE2D1,2,3ACOX1 EHHADH PEX6 UBC(1-76) PEX2 ACOX3 GSTK1 UBB(77-152) NUDT7 UBA52(1-76) PEX5S,L:PEX13:PEX14:PEX2:PEX10:PEX12Ub-C11-PEX5L UBB(77-152) PEX10 Ub-C11-PEX5S PEX2 UBC(457-532) PEX13 PEX12 UBC(77-152) USP9X UBA52(1-76) UBC(77-152) Ub:PEX5S,LECI2(39-394) RPS27A(1-76) PEX13 UBC(609-684) UBA52(1-76) DAO PEX1 RPS27A(1-76) UBC(305-380) AGXT Cargo proteinscontaining PTS1PEX14 IDH1 UBB(1-76) PEX10 UBB(153-228) Ub:PEX5LPEX2:PEX10:PEX12:Ub:PEX5S,L:PEX1:PEX6:PEX26:ZFAND6UBB(1-76) UBC(381-456) ACAA1(1-424) MLYCD(40-493) AGPS(1-658) ECH1(1-328) UBA52(1-76) PEX13 Ub-C85-UBE2D2 UBC(77-152) HAO1 PEX12 UBC(77-152) SCP2 ATPDECR2 PEX13 UBB(77-152) UBC(381-456) PEX10 PEX5 isoform SPEX5 isoform S HAO1 CAT TYSND1 PHYH(1-338) UBC(153-228) GNPAT PEX7 DECR2 UBB(1-76) PEX13 UBC(457-532) PEX14 PEX5 isoform L PEX5 isoform S PIPOX UBE2D3 Ub-C85-UBE2D2 RPS27A(1-76) ADPAGPS(1-658) UBC(1-76) NUDT19 PEX7 UBB(1-76) PEX1:PEX6:PEX26UBC(381-456) BAAT BAAT Ub-C11-PEX5L UBC(153-228) PEX10 CRAT UBC(153-228) UBC(1-76) PEX26 UBC(381-456) UBC(77-152) PEX12 UBA52(1-76) UBC(229-304) PEX2 PEX5 isoform L PEX5L:PEX7:Cargo:PEX13:PEX14:PEX2:PEX10:PEX12UBC(381-456) PEX12 UBC(609-684) PEX6 PEX7 UBC(609-684) UBC(153-228) PEX7 EPHX2 ZFAND6UBB(1-76) ACOX3 PEX5 isoform S UBC(1-76) UBC(533-608) PEX2:PEX10:PEX12:Ub:PEX5S,L:PEX13:PEX14ACOT8 UBC(229-304) UBC(229-304) AGPS(1-658) UBB(153-228) UBB(77-152) UBC(305-380) PEX14 MPV17 DECR2 UBC(229-304) UBC(77-152) H2OAMACR PEX26 DDO Ub:UBE2D1,2,3UBB(153-228) UBC(153-228) UBE2D1,2,3UBC(609-684) PXLP-AGXT ACOX2 CROT PEX2 UBB(1-76) AMACR ECI2(39-394) UBC(1-76) PEX13 UBB(1-76) LONP2 MPV17 SLC27A2 UBB(1-76) PEX12 UBC(457-532) AGXT PEX5 isoform S MPV17 UBC(229-304) UBC(77-152) NOS2 UBC(153-228) UBC(305-380) HSD17B4(1-736) UBC(305-380) UBC(77-152) PEX5S,L:Cargo:PEX13:PEX14:PEX2:PEX10:PEX12UBC(153-228) NOS2 PEX2:PEX10:PEX12:PEX5S,L:Ub:UBE2D1,2,3:PEX13:PEX14ACOX1 UBC(381-456) UBC(609-684) UBB(153-228) UBB(1-76) PEX14 UBC(305-380) PEX5L:PEX7:CargoproteinECI2(39-394) UbUBB(153-228) UBC(609-684) PAOX HMGCL(1-325) PHYH(1-338) UBC(533-608) UBA52(1-76) EHHADH UBC(153-228) Ub-C85-UBE2D1 UBC(609-684) UBC(381-456) PEX7:Cargo proteinsATPUBC(457-532) UBC(305-380) UBC(609-684) UBE2D2 PEX2 UBB(153-228) PEX2:PEX10:PEX12:PEX5L:Ub:UBE2D1,2,3:PEX7:PEX13:PEX14UBC(533-608) Ub-C85-UBE2D3 PEX10 EPHX2 UBB(77-152) UBC(229-304) PEX10 UBC(457-532) AGXT PIPOX Cargo proteinscontaining PTS1PEX12 UBA52(1-76) RPS27A(1-76) USP9XPIPOX IDH1 PEX5 isoform LUBC(153-228) PEX12 UBB(77-152) HSD17B4 UBC(609-684) HMGCL(1-325) Ub-C85-UBE2D1 TYSND1 UBC(381-456) UBB(1-76) ACOT8 ACOX2 UBC(229-304) EPHX2 UBC(153-228) UBB(153-228) PHYH(1-338) PEX1 UBC(229-304) SLC27A2 GSTK1 MLYCD(40-493) UBC(457-532) UBC(1-76) HAO2 UBC(305-380) PEX14 UBC(381-456) DAO USP9X:Ub:PEX5LACAA1(1-424) UBC(153-228) UBC(305-380) UBB(77-152) Ub-C11-PEX5S PEX13:PEX14:PEX2:PEX10:PEX12ACOX2 UbUBB(1-76) ACOT8 PHYH(1-338) PAOX GSTK1 RPS27A(1-76) NUDT7 UBB(153-228) ACAA1(1-424) USP9XSLC27A2 HACL1 IDH1 PEX7PEX2:PEX10:PEX12:Ub:PEX5L:PEX7:PEX13:PEX14UBE2D1 DDO PEX10 UBC(381-456) UBC(1-76) PEX5 isoform S UBA52(1-76) GNPAT USP9X UBB(1-76) PEX2 UBC(457-532) BAAT UBB(1-76) TYSND1 PEX14 EPHX2 PEX2:PEX10:PEX12:Ub:PEX5L:PEX7:PEX13:PEX14:PEX1:PEX6:PEX26:ZFAND6SCP2 HMGCL(1-325) DHRS4 DHRS4 PEX13 Ub-C85-UBE2D1 PEX5L:PEX7:PEX13:PEX14:PEX2:PEX10:PEX12SCP2 PEX13 UBE2D1,2,3PECR PEX5 isoform L UBC(533-608) UBC(77-152) UBC(457-532) UBC(609-684) CRAT Cargo proteinscontaining PTS2ACOT4 Ub-C11-PEX5L UBC(609-684) ACOX1 UBC(77-152) ZFAND6NOS2 UBC(1-76) IDE SLC27A2 686590755837783740, 48, 663113856, 9714, 19, 8219, 82619, 48, 9248, 669819, 82


Description

Peroxisomes are small cellular organelles that are bounded by a single membrane and contain variable compositions of proteins depending on cell type. Peroxisomes function in oxidation of fatty acids, detoxification of glyoxylate, and synthesis of plasmalogens, glycerophospholipids containing an alcohol with a vinyl-ether bond (reviewed in Lohdi and Semenkovich 2014). All of the approximately 46 proteins contained in peroxisomal matrix are imported from the cytosol by a unique mechanism that does not require the imported proteins to be unfolded as they cross the membrane (Walton et al. 1995, reviewed in Ma et al. 2011, Fujiki et al. 2014, Baker et al. 2016, Dias et al 2016, Emmanoulidis et al. 2016, Erdmann 2016, Francisco et al. 2017). The incompletely characterized process appears to involve the transport of the proteins through a variably sized pore in the membrane comprising at least PEX5 and PEX14 (inferred from the yeast homologs in Meinecke et al. 2010, the yeast pore is reviewed in Meinecke et al. 2016). Oligomeric proteins are also observed to cross the peroxisomal membrane (Otera and Fujiki 2012) but their transport appears to be less efficient than monomeric proteins (Freitas et al. 2011, inferred from mouse homologs in Freitas et al. 2015, reviewed in Dias et al. 2016).
In the cytosol, receptor proteins, PEX5 and PEX7, bind to specific sequence motifs in cargo proteins (Dodt et al. 1995, Wiemer et al. 1995, Braverman et al. 1997). The long and short isoforms of PEX5 (PEX5L and PEX5S) bind peroxisome targeting sequence 1 (PTS1, originally identified in firefly luciferase by Gould et al. 1989) found on most peroxisomal matrix proteins; PEX7 binds PTS2 (originally identified in rat 3-ketoacyl-CoA thiolase by Swinkels et al. 1991) found on 3 imported proteins thus far in humans. The long isoform of PEX5, PEX5L, then binds the PEX7:cargo protein complex (Braverman et al. 1998, Otera et al. 2000). PEX5S,L bound to a cargo protein or PEX5L bound to PEX7:cargo protein then interacts with a complex comprising PEX13, PEX14, PEX2, PEX10, and PEX12 at the peroxisomal membrane (Gould et al. 1996, Fransen et al. 1998, inferred from rat homologs in Reguenga et al. 2001).
The ensuing step in which the cargo protein is translocated across the membrane is not completely understood. During translocation, PEX5 and PEX7 become inserted into the membrane (Wiemer et al. 1995, Dodt et al. 1995, Oliveira et al. 2003) and expose a portion of their polypeptide chains to the organellar matrix (Rodrigues et al. 2015). One current model envisages PEX5 as a plunger that inserts into a transmembrane barrel formed by PEX14, PEX13, PEX2, PEX10, and PEX12 (the Docking-Translocation Module) (Francisco et al. 2017).
After delivering cargo to the matrix, PEX5 and PEX7 are recycled back to the cytosol by a process requiring mono-ubiquitination of PEX5 and ATP hydrolysis (Imanaka et al. 1987, Thoms and Erdmann 2006, Carvalho et al. 2007). PEX7 is not ubiquitinated but its recycling requires PEX5 mono-ubiquitination. A subcomplex of the Docking-Translocation Module comprising the RING-finger proteins PEX2, PEX10, and PEX12 conjugates a single ubiquitin to a cysteine residue of PEX5 (Carvalho et al. 2007, reviewed in Platta et al. 2016). The mono-ubiquitinated PEX5 and associated PEX7 are then extracted by the exportomer complex consisting of PEX1, PEX6, PEX26, and ZFAND6 (inferred from rat homologs in Miyata et al. 2012). PEX1 and PEX6 are members of the ATPases Associated with diverse cellular Activities (AAA) family, a group of proteins that use the energy of ATP hydrolysis to remodel molecular complexes. PEX1 and PEX6 form a hetero-hexameric ring, best described as a trimer of PEX1/PEX6 dimers (inferred from yeast in Platta et al. 2005, yeast homologs reviewed in Schwerter et al. 2017). Data on the yeast PEX1:PEX6 complex suggest that these ATPases use a substrate-threading mechanism to disrupt protein-protein interactions (Gardner et al. 2018). PEX7 is also then returned to the cytosol (Rodrigues et al. 2014). Once in the cytosol, ubiquitinated PEX5 is enzymatically deubiquitinated by USP9X and may also be non-enzymatically deubiquitinated by nucleophilic attack of the thioester bond between ubiquitin and the cysteine residue of PEX5 by small metabolites such as glutathione (Grou et al. 2012).
Defects in peroxisomal import cause human diseases: Zellweger syndrome, neonatal adrenoleukodystrophy, infantile Refsum disease and rhizomelic chondrodysplasia punctata types 1 and 5 (Barøy et al. 2015, reviewed in Nagotu et al. 2012, Braverman et al. 2013, Wanders 2014, Fujiki 2016, Waterham et al. 2016). View original pathway at Reactome.

Comments

Reactome-Converter 
Pathway is converted from Reactome ID: 9033241
Reactome-version 
Reactome version: 74
Reactome Author 
Reactome Author: May, Bruce

Try the New WikiPathways

View approved pathways at the new wikipathways.org.

Quality Tags

Ontology Terms

 

Bibliography

View all...
  1. Waterham HR, Ferdinandusse S, Wanders RJ.; ''Human disorders of peroxisome metabolism and biogenesis.''; PubMed Europe PMC Scholia
  2. Oliveira ME, Gouveia AM, Pinto RA, Sá-Miranda C, Azevedo JE.; ''The energetics of Pex5p-mediated peroxisomal protein import.''; PubMed Europe PMC Scholia
  3. Tamura S, Okumoto K, Toyama R, Shimozawa N, Tsukamoto T, Suzuki Y, Osumi T, Kondo N, Fujiki Y.; ''Human PEX1 cloned by functional complementation on a CHO cell mutant is responsible for peroxisome-deficient Zellweger syndrome of complementation group I.''; PubMed Europe PMC Scholia
  4. Fujiki Y, Okumoto K, Mukai S, Honsho M, Tamura S.; ''Peroxisome biogenesis in mammalian cells.''; PubMed Europe PMC Scholia
  5. Fujiki Y.; ''Peroxisome biogenesis and human peroxisome-deficiency disorders.''; PubMed Europe PMC Scholia
  6. Saffert P, Enenkel C, Wendler P.; ''Structure and Function of p97 and Pex1/6 Type II AAA+ Complexes.''; PubMed Europe PMC Scholia
  7. Freitas MO, Francisco T, Rodrigues TA, Alencastre IS, Pinto MP, Grou CP, Carvalho AF, Fransen M, Sá-Miranda C, Azevedo JE.; ''PEX5 protein binds monomeric catalase blocking its tetramerization and releases it upon binding the N-terminal domain of PEX14.''; PubMed Europe PMC Scholia
  8. Motley AM, Hettema EH, Hogenhout EM, Brites P, ten Asbroek AL, Wijburg FA, Baas F, Heijmans HS, Tabak HF, Wanders RJ, Distel B.; ''Rhizomelic chondrodysplasia punctata is a peroxisomal protein targeting disease caused by a non-functional PTS2 receptor.''; PubMed Europe PMC Scholia
  9. Okumoto K, Noda H, Fujiki Y.; ''Distinct modes of ubiquitination of peroxisome-targeting signal type 1 (PTS1) receptor Pex5p regulate PTS1 protein import.''; PubMed Europe PMC Scholia
  10. Gould SJ, Keller GA, Hosken N, Wilkinson J, Subramani S.; ''A conserved tripeptide sorts proteins to peroxisomes.''; PubMed Europe PMC Scholia
  11. Gatto GJ, Geisbrecht BV, Gould SJ, Berg JM.; ''Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5.''; PubMed Europe PMC Scholia
  12. Nordgren M, Francisco T, Lismont C, Hennebel L, Brees C, Wang B, Van Veldhoven PP, Azevedo JE, Fransen M.; ''Export-deficient monoubiquitinated PEX5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts.''; PubMed Europe PMC Scholia
  13. Carvalho AF, Pinto MP, Grou CP, Alencastre IS, Fransen M, Sá-Miranda C, Azevedo JE.; ''Ubiquitination of mammalian Pex5p, the peroxisomal import receptor.''; PubMed Europe PMC Scholia
  14. Grou CP, Carvalho AF, Pinto MP, Wiese S, Piechura H, Meyer HE, Warscheid B, Sá-Miranda C, Azevedo JE.; ''Members of the E2D (UbcH5) family mediate the ubiquitination of the conserved cysteine of Pex5p, the peroxisomal import receptor.''; PubMed Europe PMC Scholia
  15. Otera H, Fujiki Y.; ''Pex5p imports folded tetrameric catalase by interaction with Pex13p.''; PubMed Europe PMC Scholia
  16. Grou CP, Francisco T, Rodrigues TA, Freitas MO, Pinto MP, Carvalho AF, Domingues P, Wood SA, Rodríguez-Borges JE, Sá-Miranda C, Fransen M, Azevedo JE.; ''Identification of ubiquitin-specific protease 9X (USP9X) as a deubiquitinase acting on ubiquitin-peroxin 5 (PEX5) thioester conjugate.''; PubMed Europe PMC Scholia
  17. Jones JM, Gould SJ.; ''Identification of PTE2, a human peroxisomal long-chain acyl-CoA thioesterase.''; PubMed Europe PMC Scholia
  18. Lodhi IJ, Semenkovich CF.; ''Peroxisomes: a nexus for lipid metabolism and cellular signaling.''; PubMed Europe PMC Scholia
  19. Ma C, Agrawal G, Subramani S.; ''Peroxisome assembly: matrix and membrane protein biogenesis.''; PubMed Europe PMC Scholia
  20. Harper CC, Berg JM, Gould SJ.; ''PEX5 binds the PTS1 independently of Hsp70 and the peroxin PEX12.''; PubMed Europe PMC Scholia
  21. Freitas MO, Francisco T, Rodrigues TA, Lismont C, Domingues P, Pinto MP, Grou CP, Fransen M, Azevedo JE.; ''The peroxisomal protein import machinery displays a preference for monomeric substrates.''; PubMed Europe PMC Scholia
  22. Wiemer EA, Nuttley WM, Bertolaet BL, Li X, Francke U, Wheelock MJ, Anné UK, Johnson KR, Subramani S.; ''Human peroxisomal targeting signal-1 receptor restores peroxisomal protein import in cells from patients with fatal peroxisomal disorders.''; PubMed Europe PMC Scholia
  23. Neuhaus A, Kooshapur H, Wolf J, Meyer NH, Madl T, Saidowsky J, Hambruch E, Lazam A, Jung M, Sattler M, Schliebs W, Erdmann R.; ''A novel Pex14 protein-interacting site of human Pex5 is critical for matrix protein import into peroxisomes.''; PubMed Europe PMC Scholia
  24. Mizuno Y, Ninomiya Y, Nakachi Y, Iseki M, Iwasa H, Akita M, Tsukui T, Shimozawa N, Ito C, Toshimori K, Nishimukai M, Hara H, Maeba R, Okazaki T, Alodaib AN, Al Amoudi M, Jacob M, Alkuraya FS, Horai Y, Watanabe M, Motegi H, Wakana S, Noda T, Kurochkin IV, Mizuno Y, Schönbach C, Okazaki Y.; ''Tysnd1 deficiency in mice interferes with the peroxisomal localization of PTS2 enzymes, causing lipid metabolic abnormalities and male infertility.''; PubMed Europe PMC Scholia
  25. Matsumoto N, Tamura S, Fujiki Y.; ''The pathogenic peroxin Pex26p recruits the Pex1p-Pex6p AAA ATPase complexes to peroxisomes.''; PubMed Europe PMC Scholia
  26. Gould SJ, Kalish JE, Morrell JC, Bjorkman J, Urquhart AJ, Crane DI.; ''Pex13p is an SH3 protein of the peroxisome membrane and a docking factor for the predominantly cytoplasmic PTs1 receptor.''; PubMed Europe PMC Scholia
  27. Rodrigues TA, Grou CP, Azevedo JE.; ''Revisiting the intraperoxisomal pathway of mammalian PEX7.''; PubMed Europe PMC Scholia
  28. Rodrigues TA, Alencastre IS, Francisco T, Brites P, Fransen M, Grou CP, Azevedo JE.; ''A PEX7-centered perspective on the peroxisomal targeting signal type 2-mediated protein import pathway.''; PubMed Europe PMC Scholia
  29. Fransen M, Terlecky SR, Subramani S.; ''Identification of a human PTS1 receptor docking protein directly required for peroxisomal protein import.''; PubMed Europe PMC Scholia
  30. Braverman N, Dodt G, Gould SJ, Valle D.; ''An isoform of pex5p, the human PTS1 receptor, is required for the import of PTS2 proteins into peroxisomes.''; PubMed Europe PMC Scholia
  31. Okumoto K, Kametani Y, Fujiki Y.; ''Two proteases, trypsin domain-containing 1 (Tysnd1) and peroxisomal lon protease (PsLon), cooperatively regulate fatty acid β-oxidation in peroxisomal matrix.''; PubMed Europe PMC Scholia
  32. Swinkels BW, Gould SJ, Bodnar AG, Rachubinski RA, Subramani S.; ''A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase.''; PubMed Europe PMC Scholia
  33. Alencastre IS, Rodrigues TA, Grou CP, Fransen M, Sá-Miranda C, Azevedo JE.; ''Mapping the cargo protein membrane translocation step into the PEX5 cycling pathway.''; PubMed Europe PMC Scholia
  34. Brocard CB, Jedeszko C, Song HC, Terlecky SR, Walton PA.; ''Protein structure and import into the peroxisomal matrix.''; PubMed Europe PMC Scholia
  35. Braverman NE, D'Agostino MD, Maclean GE.; ''Peroxisome biogenesis disorders: Biological, clinical and pathophysiological perspectives.''; PubMed Europe PMC Scholia
  36. Erdmann R.; ''Assembly, maintenance and dynamics of peroxisomes.''; PubMed Europe PMC Scholia
  37. Platta HW, Brinkmeier R, Reidick C, Galiani S, Clausen MP, Eggeling C.; ''Regulation of peroxisomal matrix protein import by ubiquitination.''; PubMed Europe PMC Scholia
  38. Meinecke M, Cizmowski C, Schliebs W, Krüger V, Beck S, Wagner R, Erdmann R.; ''The peroxisomal importomer constitutes a large and highly dynamic pore.''; PubMed Europe PMC Scholia
  39. Platta HW, Grunau S, Rosenkranz K, Girzalsky W, Erdmann R.; ''Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol.''; PubMed Europe PMC Scholia
  40. Baker A, Lanyon-Hogg T, Warriner SL.; ''Peroxisome protein import: a complex journey.''; PubMed Europe PMC Scholia
  41. Neufeld C, Filipp FV, Simon B, Neuhaus A, Schüller N, David C, Kooshapur H, Madl T, Erdmann R, Schliebs W, Wilmanns M, Sattler M.; ''Structural basis for competitive interactions of Pex14 with the import receptors Pex5 and Pex19.''; PubMed Europe PMC Scholia
  42. Chang CC, Warren DS, Sacksteder KA, Gould SJ.; ''PEX12 interacts with PEX5 and PEX10 and acts downstream of receptor docking in peroxisomal matrix protein import.''; PubMed Europe PMC Scholia
  43. Tamura S, Matsumoto N, Takeba R, Fujiki Y.; ''AAA peroxins and their recruiter Pex26p modulate the interactions of peroxins involved in peroxisomal protein import.''; PubMed Europe PMC Scholia
  44. Dodt G, Warren D, Becker E, Rehling P, Gould SJ.; ''Domain mapping of human PEX5 reveals functional and structural similarities to Saccharomyces cerevisiae Pex18p and Pex21p.''; PubMed Europe PMC Scholia
  45. Schwerter DP, Grimm I, Platta HW, Erdmann R.; ''ATP-driven processes of peroxisomal matrix protein import.''; PubMed Europe PMC Scholia
  46. Barøy T, Koster J, Strømme P, Ebberink MS, Misceo D, Ferdinandusse S, Holmgren A, Hughes T, Merckoll E, Westvik J, Woldseth B, Walter J, Wood N, Tvedt B, Stadskleiv K, Wanders RJ, Waterham HR, Frengen E.; ''A novel type of rhizomelic chondrodysplasia punctata, RCDP5, is caused by loss of the PEX5 long isoform.''; PubMed Europe PMC Scholia
  47. Weiher H, Pircher H, Jansen-Dürr P, Hegenbarth S, Knolle P, Grunau S, Vapola M, Hiltunen JK, Zwacka RM, Schmelzer E, Reumann K, Will H.; ''A monoclonal antibody raised against bacterially expressed MPV17 sequences shows peroxisomal, endosomal and lysosomal localisation in U2OS cells.''; PubMed Europe PMC Scholia
  48. Dias AF, Rodrigues TA, Pedrosa AG, Barros-Barbosa A, Francisco T, Azevedo JE.; ''The peroxisomal matrix protein translocon is a large cavity-forming protein assembly into which PEX5 protein enters to release its cargo.''; PubMed Europe PMC Scholia
  49. Shiozawa K, Konarev PV, Neufeld C, Wilmanns M, Svergun DI.; ''Solution structure of human Pex5.Pex14.PTS1 protein complexes obtained by small angle X-ray scattering.''; PubMed Europe PMC Scholia
  50. Will GK, Soukupova M, Hong X, Erdmann KS, Kiel JA, Dodt G, Kunau WH, Erdmann R.; ''Identification and characterization of the human orthologue of yeast Pex14p.''; PubMed Europe PMC Scholia
  51. Amery L, Brees C, Baes M, Setoyama C, Miura R, Mannaerts GP, Van Veldhoven PP.; ''C-terminal tripeptide Ser-Asn-Leu (SNL) of human D-aspartate oxidase is a functional peroxisome-targeting signal.''; PubMed Europe PMC Scholia
  52. Geisbrecht BV, Zhang D, Schulz H, Gould SJ.; ''Characterization of PECI, a novel monofunctional Delta(3), Delta(2)-enoyl-CoA isomerase of mammalian peroxisomes.''; PubMed Europe PMC Scholia
  53. Gatto GJ, Maynard EL, Guerrerio AL, Geisbrecht BV, Gould SJ, Berg JM.; ''Correlating structure and affinity for PEX5:PTS1 complexes.''; PubMed Europe PMC Scholia
  54. Putnam CD, Arvai AS, Bourne Y, Tainer JA.; ''Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism.''; PubMed Europe PMC Scholia
  55. Schuhmann H, Huesgen PF, Gietl C, Adamska I.; ''The DEG15 serine protease cleaves peroxisomal targeting signal 2-containing proteins in Arabidopsis.''; PubMed Europe PMC Scholia
  56. Stolz DB, Zamora R, Vodovotz Y, Loughran PA, Billiar TR, Kim YM, Simmons RL, Watkins SC.; ''Peroxisomal localization of inducible nitric oxide synthase in hepatocytes.''; PubMed Europe PMC Scholia
  57. Dodt G, Gould SJ.; ''Multiple PEX genes are required for proper subcellular distribution and stability of Pex5p, the PTS1 receptor: evidence that PTS1 protein import is mediated by a cycling receptor.''; PubMed Europe PMC Scholia
  58. Wiemer EA, Terlecky SR, Nuttley WM, Subramani S.; ''Characterization of the yeast and human receptors for the carboxy-terminal tripeptide peroxisomal targeting signal.''; PubMed Europe PMC Scholia
  59. Lametschwandtner G, Brocard C, Fransen M, Van Veldhoven P, Berger J, Hartig A.; ''The difference in recognition of terminal tripeptides as peroxisomal targeting signal 1 between yeast and human is due to different affinities of their receptor Pex5p to the cognate signal and to residues adjacent to it.''; PubMed Europe PMC Scholia
  60. Zhang J, Tripathi DN, Jing J, Alexander A, Kim J, Powell RT, Dere R, Tait-Mulder J, Lee JH, Paull TT, Pandita RK, Charaka VK, Pandita TK, Kastan MB, Walker CL.; ''ATM functions at the peroxisome to induce pexophagy in response to ROS.''; PubMed Europe PMC Scholia
  61. Francisco T, Rodrigues TA, Freitas MO, Grou CP, Carvalho AF, Sá-Miranda C, Pinto MP, Azevedo JE.; ''A cargo-centered perspective on the PEX5 receptor-mediated peroxisomal protein import pathway.''; PubMed Europe PMC Scholia
  62. Meinecke M, Bartsch P, Wagner R.; ''Peroxisomal protein import pores.''; PubMed Europe PMC Scholia
  63. Reguenga C, Oliveira ME, Gouveia AM, Sá-Miranda C, Azevedo JE.; ''Characterization of the mammalian peroxisomal import machinery: Pex2p, Pex5p, Pex12p, and Pex14p are subunits of the same protein assembly.''; PubMed Europe PMC Scholia
  64. Setoyama C, Miura R.; ''Structural and functional characterization of the human brain D-aspartate oxidase.''; PubMed Europe PMC Scholia
  65. Nair DM, Purdue PE, Lazarow PB.; ''Pex7p translocates in and out of peroxisomes in Saccharomyces cerevisiae.''; PubMed Europe PMC Scholia
  66. Chen GL, Balfe A, Erwa W, Hoefler G, Gaertner J, Aikawa J, Chen WW.; ''Import of human bifunctional enzyme into peroxisomes of human hepatoma cells in vitro.''; PubMed Europe PMC Scholia
  67. Okumoto K, Misono S, Miyata N, Matsumoto Y, Mukai S, Fujiki Y.; ''Cysteine ubiquitination of PTS1 receptor Pex5p regulates Pex5p recycling.''; PubMed Europe PMC Scholia
  68. Tamura S, Yasutake S, Matsumoto N, Fujiki Y.; ''Dynamic and functional assembly of the AAA peroxins, Pex1p and Pex6p, and their membrane receptor Pex26p.''; PubMed Europe PMC Scholia
  69. Imanaka T, Small GM, Lazarow PB.; ''Translocation of acyl-CoA oxidase into peroxisomes requires ATP hydrolysis but not a membrane potential.''; PubMed Europe PMC Scholia
  70. Dias AF, Francisco T, Rodrigues TA, Grou CP, Azevedo JE.; ''The first minutes in the life of a peroxisomal matrix protein.''; PubMed Europe PMC Scholia
  71. Weller S, Cajigas I, Morrell J, Obie C, Steel G, Gould SJ, Valle D.; ''Alternative splicing suggests extended function of PEX26 in peroxisome biogenesis.''; PubMed Europe PMC Scholia
  72. Braverman N, Steel G, Lin P, Moser A, Moser H, Valle D.; ''PEX7 gene structure, alternative transcripts, and evidence for a founder haplotype for the frequent RCDP allele, L292ter.''; PubMed Europe PMC Scholia
  73. Furuki S, Tamura S, Matsumoto N, Miyata N, Moser A, Moser HW, Fujiki Y.; ''Mutations in the peroxin Pex26p responsible for peroxisome biogenesis disorders of complementation group 8 impair its stability, peroxisomal localization, and interaction with the Pex1p x Pex6p complex.''; PubMed Europe PMC Scholia
  74. Ebberink MS, Mooyer PA, Koster J, Dekker CJ, Eyskens FJ, Dionisi-Vici C, Clayton PT, Barth PG, Wanders RJ, Waterham HR.; ''Genotype-phenotype correlation in PEX5-deficient peroxisome biogenesis defective cell lines.''; PubMed Europe PMC Scholia
  75. Grou CP, Carvalho AF, Pinto MP, Huybrechts SJ, Sá-Miranda C, Fransen M, Azevedo JE.; ''Properties of the ubiquitin-pex5p thiol ester conjugate.''; PubMed Europe PMC Scholia
  76. Walton PA, Hill PE, Subramani S.; ''Import of stably folded proteins into peroxisomes.''; PubMed Europe PMC Scholia
  77. Gardner BM, Castanzo DT, Chowdhury S, Stjepanovic G, Stefely MS, Hurley JH, Lander GC, Martin A.; ''The peroxisomal AAA-ATPase Pex1/Pex6 unfolds substrates by processive threading.''; PubMed Europe PMC Scholia
  78. Zhang X, Roe SM, Hou Y, Bartlam M, Rao Z, Pearl LH, Danpure CJ.; ''Crystal structure of alanine:glyoxylate aminotransferase and the relationship between genotype and enzymatic phenotype in primary hyperoxaluria type 1.''; PubMed Europe PMC Scholia
  79. Nagotu S, Kalel VC, Erdmann R, Platta HW.; ''Molecular basis of peroxisomal biogenesis disorders caused by defects in peroxisomal matrix protein import.''; PubMed Europe PMC Scholia
  80. Kuo WL, Gehm BD, Rosner MR, Li W, Keller G.; ''Inducible expression and cellular localization of insulin-degrading enzyme in a stably transfected cell line.''; PubMed Europe PMC Scholia
  81. Das AK, Uhler MD, Hajra AK.; ''Molecular cloning and expression of mammalian peroxisomal trans-2-enoyl-coenzyme A reductase cDNAs.''; PubMed Europe PMC Scholia
  82. Kunze M, Malkani N, Maurer-Stroh S, Wiesinger C, Schmid JA, Berger J.; ''Mechanistic insights into PTS2-mediated peroxisomal protein import: the co-receptor PEX5L drastically increases the interaction strength between the cargo protein and the receptor PEX7.''; PubMed Europe PMC Scholia
  83. Kunze M, Neuberger G, Maurer-Stroh S, Ma J, Eck T, Braverman N, Schmid JA, Eisenhaber F, Berger J.; ''Structural requirements for interaction of peroxisomal targeting signal 2 and its receptor PEX7.''; PubMed Europe PMC Scholia
  84. Thoms S, Erdmann R.; ''Peroxisomal matrix protein receptor ubiquitination and recycling.''; PubMed Europe PMC Scholia
  85. FitzPatrick DR, Germain-Lee E, Valle D.; ''Isolation and characterization of rat and human cDNAs encoding a novel putative peroxisomal enoyl-CoA hydratase.''; PubMed Europe PMC Scholia
  86. Brocard C, Hartig A.; ''Peroxisome targeting signal 1: is it really a simple tripeptide?''; PubMed Europe PMC Scholia
  87. Dodt G, Braverman N, Wong C, Moser A, Moser HW, Watkins P, Valle D, Gould SJ.; ''Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders.''; PubMed Europe PMC Scholia
  88. Law KB, Bronte-Tinkew D, Di Pietro E, Snowden A, Jones RO, Moser A, Brumell JH, Braverman N, Kim PK.; ''The peroxisomal AAA ATPase complex prevents pexophagy and development of peroxisome biogenesis disorders.''; PubMed Europe PMC Scholia
  89. Motley AM, Brites P, Gerez L, Hogenhout E, Haasjes J, Benne R, Tabak HF, Wanders RJ, Waterham HR.; ''Mutational spectrum in the PEX7 gene and functional analysis of mutant alleles in 78 patients with rhizomelic chondrodysplasia punctata type 1.''; PubMed Europe PMC Scholia
  90. Ghosh D, Berg JM.; ''A proteome-wide perspective on peroxisome targeting signal 1(PTS1)-Pex5p affinities.''; PubMed Europe PMC Scholia
  91. Otera H, Harano T, Honsho M, Ghaedi K, Mukai S, Tanaka A, Kawai A, Shimizu N, Fujiki Y.; ''The mammalian peroxin Pex5pL, the longer isoform of the mobile peroxisome targeting signal (PTS) type 1 transporter, translocates the Pex7p.PTS2 protein complex into peroxisomes via its initial docking site, Pex14p.''; PubMed Europe PMC Scholia
  92. Purdue PE, Zhang JW, Skoneczny M, Lazarow PB.; ''Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor.''; PubMed Europe PMC Scholia
  93. Emmanouilidis L, Gopalswamy M, Passon DM, Wilmanns M, Sattler M.; ''Structural biology of the import pathways of peroxisomal matrix proteins.''; PubMed Europe PMC Scholia
  94. Francisco T, Rodrigues TA, Dias AF, Barros-Barbosa A, Bicho D, Azevedo JE.; ''Protein transport into peroxisomes: Knowns and unknowns.''; PubMed Europe PMC Scholia
  95. Braverman N, Steel G, Obie C, Moser A, Moser H, Gould SJ, Valle D.; ''Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata.''; PubMed Europe PMC Scholia
  96. Miyata N, Okumoto K, Mukai S, Noguchi M, Fujiki Y.; ''AWP1/ZFAND6 functions in Pex5 export by interacting with cys-monoubiquitinated Pex5 and Pex6 AAA ATPase.''; PubMed Europe PMC Scholia
  97. Ghys K, Fransen M, Fransen M, Mannaerts GP, Van Veldhoven PP.; ''Functional studies on human Pex7p: subcellular localization and interaction with proteins containing a peroxisome-targeting signal type 2 and other peroxins.''; PubMed Europe PMC Scholia
  98. Sargent G, van Zutphen T, Shatseva T, Zhang L, Di Giovanni V, Bandsma R, Kim PK.; ''PEX2 is the E3 ubiquitin ligase required for pexophagy during starvation.''; PubMed Europe PMC Scholia

History

View all...
CompareRevisionActionTimeUserComment
114985view16:51, 25 January 2021ReactomeTeamReactome version 75
113429view11:50, 2 November 2020ReactomeTeamReactome version 74
112631view16:01, 9 October 2020ReactomeTeamReactome version 73
101689view14:09, 1 November 2018DeSlOntology Term : 'protein transport pathway' added !
101546view11:41, 1 November 2018ReactomeTeamreactome version 66
101081view21:23, 31 October 2018ReactomeTeamreactome version 65
100730view20:11, 31 October 2018ReactomeTeamNew pathway

External references

DataNodes

View all...
NameTypeDatabase referenceComment
ACAA1(1-424) ProteinP09110 (Uniprot-TrEMBL)
ACOT2(1-483) ProteinP49753 (Uniprot-TrEMBL)
ACOT4 ProteinQ8N9L9 (Uniprot-TrEMBL)
ACOT8 ProteinO14734 (Uniprot-TrEMBL)
ACOX1 ProteinQ15067 (Uniprot-TrEMBL)
ACOX2 ProteinQ99424 (Uniprot-TrEMBL)
ACOX3 ProteinO15254 (Uniprot-TrEMBL)
ADPMetaboliteCHEBI:456216 (ChEBI)
AGPS(1-658) ProteinO00116 (Uniprot-TrEMBL)
AGXT ProteinP21549 (Uniprot-TrEMBL)
AMACR ProteinQ9UHK6 (Uniprot-TrEMBL)
ATPMetaboliteCHEBI:30616 (ChEBI)
BAAT ProteinQ14032 (Uniprot-TrEMBL)
CAT ProteinP04040 (Uniprot-TrEMBL)
CRAT ProteinP43155 (Uniprot-TrEMBL)
CROT ProteinQ9UKG9 (Uniprot-TrEMBL)
Cargo proteins containing PTS1ComplexR-HSA-9033111 (Reactome)
Cargo proteins containing PTS1ComplexR-HSA-9033148 (Reactome)
Cargo proteins containing PTS2ComplexR-HSA-9033139 (Reactome)
Cargo proteins containing PTS2ComplexR-HSA-9033482 (Reactome)
DAO ProteinP14920 (Uniprot-TrEMBL)
DDO ProteinQ99489 (Uniprot-TrEMBL)
DECR2 ProteinQ9NUI1 (Uniprot-TrEMBL)
DHRS4 ProteinQ9BTZ2 (Uniprot-TrEMBL)
ECH1(1-328) ProteinQ13011 (Uniprot-TrEMBL)
ECI2 ProteinO75521-2 (Uniprot-TrEMBL)
ECI2(39-394) ProteinO75521-2 (Uniprot-TrEMBL)
EHHADH ProteinQ08426 (Uniprot-TrEMBL)
EPHX2 ProteinP34913 (Uniprot-TrEMBL)
GNPAT ProteinO15228 (Uniprot-TrEMBL)
GSTK1 ProteinQ9Y2Q3 (Uniprot-TrEMBL)
H2OMetaboliteCHEBI:15377 (ChEBI)
HACL1 ProteinQ9UJ83 (Uniprot-TrEMBL)
HAO1 ProteinQ9UJM8 (Uniprot-TrEMBL)
HAO2 ProteinQ9NYQ3 (Uniprot-TrEMBL)
HMGCL(1-325) ProteinP35914 (Uniprot-TrEMBL)
HSD17B4 ProteinP51659 (Uniprot-TrEMBL)
HSD17B4(1-736) ProteinP51659 (Uniprot-TrEMBL)
IDE ProteinP14735 (Uniprot-TrEMBL)
IDH1 ProteinO75874 (Uniprot-TrEMBL)
LONP2 ProteinQ86WA8 (Uniprot-TrEMBL)
MLYCD(40-493) ProteinO95822-2 (Uniprot-TrEMBL)
MPV17 ProteinP39210 (Uniprot-TrEMBL)
NOS2 ProteinP35228 (Uniprot-TrEMBL)
NUDT19 ProteinA8MXV4 (Uniprot-TrEMBL)
NUDT7 ProteinP0C024 (Uniprot-TrEMBL)
PAOX ProteinQ6QHF9 (Uniprot-TrEMBL)
PECR ProteinQ9BY49 (Uniprot-TrEMBL)
PEX1 ProteinO43933 (Uniprot-TrEMBL)
PEX10 ProteinO60683 (Uniprot-TrEMBL)
PEX12 ProteinO00623 (Uniprot-TrEMBL)
PEX13 ProteinQ92968 (Uniprot-TrEMBL)
PEX13:PEX14:PEX2:PEX10:PEX12ComplexR-HSA-9033606 (Reactome)
PEX14 ProteinO75381 (Uniprot-TrEMBL)
PEX1:PEX6:PEX26ComplexR-HSA-9033100 (Reactome)
PEX2 ProteinP28328 (Uniprot-TrEMBL)
PEX26 ProteinQ7Z412 (Uniprot-TrEMBL)
PEX2:PEX10:PEX12:PEX5L:Ub:UBE2D1,2,3:PEX7:PEX13:PEX14ComplexR-HSA-9033521 (Reactome)
PEX2:PEX10:PEX12:PEX5S,L:Ub:UBE2D1,2,3:PEX13:PEX14ComplexR-HSA-8953942 (Reactome)
PEX2:PEX10:PEX12:Ub:PEX5L:PEX7:PEX13:PEX14:PEX1:PEX6:PEX26:ZFAND6ComplexR-HSA-9033532 (Reactome)
PEX2:PEX10:PEX12:Ub:PEX5L:PEX7:PEX13:PEX14ComplexR-HSA-9033497 (Reactome)
PEX2:PEX10:PEX12:Ub:PEX5S,L:PEX13:PEX14ComplexR-HSA-9033528 (Reactome)
PEX2:PEX10:PEX12:Ub:PEX5S,L:PEX1:PEX6:PEX26:ZFAND6ComplexR-HSA-9033488 (Reactome)
PEX5 isoform L ProteinP50542-1 (Uniprot-TrEMBL)
PEX5 isoform LProteinP50542-1 (Uniprot-TrEMBL)
PEX5 isoform S ProteinP50542-2 (Uniprot-TrEMBL)
PEX5 isoform SProteinP50542-2 (Uniprot-TrEMBL)
PEX5L:PEX7:Cargo proteinComplexR-HSA-9033115 (Reactome)
PEX5L:PEX7:Cargo:PEX13:PEX14:PEX2:PEX10:PEX12ComplexR-HSA-9033117 (Reactome)
PEX5L:PEX7:PEX13:PEX14:PEX2:PEX10:PEX12ComplexR-HSA-9033513 (Reactome)
PEX5S,L:Cargo proteinComplexR-HSA-9033153 (Reactome)
PEX5S,L:Cargo:PEX13:PEX14:PEX2:PEX10:PEX12ComplexR-HSA-9033114 (Reactome)
PEX5S,L:PEX13:PEX14:PEX2:PEX10:PEX12ComplexR-HSA-9033091 (Reactome)
PEX5S,LComplexR-HSA-9033603 (Reactome)
PEX6 ProteinQ13608 (Uniprot-TrEMBL)
PEX7 ProteinO00628 (Uniprot-TrEMBL)
PEX7:Cargo proteinsComplexR-HSA-9033142 (Reactome)
PEX7ProteinO00628 (Uniprot-TrEMBL)
PHYH(1-338) ProteinO14832 (Uniprot-TrEMBL)
PIPOX ProteinQ9P0Z9 (Uniprot-TrEMBL)
PXLP-AGXT ProteinP21549 (Uniprot-TrEMBL)
RPS27A(1-76) ProteinP62979 (Uniprot-TrEMBL)
SCP2 ProteinP22307 (Uniprot-TrEMBL)
SLC27A2 ProteinO14975 (Uniprot-TrEMBL)
TYSND1 ProteinQ2T9J0 (Uniprot-TrEMBL)
TYSND1 cleaves

peroxisomal

proteins
PathwayR-HSA-9033500 (Reactome) After proteins are imported into the peroxisome a subset of proteins are cleaved by the protease TYSND1 (Okumoto et al. 2011). Based onmutagenesis of human TYSND1 (Okumoto et al. 2011) and the homolog in Arabidopsis (Schuhmann et al. 2008), TYSND1 appears to be a trypsin-like serine protease containing a conserved histidine aspartate serine triad essential for catalysis. Mice lacking Tysnd1 have reduced peroxisomal localization of some peroxisomal enzymes and exhibit reduced beta-oxidation of fatty acids and metabolism of phytanic acid (Mizuno et al. 2013). Male mice lacking Tysnd1 are sterile due to sperm that lack acrosomal caps.
UBA52(1-76) ProteinP62987 (Uniprot-TrEMBL)
UBB(1-76) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(153-228) ProteinP0CG47 (Uniprot-TrEMBL)
UBB(77-152) ProteinP0CG47 (Uniprot-TrEMBL)
UBC(1-76) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(153-228) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(229-304) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(305-380) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(381-456) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(457-532) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(533-608) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(609-684) ProteinP0CG48 (Uniprot-TrEMBL)
UBC(77-152) ProteinP0CG48 (Uniprot-TrEMBL)
UBE2D1 ProteinP51668 (Uniprot-TrEMBL)
UBE2D1,2,3ComplexR-HSA-1234120 (Reactome)
UBE2D2 ProteinP62837 (Uniprot-TrEMBL)
UBE2D3 ProteinP61077 (Uniprot-TrEMBL)
USP9X ProteinQ93008 (Uniprot-TrEMBL)
USP9X:Ub:PEX5LComplexR-HSA-9033512 (Reactome)
USP9X:Ub:PEX5SComplexR-HSA-9033494 (Reactome)
USP9XProteinQ93008 (Uniprot-TrEMBL)
Ub-C11-PEX5L ProteinP50542-1 (Uniprot-TrEMBL)
Ub-C11-PEX5S ProteinP50542-2 (Uniprot-TrEMBL)
Ub-C85-UBE2D1 ProteinP51668 (Uniprot-TrEMBL)
Ub-C85-UBE2D2 ProteinP62837 (Uniprot-TrEMBL)
Ub-C85-UBE2D3 ProteinP61077 (Uniprot-TrEMBL)
Ub:PEX5LComplexR-HSA-9033504 (Reactome)
Ub:PEX5S,LComplexR-HSA-9033619 (Reactome)
Ub:PEX5SComplexR-HSA-9033492 (Reactome)
Ub:UBE2D1,2,3ComplexR-HSA-8953915 (Reactome)
UbComplexR-HSA-113595 (Reactome)
ZFAND6 ProteinQ6FIF0 (Uniprot-TrEMBL)
ZFAND6ProteinQ6FIF0 (Uniprot-TrEMBL)

Annotated Interactions

View all...
SourceTargetTypeDatabase referenceComment
ADPArrowR-HSA-9033499 (Reactome)
ADPArrowR-HSA-9033505 (Reactome)
ATPR-HSA-9033499 (Reactome)
ATPR-HSA-9033505 (Reactome)
Cargo proteins containing PTS1ArrowR-HSA-9033235 (Reactome)
Cargo proteins containing PTS1R-HSA-9033233 (Reactome)
Cargo proteins containing PTS2ArrowR-HSA-9033514 (Reactome)
Cargo proteins containing PTS2R-HSA-9033232 (Reactome)
H2OR-HSA-9033478 (Reactome)
H2OR-HSA-9033491 (Reactome)
PEX13:PEX14:PEX2:PEX10:PEX12ArrowR-HSA-9033499 (Reactome)
PEX13:PEX14:PEX2:PEX10:PEX12ArrowR-HSA-9033505 (Reactome)
PEX13:PEX14:PEX2:PEX10:PEX12R-HSA-9033236 (Reactome)
PEX13:PEX14:PEX2:PEX10:PEX12R-HSA-9033238 (Reactome)
PEX1:PEX6:PEX26ArrowR-HSA-9033499 (Reactome)
PEX1:PEX6:PEX26ArrowR-HSA-9033505 (Reactome)
PEX1:PEX6:PEX26R-HSA-9033516 (Reactome)
PEX1:PEX6:PEX26R-HSA-9033533 (Reactome)
PEX2:PEX10:PEX12:PEX5L:Ub:UBE2D1,2,3:PEX7:PEX13:PEX14ArrowR-HSA-9033527 (Reactome)
PEX2:PEX10:PEX12:PEX5L:Ub:UBE2D1,2,3:PEX7:PEX13:PEX14R-HSA-9033485 (Reactome)
PEX2:PEX10:PEX12:PEX5L:Ub:UBE2D1,2,3:PEX7:PEX13:PEX14mim-catalysisR-HSA-9033485 (Reactome)
PEX2:PEX10:PEX12:PEX5S,L:Ub:UBE2D1,2,3:PEX13:PEX14ArrowR-HSA-8953917 (Reactome)
PEX2:PEX10:PEX12:PEX5S,L:Ub:UBE2D1,2,3:PEX13:PEX14R-HSA-8953946 (Reactome)
PEX2:PEX10:PEX12:PEX5S,L:Ub:UBE2D1,2,3:PEX13:PEX14mim-catalysisR-HSA-8953946 (Reactome)
PEX2:PEX10:PEX12:Ub:PEX5L:PEX7:PEX13:PEX14:PEX1:PEX6:PEX26:ZFAND6ArrowR-HSA-9033516 (Reactome)
PEX2:PEX10:PEX12:Ub:PEX5L:PEX7:PEX13:PEX14:PEX1:PEX6:PEX26:ZFAND6R-HSA-9033499 (Reactome)
PEX2:PEX10:PEX12:Ub:PEX5L:PEX7:PEX13:PEX14:PEX1:PEX6:PEX26:ZFAND6mim-catalysisR-HSA-9033499 (Reactome)
PEX2:PEX10:PEX12:Ub:PEX5L:PEX7:PEX13:PEX14ArrowR-HSA-9033485 (Reactome)
PEX2:PEX10:PEX12:Ub:PEX5L:PEX7:PEX13:PEX14R-HSA-9033516 (Reactome)
PEX2:PEX10:PEX12:Ub:PEX5S,L:PEX13:PEX14ArrowR-HSA-8953946 (Reactome)
PEX2:PEX10:PEX12:Ub:PEX5S,L:PEX13:PEX14R-HSA-9033533 (Reactome)
PEX2:PEX10:PEX12:Ub:PEX5S,L:PEX1:PEX6:PEX26:ZFAND6ArrowR-HSA-9033533 (Reactome)
PEX2:PEX10:PEX12:Ub:PEX5S,L:PEX1:PEX6:PEX26:ZFAND6R-HSA-9033505 (Reactome)
PEX2:PEX10:PEX12:Ub:PEX5S,L:PEX1:PEX6:PEX26:ZFAND6mim-catalysisR-HSA-9033505 (Reactome)
PEX5 isoform LArrowR-HSA-9033491 (Reactome)
PEX5 isoform LR-HSA-9033240 (Reactome)
PEX5 isoform SArrowR-HSA-9033478 (Reactome)
PEX5L:PEX7:Cargo proteinArrowR-HSA-9033240 (Reactome)
PEX5L:PEX7:Cargo proteinR-HSA-9033238 (Reactome)
PEX5L:PEX7:Cargo:PEX13:PEX14:PEX2:PEX10:PEX12ArrowR-HSA-9033238 (Reactome)
PEX5L:PEX7:Cargo:PEX13:PEX14:PEX2:PEX10:PEX12R-HSA-9033514 (Reactome)
PEX5L:PEX7:PEX13:PEX14:PEX2:PEX10:PEX12ArrowR-HSA-9033514 (Reactome)
PEX5L:PEX7:PEX13:PEX14:PEX2:PEX10:PEX12R-HSA-9033527 (Reactome)
PEX5S,L:Cargo proteinArrowR-HSA-9033233 (Reactome)
PEX5S,L:Cargo proteinR-HSA-9033236 (Reactome)
PEX5S,L:Cargo:PEX13:PEX14:PEX2:PEX10:PEX12ArrowR-HSA-9033236 (Reactome)
PEX5S,L:Cargo:PEX13:PEX14:PEX2:PEX10:PEX12R-HSA-9033235 (Reactome)
PEX5S,L:PEX13:PEX14:PEX2:PEX10:PEX12ArrowR-HSA-9033235 (Reactome)
PEX5S,L:PEX13:PEX14:PEX2:PEX10:PEX12R-HSA-8953917 (Reactome)
PEX5S,LR-HSA-9033233 (Reactome)
PEX7:Cargo proteinsArrowR-HSA-9033232 (Reactome)
PEX7:Cargo proteinsR-HSA-9033240 (Reactome)
PEX7ArrowR-HSA-9033499 (Reactome)
PEX7R-HSA-9033232 (Reactome)
R-HSA-8953917 (Reactome) A RING E3 ubiquitin ligase complex containing PEX10, PEX12, and PEX2 ubiquitinates PEX5L. The PEX2:PEX10:PEX12 complex is believed to bind an activated E2-ubiquitin conjugate (one of Ub:UBE2D1, Ub:UBE2D2, Ub:UBE2D3) and PEX5L in a complex that also contains PEX13 and PEX14 (Chang et al. 1999, Carvalho et al. 2007, Grou et al. 2008, Grou et al. 2009, Okumoto et al. 2011). The short isoform of PEX5, PEX5S, is inferred to undergo the same reaction.
R-HSA-8953946 (Reactome) The RING-type E3 ubiquitin ligase sub-complex PEX2:PEX10:PEX12 catalyzes the transfer of ubiquitin from an E2-ubiquitin conjugate (one of Ub:UBE2D1, Ub:UBE2D2, or Ub:UBE2D3) to the cysteine-11 residue of the substrate PEX5L, the peroxisomal matrix protein shuttling receptor (Carvalho et al. 2007; Grou et al. 2008, Okumoto et al. 2011, Sargent et al. 2016, inferred from yeast in Dodt and Gould 1996). The thiol ester bond between ubiquitin and the cysteine residue of PEX5 is unusual among ubiquitin substrates, which usually have isopeptide bonds between ubiquitin and a lysine residue. Monoubiquitination of PEX5 at cysteine-11 is an integral and mandatory step in the PEX5-mediated peroxisomal protein transport pathway; in its absence, PEX5 cannot be extracted from the peroxisomal membrane docking/translocation machinery (the peroxisomal protein translocon), and thus transport of newly synthesized peroxisomal matrix proteins to the organelle matrix stops (Grou et al. 2009). In addition to monoubiquitinating PEX5 during peroxisomal protein import, the PEX2:PEX10:PEX12 complex has also been implicated in pexophagy, a type of selective autophagy targeting peroxisomes. Pexophagy seems to be triggered mainly by ubiquitination of PEX5, which, in this case, can occur either at its cysteine-11 or lysine-209 residues, but ubiquitination of ABCD3 (also known as PMP70) and other peroxisomal membrane proteins may also be involved (Zhang et al. 2015, inferred from mouse in Nordgren et al. 2015, Sargent et al. 2016).
R-HSA-9033232 (Reactome) Cytosolic PEX7 binds peroxisome targeting signal 2 (PTS2), a sequence of nine amino acid residues functionally identified in 3 human peroxisomal matrix proteins (Braverman et al. 1997, Motley et al. 1997, Purdue et al. 1997, Braverman et al. 2000, Ghys et al. 2002, Motley et al. 2002, Kunze et al. 2011, Kunze et al. 2015). According to molecular modeling, the PTS2 consensus sequence binds a groove in PEX7 (Kunze et al. 2011). Mutations in PEX7 cause rhizomelic chondrodysplasia punctata type 1 (Braverman et al. 1997, Motley et al. 1997, Purdue et al. 1997).
R-HSA-9033233 (Reactome) It is unclear how the long isoform of PEX5 (PEX5L) and the short isoform of PEX5 (PEX5S) are generated. A current hypothesis suggests alternative mRNA splicing. Both isoforms can bind the peroxisome targeting signal 1 (PTS1) located at the C-terminus of most of the proteins that are targeted to the peroxisomal matrix (Dodt et al. 1995, Fransen et al. 1995, Wiemer et al. 1995, Gatto et al. 2000, Brocard et al. 2003, Gatto et al. 2003, Harper et al. 2003, Ghosh and Berg 2010, Freitas et al. 2011, Okumoto et al. 2011). PTS1 typically contains Ser-Lys-Leu (SKL) at the C-terminus but substantial variation in sequences and affinities for PEX5 are observed and upstream residues can modulate binding to PEX5 (Lametschwandtner et al. 1998, Ghosh and Berg 2010, reviewed in Brocard and Hartig 2006).
A minority of peroxisomal matrix proteins contain PTS2. While the PEX5S isoform binds proteins containing PTS1, the PEX5L isoform binds either proteins containing PTS1 or PEX7 bound to proteins containing PTS2 (Braverman et al. 1998). Some proteins appear to be imported as oligomers, however this is rather inefficient as PEX5 appears to have a preference for monomeric substrates (Otera and Fujiki 2012, Freitas et al. 2011, Freitas et al. 2015, also inferred from mouse homologs). Mutations in PEX5 cause defects in peroxisomal import and comprise complementation group 2 of peroxisomal biogenesis disorders (also called Zellweger spectrum disorders) (Dodt et al. 1995, Wiemer et al. 1995). A specific mutation affecting only the PEX5L isoform is the cause of rhizomelic chondrodysplasia punctate type 5 (Barøy et al. 2015).
R-HSA-9033235 (Reactome) After binding the Docking and Translocation Module comprising PEX14, PEX13, PEX2, PEX10 and PEX12 , PEX5S or PEX5L bound to a cargo protein becomes localized to the membrane (Dodt et al. 1995, Wiemer et al. 1995, Alencastre et al. 2009, Francisco et al. 2013, Dias et al. 2017). In a reaction that is not yet fully characterized, the cargo protein is released into the peroxisomal matrix while PEX5S or PEX5L remains in the membrane (Dodt et al. 1995, Wiemer et al. 1995, Alencastre et al. 2009, Franscisco et al. 2013). One model for the reaction hypothesizes that PEX13:PEX14 (associated with PEX2:PEX10:PEX12) forms a barrel in the peroxisomal membrane while PEX5S or PEX5L acts as a plunger to guide the cargo through the barrel (Dias et al. 2017, Francisco et al. 2017). Notably, the reaction does not require a source of energy such as ATP (Oliveira et al. 2003). Mutations in PEX5 cause defects in import of PTS1-containing proteins or PTS2-containing proteins or both (Eberrink et al. 2009, Barøy et al. 2015).
R-HSA-9033236 (Reactome) PEX5S or PEX5L bound to cargo proteins containing PTS1 interacts with the Docking and Translocation Module (PEX13:PEX14:PEX2:PEX10:PEX12) (Gould et al. 1996, Fransen et al. 1998, Will et al. 1999, Neufeld et al. 2009, Shiozawa et al. 2009, Freitas et al. 2011, Francisco et al. 2013, Neufeld et al. 2014, Dias et al. 2017).
R-HSA-9033238 (Reactome) PEX5L bound to PEX7:Cargo interacts with the peroxisomal membrane complex PEX13:PEX14:PEX2:PEX10:PEX12 (the Docking-Translocation Complex) thus bringing PEX7 and its cargo to dock at the peroxisomal membrane (Gould et al. 1996, Fransen et al. 1998, Will et al. 1999, Dodt et al. 2001, Rodrigues et al. 2014, Rodrigues et al. 2015, also inferred from hamster and rat homologues).
R-HSA-9033240 (Reactome) The long isoform of PEX5, PEX5L, binds PEX7 that is already bound to a PTS2-containing cargo protein (Braverman et al. 1998, Dodt et al. 2001, Kunze et al. 2015, Rodrigues et al. 2015). The binding of PEX5L to PEX7 increases the affinity of PEX7 for cargo protein (Kunze et al. 2015). Mutations affecting the additional sequence present only in the long isoform of PEX5 cause rhizomelic chondrodysplasia punctata type 5 (Baroy et al. 2015).
R-HSA-9033478 (Reactome) The deubiquitinating enzyme USP9X hydrolyzes the thioester bond between the carboxyl terminus of ubiquitin and cysteine-11 of PEX5S (inferred from the large isoform of PEX5L in Grou et al. 2012). The thioester bond is unstable and appears also to be spontaneously disrupted by nucleophilic attack of small metabolites such as reduced glutathione (Grou et al. 2009).
R-HSA-9033485 (Reactome) The RING-type E3 ubiquitin ligase sub-complex PEX2:PEX10:PEX12 catalyzes the transfer of ubiquitin from an E2-ubiquitin conjugate (one of Ub:UBE2D1, Ub:UBE2D2, or Ub:UBE2D3) to the cysteine-11 residue of the substrate PEX5L, the peroxisomal matrix protein shuttling receptor (Carvalho et al. 2007; Grou et al. 2008, Okumoto et al. 2011, Sargent et al. 2016, inferred from yeast in Dodt and Gould 1996). In contrast to PEX5, PEX7 transiently associated with the docking and translocation module (which comprises PEX14, PEX13, PEX2, PEX10, and PEX12) is not ubiquitinated. The thiol ester bond between ubiquitin and the cysteine residue of PEX5 is unusual among ubiquitin substrates, which usually have isopeptide bonds between ubiquitin and a lysine residue. Monoubiquitination of PEX5 at cysteine-11 is an integral and mandatory step in the PEX5-mediated peroxisomal protein transport pathway; in its absence, PEX5 and PEX7 cannot be extracted from the peroxisomal membrane docking-translocation machinery (the peroxisomal protein translocon), and thus transport of newly synthesized peroxisomal matrix proteins to the organelle matrix stops (Grou et al. 2009). In addition to monoubiquitinating PEX5 during peroxisomal protein import, the PEX2:PEX10:PEX12 sub-complex has also been implicated in pexophagy, a type of selective autophagy targeting peroxisomes. Pexophagy seems to be triggered mainly by ubiquitination of PEX5, which, in this case, can occur either at its cysteine-11 or lysine-209 residues, but ubiquitination of ABCD3 (also known as PMP70) and other peroxisomal membrane proteins may also be involved (Zhang et al. 2015, inferred from mouse in Nordgren et al. 2015, Sargent et al. 2016).
R-HSA-9033491 (Reactome) The deubiquitinating enzyme USP9X hydrolyzes the thioester bond between the carboxyl terminus of ubiquitin and cysteine-11 of PEX5L (Grou et al. 2012). The thioester bond is unstable and appears to be also spontaneously (non-enzymatically) disrupted by nucleophilic attack of small metabolites such as reduced glutathione (Grou et al. 2009).
R-HSA-9033499 (Reactome) Ubiquitinated PEX5 isoform L (Ub:PEX5L) is released from the peroxisomal membrane Docking and Translocation Module by PEX1:PEX6:PEX26 (the peroxisomal AAA ATPase complex, receptor export module) (Tamura et al. 2014, Law et al. 2017, also inferred from yeast homologs). PEX1 and PEX6 form a cytosolic hexameric ring that is anchored to the peroxisomal membrane by PEX26. Hydrolysis of ATP by PEX1 and PEX6 appears to cause a conformational change in PEX1:PEX6:PEX26 that removes Ub:PEX5L from the peroxisomal membrane and into the cytosol (reviewed in Saffert et al. 2017). ZFAND6 probably binds ubiquitinated PEX5 and PEX6 and acts as an export factor (Miyata et al. 2012). Export of PEX7 back to the cytosol requires export of PEX5L but PEX7 and PEX5L appear to be exported separately (Rodrigues et al. 2014).
R-HSA-9033505 (Reactome) Ubiquitinated PEX5 isoform S or isoform L (Ub:PEX5S,L) is released from the peroxisomal membrane and interaction with the Docking and Translocation Module by PEX1:PEX6:PEX26:ZFAND6 (the peroxisomal AAA ATPase complex, receptor export module) (Tamura et al. 2014, Law et al. 2017, also inferred from yeast homologs). PEX1 and PEX6 form a cytosolic hexameric ring that is anchored to the peroxisomal membrane by PEX26. Hydrolysis of ATP by PEX1 and PEX6 appears to cause a conformational change in PEX1:PEX6:PEX26:ZFAND6 that releases Ub:PEX5S,L from the peroxisomal membrane and into the cytosol (reviewed in Saffert et al. 2017).
R-HSA-9033509 (Reactome) The deubiquitinating enzyme USP9X binds ubiquitinated PEX5L (ubiquitin conjugated to the large isoform of PEX5, Ub:PEX5L) and then hydrolyzes the thioester bond between the carboxyl terminus of ubiquitin and cysteine-11 of PEX5L (Grou et al. 2012).
R-HSA-9033514 (Reactome) The cargo protein bound to PEX7 is released from PEX7 into the peroxisomal matrix in a reaction that does not require ATP (Purdue et al. 1997, Dodt et al. 2001, Rodrigues et al. 2014, Rodrigues et al. 2015). PEX7 may also be released into the matrix (inferred from yeast in Nair et al. 2004), however later research indicates that PEX7 remains with PEX5L in the peroxisomal membrane (Rodrigues et al. 2015) apparently in a proteinaceous cavity (Dias et al. 2017). Mutations in PEX5 cause defects in import of PTS1-containing proteins or PTS2-containing proteins or both (Eberrink et al. 2009, Barøy et al. 2015).
R-HSA-9033516 (Reactome) PEX1:PEX6:PEX26 (known as the Receptor Export Module) extracts ubiquitinated PEX5L from the peroxisomal membrane Docking and Translocation Module (Tamura et al. 2006, Tamura et al. 2014). PEX1 and PEX6 are soluble proteins that form a hexameric ring bound to PEX26 in the peroxisomal membrane (Matsumoto et al. 2003, Welle et al. 2005). ZFAND6 (AWP1) probably binds to ubiquitinated PEX5 and PEX6 and acts as an export factor (Miyata et al. 2012).
R-HSA-9033526 (Reactome) The deubiquitinating enzyme USP9X binds cytosolic ubiquitinated PEX5S (Ub:PEX5S) and then hydrolyzes the thioester bond between the carboxyl terminus of ubiquitin and cysteine-11 of PEX5S (inferred from the large isoform of PEX5 in Grou et al. 2012).
R-HSA-9033527 (Reactome) A RING E3 ubiquitin ligase sub-complex containing PEX10, PEX12, and PEX2 ubiquitinates PEX5L. PEX10:PEX12:PEX2 is believed to bind an activated E2-ubiquitin conjugate (one of Ub:UBE2D1, Ub:UBE2D2, Ub:UBE2D3) and PEX5L in a complex that also contains PEX13 and PEX14 (Chang et al. 1999, Carvalho et al. 2007, Grou et al. 2008, Grou et al. 2009, Okumoto et al. 2011).
R-HSA-9033533 (Reactome) PEX1:PEX6:PEX26 (also known as the Receptor Export Module or peroxisomal AAA ATPase complex) extracts ubiquitinated PEX5S or PEX5L in the peroxisomal membrane (Tamura et al. 2006, Tamura et al. 2014). PEX1 and PEX6 are soluble proteins that form a hexameric ring bound to PEX26 in the peroxisomal membrane (Matsumoto et al. 2003, Weller et al. 2005). ZFAND6 (AWP1) probably binds to ubiquitinated PEX5 and PEX6 and acts as an export factor (Miyata et al. 2012).
UBE2D1,2,3ArrowR-HSA-8953946 (Reactome)
UBE2D1,2,3ArrowR-HSA-9033485 (Reactome)
USP9X:Ub:PEX5LArrowR-HSA-9033509 (Reactome)
USP9X:Ub:PEX5LR-HSA-9033491 (Reactome)
USP9X:Ub:PEX5Lmim-catalysisR-HSA-9033491 (Reactome)
USP9X:Ub:PEX5SArrowR-HSA-9033526 (Reactome)
USP9X:Ub:PEX5SR-HSA-9033478 (Reactome)
USP9X:Ub:PEX5Smim-catalysisR-HSA-9033478 (Reactome)
USP9XArrowR-HSA-9033478 (Reactome)
USP9XArrowR-HSA-9033491 (Reactome)
USP9XR-HSA-9033509 (Reactome)
USP9XR-HSA-9033526 (Reactome)
Ub:PEX5LArrowR-HSA-9033499 (Reactome)
Ub:PEX5LR-HSA-9033509 (Reactome)
Ub:PEX5S,LArrowR-HSA-9033505 (Reactome)
Ub:PEX5SR-HSA-9033526 (Reactome)
Ub:UBE2D1,2,3R-HSA-8953917 (Reactome)
Ub:UBE2D1,2,3R-HSA-9033527 (Reactome)
UbArrowR-HSA-9033478 (Reactome)
UbArrowR-HSA-9033491 (Reactome)
ZFAND6ArrowR-HSA-9033499 (Reactome)
ZFAND6ArrowR-HSA-9033505 (Reactome)
ZFAND6R-HSA-9033516 (Reactome)
ZFAND6R-HSA-9033533 (Reactome)
Personal tools